Supplementary material to the paper by Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li,and Guoce Xin.
We compared the algorithm HermiteTelescoping in our paper
to the Maple built-in implementation of the telescoping algorithm
by Almkvist and Zeilberger.
The hyperexponential functions we tested are of the form
where m is an positive integer and p, q, a, b, u and v are all irreducible polynomials in x and y over intergers. For simplicity, we choose
The table below shows the timings (in seconds) we got in which:
Example | ( λ, μ, ν, m ) | ZT | HT | HTC | order | Telescoper |
example1 | (2, 0, 2, 1) | 2.16 | 2.01 | 3.80 | 5 | tele1 |
example2 | ( 2, 0, 2, 2 ) | 2.06 | 1.98 | 2.59 | 5 | tele2 |
example3 | ( 3, 0, 2, 1 ) | 8.68 | 6.54 | 14.01 | 6 | tele3 |
example4 | ( 3, 0, 2, 2 ) | 9.23 | 6.06 | 13.72 | 6 | tele4 |
example5 | ( 6, 0, 1, 1 ) | 44.04 | 24.39 | 70.49 | 7 | tele5 |
example6 | ( 6, 0, 1, 2 ) | 41.85 | 22.74 | 59.50 | 7 | tele6 |
example7 | ( 2, 1, 2, 1 ) | 80.69 | 17.97 | 47.51 | 7 | tele7 |
example8 | ( 2, 1, 2, 2 ) | 66.47 | 17.25 | 46.94 | 7 | tele8 |
example9 | ( 2, 1, 2, 1 ) | 63.36 | 17.45 | 47.94 | 7 | tele9 |
example10 | ( 2, 1, 2, 2 ) | 69.69 | 17.81 | 47.11 | 7 | tele10 |
example11 | ( 2, 2, 2, 1 ) | 1399.2 | 155.54 | 570.40 | 9 | tele11 |
example12 | ( 2, 2, 2, 2 ) | 1397.7 | 142.34 | 510.11 | 9 | tele12 |
example13 | ( 3, 0, 3, 1 ) | 151.84 | 44.07 | 120.44 | 8 | tele13 |
example14 | ( 3, 0, 3, 2 ) | 150.14 | 43.46 | 122.36 | 8 | tele14 |
example15 | ( 3, 3, 0, 1 ) | 206.90 | 46.15 | 165.67 | 8 | tele15 |
example16 | ( 3, 3, 0, 2 ) | 207.81 | 44.95 | 161.25 | 8 | tele16 |
example17 | ( 3, 2, 1, 1 ) | 300.93 | 60.33 | 184.71 | 8 | tele17 |
example18 | ( 3, 2, 1, 2 ) | 333.75 | 55.86 | 176.78 | 8 | tele18 |
example19 | ( 3, 1, 3, 1 ) | OOM | 361.79 | 1556.1 | 10 | tele19 |
example20 | ( 3, 1, 3, 2 ) | OOM | 370.18 | 1535.7 | 10 | tele20 |