
Journal of Mathematical Sciences, Vol. 131, No. 5, 2005

UNIVARIATE ORE POLYNOMIAL RINGS IN COMPUTER ALGEBRA

S. A. Abramov, H. Q. Le, and Z. Li UDC 512.55

Abstract. We present some algorithms related to rings of Ore polynomials (or, briefly, Ore rings) and

describe a computer algebra library for basic operations in an arbitrary Ore ring. The library can be used

as a basis for various algorithms in Ore rings, in particular, in differential, shift, and q-shift rings.

CONTENTS

1. Introduction . 5885
2. Rings of Univariate Ore Polynomials . 5886
3. Adjoint Operators . 5889
4. New Modular Techniques for gcd and lcm Computations . 5892
5. The OreTools Package . 5897
6. Comparison . 5900
7. Availability . 5900

References . 5901

1. Introduction

The theory of Ore rings gives us an opportunity to consider linear ordinary differential, difference,
q-difference, and other operators from a uniform standpoint. This theory was proposed by Ore [24–26],
who described, in particular, a uniform theory of the operator factorization, which generalizes the theory
of Landau and Loewy for the differential case [17, 21, 22]. A way of interpreting abstract Ore polynomials
as linear operators in a vector space was proposed by Jacobson [16].

The study of rings of Ore polynomials is attractive since it not only allows statements concerning
operators of various kind to be proved in one stroke, but also allows one to design general-purpose
algorithms and corresponding programs adjustable to a specific form of operators and equations. It is
worth mentioning that the idea of using Ore rings in computer algebra was first employed by Bronstein
and Petkovšek in [8], where a general-purpose algorithm for factorization in an arbitrary Ore ring was
described.

In this paper, we describe a few (but far from all) computer algebra algorithms related to Ore rings.
Section 2 provides an overview of rings of univariate Ore polynomials. The material of Sec. 3 on adjoint
operators is presented in a more general form than in [3], while the contents of Sec. 4 on an efficient
computation of greatest common divisors (gcd) and least common multiples (lcm) is presented for the
first time. Section 5 gives an overview of the OreTools package, which provides facilities for working
with univariate Ore polynomials in the Maple computer algebra system [23]. A comparison between this
package and other related packages is done in Secs. 4 and 6. Information on the availability of the package
is provided in Sec. 7.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 13, Algebra, 2004.

1072–3374/05/1315–5885 c© 2005 Springer Science+Business Media, Inc. 5885

Acknowledgments. This work was partially supported by the Russian Foundation for Basic Research
(project No. 01-01-0047) and by the Natural Sciences and Engineering Research Council of Canada (Grant
No. CRD215442-98).

2. Rings of Univariate Ore Polynomials

In Secs. 2.1 and 2.4, we give an overview of univariate Ore polynomials and pseudo-linear operators
(see [8, 16, 24] for a detailed discussion on them and proofs of corresponding statements). In Sec. 2.2, we
discuss the idea of Hilbert twist reduction following [8, 10]. In Sec. 2.3, the definition and basic properties
of adjoint polynomials are given (see [10, Chaps. 1 and 8 (Sec. 3)] for details).

2.1. Ore polynomials. Let k be a commutative field of characteristic 0 and σ : k → k be an automor-
phism of k.

Definition 2.1. A derivation with respect to σ is any mapping δ : k → k satisfying the following
conditions:

δ(a+ b) = δa+ δb and δ(ab) = σ(a) δb+ δa b for any a, b ∈ k. (1)

Definition 2.2. The set of constants (with respect to σ and δ) is the set

Constσ,δ(k) = {a ∈ k : σ(a) = a, δa = 0}.
It can be shown that Constσ,δ(k) is a subfield of k.

The following lemma describes the relationship between σ and δ. When no confusion arises, we denote
by 1 the identity mapping of k.

Lemma 2.1. Let δ be a derivation of k with respect to σ.
(i) If σ �= 1, then there is an element α ∈ k such that δ = α(σ − 1).
(ii) If δ �= 0, then there is an element β ∈ k such that σ = βδ + 1.

Example 2.1. Let k = F(t) in cases 1–4 and k = F(q, t) in cases 5–7, where F is any subfield of C.

Case σ δ

1 differential 1
d

dt

2 Eulerian differential 1 t
d

dt

3 shift E 0

4 difference E E − 1

5 q-shift Q 0

6 q-difference Q Q− 1

7 q-differential Q
Q− 1
t(q − 1)

Definition 2.3. A (univariate) Ore ring k[x;σ, δ] over k given by σ and δ is the ring of polynomials in x
over k with the usual polynomial addition and multiplication given by the rule

x a = σ(a)x+ δa for any a ∈ k. (2)

5886

Elements of the ring k[x;σ, δ] are called Ore polynomials. Note that it is possible to consider k as a
ring (we will consider Ore polynomials over a ring in Secs. 2.4, 3, and 4).

Let p(x) ∈ k[x;σ, δ] and p(x) = pmx
m + · · · + p1x + p0, pm �= 0; then m = deg p(x) and pm = lc p(x).

We set deg 0 = −∞ and lc 0 = 0. It can be shown that k[x;σ, δ] possesses the right and left division
algorithms. Let a, b ∈ k[x;σ, δ] \ {0}. By applying the right division algorithm, we obtain

a = q1b+ r1, q1, r1 ∈ k[x;σ, δ], deg r1 < deg b;

r1 and q1 are called the right remainder and the right quotient of a by b, respectively. Similarly, by
applying the left division algorithm, we obtain

a = bq2 + r2, q2, r2 ∈ k[x;σ, δ], deg r2 < deg b;

r2 and q2 are called the left remainder and the left quotient of a by b, respectively.
For given a, b ∈ k[x;σ, δ], one can find the greatest common right divisor (gcrd) by the right Euclidean

algorithm and the least common left multiple (lclm) by the extended right Euclidean algorithm. The
computation of the greatest common left divisor (gcld) and the least common right multiple (lcrm) can
be reduced to the computation of the gcrd and the lclm, respectively, by using the adjoint.

2.2. Hilbert twist reduction. The Hilbert twist reduction is a ring isomorphism which maps a general
Ore ring to a ring with trivial derivation provided that σ is nontrivial.

Proposition 2.2. If there exists α ∈ k such that α �= σ(α), then the bijection Hα : k[x;σ, δ] → k[y;σ, 0]
given by the formula

Hα

(∑
i

aix
i

)
=
∑

i

ai

(
y + δα

α− σ(α)

)i

is a ring isomorphism.

2.3. Adjoint polynomials.

Definition 2.4. Let k[x;σ, δ] be an Ore ring. The adjoint of k[x;σ, δ] is defined as the Ore ring k[x;σ∗, δ∗],
where

σ∗ = σ−1, δ∗ = −δσ−1. (3)

Let a = an x
n + · · · + a1 x+ a0 ∈ k[x;σ, δ]. The adjoint polynomial a∗ is defined by the formula

a∗ = xnan + · · · + xa1 + a0 ∈ k[x;σ∗, δ∗].

Note that the product xiai must be computed in the Ore ring k[x;σ∗, δ∗]. It is easy to show that

Constσ,δ(k) = Constσ∗,δ∗(k), (σ∗)∗ = σ, (δ∗)∗ = δ.

One can also verify that the adjoint is a linear (over Constσ,δ) bijective mapping and

(a∗)∗ = a, (ab)∗ = b∗a∗.

Moreover,

gcld(a, b) = (gcrd(a∗, b∗))∗, lcrm(a, b) = (lclm(a∗, b∗))∗.

Example 2.2. Example 2.1 and Definition 2.4 imply the following.

5887

Case σ∗ δ∗

1 differential 1 − d

dt

2 Eulerian differential 1 −t d
dt

3 shift E−1 0

4 difference E−1 E−1 − 1

5 q-shift Q−1 0

6 q-difference Q−1 Q−1 − 1

7 q-differential Q−1 Q−1 − 1
t(q − 1)

2.4. Ore polynomials as linear operators.

Definition 2.5. Let V be a vector space over k. A mapping θ : V → V is said to be pseudo-linear with
respect to σ and δ if

θ(u+ v) = θ(u) + θ(v),

θ(au) = σ(a)θ(u) + δa u
(4)

for any a ∈ k and u, v ∈ V .

Assume that K is a σ, δ-compatible extension ring of k, i.e., σ and δ can be extended to an automor-
phism of the ring K and a derivation of the ring with respect to σ, respectively. We also assume that
Constσ,δ(K) = Constσ,δ(k) and denote this field by C for brevity. Note that K is a vector space over k
and hence can play the role of V . We will consider pseudo-linear mappings from K to K assuming that
relations (4) hold for any a, u, v ∈ K.

Lemma 2.3. For any c ∈ K, the mapping θc : K → K given by the formula

θc(a) = cσ(a) + δa (5)

is K-pseudo-linear with respect to σ and δ and θc(1) = c. Conversely, for any K-pseudo-linear mapping
θ, the element c = θ(1) is such that θ = θc given in (5).

Consider the ring k[θ] of C-linear operators L : K → K of the form L = p(θ), p(x) ∈ k[x;σ, δ]. The
correspondence p(x) → p(θ) provides us with a ring homomorphism Θ : k[x;σ, δ] → k[θ] due to the
pseudo-linearity of θ. We assume that

p(θ) is the zero operator on K if and only if p(x) is the zero Ore polynomial, (6)

and, as a consequence, the correspondence p(x) → p(θ) gives a ring isomorphism. If L = p(θ), then we
set ordL = deg p.

Sometimes, it is convenient to consider the rings K[x;σ, δ] and K[θ] as well. We assume that (6) is
valid for them.

It is easy to give an example which shows that (6) is not valid in the general case (e.g., K = k = C,
σ(z) = z̄, δ = 0, and θ = σ). In Proposition 3.2, we will formulate a natural simple sufficient condition
of (6).

As a consequence of Lemmas 2.1 and 2.3, we obtain the following assertion.

5888

Proposition 2.4. A K-pseudo-linear mapping θ with respect to σ and δ is equal to δ+ θ(1) if σ = 1 and
to (θ(1) + α)σ − α if σ �= 1, where α is as in Lemma 2.1(i).

Assumption (6) does not hold in the case where θ(1) + α = 0 (otherwise, θ+ α = 0), so we derive that
if σ �= 1, then (θ(1) + α)σ − α and θ(1) + α �= 0. In addition, we will assume that θ(1) + α is not a zero
divisor in K (this is valid, e.g., if θ(1) ∈ k and, as a consequence, θ(1) + α ∈ k).

Example 2.3. The following table provides information on the pseudo-linear mapping θ and c = θ(1).

Case θ c

1 differential
d

dt
0

2 Eulerian differential t
d

dt
0

3 shift E 1

4 difference E − 1 0

5 q-shift Q 1

6 q-difference Q− 1 0

7 q-differential
Q− 1
t(q − 1)

0

3. Adjoint Operators

3.1. Operator ∇. Let θ be a pseudo-linear mapping from K to K with respect to σ and δ. We set
∇ = θ − θ(1) and ∇ ∈ K[θ]. By Proposition 2.4, we have

∇ =

{
δ if σ = 1,

(θ(1) + α)(σ − 1) if σ �= 1,

and by Lemma 2.1 and since θ(1) + α is not a zero divisor, for any f ∈ K we have

∇(f) = 0 ⇐⇒ f ∈ C. (7)

It is easy to obtain from this that for L ∈ K[θ], we have L(1) = 0 if and only if there exists M ∈ K[θ]
such that L = M∇. Taking additionally into account that L(f) = (Lf)(1) and assumption (6), we obtain
the following assertion.

Proposition 3.1. Let p ∈ K[x;σ, δ], L = p(θ), and f ∈ K. Then L(f) = 0 if and only if there exists
M ∈ K[θ] such that Lf = M∇, i.e., if and only if pf is right divisible by x− θ(1).

Let c = θ(1) and p ∈ K[x;σ, δ] \ {0}, deg p = d. Then there exists a nonnegative integer n such that

p = (bd−n(x− c)d−n + · · · + b1(x− c) + b0)(x− c)n,

where b0, . . . , bd−n ∈ K, b0 �= 0. This yields the following assertion.

Proposition 3.2. Assume that for any nonnegative integer n, there exists f ∈ K such that ∇n(f) ∈
C \ {0}. Then assertion (6) holds for any p ∈ K[x;σ, δ].

5889

Example 3.1. Example 2.3 implies the following.

Case ∇

1 differential
d

dt

2 Eulerian differential t
d

dt

3 shift E − 1

4 difference E − 1

5 q-shift Q− 1

6 q-difference Q− 1

7 q-differential
Q− 1
t(q − 1)

3.2. Adjoint operators and integrating factors. By Lemma 2.3, we have θ = θc = cσ + δ, where
c = θ(1). We set θ∗ = cσ∗ + δ∗, where σ∗ and δ∗ are as in (3). Note that θ(1) = c = θ∗(1).

Definition 3.1. Let k[x;σ, δ] be an Ore ring and θ be a pseudo-linear mapping with respect to σ and δ.
The adjoint ring of k[θ] is defined to be the operator ring k[θ∗]. If p ∈ k[x;σ, δ] and L = p(θ), then the
adjoint operator for L is defined as L∗ = p∗(θ∗) ∈ k[θ∗].

We have (LM)∗ = M∗L∗ for any L,M ∈ k[θ]. If we suppose that (6) holds for K[x;σ∗, δ∗] and K[θ∗],
then we additionally have (L∗)∗ = L for any L ∈ k[θ].

Consider the operator

∇∗ = θ∗ − θ(1) = θ∗ − θ∗(1).

By Proposition 3.1, we have L∗(f) = 0 if and only if there exists M ∈ K[θ∗] such that L∗f = M∇∗, i.e.,
fL = ∇M∗. This yields the following assertion.

Proposition 3.3. Let p ∈ K[x;σ, δ], L = p(θ), and f ∈ K. Then L∗(f) = 0 if and only if there exists
N ∈ K[θ] such that fL = ∇N , i.e., if and only if fp is left divisible by x− θ(1).

Propositions 3.1 and 3.3 present an analogue of the Bezout theorem for algebraic equations in one
unknown.

Example 3.2. Examples 2.2 and 2.3 imply the following.

5890

Case θ∗ ∇∗

1 differential − d

dt
− d

dt

2 Eulerian differential −t d
dt

−t d
dt

3 shift E−1 E−1 − 1

4 difference E−1 − 1 E−1 − 1

5 q-shift Q−1 Q−1 − 1

6 q-difference Q−1 − 1 Q−1 − 1

7 q-differential
Q−1 − 1
t(q − 1)

Q−1 − 1
t(q − 1)

It is natural to say that f ∈ K such that fL = ∇N , N ∈ K[θ], is an integrating factor for L.
Proposition 3.3 is an analogue of the classical theorem from the theory of ordinary differential equations,
but the statement of this proposition has a general “Ore form.”

Example 3.3. Let k = C(n), σ = θ = E, δ = 0, ∇ = E − 1, and K be the ring of sequences whose
elements are in C. Consider the operator

L = (n+ 4)E2 + E − (n+ 1) ∈ k[θ].

The corresponding adjoint equation L∗(f) = 0 is

L∗(f) = −(n+ 1)f(n) + f(n− 1) + (n+ 2)f(n− 2) = 0. (8)

Therefore, an integrating factor f for L can be calculated, if the factor is hypergeometric, by applying
the algorithm Hyper [28] to (8), which yields f = (−1)n. As a consequence, we have

(−1)nL = (E − 1)((−1)n−1(n+ 3)E + (−1)n(n+ 1)).

3.3. Accurate integration. An element g ∈ K is a primitive of f ∈ K if ∇(g) = f . Assume that
θ(1) ∈ k (i.e., ∇ ∈ k[θ]) and consider the following problem. Let f ∈ K and the minimal annihilating
operator L ∈ k[θ] for f be given. So n = ordL is minimal with the following property: L ∈ k[θ] and
L(f) = 0. Decide whether there exists a primitive g of f such that the minimal annihilating operator L̃
for g has order n. If so, then construct such a g together with its minimal annihilating operators.

This problem (the problem of accurate integration) was solved in [3]. The adjoint operators play a key
role in the solution. Below, we give a short description of the algorithm. Note that in [3], a description
is given for two (principal) cases: σ = 1, θ = δ and θ = σ − 1, δ = 0. If the problem has a positive
solution (the operator L̃ of order n exists), then the algorithm constructs r ∈ k[θ], ord r = n − 1, such
that g = r(f), together with L̃.

It was shown in [3] that L̃ such that ord L̃ = n exists if and only if the equation L∗(y) = 1 has a solution
l in k. In this case, r is such that 1 − lL = ∇r (so r can be found by the left division) and L̃ = 1 − r∇.
If such l does not exist, then the integrating operator r also does not exist, while the minimal annihilator
L̃ for g is L∇, ord L̃ = n+ 1.

As was mentioned in [3], this algorithm generalizes Gosper’s algorithm for hypergeometric indefinite
summation [14] in two ways: (a) it solves a similar problem for a wider class of equations, and (b) it
works for any order n, instead of only for n = 1.

5891

Example 3.4. We show the use of accurate integration in the calculation of primitives for

p1 = (27 t2 + 4)5/4 P5/2

2/3
√

7−1/2

(
−3

2

√
3it
)
,

p2 = (27 t2 + 4)5/4 Q5/2

2/3
√

7−1/2

(
−3

2

√
3it
)
.

Both p1 and p2 are annihilated by the differential operator

L =
(
27t2 + 4

)
D2 − 81tD + 24.

The corresponding adjoint equation L∗(y) = 1 is

(
27t2 + 4

) d2

dt2
y(t) + 189t

d

dt
y(t) + 159y(t) = 1,

which admits l = 1/159 as a rational solution [1]. Therefore, the operator r ∈ k[θ] such that
∫
p1dt = r(p1)

and
∫
p2dt = r(p2) is the left quotient of 1 − lL by ∇, which is(

− 9
53
t2 − 4

159

)
D +

45
53
t.

Note that both Maple 8 and Mathematica 4 are unable to compute these two indefinite integrals.

4. New Modular Techniques for gcd and lcm Computations

The usual polynomial ring k[x] is a special case of Ore polynomial rings. Various efficient techniques
in the commutative k[x] have been generalized to the noncommutative ring k[x;σ, δ] (see [12, 15, 19, 20]).
In this section, we present new modular techniques for computing the gcrd and lclm of Ore polynomials.
There are some minor restrictions on the coefficient field in order to apply modular techniques. Let D

be either the ring Z of integers or the ring of polynomials in several variables over Z. Let t be a new
indeterminate over D and D[t] the ring of usual commutative polynomials in t over D. We shall work in
the Ore ring D[t][x;σ, δ] whose constant ring contains D. Note that σ is an automorphism of D[t].

4.1. Computation of the gcrd. Let p be a prime. A ring homomorphism φp from D[t] to Zp[t] is
said to be modular with respect to σ if

φp(D) = Zp, φp(t) = t, degt(σ(t)) = degt φp(σ(t)).

Define the automorphism σp of Zp[t] by sending t to φp(σ(t)) and any element of Zp to itself. Furthermore,
define the additive mapping δp from Zp[t] to itself by sending tn to φp(δ(tn)) for n ∈ N. It is straightforward
to verify that the diagrams

D[t] σ−−−−→ D[t]

φp

⏐⏐� ⏐⏐�φp

Zp[t]
σp−−−−→ Zp[t]

and

D[t] δ−−−−→ D[t]

φp

⏐⏐� ⏐⏐�φp

Zp[t]
δp−−−−→ Zp[t]

are commutative and that Zp[t][x, σp, δp] is an Ore ring. The modular homomorphism φp can be extended
to a mapping from D[t][x, σ, δ] to Zp[t][x, σp, δp] by sending

∑
i
aix

i to
∑
i
φp(ai)xi, where ai ∈ D[t]. This

extended mapping will also be denoted by φp, which is a ring homomorphism by a direct verification.
Let e be an element of Zp. By an evaluation mapping ψe from Zp[t] to Zp, we mean a mapping that

sends
∑
i
mit

i to
∑
i
mie

i, where mi ∈ Zp. Such an evaluation mapping can be extended to a mapping

5892

from Zp[t][x, σp, δp] to Zp[x] by sending
∑
i
aix

i to
∑
i
ψe(ai)xi, where ai ∈ Zp[t]. The extended mapping is

again denoted by ψe.

Example 4.1. Consider the differential ring D = Zp[t][x; 1, d/dt] and an evaluation mapping ψe. Let ψe

be a ring homomorphism from D to Zp[x] on which some multiplication is defined. Then we have

ψe(xt) = ψe(tx+ 1) = ex+ 1

and, on the other hand,

ψe(xt) = ψe(x)ψe(t) = xe = x(1 + · · · + 1︸ ︷︷ ︸
e times

) = ex.

This leads to a contradiction.

Thus, no matter how we define a multiplication on Zp[x], ψe is usually not a ring homomorphism. It
is merely a module homomorphism from the left module Zp[t][x] over Zp[t] to Zp[t] over Zp.

A key problem in modular gcrd-methods is as follows.

Problem E. Given P1, P2 ∈ Zp[t][x, δp, σp] and an evaluation mapping ψe, calculate the image of
gcrd(P1, P2) under φe.

The algorithm GCRD e described in [20] solves Problem E. Let degPi = ni, i = 1, 2, n = max(n1, n2),
nt = max(degt P1,degt P2), and G = gcrd(P1, P2) with degree g. The number of ψe’s for which GRCD e
produces incorrect images or failure is no more than (n1 + n2)nt. Hence, GCRD e produces sufficiently
many correct images for the combining process when the prime p is sufficiently large. The cost of GCRD e
is dominated by

(
ntn

2 + n3
)

in the differential case. The factor n3 comes from a row-reduction process
on the Sylvester matrix of P1 and P2, which has (n1 + n2) rows and (n1 + n2) columns. We will present
an improved GCRD e whose cost is dominated by

(
nt(n− g)2 + (n− g)3

)
. This improvement allows our

modular gcrd method to work efficiently even when g is quite large. Roughly speaking, the improved
algorithm is a carefully designed row-reduction process on the matrix associated with sresg−1(P1, P2)
which has (n1 + n2 − 2(g − 1)) rows and (n1 + n2 − g + 2) columns.

To describe the improvement, we need some terminology. The reader is referred to [19] for the definition
of subresultants of P1 and P2 and related notation. Recall that the mth subresultant of P1 and P2 is
denoted by Sm, for m = n2, n2 − 1, . . . , 0. A pair of consecutive subresultants Sm and Sm+1 is said to
be a gcrd pair of P1 and P2 with index m if degSm = m and Sm+1 = 0. Theorem 4.2 in [19] and the
gap-structure of a subresultant chain immediately imply the following assertion.

Proposition 4.1. Let P1, P2 ∈ Zp[t][x, δp, σp] have degree n1 and n2, respectively, where n1 ≥ n2 > 0.
Then P1 and P2 have a gcrd pair if and only if the gcrd of P1 and P2 has positive degree. A gcrd pair is
unique when existent.

Given the sequence
xn2−1P1, . . . , xP1, P1, x

n1−1P2, . . . , xP2, P2, (9)

an evaluation mapping ψe is said to be proper with respect to P1 and P2 if

degψe(xiP1) = (n1 + i) for i = 0, . . . , (n2 − 1),

degψe(xjP2) = (n2 + j) for j = 0, . . . , (n1 − 1).

A proper evaluation mapping ψe with respect to P1 and P2 is said to be unlucky if degψe(Sm) < degSm

for some nonzero Sm. Note that this definition is less restrictive than that of unlucky evaluation mappings

5893

in [20]. A pair of images of consecutive subresultant Sm and Sm+1 under ψe is said to be a pseudo-gcrd
pair with index m if degψe(Sm) = m and ψe(Sm+1) = 0.

Proposition 4.2. Let P1, P2 ∈ Zp[t][x, δp, σp] have degree n1 and n2, respectively, where n1 ≥ n2 > 0.
Let G be the monic gcrd of P1 and P2 with degree g. Let ψe be a proper evaluation mapping with respect
to P1 and P2. Then the following assertions hold.

(1) If ψe is not unlucky and g is positive, then (ψe(Sg), ψe(Sg−1)) is the unique pseudo-gcrd pair of P1

and P2 under ψe and ψe(G) is the monic associate of ψe(Sg).
(2) If ψe is not unlucky and g is zero, then P1 and P2 do not have any pseudo-gcrd pairs and φe(S0) is

nonzero.
(3) If ψe is unlucky and P1 and P2 have a pseudo-gcrd pair (ψe(Sm), ψe(Sm+1)), then m ≥ g. In the

case where m = g, ψe(G) is still the monic associate of ψe(Sg).

Proof. The first and second assertions follow from Proposition 4.1 and the fact that ψe maps the sub-
resultant chain of P1 and P2 in a degree-preserving manner. The last follows from the fact that all
sresg−1(P1, P2), sresg−2(P1, P2), . . . , and sres0(P1, P2) are equal to 0.

For given sequence (9) and a proper evaluation mapping ψe with respect to P1 and P2, we search
for a pseudo-gcrd pair in the sequence ψe(P2), ψe(Sn2−1), ψe(Sn2−2), ψe(S0). We begin to evaluate the
matrix Mn2−1 associated with Sn2−1. Calculate Hn2−1 = ψe(Sn2−1) by Gaussian elimination on the rows
of ψe (Mn2−1). If Hn2−1 is zero, we obtain a pseudo-gcrd pair (ψe(P2), Hn2−1) and return the monic
associate of ψe(P2). Otherwise, let d = degHn2−1.

We need to calculate only = Hd = ψe(Sd) by [19, Theorem 4.2]. If the degree of Hd is less than d,
then ψe is unlucky; report failure. Otherwise, we compute Hd−1 = ψe(Sd−1) by Gaussian elimination on
the rows of the matrix associated with ψe(Sd−1). If Hd−1 = 0, we obtain a pseudo-gcrd pair (Hd, Hd−1)
and return the monic associate of Hd. Otherwise, update d to be degHd−1 and repeat the process. If no
pseudo-gcrd pair is found, we will eventually calculate H0 = ψe(S0). If H0 �= 0, then return 1 (in this
case, P1 and P2 have the trivial gcrd). Otherwise, report failure (in this case, e must be unlucky).

The above-described process may output either a monic polynomial H in Zp[x] with positive degree,
or 1, or failure. In the first case, H is either the image of G under ψe or degH > g, which implies that ψe

is unlucky by Proposition 4.2. In the second case, G is trivial. In the last case, ψe is unlucky. There are at
most n2

2(n1 + n2)nt unlucky evaluation mappings. Since the matrix Mi associated with Si is a submatrix
of the matrix Mj associated with Sj when i > j, the results obtained by the Gaussian elimination on Mi

can be recycled for the Gaussian elimination on Mj . Thus, the cost for computing ψe(Sn2−1), ψe(Sn2−2),
. . . , ψe(Sg−1) is the same as the cost for calculation of ψe(Sg−1) by Gaussian elimination. The latter cost
is dominated by (nt(n− g)2 + (n− g)3), in which nt(n− g)2 is the cost for calculation of ψe(Mg−1) and
(n−g)3 is the cost for the Gaussian elimination on Mg−1 in the differential case. After replacing GCRD e
by the above process, we see an overall improvement of the modular gcrd method when g is close to n2.

Experiment 1. For computing the gcrd of two given Ore polynomials p1 and p2, three different methods
are implemented: Euclidean, fraction-free, and modular. A heuristic is carried out to choose one of these
three methods. It is based on a guess for the degree of the gcrd(p1, p2).

Table 1 shows the timing comparison of our experiment.1 A set of 10 pairs of polynomials in the
differential ring is randomly generated. For each pair of polynomials p1 and p2, the following constraints
are imposed:

deg p1,deg p2 ≤ 17, deg gcrd(p1, p2) ≥ 2.

1All the reported timings were obtained on a 400-MHz SUN SPARC SOLARIS with 1Gb RAM.

5894

Note that we also include the time taken by the function DEtools[GCRD].

Table 1. gcrd computation: timing (in seconds) for different methods.

Euclidean Fraction-free Modular Heuristic DEtools
1 65.72 27.09 16.57 16.94 33.30
2 184.96 56.11 28.64 29.44 49.85
3 168.88 103.03 31.87 32.10 55.60
4 221.47 166.94 43.09 43.89 70.11
5 25.06 22.58 21.43 22.14 14.94
6 65.61 53.16 33.70 31.92 30.27
7 123.79 79.32 40.87 41.96 37.97
8 148.57 68.68 33.89 35.05 52.83
9 28.71 14.76 15.42 15.63 15.79

10 120.57 85.44 27.54 28.65 59.24

If gcrd(p1, p2) is trivial, then the modular method is considerably faster than any nonmodular method.
This is because the modular method can detect if p1 and p2 are relatively prime by a lucky modular
homomorphism and a lucky evaluation mapping. If gcrd(p1, p2) is nontrivial, experimental results show
that the efficiency of the modular method depends on the following factors:

• how many divisions it takes to compute gcrd(p1, p2) in the right Euclidean algorithm;
• how “simple” gcrd(p1, p2) is.

By “simple” we mean that the coefficients are of low degree and with short integral coefficients. The
more divisions it takes, the more work the nonmodular methods will do. The simpler the gcrd(p1, p2)
is, the fewer images are needed to recover the true gcrd in a modular method. The modular method
appears to be very stable with respect to different types of data since it does not cause any intermediate
expression swell.

4.2. Computation of the lclm. Next, we apply modular techniques to the lclm computation. Let P1,
. . . , Pm be in D[t][x;σ, δ] with respective positive degrees d1, . . . , dm. Let L be the lclm of P1, . . . , Pm. To
compute L, we may first compute the lclm L12 of P1 and P2 and then compute the lclm of L12, P3, . . . , Pm,
recursively (on m). This “nested” algorithm does not work very well in practice, partly because the
coefficients of the intermediate lclm’s are usually far more complicated than those of the Pi’s.

The code LCLM in the Maple package DEtools written by van Hoeij provides a direct method for
computing the lclm of several Ore polynomials. The method works as follows. Let

d = d1 + · · · + dm, Qd = qdx
d + · · · + q0,

where q0, . . . , qd are unspecified coefficients. For i = 1, . . . , m, compute the right remainder Ri of Qd

and Pi. Clearly, Qd is a common left multiple of P1, . . . , Pm with degree no more than d if and only if
R1 = · · · = Rm = 0. This gives rise to a linear homogeneous algebraic system

(q0, . . . , qd)Md = 0, (10)

where M is a ((d+ 1) × d)-matrix over k. For convenience, we say that

Q̃d = q̃dx
d + · · · + q̃0

of D[t][x;σ, δ] is a solution of (10) if (q̃0, . . . , q̃d) solves (10). With this convention, we see that L is a
nonzero solution of (10) with smallest degree.

5895

To find L, we need to solve (10) and find a solution with smallest degree, because degL may be smaller
than d. Can we solve only one linear system in (1+degL) unknowns to obtain L? The following assertion
provides an answer.

Proposition 4.3. degL is equal to the rank of Md given in (10).

Proof. Let L be of degree l. Since l ≤ d, L, xL, . . . , xd−lL are solutions of (10). Thus, the solution space
of (10) is of dimension no less than (d + 1 − l). On the other hand, any nonzero solution Q̃d of (10) is
a common left multiple of P1, . . . , Pm with degree no more than d, so the right remainder of Q̃d and L

is zero, i.e., Q̃ is a k-linear combination of L, xL, . . . , xd−lL. Hence, the solution space of (10) is of
dimension (d+ 1 − l). Consequently, the rank of Md is equal to d.

We compute L as follows. First, construct a matrix Md given by (10). Second, apply a modular and an
evaluation mapping to entries of Md to obtain a matrix M ′

d over Zp. Third, compute the rank r of M ′
d.

Fourth, set

Qr = qrx
r + · · · + q0,

where q0, . . . , qr are unspecified coefficients. For i = 1, . . . , m, compute the right remainder Ri of Qr

and Pi. The condition R1 = · · · = Rm = 0 gives rise to a linear homogeneous algebraic system

(q0, . . . , qr)Mr = 0. (11)

Any nontrivial solution of (11) corresponds to the lclm L of P1, . . . , Pm since r ≤ degL by Proposition 4.3.
If (11) has only the trivial solution, then update r to be (r + 1) and repeat the fourth step. Since r is
almost always equal to the rank of Md, we hardly repeat the fourth step in practice. We shall refer to
this method as the “unnested” method.

Experiment 2. This experiment is on lclm computation. The set of tests consists of 10 triplets of
polynomials in the differential ring. For each triplet of polynomials p1, p2, and p3, we impose the following
constraints:

deg p1 = deg p2 = 5, gcrd(p1, p2) = 2, deg p3 = 3.

Table 2 shows the timing comparison between the nested and unnested methods. We also include the
timing for the function DEtools[LCLM]. Note that if

deg lclm(p1, p2, p3) = deg p1 + deg p2 + deg p3,

then the timings for the unnested method and DEtools[LCLM] would be approximately the same.

We conclude this section with an application of lclm computation in the direct algorithm for computing
the minimal telescoper for a rational function [18]. Consider the rational function R(n, k) = R1 +R2 +R3,
where

R1 =
n+ 1

(2n+ 5 k + 3)2
+

n

(2n+ 5 k + 5)2
,

R2 =
n+ 2

3n+ 4 k + 4
− 3

3n+ 4 k − 2
,

R3 =
(n− 3)2

n− 7 k + 5
+

1
n− 7 k + 6

.

5896

Table 2. lclm computation: timing (in seconds) for different methods.

Nested Unnested DEtools
1 114.53 25.99 87.48
2 147.36 24.28 107.60
3 111.95 33.36 105.33
4 124.15 30.41 84.41
5 128.65 30.76 102.63
6 144.56 29.35 103.03
7 96.84 18.60 61.73
8 115.08 28.36 92.74
9 140.59 21.18 122.81

10 123.97 16.13 62.31

The computed minimal telescopers L1 for R1, L2 for R2 and L3 for R3 are as follows:

L1 = OrePoly
(
(n+ 5)(n+ 4)(n+ 3)(n+ 2)(2n+ 7), 5(n+ 5)(n+ 4)(n+ 3),

− 5(n+ 5)(n+ 4)(n+ 1), 5(n+ 5)(n+ 2)(n+ 1),

− 5(n+ 3)(n+ 2)(n+ 1), −(2n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)
)
,

L2 = OrePoly
(
− n2 − 10n− 15, 0, −12, 0, n2 + 6n− 1

)
,

L3 = OrePoly
(
n14 + 14n13 + 63n12 + 28n11 − 553n10 − 1218n9 + 929n8

+ 4984n7 + 1848n6 − 6496n5 − 4592n4 + 2688n3 + 2304n2 + 1,

− 7(2n+ 1)(n− 1)2(n+ 3)2(n+ 2)2(n+ 1)2n2,

7(2n+ 1)(n+ 3)2(n+ 2)2(n+ 1)2n2,

− 7(2n+ 1)(n+ 3)2(n+ 2)2(n+ 1)2, 7(2n+ 1)(n+ 3)2(n+ 2)2,

− 7(2n+ 1)(n+ 3)2, 14n+ 7,

− n14 + 28n12 − 294n10 + 1444n8 − 3409n6 + 3528n4 − 1296n2 − 1
)
.

Therefore, the minimal telescoper L for the rational function R is lclm(L1, L2, L3). If one uses the unnested
method, it would take 6.28 seconds to compute L, as opposed to 273.90 seconds using the nested method.

5. The OreTools Package

The OreTools package is implemented in the Maple computer algebra system. Its main goal is to
provide basic operations in a given Ore ring and to facilitate further development of various Ore-ring-
based applications. The package is integrated into Maple. In particular, it is used

(a) as the main engine in the LinearOperators package, which includes functions for computing min-
imal completely factorable annihilators [5] and for computing d’Alembertian solutions of inhomo-
geneous linear functional equations [6];

(b) in the SumTools package [2] for computing directly and efficiently the minimal Z-pairs of rational
functions [18], for computing indefinite sums using the method of accurate integration;

5897

(c) in the Slode package [29] for finding formal solutions with d’Alembertian series coefficients of
homogeneous linear differential equations.

In this section, we give an overview of the package (see [4] for a detailed discussion on the proposed
functionalities and the implementation details). Various Maple worksheets illustrating the use of the
package are also made available (see Sec. 7).

Note that an early version of the package OreTools was reported in [5, Sec. 6]. The code of that version
was designed by Zima.

5.1. Define an Ore ring, its adjoint, and access its properties. Figure 1 shows the set of functions
which help define an Ore ring, the adjoint of a given Ore ring (which is an Ore ring itself), and those for
accessing properties of an Ore ring.

�

��

�

SetOreRing AdjointRing

Properties

Fig. 1. Define an Ore ring and access its properties.

A univariate Ore ring is defined via the function SetOreRing. The differential, shift, and qshift rings
are pre-defined. To define other rings, one needs to provide procedures to compute σ, δ, θ(1), and σ−1.

The adjoint of a given Ore ring is defined via the function AdjointRing. The input is an Ore ring, and
the output its adjoint.

Properties of a given Ore ring, e.g., σ, σ−1, θ(1), and δ, can be accessed via the submodule Properties.

5.2. Operations and manipulations on Ore polynomials. An Ore polynomial is represented by an
OrePoly structure. It consists of the keyword OrePoly with a sequence of coefficients starting with the one
of degree zero. For example, in the differential case with the differential operatorD, OrePoly(2/t, t, t+1, 1)
represents the operator 2/t+ tD + (t+ 1)D2 +D3.

Figure 2 shows basic operations and manipulations on Ore polynomials. They can be classified into
four groups: utility functions, arithmetic operations, conversion functions, and mathematical operations.

Utility functions include those for manipulating Ore polynomials, e.g., the leading and trailing coeffi-
cients, or the degree of a given Ore polynomial.

The basic arithmetic operations on Ore polynomials include

(1) linear operations: addition, subtraction, scalar multiplication;
(2) operations for normalization: computation of the content part, the primitive part, left and right

monic associates;

5898

Utility
Functions

Arithmetic
Operations

Conversion
Functions

Mathematical
Operations

OrePoly’s

� � � �

Fig. 2. Operations and manipulations on Ore polynomials.

(3) multiplication, divisions (left and right remainders and quotients);
(4) left and right gcd, lcm, extended gcd, and gcrd depending on a parameter [13].

Conversion functions act as an interface between the package OreTools and the Maple system. They
include functions for converting back and forth between a given Ore polynomial and the corresponding
linear functional equation.

The package provides support for some mathematical operations. They include functions which perform
accurate integration (Sec. 3.3) and compute an integrating factor (Sec. 3.2).

The submodule Modular provides users with basic operations on Ore polynomials whose coefficients
are rational functions over Zp; the submodule FractionFree provides users with fraction-free operations
on Ore polynomials whose coefficients are polynomials over Z.

5.3. Examples. In the shift ring A:
> A := SetOreRing(n,’shift’);

A := UnivariateOreRing(n, shift)

Consider two Ore polynomials p1 and p2:
> p_1 := \OrePoly((n-3)*n^2,n^4+n^3-4*n^2-n-2,

n^4+3*n^3+2*n^2+n-4,n^3+6*n^2+10*n+2,n^2+6*n+6):

> p_2 := \OrePoly((n-3)*n^3,n^5+n^4-6*n^3+4*n^2-3*n-2,

n^5+n^4-n^3+7*n^2-2*n-3,n^4+5*n^3+7*n^2+5*n+1,(n^2+6*n+6)*n):

Compute the gcrd of p1 and p2:
> GCD[’right’](p_1,p_2,A);

OrePoly
(
n− 3
n2 − 3

, 1
)

Compute the gcld of p1 and p2:
> GCD[’left’](p_1,p_2,A);

5899

OrePoly
(
n2, n+ 1, 1

)
For the two Ore polynomials p3 and p4:
> p_3 := \OrePoly(1,1,0,(a+2)*n):

> p_4 := \OrePoly(0,(a+2)*(a+1)*n):

Suppose a priori that the value of the parameter a satisfies the equation (a + 1)(a − 1)a = 0. We now
compute the gcrd of p3 and p4 depending on the parameter a:
> ParametricGCRD(p_3, p_4, (a+1)*(a+2)*a, a, A);⎧⎪⎪⎨

⎪⎪⎩
OrePoly (−1) a = 0,

OrePoly (1, 1, 0, n) a+ 1 = 0,

OrePoly (1, 1) a+ 2 = 0.

6. Comparison

There are other Maple packages which provide suitable environments for working with general Ore
rings or with a particular Ore ring. They include the Ore_algebra package [9] for multivariate
Ore rings, the DEtools package for differential case, the LREtools package for the shift case, and
the QDifferenceEquations package for the q-shift case. While the main focus of LREtools and
QDifferenceEquations is to find solutions of specific types (e.g., polynomial, rational) of linear shift/q-
shift equations with polynomial coefficients, the Ore_algebra and DEtools packages do provide, although
to a lesser extent in comparison with the OreTools package, support for basic operations in Ore rings.

A comparison between DEtools and OreTools is done via two experiments in Sec. 4. For the remainder
of this section, we show a comparison between Ore_algebra and OreTools.

The only functionality which allows a direct comparison between the two packages is the one which
performs the extended right Euclidean algorithm: skew gcdex in Ore_algebra and ExtendedGCD in
OreTools. Using skew gcdex is the only way to compute gcrd in the Ore_algebra package. This involves
the construction of two co-sequences which are redundant.

In this experiment, we generated two sets of tests. Each set consisted of 10 pairs of polynomials p1 and
p2. Those in the first set were generated in the shift ring, and those in the second set in the differential
ring.

For each pair p1, p2, the following constraints are imposed:

7 ≤ deg p1,deg p2 ≤ 10, deg gcrd(p1, p2) ≥ 2.

Each coefficient of p1 and p2 is a polynomial of degree at most 5 and consists of at most 2 monomials.
Tables 3 and 4 provide a comparison in both time (in seconds) and memory (in kilobytes) requirements

between ExtendedGCD and skew gcdex.
It is worth noting that all Ore rings specified in the Ore_algebra package are a priori with integer

coefficients, and any other type of coefficient has to be explicitly specified. Hence, performing basic
operations might require a nontrivial amount of effort and knowledge from users.

7. Availability

Information on the availability of the library archive for the package OreTools, sampled Maple work-
sheets, and also on installation of the package can be found at the URL

http://www.scg.math.uwaterloo.ca/~hqle/code/OreTools/OreTools.html

5900

Table 3. OreTools and Ore algebra: shift case.

shift ExtendedGCD skew gcdex
time memory time memory

1 123 703,329 1,691 4,669,006
2 55 276,828 487 1,555,668
3 183 830,378 1,269 3,420,360
4 44 230,488 648 1,977,186
5 145 654,363 364 1,219,685
6 113 511,026 268 979,230
7 47 236,447 470 1,549,453
8 179 780,795 656 1,984,256
9 49 241,977 128 490,365

10 89 417,157 177 635,439

Table 4. OreTools and Ore algebra: differential case.

differential ExtendedGCD skew gcdex
time memory time memory

1 24 245,039 765 2,828,435
2 20 169,934 189 976,940
3 38 340,290 437 1,968,124
4 20 167,486 300 1,324,531
5 11 81,216 151 861,778
6 23 206,490 53 360,019
7 17 159,388 216 1,030,755
8 23 201,707 333 1,370,342
9 13 113,148 47 319,017

10 13 117,665 61 418,924

REFERENCES

1. S. A. Abramov, “Rational solutions of linear difference and differential equations with polynomial
coefficients,” USSR Comput. Maths. Math. Phys., 29, 7–12 (1989).

2. S. A. Abramov, J. C. Carette, K. O. Geddes, and H. Q. Le, Symbolic Summation in Maple, Technical
Report CS-2002-32, School of Computer Science, University of Waterloo, Ontario, Canada (2002).

3. S. A. Abramov, M. van Hoeij, “Integration of solutions of linear functional equations,” Integral
Transform. Spec. Funct., 8, Nos. 1–2, 3–12 (1999).

4. S. A. Abramov, H. Q. Le, and Ziming Li. OreTools: A computer algebra library for univariate Ore
polynomial rings, Technical Report CS-2003-12, School of Computer Science, University of Waterloo,
Ontario, Canada (2003).

5. S. A. Abramov and E. V. Zima, “Minimal completely factorable annihilators,” in: Proc. 1997 Int.
Symp. Symbolic and Algebraic Computation (W. Küchlin, Ed.), ACM Press (1998), pp. 290–297.

6. S. A. Abramov and E. V. Zima, D’Alembertian solutions of inhomogeneous linear equations (differ-
ential, difference, and some other),” in: Proc. 1996 Int. Symp. Symbolic and Algebraic Computation
(Y. N. Lakshman, Ed.), ACM Press (1997), pp. 232–240.

5901

7. S. A. Abramov and E. V. Zima, “A universal program to uncouple linear systems,” in: Proc. Int.
Conf. Computational Modeling and Computing in Physics, Sept. 16–21, 1996, Dubna, Russia (1997),
pp. 16–26.

8. M. Bronstein and M. Petkovšek, “An introduction to pseudo-linear algebra,” Theor. Comput. Sci.,
157, 3–33 (1996).

9. F. Chyzak and B. Salvy, “Noncommutative elimination in Ore algebras proves multivariate identities,”
J. Symbolic Comput., 26, No. 2, 187–227 (1998).

10. P. M. Cohn, Free Rings and Their Relations, Academic Press (1971).
11. P. M. Cohn, Skew Fields. Theory of General Division Rings, Encycl. Math. Its Appl., 57 Cambridge

Univ. Press (1995).
12. M. Giesbrecht and Y. Zhang, “Factoring and decomposing Ore polynomials over Fp(t),” in: Proc.

2003 Int. Symp. Symbolic and Algebraic Computation (to appear).
13. P. E. Glotov, “An algorithm of searching for the greatest common divisor for Ore polynomials with

polynomial coefficients depending on a parameter,” in: Program. Comput. Software, 24 No. 6, 275–
283 (1998).

14. R. W. Gosper, “Decision procedure for indefinite hypergeometric summation,” Proc. Natl. Acad. Sci.
USA, 75, 40–42 (1978).

15. J. van der Hoeven, “FFT-like multiplication of linear differential operators,” J. Symbolic Comput.,
33, No. 1, 123–127 (2002).

16. N. Jacobson, “Pseudo-linear transformations,” Ann. Math., 38, No. 2, 484–507 (1937).
17. E. Landau, “Über irreduzible Differentialgleichungen,” J. Reine Angew. Math., 124 115–120 (1902).
18. H. Q. Le, “A direct algorithm to construct the minimal Z-pairs for rational functions,” Adv. Appl.

Math., 30, 137–159 (2003).
19. Z. Li, “A subresultant theory for ore polynomials with applications,” in: Proc. Int. Symp. Symbolic

and Algebraic Computation, 1998 (O. Gloor, Ed.), ACM Press (1998), pp. 132–139.
20. Z. Li and I. Nemes, “A modular algorithm for computing greatest common right divisors of Ore

polynomials,” in: Proc. Int. Symp. Symbolic and Algebraic Computation, 1997 (W. Küchlin, Ed.),
ACM Press (1997), pp. 282–289.

21. A. Loewy, “Über reduzible lineare homogene Differentialgleichungen,” Math. Ann., 56, 549–584
(1903).

22. A. Loewy, “Über vollstandig reduzible lineare homogene Differentialgleichungen,” Math. Ann., 62
89–117 (1906).

23. M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and
P. De Marco, Maple 8 Introductory Programming Guide, Waterloo Maple Inc., Waterloo, Ontario,
Canada (2002).

24. O. Ore, “Theory of noncommutative polynomials,” Ann. Math., 34, 480–508 (1933).
25. O. Ore, “Formale Theorie der linearen Differentialgleichungen, I,” J. Reine Angew. Math., 167,

221–234 (1932).
26. O. Ore, “Formale Theorie der linearen Differentialgleichungen, II,” J. Reine Angew. Math., 1, 233–

252 (1932).
27. E. G. C. Poole, Introduction to the Theory of Linear Ordinary Differential Equations, Dover Publi-

cations Inc., New York (1936).
28. M. Petkovšek, “Hypergeometric solutions of linear recurrences with polynomial coefficients,” J. Sym-

bolic Comput., 14 243–264 (1992).

5902

29. A. Ryabenko, “A Maple package for the symbolic construction of power series solutions to linear
ordinary differential equations,” Program. Comput. Software, 25 No. 5, 296–305 (1999).

30. J. H. M. Wedderburn, “Noncommutative domains of integrity,” J. Reine Angew. Math., 167, 129–141
(1932).

S. A. Abramov
Dorodnicyn Computing Centre, Russian Academy of Science
E-mail: abramov@ccas.ru
H. Q. Le
Symbolic Computation Group, University of Waterloo, Waterloo, Canada
E-mail: hqle.@scg.math.uwaterloo.ca
Z. Li
Symbolic Computation Group, University of Waterloo, Waterloo, Canada
E-mail: z6li@scg.math.uwaterloo.ca

5903

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

