Supplementary material to the paper by Shaoshi Chen, Lixin Du, and Hanqian Fang.
We implemented the ADC algorithm in two different ways. The function SET_ADC_expansion constructs the a-degree cover by expanding the 2n-variable polynomial p(x+a)-q(x) completely, while the function SET_ADC_derivation finds the cover via partial derivative.
We compared the algorithm SET_ADC_expansion and SET_ADC_derivation to the algorithms by Grigoriev, Kauers et al. and Dvir et al.
The multivariate polynomials we tested are of the form
f(x), g(x)=f(x+a)+dis(x),
where x is a vector of n variables, a is a vector over integers, f is a polynomial with degree d and t terms, and dis is a polynomial with degree d'.
The table below shows the timings (in seconds) we got in which:
n | t | d | d' | G | KS | DOS | ADCE |
3 | 10 | 15 | 13 | 5.476 | 2.090 | 0.014 | 0.008 |
3 | 10 | 15 | 10 | 0.243 | 1.124 | 0.023 | 0.020 |
3 | 10 | 15 | 5 | 21.719 | 1.809 | 0.050 | 0.032 |
3 | 10 | 15 | 0 | 573.178 | 2.576 | 0.068 | 0.039 |
3 | 10 | 15 | -∞ | 18.491 | 0.714 | 0.043 | 0.036 |
3 | 100 | 15 | 13 | 0.205 | 10.025 | 0.044 | 0.028 |
3 | 100 | 15 | 10 | 0.482 | 9.997 | 0.046 | 0.046 |
3 | 100 | 15 | 5 | 22.114 | 11.317 | 0.061 | 0.062 |
3 | 100 | 15 | 0 | 2152.378 | 19.470 | 0.083 | 0.069 |
3 | 100 | 15 | -∞ | 1200.473 | 13.640 | 0.085 | 0.068 |
n | t | d | d' | DOS | ADCE | ADCD |
5 | 100 | 20 | 18 | 0.285 | 0.202 | 1.194 |
5 | 100 | 20 | 15 | 0.262 | 0.190 | 1.014 |
5 | 100 | 20 | 10 | 0.603 | 0.574 | 14.418 |
5 | 100 | 20 | 5 | 1.301 | 0.650 | 15.160 |
5 | 100 | 20 | 0 | 1.377 | 0.648 | 13.538 |
5 | 100 | 20 | -∞ | 1.443 | 0.667 | 15.941 |
n | t | d | d' | DOS | ADCE |
5 | 100 | 40 | 35 | 199.177 | 59.889 |
5 | 100 | 40 | 30 | 24.684 | 90.159 |
5 | 100 | 40 | 20 | 379.835 | 95.761 |
5 | 100 | 40 | 10 | 681.189 | 665.885 |
5 | 100 | 40 | 0 | 182.671 | 62.261 |
5 | 100 | 40 | -∞ | 709.223 | 77.880 |
5 | 10000 | 20 | 18 | 2.724 | 122.744 |
5 | 10000 | 20 | 15 | 3.088 | 163.258 |
5 | 10000 | 20 | 10 | 5.290 | 139.685 |
5 | 10000 | 20 | 5 | 10.755 | 125.359 |
5 | 10000 | 20 | 0 | 23.949 | 151.010 |
5 | 10000 | 20 | -∞ | 24.562 | 136.187 |
5 | 40000 | 20 | 18 | 5.915 | 1745.426 |
5 | 40000 | 20 | 15 | 6.779 | 1639.866 |
5 | 40000 | 20 | 10 | 12.423 | 1674.016 |
5 | 40000 | 20 | 5 | 34.048 | 1654.189 |
5 | 40000 | 20 | 0 | 51.811 | 1658.617 |
5 | 40000 | 20 | -∞ | 48.410 | 1739.951 |