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a b s t r a c t

In the algebraic approach to nonlinear control systems two similar notions, namely Kähler differentials
and the formal vector space of differential one-forms having the properties of ordinary differentials,
are frequently used to study the systems. This technical note explains that the formal vector space of
differential one-forms is isomorphic to a quotient space (module) of Kähler differentials. These two
modules coincide when they are modules over a ring of linear differential operators over the field of
algebraic functions. Some remarks and examples demonstrating when the use of Kähler differentials
might not be appropriate are included.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Modern theory of nonlinear control systems is nowadays
represented mainly by the systematic use of differential algebraic
methods. A large part of such methods uses the so-called ‘‘tangent
linear system’’ associated to the nonlinear one, or in other
ways employs the differentials of system variables to study the
systems. There exist two main representatives. The first is given
by the Fliess’ school where the notion of Kähler differentials
is frequently used, being very natural from a purely algebraic
point of view. See for instance [1] and a number of references
therein. The second approach, however not purely algebraic, is
given mainly by the works of Conte, Moog and Perdon and co-
authors. See for instance [2] and, again, a number of references
therein. In those works a similar structure to Kähler differentials
having, however, the properties of ‘‘ordinary differentials’’ is
introduced and called the formal vector space of differential
one-forms. Naturally, the question can be asked whether those
two structures i.e., Kähler differentials and ordinary differentials,
coincide or not and under what conditions, forming the main
scope of this technical note. A simple case of nonlinear continuous-
time systems is chosen to demonstrate the construction of the
associated module of Kähler differentials and the formal vector
space of differential one-forms. Then, their basic properties are
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discussed and demonstrated, resulting in the answer under what
conditions those two structures coincide. Finally, a short discussion
demonstrating the case when Kähler differentials might not be
appropriate to study the systems is given.

2. Nonlinear systems and differentials

To demonstrate the constructions of Kähler differentials and the
formal vector space of differential one-forms we consider a simple
case of nonlinear continuous-time systems of the form

ẋ = f (x, u)
y = g(x) (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp and elements of f and g are
from a field K . It can be, for instance, the field of rational, algebraic
or even meromorphic functions. However, this will play a key role
in deciding whether Kähler differentials and ordinary differentials
associated to the system coincide or not.

Remark 2.1. The systems of the form (1) are considered here only
as an illustrative case, while the results given in what follows hold
in general.

2.1. Kähler differentials

Kähler differentials represent a generalization of the notion of a
differential to an arbitrary ring. For simplicity, we consider Kähler
differentials over fields.
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Let k ⊂ K be two fields. LetΨ be the (left)K -linear space generated
by the symbols da for all a ∈ K

Ψ = spanK {da | a ∈ K}, (2)

and Φ the subspace spanned by

{dc | c ∈ k} ∪ {d(a + b) − da − db | a, b ∈ K}

∪ {d(ab) − adb − bda | a, b ∈ K}.

Let Ω = Ψ /Φ , which is a K -linear space. By a slight abuse of
notation, we denote the equivalence class da + Φ by da. Thus, in
Ω , we have

∀a, b ∈ K , d(a + b) = da + db
d(ab) = adb + bda,

∀c ∈ k, dc = 0.
(3)

We call Ω the space of Kähler k-differentials of K .

Remark 2.2. This definition is from [3] and equivalent to the one
defined in [4] which, however, involves tensors.

Let V be a linear space over K . A map δ : K → V is called a
k-derivation if δ is k-linear and δ(ab) = aδ(b) + bδ(a) for all
a, b ∈ K . Note that a k-derivation annihilates every element of k.
Usually, δ(a) is denoted by ȧ and, more generally, δν(a) by a(ν).

Define a map d : K → Ω by sending a to da for all a ∈ K . The
map is a k-derivation from K to Ω due to (3).

Remark 2.3. The definition of Ω is for all the fields, including
differential or difference fields. There is even no requirement on
the characteristic of k.

Now, a nonlinear system, modeled by equations of the form
(1), can be understood as a finitely generated differential field
extension K/k, see [5]. The differential field k is called the base
(or ground) field and contains the coefficients of the model (1)
and the differential field K is the system field; i.e., it involves all
the variables and all algebraic expressions that can be constructed,
as nicely explained in [6]. Then, the ‘‘tangent linear system’’ is
the (left) K [δ]-module Ω of Kähler differentials associated to the
system K/k, see [5], and can be used to study the systems of the
form (1).

2.2. The formal vector space of differential one-forms: ordinary
differentials

Let C denote the infinite set of symbols which is, typically,
for a nonlinear system of the form (1) defined as C = {x1, . . . ,
xn, u

(i)
j , j = 1, . . . ,m, i ≥ 0}. Let K be a field containing the field

k(C) of rational functions. Furthermore, we assume that each
partial derivative ∂/∂z on k(C) can be extended to a derivation on
K , and that, for every r ∈ K , ∂r/∂z is nonzero for merely a finite
number of z ∈ C. For example, K is the field of algebraic functions
over k(C).

As another example, we let ℓ be a positive integer, and the first
ℓ elements of C be the coordinate variables in Rℓ, and let Kℓ be
the field of meromorphic functions in Rℓ. Then there is a chain of
fields: K0 ⊂ K1 ⊂ · · ·. Hence, the union K = ∪

∞

ℓ=0 Kℓ is such a
field.

The system (1) corresponds to the differential field (K, δ)
where K = R(C) (S) with S being the set consisting of the
elements of f and g , and their partial derivatives with respect to
every element of C. In other words, K is the (partial) differential
field generated by the elements of f and g with respect to
the derivations ∂/∂z for all z ∈ C over the field R(C) of
rational functions. Moreover, we may introduce a derivation on K
according to (1). Discussions on this point will be carried out in
Section 4.

Let E be theK-space generated by the symbols d0z for all z ∈ C

E = spanK{d0z | z ∈ C}. (4)
We define a map d0 : K → E by

d0r =

−
z∈C

∂r
∂z

d0z for all r ∈ K. (5)

Clearly, d0 is a k-derivation from K to E . The K-space E is called
the formal vector space of differential one-forms, see [2, Section
1.3.1], and has the properties of ordinary differentials.

Note that from this point of view, in comparison to what is
stated at the end of Section 2.1, a nonlinear system, modeled by
equations of the form (1), is still understood as a set of equations.
Then, to study the system, different sequences of subspaces of E
might be associated to (1), see for instance [2,7].

3. Discussion

Notice now the formal similarity of (2), resulting in Kähler
differentials Ω = Ψ /Φ , and (4). Hence, the question can be asked
whether there is any significant difference between those two
definitions. Roughly speaking, the only one is that to differentiate
functions we have to follow the rule (3) when working over Ω
while we have to follow the rule (5) when working over E . Thus,
is it necessary to have two different notions here; i.e., Kähler
differentials and ordinary differentials?We shed some light on this
in the next illustrative example.

Example 3.1. Let k = R and K = R(x, r, exp(x)) with r =
√
x2 + 1. Then

Ω = spanK {dx, dr, d exp(x)}.

Since r2 = x2 + 1, dr2 = 2rdr = 2xdx by (3). Consequently,
dr = (x/r)dx. But d exp(x) = exp(x)dx does not hold in Ω . Indeed,
(3) only enables us to differentiate algebraic functions over R(x) in
the usual way. On the other hand

E = spanK {d0x, d0r, d0 exp(x)},

and (5) clearly enables us to compute

d0 exp(x) = exp(x)d0x.

There are three useful diagrams for Kähler differentials.
1. If D is a k-derivation from K to a K -vector space V , then there

exists a unique K -linear mapD such that D =D ◦ d. So we have
a commutative diagram:

K

d
��

D // V

Ω

D
??~~~~~~~

(6)

2. If σ is an injective homomorphism from K to itself with σ(k) ⊂

k, then there exists a unique skew-linear map σ ∗ such that
σ ∗

◦ d = d ◦ σ , that is,

Ω
σ∗

−−−−→ Ω

d

 d

K
σ

−−−−→ K

(7)

is commutative.
3. If D is a derivation on K with D(k) ⊂ k, then there exists a

unique additive map D∗ from Ω to itself such that

D∗(aω) = D(a)ω + aD∗(ω) (8)



G. Fu et al. / Systems & Control Letters 60 (2011) 699–703 701
for all a ∈ K and ω ∈ Ω , and the diagram

Ω
D∗

−−−−→ Ω

d

 d

K
D

−−−−→ K

(9)

is commutative.

The above three conclusions follow immediately from Lemmas
9.1.1–9.1.3 in [8], respectively. They lead to three consequences
given below.
(i) If k is of characteristic zero, then diagram (6) implies that

a1, . . . , an ∈ K are algebraically independent over k if and
only if da1, . . . , dan are linearly independent over K .

(ii) Diagram (7) turnsΩ into a leftmodule overK [s; σ ]with scalar
multiplication given by

s(adb) = σ ∗(adb) = σ(a)dσ(b).
(iii) Similarly, diagram (9) turns Ω into a left module over K [s;D]

with scalar multiplication defined as

s(adb) = D∗(adb) = adD(b) + D(a)db.

In this case, submodules correspond to linear subspaces closed
under D∗ in [7].

Example 3.2. Let us revisit Example 3.1. Recall that K = R(x,
r, exp(x)) with r =

√
x2 + 1, which is algebraic over R(x), and

dr = (x/r)dx. Since x and exp(x) are algebraically independent
over R, dx and d exp(x) are linearly independent over R(x, exp(x)).
So dimK Ω = 2. Let

ω = d exp(x) − exp(x)dx.

PutΩ = Ω/spanK {ω}, that is,Ω is the quotient space ofΩ modulo
spanK {ω}. Then d̄ = π ◦ d : K → Ω is an R-derivation, where π is
the canonical map from Ω to Ω defined by da → da + spanK {ω}.
We have that

d̄ exp(x) = exp(x)d̄x

as taught at college.

4. Formal vector space of differential one-forms as a quotient
space of Kähler differentials

In this section, we assume that K is a field defined at the
beginning of Section 2.2 and construct E from Kähler differentials.
Let Ω be the K-space of Kähler k-differentials. The k-derivation
d : K → Ω sends r to dr for all r ∈ K . Note that (5) does not hold
for d.

For every r ∈ K , let

ωr = dr −

−
z∈C

∂r
∂z

dz and M = spanK{ωr | r ∈ K}. (10)

Lemma 4.1. Consider the partial derivative ∂
∂z with z ∈ C, which is

a k-derivation from K to K . Let Dz : Ω → K be the K-linear map
such that diagram (6) commutes, i.e. ∂

∂z =Dz ◦d. ThenDz annihilates
every element of M.

Proof. Assume that ωr is given in (10). It suffices to show thatDz(ωr) = 0 for all r ∈ K . We compute

Dz(ωr) = Dz ◦ d(r) −

−
y∈C

∂r
∂y
Dz ◦ d(y)

=
∂r
∂z

−

−
y∈C

∂r
∂y

∂y
∂z

= 0.

This completes our proof. �
We now find a K-basis ofM .

Lemma 4.2. Let T be a transcendence basis of K over k(C). Then

BT = {ωt | t ∈ T }

is a K-basis of M.
Proof. First, we show that BT is linearly independent over K . If∑

t∈T atωt = 0 with at ∈ K , then the definition of ωt implies that

0 =

−
t∈T

atdt −

−
z∈C

bzdz for some bz ∈ K .

Hence, all the at and bz are equal to zero, because C ∪ T
are algebraically independent over k. This proves the linear
independence of BT .
Next, we show that the elements of BT span M over K . It suffices
to show that, for every r ∈ K , ωr is a linear combination of the
elements in BT over K . Since r is algebraic over k(C, T ), there is
an irreducible polynomial P(C, T , x) in k[C, T , x] with degx P >
0 such that P(C, T , r) = 0, where x is a new indeterminate.
Differentiating P(C, T , r) yields

0 = dP(C, T , r) =
∂P
∂x

(C, T , r)dr +

−
t∈T

∂P
∂t

dt +

−
z∈C

∂P
∂z

dz.

This relation can be rewritten as

dr +

−
z∈C

b̃zdz =

−
t∈T

ãtωt for some ãt , b̃z ∈ K, (11)

because ∂P
∂x (C, T , r) is nonzero and dt − ωt is a K-linear

combination of the dz’s by (10).
For y ∈ C, letDy be theK-linearmap such that ∂

∂y =Dy ◦d (see

diagram (6)). ApplyingDy to (11) yields ∂r
∂y + b̃y = 0 by Lemma 4.1.

So

dr +

−
z∈C

b̃zdz = dr −

−
z∈C

∂r
∂z

dz = ωr .

Consequently, (11) becomes ωr =
∑

t∈T ãtωt . �

Let d̄ = π ◦ d, where π is the canonical projection from Ω to
Ω/M defined byω → ω+M for allω ∈ Ω . Then d̄ is a k-derivation
from K to Ω/M . Since C ∪ T is a transcendence basis of K , the set
{dw | w ∈ C ∪ T }

is a K-basis of Ω . It follows from Lemma 4.2 that BC := {d̄z | z ∈

C} is a K-basis of Ω/M .
Since d0, defined in (5), is a k-derivation from K to E , diagram

(6) implies that there is a K-linear mapd0 from Ω to E such that
d0 =d0 ◦ d. This map is clearly surjective. Its kernel containsM by
(5). Hence,d0 induces a K-linear map

φ : Ω/M → E

d̄z → d0z for all z ∈ C. (12)

The induced map is bijective because it maps a K-basis of Ω/M
onto a K-basis of E . Consequently, the kernel ofd0 is equal to M .
The above discussion leads to

Proposition 4.3. Let Ω be the linear space of Kähler k-differentials,
E the formal vector space of differential one-forms, and M defined
in (10). Then φ defined in (12) is the unique K-linear isomorphism
from Ω/M to E such that the diagram

K

d̄
��

d0 // E

Ω/M
φ

==zzzzzzzz

(13)

is commutative, where d̄ = π ◦ dwith π being the natural projection
from Ω to Ω/M.
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We say that φ in this proposition is the canonical K-linear
isomorphism from Ω/M to E .

We now impose amodule structure on E . Assume that δ : K →

K is a derivation on K satisfying the following chain rule:

δ(r) =

−
z∈C

∂r
∂z

δ(z). (14)

Many derivations on K satisfy this chain rule. For example, the
partial derivative ∂/∂y for y ∈ C is equal to δ whenwe set δ(y) = 1
and δ(z) = 0 for all z ≠ y in (14).

Assume that the arguments of elements f and g in (1) are
contained in a finite subset of C. Let x and f be vectors defined
in (1). According to (1), we define a derivation δ acting on K as
δx = f (x, u), and δu(k)

= u(k+1) for k ≥ 0. It is straightforward to
verify that δ is well defined. By (8) and (9), δ induces a unique map
θ : Ω → Ω such that

(a) θ(aω) = δ(a)ω + aθ(ω) for all a ∈ K and ω ∈ Ω; and
(b) θ ◦ d = d ◦ δ.

Lemma 4.4. θ(M) ⊂ M, where M is defined in (10).

Proof. Using (14), we compute

θ(ωr) = θ


dr −

−
z∈C

∂r
∂z

dz



= dδ(r) −

−
z∈C

δ


∂r
∂z


dz −

−
z∈C

∂r
∂z

dδ(z)

=

−
z∈C

δ(z)d
∂r
∂z

−

−
z∈C

δ


∂r
∂z


dz

=

−
z∈C

δ(z)d
∂r
∂z

−

−
z∈C

−
y∈C

∂2r
∂y∂z

δ(y)


dz

=

−
z∈C

δ(z)d
∂r
∂z

−

−
z∈C

−
y∈C

∂2r
∂y∂z

dy


δ(z)

=

−
z∈C

δ(z)


d
∂r
∂z

−

−
y∈C

∂2r
∂y∂z

dy


=

−
z∈C

δ(z)ω ∂r
∂z

.

Hence, θ(ωr) is in M . �

Let S be the ring K⟨∆⟩ with the commutation rule: ∆r =

r∆ + δ(r) for all r ∈ K . Then Ω is a module over S whose left
multiplication is defined as

∆ω = θ(ω) for all ω ∈ Ω.

The two properties of θ listed above ensure that Ω is a well-
defined left module over S. By Lemma 4.4, M is a submodule over
S. Therefore, Ω/M is also a module over S. Consequently, the left
multiplication by ∆ induces an additive map L∆ : Ω/M → Ω/M
with L∆(ω̄) = ∆ω̄ for all ω̄ ∈ Ω/M . Moreover,

(a′) L∆(aω̄) = δ(a)ω̄ + aL∆(ω̄); and
(b′) L∆ ◦ d̄ = d̄ ◦ δ,

where d̄ is defined in Proposition 4.3.
Let δ∗

= φ ◦ L∆ ◦ φ−1, where φ is the canonical K-linear
isomorphism from Ω/M to E . Then the properties (a′) and (b′)
imply that

(a′′) δ∗(aϵ) = δ(a)ϵ + aδ∗(ϵ) for all ϵ ∈ E , and
(b′′) δ∗

◦ d0 = d0 ◦ δ.
These two properties lead to a coordinate-wise formula:

δ∗

−
z∈C

vzd0z


=

−
z∈C

(δ(vz)d0z + vzd0δ(z)) ,

where the coefficients vz ’s are elements in K and almost all
zeros.

The additive operator δ∗ induces a left S-module structure on E
via ∆ϵ = δ∗(ϵ) for all ϵ ∈ E . Therefore, φ is an S-module isomor-
phism from Ω/M to E due to the following easy verification:

φ(∆ω̄) = φ ◦ L∆(ω̄) = δ∗
◦ φ(ω̄) = ∆φ(ω̄)

for all ω̄ ∈ Ω/M . This essential result is embodied in the following
concluding theorem.

Theorem 4.5. With the notation introduced in Proposition 4.3,
assume that δ : K → K is a derivation satisfying the chain rule (14).
Then

(i) The canonical K-linear isomorphism φ is an S-module isomor-
phism from Ω/M to E .

(ii) If we set K to be the field of algebraic functions over k(C), then
E and Ω are isomorphic as S-modules.

Proof. The first assertion follows from the above discussion. IfK is
the field of algebraic functions over k(C), thenM = {0} becauseBT
defined in Lemma 4.2 is empty. The second conclusion follows. �

5. Further remarks

First, the principal conclusion is the obvious one that Kähler
differentials are not suited for systems that include transcendental
functions. However, it does not mean they can only be defined
for algebraic functions. In fact, Kähler differentials can be defined
whenever there are two commutative rings S ⊂ R. In this technical
notewe restricted our attention to the case inwhich k ⊂ K are two
fields. Thus, the right question to ask is not whether they can or
cannot be defined for more general fields (or even rings) but how
they behave. It was shown that they behave like usual differential
one-forms if k = R and K is a subfield of the field of algebraic
functions over R.

Remark 5.1. Note that if k is a finite field then the usual
differentiation is not defined. Nevertheless, it would be expected
that Kähler differentials might be considered as a proper tool even
to analyze dynamic systems over finite fields. Hence, the Kähler
differential can be understood as a universal derivation.

Second, it seems once we have a control system described
by means of algebraic functions the choice is clear. However, in
dealingwith different control problems of nonlinear systems there
might occur problems more involved than it could be seen at
first sight. For instance, some suitable quotient modules of Kähler
differentials are needed.We demonstrate this by the next example
dealing with the realization problem.

Example 5.2. Consider the nonlinear system from [9] described by
the algebraic equation ÿ2 + ẏ2u̇2

− u̇2
= 0. In the realization

problem our aim is to find, if possible, an observable state-space
realization of the form (1). To solve the problem we can use the
approach of [2] to the input–output equation, (locally) expressed
as

ÿ = u̇

1 − ẏ2. (15)

One associates to (15) an extended system of the form (1), namely
ż = f (z, v), y = z1 with the (extended) states (z1, z2, z3, z4) =

(y, ẏ, u, u̇) and the new input v = ü. That is
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ż1 = z2

ż2 = z4

1 − z22

ż3 = z4
ż4 = v

y = z1.

(16)

Note that the Eq. (15) (or alternatively, (16)) defines the field (K , δ)
where

K = R

y, ẏ,


1 − ẏ2, u, u̇, ü, . . .


and δ(ẏ) = u̇


1 − ẏ2. Let (Ω, d) be the K -vector space of Kähler

R-differentials. Then by diagram (9) δ induces an additive map
θ : Ω → Ω that satisfies (8). Let E be the corresponding K -vector
space of one-forms. Then δ induces an additive map δ∗

: E → E
that satisfies property (a′′) in Section 4.

Now, the filtration of subspaces of E is defined as

H1 = spanK {d0z1, . . . , d0z4}

and

Hi+1 = spanK {ω ∈ Hi | δ∗ω ∈ Hi}.

Finally, there exists an observable state-space realization of the
form (1) iff H3 is integrable, see [2] for more details. Thus, we get

H1 = spanK {d0y, d0ẏ, d0u, d0u̇}
H2 = spanK {d0y, d0ẏ, d0u}

H3 = spanK {d0y, d0ẏ −


1 − ẏ2d0u}.

Note that since the input–output equation is algebraic the
sequence of the subspaces H1 ⊃ H2 ⊃ H3 is isomorphic to the
sequence of subspaces of Kähler differentials Ω1 ⊃ Ω2 ⊃ Ω3 with
Ω1 = spanK {dz1, . . . , dz4} and Ωi+1 = spanK {ω ∈ Ωi | θω ∈ Ωi}.
However, even if H3 is (by Frobenius theorem) integrable there
do not exist any algebraic functions r1, r2 such that H3 =

spanK {d0r1, d0r2}. Clearly, there only exist analytic functions r1 =

y, r2 = arcsin ẏ − u and give us the state-space realization

ẋ1 = sin(x2 + u)
ẋ2 = 0
y = x1

where again an analytic function appears. In addition, note that the
system is not accessible (controllable) and, hence, the realization
is not minimal. Since the system equations involve now analytic
functions further analysis by means of ‘‘tangent linear system’’
would require the use of the formal vector space E of differential
one-forms, respectively some suitable quotient modules of Kähler
differentials.
Finally, note that the minimal realization of the system is

ẋ = sin u
y = x (17)

and is related to the system discussed in [10].

Obviously, the differential field of algebraic functions (K , δ) is,
by definition, closed under the derivation δ, but not under the
operation of integration. Therefore, anytime the back integration
is required as an in-between step in solution to a control problem
the use of Kähler differentials might not be appropriate. For there
is no guarantee of involving algebraic functions only anymore.
On the other side, for the reasons depicted in Example 5.2 systems
like (17) are so-called ‘‘transformally algebraic’’. However, contrary
to continuous-time case a system like x(t + 1) = sin u(t) is not
transformally algebraic, see [11], and in this respective case the
use of the formal vector space of differential one-forms would be a
natural choice. But this does not mean that to study the nonlinear
discrete-time systems the formal vector space of differential one-
forms is always necessary. If the attention is restricted to, for
instance, rational difference systems the algebraic setting can
naturally be built up by employing Kähler differentials only, see
for instance [12].

6. Conclusions

In this technical note it was shown that the formal vector
space of differential one-forms, having the properties of ordinary
differentials, can be constructed from Kähler differentials. Namely,
it is isomorphic to a quotient space (module) of Kähler differentials.
These two spaces coincidewhen they are over the field of algebraic
functions.

The existence of two different notions is, therefore, relevant in
the study of nonlinear control systems. However, in case the at-
tention is restricted to polynomial, rational or algebraic functions
it is not necessary to introduce the formal vector space of differen-
tial one-forms, for it coincides with Kähler differentials which rep-
resent a natural choice in a purely algebraic setting. On the other
side, the introduction of the formal vector space of differential one-
forms is relevant, for instance, in case of meromorphic functions,
or in cases the considered systems are not transformally alge-
braic. In addition, the use of the formal vector space of differential
one-forms might also be relevant in cases the back integration is
required as an in-between step in solving nonlinear control prob-
lems. This was demonstrated by the realization problemwhere the
system described by the algebraic equation has the realization (ei-
ther minimal or not) involving transcendental functions.
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