ECCA Project

subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link
subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link
subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link
subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link
subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link
subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link
subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link
subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link

ECCA Project

Description

ECCA stands for Exact/Certified Computation with Algebraic systems. It is one of the projects run within the LIAMA Consortium as a cooperation project between INRIA/LIP6, KLMM, SKLOIS and LMIB. This project is aiming at identifying specifications on polynomial system solving which are useful for the end-user, designing algorithms for computing the required data by the specification, implementing them and validating algorithmic strategies by solving relevant applications.

Objective

Algebraic systems are fundamental mathematical objects used in the formulation, modeling, and investigation of scientific, engineering, and industrial problems, of complex information, biological, and social systems, and of natural, financial, and economic phenomena. Computational studies of algebraic systems are foundational research in information science that requires sophisticated mathematical theories and methods and that has numerous applications in other domains. The main objective of this project is to study and compute the solutions of nonlinear algebraic systems and their structures and properties with selected target applications using exact or certified computation. The project consists of one main task of basic research on the design and implementation of fundamental algorithms and four tasks of applied research on computational geometry, algebraic cryptanalysis, global optimization, and algebraic biology. more...

Partners

Members

Tasks

Meetings

Projects

Contacts

About Us | Site Map | Privacy Policy | Contact Us | ©2012 ECCA