Symbolic Summation of Multivariate Rational Functions via Shift Equivalence Testing PDF

Supplementary material to the paper by Shaoshi Chen, Lixin Du, and Hanqian Fang.

Maple Implementation:

Please download the following files:

Timings:

We implemented the ADC algorithm in two different ways. The function SET_ADC_expansion constructs the a-degree cover by expanding the 2n-variable polynomial p(x+a)-q(x) completely, while the function SET_ADC_derivation finds the cover via partial derivative.

We compared the algorithm SET_ADC_expansion and SET_ADC_derivation to the algorithms by Grigoriev, Kauers et al. and Dvir et al.

The multivariate polynomials we tested are of the form
          f(x), g(x)=f(x+a)+dis(x),
where x is a vector of n variables, a is a vector over integers, f is a polynomial with degree d and t terms, and dis is a polynomial with degree d'.

The table below shows the timings (in seconds) we got in which:

Timings were taken on a macOS Monterey (Version 12.0.1) MacBook Pro with 32GB Memory and Apple M1 Pro Chip.

n t d d' G KS DOS ADCE
3 10 15 13 5.476 2.090 0.014 0.008
3 10 15 10 0.243 1.124 0.023 0.020
3 10 15 5 21.719 1.809 0.050 0.032
3 10 15 0 573.178 2.576 0.068 0.039
3 10 15 -∞ 18.491 0.714 0.043 0.036
3 100 15 13 0.205 10.025 0.044 0.028
3 100 15 10 0.482 9.997 0.046 0.046
3 100 15 5 22.114 11.317 0.061 0.062
3 100 15 0 2152.378 19.470 0.083 0.069
3 100 15 -∞ 1200.473 13.640 0.085 0.068


n t d d' DOS ADCE ADCD
5 100 20 18 0.285 0.202 1.194
5 100 20 15 0.262 0.190 1.014
5 100 20 10 0.603 0.574 14.418
5 100 20 5 1.301 0.650 15.160
5 100 20 0 1.377 0.648 13.538
5 100 20 -∞ 1.443 0.667 15.941


n t d d' DOS ADCE
5 100 40 35 199.177 59.889
5 100 40 30 24.684 90.159
5 100 40 20 379.835 95.761
5 100 40 10 681.189 665.885
5 100 40 0 182.671 62.261
5 100 40 -∞ 709.223 77.880
5 10000 20 18 2.724 122.744
5 10000 20 15 3.088 163.258
5 10000 20 10 5.290 139.685
5 10000 20 5 10.755 125.359
5 10000 20 0 23.949 151.010
5 10000 20 -∞ 24.562 136.187
5 40000 20 18 5.915 1745.426
5 40000 20 15 6.779 1639.866
5 40000 20 10 12.423 1674.016
5 40000 20 5 34.048 1654.189
5 40000 20 0 51.811 1658.617
5 40000 20 -∞ 48.410 1739.951