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Abstract
A complete reduction 𝜙 for derivatives in a differential field is a

linear operator on the field over its constant subfield. The reduction

enables us to decompose an element 𝑓 as the sum of a derivative

and the remainder 𝜙 (𝑓 ). A direct application of 𝜙 is that 𝑓 is in-field

integrable if and only if 𝜙 (𝑓 ) = 0.

In this paper, we present a complete reduction for derivatives in

a primitive tower algorithmically. Typical examples for primitive

towers are differential fields generated by (poly-)logarithmic func-

tions and logarithmic integrals. Using remainders and residues, we

provide a necessary and sufficient condition for an element from a

primitive tower to have an elementary integral, and discuss how

to construct telescopers for non-D-finite functions in some special

primitive towers.
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1 Introduction
Let 𝑉 be a linear space and 𝑈 a subspace of 𝑉 . A linear operator

𝜙 on 𝑉 is called a complete reduction for 𝑈 if 𝑣 − 𝜙 (𝑣) ∈ 𝑈 for all

𝑣 ∈ 𝑉 and 𝑈 = ker(𝜙) by [23, Definition 5.67]. Such an operator 𝜙

is an idempotent and results in 𝑉 = 𝑈 ⊕ im(𝜙).
Let𝐾 be a differential field with derivation

′
and𝐶 be the subfield

of constants in 𝐾 . For 𝐿 ⊂ 𝐾 , 𝐿′ := {𝑙 ′ | 𝑙 ∈ 𝐿}. Then 𝐿′ is a 𝐶-
subspace. For a complementary subspace 𝑅 for 𝐾 ′, the projection
from 𝐾 to 𝑅 is a complete reduction for 𝐾 ′. So there always exist
complete reductions for 𝐾 ′. It remains

(1) to fix a complementary subspace 𝑅 for 𝐾 ′, and
(2) to develop an algorithm that, for every 𝑓 ∈ 𝐾 , computes

𝑔 ∈ 𝐾 and 𝑟 ∈ 𝑅 such that 𝑓 = 𝑔′ + 𝑟 .
In general, both 𝐾 ′ and 𝑅 are infinite-dimensional.

Example 1.1. Let 𝐶 be a field of characteristic zero, and ′ be the
usual derivation 𝑑/𝑑𝑥 on 𝐶 (𝑥). A complementary subspace 𝑅 for
𝐶 (𝑥)′ is the set of proper rational functions with squarefree denomi-
nators. For every 𝑓 ∈ 𝐶 (𝑥), the Hermite-Ostrogradsky reduction on
[8, page 40] computes (𝑔, 𝑟 ) ∈ 𝐶 (𝑥) × 𝑅 such that 𝑓 = 𝑔′ + 𝑟 . The
projection from 𝐶 (𝑥) to 𝑅 is a complete reduction for 𝐶 (𝑥)′.

Our work is motivated by reduction-based creative telescoping

(see [23, §5.6] and [31, §15]) and integration (summation) in finite

terms (see [8, 22, 28, 29, 32, 33]). Both need preprocessors to split

an integrand (summand) as the sum of an integrable (summable)

part and a possibly non-integrable (non-summable) part.

A commonly-used preprocessor in reduction-based creative tele-

scoping is also known as an additive decomposition, which can be

described in terms of linear algebra below.

Let 𝑉 and 𝑈 be the same as those in the first paragraph. For an

element 𝑣 ∈ 𝑉 , an additive decomposition for 𝑈 computes 𝑢 ∈ 𝑈
and 𝑟 ∈ 𝑉 such that 𝑣 = 𝑢 + 𝑟 , where 𝑟 is minimal in some sense.

And 𝑣 ∈ 𝑈 if and only if 𝑟 = 0. It is proposed for constructing

minimal telescopers in [2–4, 24], in which𝑉 is the𝐶 (𝑥,𝑦)-subspace
spanned by a hypergeometric term in 𝑥 and 𝑦, and 𝑈 is the 𝐶-

subspace {𝑔(𝑥,𝑦 + 1) − 𝑔(𝑥,𝑦) | 𝑔 ∈ 𝑉 }. Additive decompositions

also appear in [11, 19], in which 𝑉 is a primitive tower of some

special kinds, and𝑈 consists of all derivatives in 𝑉 .

A complete reduction is interpreted as an additive decomposition

in [21, §1.2] as follows. Let 𝜙 be a complete reduction for𝑈 on 𝑉 ,

𝐺 be a basis of𝑈 , and 𝐻 be a basis of im(𝜙). Then 𝐺 ∪𝐻 is a basis

42
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of 𝑉 . For every 𝑣 ∈ 𝑉 , 𝑣 =
∑

𝑤∈𝐺∪𝐻 𝑐𝑤𝑤 with 𝑐𝑤 ∈ 𝐶 . Define
supp(𝑣) = {𝑤 ∈ 𝐺 ∪ 𝐻 | 𝑐𝑤 ≠ 0}. For 𝑣1, 𝑣2 ∈ 𝑉 , we say that 𝑣1 is

not higher than 𝑣2 if supp(𝑣1) ⊆ supp(𝑣2). If 𝑣 = 𝑢 + 𝑟 = 𝑢̃ + 𝑟 for
some 𝑢, 𝑢̃ ∈ 𝑈 , 𝑟 ∈ im(𝜙) and 𝑟 ∈ 𝑉 , then supp(𝑟 ) ⊆ supp(𝑟 ) by an

easy linear-algebra argument. Thus, 𝑟 is not higher than 𝑟 .

Additive decompositions do not always induce linear maps. So

they are not necessarily complete reductions. Since linearity brings

a lot of convenience into both theory and practice, it is worthwhile

to seek complete reductions. So far complete reductions have been

developed for hyperexponential functions [5], algebraic functions

[12, 15], fractions of differential polynomials [7], fuchsian D-finite

functions [16] and D-finite functions [6, 13, 35].

A classical topic in symbolic integration is to compute ele-

mentary integrals of transcendental Liouvillian functions (see

[8, 17, 26, 28, 34]). Results about this topic are usually described in

monomial extensions (see [8, §3.4]).

Let 𝐾 and 𝐶 be given in the second paragraph, and 𝑡 be a mono-

mial over 𝐾 (see [8, Definition 3.4.1]). The monomial extension

𝐾 (𝑡) contains three 𝐶-subspaces highly relevant to integration.

They are: 𝐾 (𝑡)′ consisting of all derivatives in 𝐾 (𝑡), 𝑆𝑡 consisting
of proper fractions whose denominators are normal polynomials,

and𝑊𝑡 consisting of elements whose denominators are coprime

with every normal polynomial (see [8, Definition 3.4.2]). Algorithm

HermiteReduce in [8, §5.3] decomposes an element 𝑓 of 𝐾 (𝑡) as
the sum of a derivative, an element 𝑠 of 𝑆𝑡 and an element𝑤 of𝑊𝑡 .

Assume further that 𝑡 is either primitive or hyperexponential (see

[8, Definition 5.1.1]) and that 𝐾 (𝑡) and 𝐾 have the same constants.

One tries to integrate 𝑠 by the residue criterion [27, Theorem 3],

and𝑤 by solving parametric Risch equations [29, Main Theorem]

and the parametric logarithmic derivative problem [8, §7.3]. This

approach results in an algorithm for deciding in-field integrability

in arbitrary primitive towers (see Definition 4.1). The algorithm

may be turned into an additive decomposition.

To develop a complete reduction, we take a different approach

to handling elements in𝑊𝑡 . The approach proceeds in three steps:

1. Define an auxiliary subspace 𝐴 such that𝑊𝑡 =𝑊
′
𝑡 +𝐴.

2. Determine a basis of𝑊 ′𝑡 ∩𝐴.
3. Fix a complement of𝑊 ′𝑡 in𝑊𝑡 by the above basis.

The projection from𝑊𝑡 to the complement is a complete reduction

for𝑊 ′𝑡 , which, together with Algorithm HermiteReduce, leads to

a complete reduction for derivatives in 𝐾 (𝑡).
We prefer to work out all the details for the case, in which 𝑡 is a

primitive monomial, although our approach is likely applicable to

other cases (see [10, 21]). This is because the approach for primitive

monomials does not lead to any complicated case distinction, which

seems unavoidable in other cases (see [5, Section 4.1]).

The auxiliary reduction (Algorithm 3.4) developed in step 1 and

construction of a basis for𝑊 ′𝑡 ∩𝐴 in step 2 benefit from the way

of using integration by parts to reduce polynomial integrands in

[11, 19], while the key lemma (Lemma 3.6) for step 2 is based on

not only integration by parts but also the fact that the parametric

Risch equation in our case is of the form𝑦′ = 𝑐𝑡 ′ +𝑎, where 𝑎 ∈ 𝐾 is

given, and (𝑦, 𝑐) ∈ 𝐾×𝐶 is to be determined. If a complete reduction

𝜙 : 𝐾 → 𝐾 for 𝐾 ′ is available, then 𝑡 ′ = 𝑢′ +𝜙 (𝑡 ′) and 𝑎 = 𝑣 ′ +𝜙 (𝑎)
for some 𝑢, 𝑣 ∈ 𝐾 . An application of 𝜙 to the above equation yields

𝑐𝜙 (𝑡 ′) + 𝜙 (𝑎) = 0. Thus, 𝑐 is determined, and 𝑦 can be taken as

𝑐𝑢 + 𝑣 when 𝜙 (𝑎)𝜙 (𝑡 ′)−1 is a constant. There is no need to solve

any limited integration problem [8, §7.2]. Algorithm 3.12 developed

in step 3 is a dual technique for representing a subspace by the

intersection of kernels of linear functions.

In this paper, we develop a complete reduction for derivatives in

primitive towers by the above approach. The reduction leads to an

algorithm for determining in-field integrability (see Examples 4.5

and 4.6), and can be applied to compute elementary integrals over

such towers (see Example 5.4). We also construct telescopers for

some non-D-finite functions by the reduction (see Example 5.7).

The rest of this paper is organized as follows. In Section 2, we

specify notation and present several algorithms to be used in the

sequel. Basic constructions in the above three steps are described

in Section 3. The constructions yield an algorithm for our complete

reduction, as soon as the notion of primitive towers is introduced

in Section 4. Some applications of the complete reduction are pre-

sented in Section 5. Concluding remarks are given in Section 6.

2 Preliminaries
This section has three parts. In Section 2.1, we introduce some basic

notions concerning symbolic integration and fix notation to be used.

Effective bases are defined and constructed in Section 2.2. They

allow us to apply a dual technique in linear algebra. In Section 2.3,

we review an algorithm in the proof of [26, Theorem 3.9], which

helps us compute elementary integrals in Section 5.

2.1 Notation and rudimentary notions
Throughout the paper, 𝐺× denotes 𝐺 \ {0} for an additive group

(𝐺, +, 0). For 𝑛 ∈ N, the sets {1, . . . , 𝑛} and {0, 1, . . . , 𝑛} are denoted
by [𝑛] and [𝑛]0, respectively. The transpose of a matrix is denoted

by (·)𝜏 . Comments in an algorithm are placed between (∗ · · · ∗).
All fields are of characteristic zero in the paper. Let 𝐾 be a field.

We denote its algebraic closure by 𝐾 . For a univariate polynomial 𝑝

over𝐾 , its degree and leading coefficient are denoted by deg(𝑝) and
lc(𝑝), respectively, when the indeterminate is clear from context.

In particular, deg(0) := −∞ and lc(0) := 0. Similarly, a univariate

rational function is said to be proper if the degree of its numerator

is less than that of its denominator. A rational function 𝑟 can be

uniquely written as the sum of a polynomial and a proper rational

function, which are denoted by poly(𝑟 ) and proper(𝑟 ), respectively.
A map

′
: 𝐾 → 𝐾 is called a derivation on 𝐾 if (𝑎 + 𝑏)′ = 𝑎′ + 𝑏′

and (𝑎𝑏)′ = 𝑎𝑏′ + 𝑎′𝑏 for all 𝑎, 𝑏 ∈ 𝐾 . A differential field is a field

equipped with a derivation. Let (𝐾, ′) be a differential field. An

element 𝑐 of 𝐾 is called a constant if 𝑐′ = 0. All constants in 𝐾

form a subfield. A differential field (𝐸, 𝛿) is called a differential field
extension of (𝐾, ′) if 𝐾 is a subfield of 𝐸 and

′
is the restriction of 𝛿

to 𝐾 . We still use
′
to denote 𝛿 when there is no confusion.

Assume that 𝑡 belongs to a differential field extension of 𝐾 . If 𝑡

is transcendental over 𝐾 and 𝑡 ′ ∈ 𝐾 [𝑡], then 𝑡 is called a monomial
over 𝐾 and 𝐾 (𝑡) is called a monomial extension of 𝐾 .

Let 𝑡 be a monomial over𝐾 . A polynomial 𝑝 ∈ 𝐾 [𝑡]× is said to be
normal if gcd(𝑝, 𝑝′) = 1. An element 𝑓 of 𝐾 (𝑡) is said to be simple if
it is proper and has a normal denominator. The subset consisting of

all simple elements is denoted by 𝑆𝑡 , which is a 𝐾-subspace. Note

that 𝑓 is simple if it has a normal denominator in [8, Definition

3.5.2]. We further require that 𝑓 is proper for the uniqueness of 𝑠 in
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(1) given below. We call 𝑡 a primitive monomial over𝐾 if 𝑡 ′ ∈ 𝐾 \𝐾 ′ .
A primitive monomial extension 𝐾 (𝑡) has no new constant other

than the constants in 𝐾 by [8, Theorem 5.1.1].

Let 𝑡 be a primitive monomial over 𝐾 . For every 𝑓 ∈ 𝐾 (𝑡), there
exists 𝑔 ∈ 𝐾 (𝑡), 𝑝 ∈ 𝐾 [𝑡] and a unique 𝑠 ∈ 𝑆𝑡 such that

𝑓 = 𝑔′ + 𝑝 + 𝑠 . (1)

The uniqueness of 𝑠 is due to [11, Lemma 2.1]. Algorithm Her-

miteReduce in [8, §5.3] computes a triplet (𝑔, 𝑝, 𝑠) ∈ 𝐾 (𝑡)×𝐾 [𝑡]×𝑆𝑡
such that the above equation holds.

Example 2.1. Let 𝐾 = 𝐶 (𝑥), 𝑡 = log(𝑥) and

𝑓 =
(𝑥 + 1)𝑡2 + (𝑥2 + 2𝑥 + 2)𝑡 + 𝑥 + 1

𝑥 (𝑡 + 1) ∈ 𝐾 (𝑡) .

HermiteReduce(𝑓 ) finds (𝑔, 𝑝, 𝑠) ∈ 𝐾 (𝑡) × 𝐾 [𝑡] × 𝑆𝑡 such that (1)
holds, where 𝑔 = 0, 𝑝 = 𝑥+1

𝑥 𝑡 + 𝑥2+𝑥+1
𝑥 , and 𝑠 = − 𝑥

𝑡+1 . Unfortunately,
the algorithm does not extract any in-field integrable part from 𝑓 . It
will be shown that 𝑝 ∈ 𝐾 (𝑡)′ in Example 3.15.

The next lemma presents two properties concerning decomposi-

tion and contraction in primitive monomial extensions. They play

an important role in the proof of our main result (Theorem 3.13).

Lemma 2.2. If 𝑡 is a primitive monomial over 𝐾 , then
(i) 𝐾 (𝑡) = (𝐾 (𝑡)′ + 𝐾 [𝑡]) ⊕ 𝑆𝑡 , and
(ii) 𝐾 (𝑡)′ ∩ 𝐾 [𝑡] = 𝐾 [𝑡]′ .

Proof. (i) holds by (1), and (ii) holds because the derivative of a

proper element of 𝐾 (𝑡) remains proper. □

2.2 Effective bases
This section is a preparation for a dual technique to be used in

Sections 3 and 4.

Definition 2.3. Let 𝐸 be a field with a subfield 𝐹 ,Θ be an 𝐹 -linear
basis of 𝐸, 𝜃 ∈ Θ and 𝑎 ∈ 𝐸. Then

(i) 𝜃∗ stands for the 𝐹 -linear function on 𝐸 that maps 𝜃 to 1 and
any other element of Θ to 0.

(ii) 𝜃 is said to be effective for 𝑎 if 𝜃∗ (𝑎) ≠ 0.
(iii) Θ is called an effective 𝐹 -basis if there are two algorithms :

– one finds 𝜃 ∈ Θ effective for 𝑎 if 𝑎 ≠ 0; and
– the other computes 𝜃∗ (𝑎).

Let 𝐹 be a field and 𝐹 (𝑦) the field of rational functions in 𝑦.

Set 𝑌 =
{
𝑦𝑖 | 𝑖 ∈ N

}
and 𝑄 to be the set consisting of monic and

irreducible polynomials with positive degrees. Then

Θ = 𝑌 ∪
{
𝑦𝑖

𝑞 𝑗
| 𝑞 ∈ 𝑄, 0 ≤ 𝑖 < deg(𝑞), 𝑗 ∈ Z+

}
(2)

is an effective 𝐹 -basis of 𝐹 (𝑦) by the irreducible partial fraction

decomposition. The two algorithms required in Definition 2.3 (iii)

are given below. Their correctness is evident.

Algorithm 2.4. BasisElement

Input: 𝑎 ∈ 𝐹 (𝑦)× Output: (𝜃, 𝑐) ∈ Θ ×𝐶× with 𝑐 = 𝜃∗ (𝑎)
1. 𝑝 ← poly(𝑎), 𝑟 ← proper(𝑎), 𝑑 ← the denominator of 𝑟

2. if 𝑝 ≠ 0 then return

(
𝑦deg(𝑝 ) , lc(𝑝)

)
end if

3. 𝑞 ← a factor of 𝑑 in 𝑄 ,𝑚 ← the multiplicity of 𝑞 in 𝑑
4. ℎ ← the coefficient of 𝑞−𝑚 in the 𝑞-adic expansion of 𝑟

5. return

(
𝑦deg(ℎ)/𝑞𝑚, lc(ℎ)

)
Remark 2.5. There is no obvious rule for choosing an irreducible

factor 𝑞 of 𝑑 in step 3 of Algorithm 2.4. For example, let 𝑓 = 1

𝑦 (𝑦+1) .
One may set 𝑞 to be either 𝑦 or 𝑦 + 1. Then 𝜃 obtained in step 5 may be
either 1

𝑦 or 1

𝑦+1 . So the algorithm does not guarantee that the same
output will be returned when it is applied to the same input twice.

In practice, we choose 𝑞 to be the first member in the list of

irreducible factors of 𝑑 computed by a factorization algorithm.

Algorithm 2.6. Coefficient

Input: (𝑏, 𝜃 ) ∈ 𝐹 (𝑦) × Θ Output: 𝜃∗ (𝑏)
1. 𝑝 ← poly(𝑏), 𝑟 ← proper(𝑏)
2. Write 𝜃 = 𝑦𝑘/𝑞𝑚 for some 𝑘,𝑚 ∈ N, 𝑞 ∈ 𝑄 , gcd(𝑦, 𝑞) = 1

3. if𝑚 = 0 then return the coefficient of 𝑦𝑘 in 𝑝 end if

4. ℎ ← the coefficient of 𝑞−𝑚 in the 𝑞-adic expansion of 𝑟
5. return the coefficient of 𝑦𝑘 in ℎ

Remark 2.7. Let 𝐹 and 𝐸 be given in Definition 2.3 and𝐶 a subfield
of 𝐹 . Assume that 𝐹 has an effective 𝐶-basis Θ0 and that 𝐸 has an
effective 𝐹 -basis Θ. Then {𝜃0𝜃 | 𝜃0 ∈ Θ0, 𝜃 ∈ Θ} is an effective
𝐶-basis of 𝐸 by a straightforward recursive argument.

2.3 Constant residues
Let (𝐾, ′) be a differential field with constant subfield 𝐶 , and 𝑡 be a

monomial over 𝐾 . For 𝑓 ∈ 𝑆𝑡 and 𝛼 ∈ 𝐾 , an element 𝛽 ∈ 𝐾 is the

residue of 𝑓 at 𝛼 if and only if 𝑓 = 𝑔 + 𝛽 (𝑡−𝛼 )
′

𝑡−𝛼 for some 𝑔 ∈ 𝐾 (𝑡)
whose denominator is coprime with 𝑡 − 𝛼 . The residue of 𝑓 at 𝛼 is

nonzero if and only if 𝛼 is a root of its denominator.

Below is a minor variant of an algorithm described in the proof of

[26, Theorem 3.9]. In its pseudo-code, 𝐷𝑡 stands for the derivation

on 𝐾 (𝑡) that maps every element of 𝐾 to 0 and 𝑡 to 1, and 𝜅 for the

coefficient-lifting derivation from (𝐾, ′) to 𝐾 (𝑡) (see [8, §3.2]).

Algorithm 2.8. ConstantMatrix

Input: 𝑓 , 𝑔1, · · · , 𝑔𝑙 ∈ 𝑆𝑡
Output:𝑀 ∈ 𝐶𝑘×𝑙 and v ∈ 𝐶𝑘 such that all residues of 𝑓 −∑𝑙

𝑖=1 𝑐𝑖𝑔𝑖

belong to 𝐶 if and only if𝑀
(
𝑐1, · · · , 𝑐𝑙

)𝜏
= v

1. ℎ ← 𝑓 − 𝑐1𝑔1 − · · · − 𝑐𝑙𝑔𝑙 ,
where 𝑐1, . . . , 𝑐𝑙 are constant indeterminates

2. 𝑝 ← the numerator of ℎ, 𝑞 ← the denominator of ℎ
3. (𝑢, 𝑣) ← the respective inverses of (𝑞′, 𝐷𝑡 (𝑞)) mod 𝑞
𝑤 ← 𝜅 (𝑝𝑢) − 𝐷𝑡 (𝑝𝑢) · 𝑣 · 𝜅 (𝑞)
𝑟 ← remainder of𝑤 on division by 𝑞

4. (𝑀, v) ← an augmented matrix of the linear system
in 𝑐1, . . . , 𝑐𝑙 obtained by setting 𝑟 = 0

5. return𝑀, v

To see its correctness, we note that 𝑞 obtained from step 2 is

normal and free of 𝑐1, . . . 𝑐𝑙 . Then gcd(𝑞′, 𝑞) = gcd(𝐷𝑡 (𝑞), 𝑞) = 1.

Therefore, both 𝑢 and 𝑣 can be computed in step 3. Let 𝛼 be a

root of 𝑞. Then 𝛼 ′ = −𝑣 (𝛼) · 𝜅 (𝑞) (𝛼) by [8, Theorem 3.2.3]. On

the other hand, the residue 𝛽 of ℎ at 𝛼 is equal to (𝑝𝑢) (𝛼) by [8,

Lemma 4.4.2]. Then 𝛽′ = 𝑤 (𝛼), where𝑤 is also computed in step 3.

Therefore, 𝑟 = 0 if and only if all residues of ℎ belong to 𝐶 . The

system obtained in step 4 is linear because 𝑐1, . . . , 𝑐𝑙 appear linearly

in the coefficients of 𝑟 .
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3 Basic constructions
In this section, we let (𝐾, ′) be a differential field and 𝐶 be the sub-

field of its constants. Assume that there exists a complete reduction

𝜙 on 𝐾 for 𝐾 ′, and an algorithm that, for every 𝑓 ∈ 𝐾 , computes

𝑔 ∈ 𝐾 such that 𝑓 = 𝑔′ +𝜙 (𝑓 ). We call 𝜙 (𝑓 ) the remainder of 𝑓 and
(𝑔, 𝜙 (𝑓 )) a reduction pair of 𝑓 (with respect to 𝜙). A reduction pair

will be abbreviated as an R-pair in the sequel.

Let 𝑡 be a primitive monomial over 𝐾 . We are going to define a

complete reduction 𝜓 on 𝐾 (𝑡) for 𝐾 (𝑡)′. It suffices to construct a

complementary subspace of 𝐾 [𝑡]′ in 𝐾 [𝑡] by Lemma 2.2.

As a matter of notation, the 𝐶-subspace
⊕

𝑖∈N𝑉 · 𝑡𝑖 for some

𝐶-subspace 𝑉 of 𝐾 is denoted by 𝑉 ⊗ 𝐶 [𝑡] in virtue of the 𝐶-

isomorphism 𝑣 ⊗ 𝑡𝑖 ↦→ 𝑣𝑡𝑖 from 𝑉 ⊗𝐶 𝐶 [𝑡] to
⊕

𝑖∈N𝑉 · 𝑡𝑖 .
First, we decompose 𝐾 [𝑡] as the sum of 𝐾 [𝑡]′ and im(𝜙) ⊗𝐶 [𝑡].
Lemma 3.1. Let 𝑝 ∈ 𝐾 [𝑡] with deg(𝑝) = 𝑑 . There exists 𝑞 ∈ 𝐾 [𝑡]

with deg(𝑞) ≤ 𝑑 and 𝑟 ∈ im(𝜙) ⊗ 𝐶 [𝑡] with deg(𝑟 ) ≤ 𝑑 such that

𝑝 = 𝑞′ + 𝑟 . (3)

Proof. If 𝑝 = 0, then set 𝑞 = 𝑟 = 0. Assume that 𝑝 is nonzero

with degree 𝑑 and leading coefficient 𝑙 .

Let (𝑔, 𝜙 (𝑙)) be an R-pair of 𝑙 , and ℎ = 𝑝 − 𝑙𝑡𝑑 . With integration

by parts, we have

𝑝 = 𝑔′𝑡𝑑 + 𝜙 (𝑙)𝑡𝑑 + ℎ =

(
𝑔𝑡𝑑

)′
+ 𝜙 (𝑙)𝑡𝑑 + ℎ − (𝑑𝑔𝑡 ′)𝑡𝑑−1 . (4)

Since 𝜙 (𝑙)𝑡𝑑 ∈ im(𝜙) ⊗ 𝐶 [𝑡] and 𝑑 > deg

(
ℎ − (𝑑𝑔𝑡 ′)𝑡𝑑−1

)
, the

lemma follows from an induction on 𝑑 . □

Definition 3.2. The 𝐶-subspace im(𝜙) ⊗ 𝐶 [𝑡], denoted by 𝐴, is
called the auxiliary subspace for 𝐾 [𝑡]′ in 𝐾 [𝑡].

Corollary 3.3. 𝐾 [𝑡] = 𝐾 [𝑡]′ +𝐴.

Proof. It is immediate from Lemma 3.1. □

The next algorithm is direct from the proof of Lemma 3.1.

Algorithm 3.4. AuxiliaryReduction

Input: 𝑝 ∈ 𝐾 [𝑡]
Output: (𝑞, 𝑟 ) ∈ 𝐾 [𝑡] ×𝐴 such that (3) holds

1. 𝑝 ← 𝑝 , 𝑞 ← 0, 𝑟 ← 0

2. while 𝑝 ≠ 0 do

𝑑 ← deg(𝑝), 𝑙 ← lc(𝑝), compute an R-pair (𝑔, 𝜙 (𝑙)) of 𝑙
𝑞 ← 𝑞 + 𝑔𝑡𝑑 , 𝑟 ← 𝑟 + 𝜙 (𝑙)𝑡𝑑 , 𝑝 ← 𝑝 − 𝑙𝑡𝑑 − (𝑑𝑔𝑡 ′)𝑡𝑑−1

end do

3. return (𝑞, 𝑟 )
Next, let us construct a 𝐶-basis of 𝐾 [𝑡]′ ∩𝐴. To this end, we fix

an R-pair (𝜆𝑡 , 𝜙 (𝑡 ′)) of 𝑡 ′ and call it the first pair associated to 𝐾 (𝑡).
Remark 3.5. The remainder 𝜙 (𝑡 ′) ∈ 𝐾 [𝑡]′, because it is equal to

(𝑡 − 𝜆𝑡 )′. Moreover, 𝜙 (𝑡 ′) ≠ 0 because 𝑡 is a primitive monomial.

For all 𝑖 ∈ Z+, we calculate

𝜙 (𝑡 ′)𝑡𝑖 = 𝑡 ′𝑡𝑖 − 𝜆′𝑡 𝑡𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖

)′
+ (𝑖𝜆𝑡 𝑡 ′)𝑡𝑖−1 . (5)

There exists a pair (𝑞𝑖 , 𝑟𝑖 ) ∈ 𝐾 [𝑡] ×𝐴 such that (𝑖𝜆𝑡 𝑡 ′)𝑡𝑖−1 = 𝑞′𝑖 + 𝑟𝑖
and deg(𝑟𝑖 ) ≤ 𝑖 − 1 by Lemma 3.1. It follows that

𝜙 (𝑡 ′)𝑡𝑖 − 𝑟𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖 + 𝑞𝑖

)′
. (6)

Lemma 3.6. Let 𝑣0 = 𝜙 (𝑡 ′) and 𝑣𝑖 be the left-hand side of (6). Then
(i) deg(𝑣𝑖 ) = 𝑖 and lc(𝑣𝑖 ) = 𝜙 (𝑡 ′) for all 𝑖 ∈ N.
(ii) The set {𝑣0, 𝑣1, . . .} is a 𝐶-basis of 𝐾 [𝑡]′ ∩𝐴.

Proof. (i) holds because 𝜙 (𝑡 ′) ≠ 0 and 𝑟𝑖 in (6) has degree < 𝑖 .

(ii) Set 𝐼 = 𝐾 [𝑡]′ ∩𝐴. Then 𝑣0 ∈ 𝐼× by Remark 3.5 and Definition

3.2. For 𝑖 > 0, 𝑣𝑖 ∈ 𝐾 [𝑡]′ by (6). It is in 𝐴 because 𝜙 (𝑡 ′)𝑡𝑖 , 𝑟𝑖 ∈ 𝐴.
Thus, 𝑣𝑖 ∈ 𝐼 for all 𝑖 ∈ N. The 𝑣𝑖 ’s are 𝐶-linearly independent by (i).

Assume that 𝑝 ∈ 𝐼 . Then 𝑝 ∈ 𝐾 (𝑡)′ ∩ 𝐾 [𝑡]. It follows from [11,

Lemma 2.3] that lc(𝑝) = 𝑐𝑡 ′ + 𝑏′ for some 𝑐 ∈ 𝐶 and 𝑏 ∈ 𝐾 . On the

other hand, 𝑝 ∈ 𝐴 implies that lc(𝑝) ∈ im(𝜙). Hence, applying 𝜙 to

lc(𝑝) = 𝑐𝑡 ′ + 𝑏′ yields lc(𝑝) = 𝑐𝜙 (𝑡 ′), because 𝜙 is an idempotent

and 𝜙 (𝑏′) = 0. Let 𝑖 = deg(𝑝) and 𝑞 = 𝑝 − 𝑐𝑣𝑖 . Then 𝑞 ∈ 𝐼 with
deg(𝑞) < 𝑖 . Thus, 𝑝 is a 𝐶-linear combination of 𝑣0, . . . , 𝑣𝑖 by a

straightforward induction on 𝑖 . □

Remark 3.7. [11, Lemma 2.3] cited in the above proof combines
two results in [8] into one statement. A referee of our manuscript
points out that the two results are given in equation (5.13) and the
second paragraph on page 176, respectively.

Calculations in (5) and (6) lead to a naive algorithm to construct

the basis {𝑣0, 𝑣1, . . .} of 𝐾 [𝑡]′ ∩ 𝐴 in Lemma 3.6 (ii) up to a given

degree 𝑑 . A more elaborated algorithm suggested by a referee mini-

mizes R-pairs to be computed. To present the algorithm, we need

some notation and a technical lemma.

Let (𝜆𝑡 , 𝜙 (𝑡 ′)) be the first pair associated to𝐾 (𝑡). Set 𝜇0 = 𝜆𝑡 and
(𝜇𝑘+1, 𝜈𝑘+1) to be an R-pair of 𝜇𝑘𝑡

′
with respect to 𝜙 for all 𝑘 ∈ N.

Furthermore, we define two families of differential operators:

𝐿𝑖, 𝑗 =

𝑖∑︁
𝑘=1

(−1)𝑘+1𝜇 𝑗+𝑘𝐷𝑘
𝑡 and 𝑀𝑖, 𝑗 =

𝑖∑︁
𝑘=1

(−1)𝑘+1𝜈 𝑗+𝑘𝐷𝑘
𝑡 (7)

for all 𝑖 ∈ Z+ and 𝑗 ∈ N, where 𝐷𝑡 is the same as in Section 2.3.

Lemma 3.8. With the notation just introduced, we have

𝑖𝜇 𝑗 𝑡
′𝑡𝑖−1 =

(
𝐿𝑖, 𝑗 (𝑡𝑖 )

)′
+𝑀𝑖, 𝑗 (𝑡𝑖 )

for all 𝑖 ∈ Z+ and 𝑗 ∈ N.

Proof. We proceed by induction on 𝑖 and regard 𝑗 as an arbitrary

nonnegative integer. For 𝑖 = 1, 𝜇 𝑗 𝑡
′ = 𝜇′

𝑗+1 + 𝜈 𝑗+1 by definition. So

𝜇 𝑗 𝑡
′ = 𝐿1, 𝑗 (𝑡)′ +𝑀1, 𝑗 (𝑡) by (7). The conclusion holds for 𝑖 = 1.

Assume that 𝑖 > 1 and the conclusion holds for values lower

than 𝑖 and every 𝑗 ∈ N. We calculate

𝜇 𝑗 𝑡
′𝑡𝑖−1 =

(
𝜇′𝑗+1 + 𝜈 𝑗+1

)
𝑡𝑖−1

=

(
𝜇 𝑗+1𝑡𝑖−1

)′
− 𝜇 𝑗+1

(
𝑡𝑖−1

)′
+ 𝜈 𝑗+1𝑡𝑖−1

=

(
𝜇 𝑗+1𝑡𝑖−1

)′
− (𝑖 − 1)𝜇 𝑗+1𝑡 ′𝑡𝑖−2 + 𝜈 𝑗+1𝑡𝑖−1

=

(
𝜇 𝑗+1𝑡𝑖−1−𝐿𝑖−1, 𝑗+1 (𝑡𝑖−1)

)′
+𝜈 𝑗+1𝑡𝑖−1−𝑀𝑖−1, 𝑗+1 (𝑡𝑖−1)

=𝑖−1
(
𝐿𝑖, 𝑗 (𝑡𝑖 )

)′
+ 𝑖−1𝑀𝑖, 𝑗 (𝑡𝑖 ),

in which the first equality holds because 𝜇 𝑗 𝑡
′ = 𝜇′

𝑗+1 + 𝜈 𝑗+1; the
second is derived from integration by parts, the third is by a direct

calculation; the fourth is due to the induction hypothesis

(𝑖 − 1)𝜇 𝑗+1𝑡 ′𝑡𝑖−2 =
(
𝐿𝑖−1, 𝑗+1 (𝑡𝑖−1)

)′
+𝑀𝑖−1, 𝑗+1 (𝑡𝑖−1);
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and the last holds by replacing 𝑖𝐷𝑘
𝑡 (𝑡𝑖−1) with 𝐷𝑘

𝑡 (𝑡𝑖 ) and shifting

the index 𝑘 to 𝑘 + 1 in (7). □

Corollary 3.9. For all 𝑖 ∈ Z+, the element 𝑣𝑖 in Lemma 3.6 can be
taken as𝜙 (𝑡 ′)𝑡𝑖−𝑀𝑖,0 (𝑡𝑖 ), which is equal to

(
𝑡𝑖+1
𝑖+1 − 𝜆𝑡 𝑡

𝑖 + 𝐿𝑖,0 (𝑡𝑖 )
)′
.

Proof. It follows from Remark 3.5 that

𝜙 (𝑡 ′)𝑡𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖

)′
+ 𝑖𝜆𝑡 𝑡 ′𝑡𝑖−1 .

Setting 𝑗 = 0 in Lemma 3.8 and noticing 𝜇0 = 𝜆𝑡 , we see that

𝜙 (𝑡 ′)𝑡𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖 + 𝐿𝑖,0 (𝑡𝑖 )

)′
+𝑀𝑖,0 (𝑡𝑖 ) .

Since𝑀𝑖,0 (𝑡𝑖 ) belongs to𝐴 and is of degree less than 𝑖 , the corollary

holds when we set 𝑞𝑖 = 𝐿𝑖,0 (𝑡𝑖 ) and 𝑟𝑖 = 𝑀𝑖,0 (𝑡𝑖 ) in (6). □

Algorithm 3.10. Basis

Input: 𝑑 ∈ N and the first pair (𝜆𝑡 , 𝜙 (𝑡 ′)) associated to 𝐾 (𝑡)
Output: (𝑢0, 𝑣0), . . . , (𝑢𝑑 , 𝑣𝑑 ), where (𝑢0, 𝑣0)= (𝑡 − 𝜆𝑡 , 𝜙 (𝑡 ′)) and,
for all 𝑖 ∈ [𝑑], (𝑢𝑖 , 𝑣𝑖 ) =

(
𝑡𝑖+1
𝑖+1 − 𝜆𝑡 𝑡

𝑖 + 𝐿𝑖,0 (𝑡𝑖 ), 𝜙 (𝑡 ′)𝑡𝑖 −𝑀𝑖,0 (𝑡𝑖 )
)

with 𝐿𝑖,0 and𝑀𝑖,0 given in (7).

We skip the pseudo-code for the above algorithm, because both

𝐿𝑖,0 (𝑡𝑖 ) and𝑀𝑖,0 (𝑡𝑖 ) can be easily constructed iteratively according

to (7). In the algorithm, one computes R-pairs (𝜇𝑖 , 𝜙 (𝜇𝑖−1𝑡 ′)) for
every 𝑖 ∈ [𝑑], whereas the number of R-pairs needed is proposional

to 𝑑2 if one constructs 𝑣1, . . . , 𝑣𝑑 by Algorithm 3.4 directly.

Now, we turn the sum in Corollary 3.3 to a direct one by con-

structing a subspace of𝐴 that is a complement of 𝐾 [𝑡]′. To proceed,
we need to assume further that 𝐾 has an effective 𝐶-basis, which

is denoted by Θ. Then there exists a pair (𝜃, 𝑐) ∈ Θ ×𝐶× such that

𝑐 = 𝜃∗ (𝜙 (𝑡 ′)). We fix such a pair and call it the second pair associ-
ated to 𝐾 (𝑡). A complementary subspace consists of polynomials

in 𝐴 whose coefficients are free of 𝜃 . In other words, the subspace

is equal to (im(𝜙) ∩ ker(𝜃∗)) ⊗ 𝐶 [𝑡].

Lemma 3.11. Let (𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡). Then
(i) 𝐴 = (𝐾 [𝑡]′∩𝐴) ⊕𝐴𝜃 , where𝐴𝜃 = (im(𝜙) ∩ ker (𝜃∗)) ⊗𝐶 [𝑡];
(ii) 𝐾 [𝑡] = 𝐾 [𝑡]′ ⊕ 𝐴𝜃 .

Proof. (i) Similar to the proof of Lemma 3.6, we set 𝐼 = 𝐾 [𝑡]′∩𝐴.
First, we show 𝐴 = 𝐼 +𝐴𝜃 . Since 𝐼 ⊂ 𝐴 and 𝐴𝜃 ⊂ 𝐴, it suffices to

show 𝐴 ⊂ 𝐼 +𝐴𝜃 . Let {𝑣0, 𝑣1, . . .} be the basis of 𝐼 in Lemma 3.6 (ii),

and 𝑝 ∈ 𝐴. Set 𝑑= deg(𝑝), 𝑙= lc(𝑝) and 𝑧=𝜃∗ (𝑙). By Lemma 3.6 (i),

𝑝 − 𝑐−1𝑧𝑣𝑑 = 𝑔𝑡𝑑 + ℎ, (8)

where 𝑔 = 𝑙 −𝑐−1𝑧𝜙 (𝑡 ′) and ℎ ∈ 𝐾 [𝑡] with deg(ℎ) < 𝑑 . Since 𝑝 ∈ 𝐴,
we have that 𝑙 ∈ im(𝜙), and, thus, 𝑔 ∈ im(𝜙) by its definition.

Furthermore, 𝜃∗ (𝑔) = 𝜃∗ (𝑙) − 𝑐−1𝑧𝜃∗ (𝜙 (𝑡 ′)) = 𝑧 − 𝑧 = 0. Hence,

𝑔 ∈ ker(𝜃∗). Consequently, 𝑔 ∈ im(𝜙) ∩ ker(𝜃∗). We conclude that

𝑔𝑡𝑑 ∈ 𝐴𝜃 . It follows from (8) that ℎ ∈ 𝐴 and 𝑝 − ℎ ∈ 𝐼 +𝐴𝜃 , which
allow us to carry out an induction on 𝑑 as follows.

If 𝑑 = 0, then ℎ = 0. So 𝑝 ∈ 𝐼 + 𝐴𝜃 . Assume that 𝑑 > 0 and

that all elements of 𝐴 with degree lower than 𝑑 are in 𝐼 +𝐴𝜃 . Then
ℎ ∈ 𝐼 +𝐴𝜃 . Hence, 𝑝 ∈ 𝐼 +𝐴𝜃 .

Second, we show that 𝐼 ∩ 𝐴𝜃 = {0}. Assume that 𝑞 ∈ 𝐼 ∩ 𝐴𝜃 .
Then 𝑞 is a 𝐶-linear combination of the 𝑣𝑖 ’s. So lc(𝑞) is the product
of a constant and 𝜙 (𝑡 ′) by Lemma 3.6 (i). Since lc(𝑞) ∈ ker(𝜃∗)

and 𝜙 (𝑡 ′) ∉ ker(𝜃∗), the constant is equal to zero, and so is lc(𝑞).
Accordingly, 𝑞 = 0.

(ii) By Corollary 3.3 and (i), 𝐾 [𝑡] = 𝐾 [𝑡]′ + 𝐴𝜃 . Since 𝐴𝜃 ⊂ 𝐴,
we have that 𝐾 [𝑡]′ ∩𝐴𝜃 = (𝐾 [𝑡]′ ∩𝐴) ∩𝐴𝜃 , which is equal to {0}
by (i). So (ii) holds. □

The 𝐶-subspace 𝐴𝜃 in Lemma 3.11 is called the 𝜃 -complement of
𝐾 [𝑡]′ in 𝐾 [𝑡] in the rest of this section. The next algorithm projects

an element of 𝐴 to 𝐾 [𝑡]′ and the 𝜃 -complement, respectively. It is

correct by the proof of Lemma 3.11 (i).

Algorithm 3.12. Projection

Input: 𝑟 ∈ 𝐴, the first and second pairs (𝜆𝑡 , 𝜙 (𝑡 ′)) and (𝜃, 𝑐) associ-
ated to 𝐾 (𝑡)
Output: (𝑢, 𝑣) ∈ 𝐾 [𝑡] ×𝐴𝜃 such that

𝑟 = 𝑢′ + 𝑣 (9)

1. 𝑢 ← 0, 𝑣 ← 𝑟 , 𝑑 ← deg(𝑟 )
2. 𝐵 ← Basis(𝑑, 𝜆𝑡 , 𝜙 (𝑡 ′)) (∗Algorithm 3.10 ∗)
3. for 𝑖 from 0 to 𝑑 do

𝑎 ← the coefficient of 𝑡𝑑−𝑖 in 𝑣 , 𝑏 ← 𝜃∗ (𝑎)
(𝑢̃, 𝑣) ← the element of 𝐵 with deg(𝑣) = 𝑑 − 𝑖 ,
𝑐 ← 𝑐−1𝑏, 𝑢 ← 𝑢 + 𝑐𝑢̃, 𝑣 ← 𝑣 − 𝑐𝑣

end do

4. return (𝑢, 𝑣)

We are ready to present the main result of this section.

Theorem 3.13. Let (𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡),
and𝐴𝜃 be the 𝜃 -complement of 𝐾 [𝑡]′. Then 𝐾 (𝑡) = 𝐾 (𝑡)′ ⊕𝐴𝜃 ⊕ 𝑆𝑡 .
Moreover, the projection𝜓𝜃 from 𝐾 (𝑡) to 𝐴𝜃 ⊕ 𝑆𝑡 with respect to the
above direct sum is a complete reduction for 𝐾 (𝑡)′.

Proof. By Lemma 2.2 (i) and Lemma 3.11,

𝐾 (𝑡) = (𝐾 (𝑡)′ +𝐴𝜃 ) ⊕ 𝑆𝑡 .

By Lemma 2.2 (ii) and𝐴𝜃 ⊂ 𝐾 [𝑡], we have𝐾 (𝑡)′∩𝐴𝜃 = 𝐾 [𝑡]′∩𝐴𝜃 ,
which is trivial by Lemma 3.11 (ii). So 𝐾 (𝑡) = 𝐾 (𝑡)′ ⊕ 𝐴𝜃 ⊕ 𝑆𝑡 . It
follows that𝜓𝜃 is a complete reduction for 𝐾 (𝑡)′. □

Below is an algorithm for the complete reduction given in the

above theorem.

Algorithm 3.14. CompleteReduction

Input: 𝑓 ∈ 𝐾 (𝑡), the first and second pairs (𝜆𝑡 , 𝜙 (𝑡 ′)) and (𝜃, 𝑐)
associated to 𝐾 (𝑡)
Output: an 𝑅-pair of 𝑓 with respect to𝜓𝜃 in Theorem 3.13

1. (𝑔, 𝑝, 𝑠) ← HermiteReduce(𝑓 ) (∗[8, §5.3] ∗)
if 𝑝 = 0 then return (𝑔, 𝑠) end if

2. (𝑞, 𝑟 ) ← AuxiliaryReduction(𝑝) (∗Algorithm 3.4 ∗)
if 𝑟 = 0 then return (𝑔 + 𝑞, 𝑠) end if

3. (𝑢, 𝑣) ← Projection(𝑟, 𝜆𝑡 , 𝜙 (𝑡 ′), 𝜃, 𝑐) (∗Algorithm 3.12 ∗)
return (𝑔 + 𝑞 + 𝑢, 𝑠 + 𝑣)

Example 3.15. Let 𝐾 (𝑡) and 𝑓 be given in Example 2.1, and Θ be
the 𝐶-basis given in (2) with 𝐹 = 𝐶 and 𝑦 = 𝑥 . The first and second
associated pairs are (0, 𝑥−1) and (𝑥−1, 1), respectively. The above
algorithm computes an 𝑅-pair of 𝑓 as follows.

1. (𝑔, 𝑝, 𝑠) =
(
0, 𝑥+1𝑥 𝑡 + 𝑥2+𝑥+1

𝑥 ,− 𝑥
𝑡+1

)
by Example 2.1.
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2. Algorithm 3.4 finds (𝑞, 𝑟 ) =
(
𝑥𝑡 + 𝑥2

2
, 𝑡+1𝑥

)
∈ 𝐾 [𝑡] × 𝐴 such

that (3) holds, where 𝐴 = 𝑆𝑥 ⊗ 𝐶 [𝑡].
3. Algorithm 3.12 finds (𝑢, 𝑣) =

(
𝑡2

2
+ 𝑡, 0

)
such that (9) holds.

Thus, 𝑝 = (𝑞 +𝑢)′ and (𝑔 +𝑞 +𝑢, 𝑠) is an R-pair of 𝑓 . Algorithm 3.14
finds 𝑠 = − 𝑥

𝑡+1 as a “minimal” non-in-field integrable part.

At last, we describe the restriction of𝜓𝜃 to 𝐾 .

Corollary 3.16. Let 𝜙 : 𝐾 → 𝐾 be a complete reduction for 𝐾 ′,
(𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡) and 𝜓𝜃 be the complete
reduction given in Theorem 3.13. Then, for every 𝑓 ∈ 𝐾 , we have that
𝜓𝜃 (𝑓 ) = 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′), where 𝑐 = −𝜃∗ (𝜙 (𝑓 )) 𝑐−1 .

Proof. Since 𝑓 ∈ 𝐾 , we have 𝑓 ≡ 𝜙 (𝑓 ) mod 𝐾 ′. By Remark

3.5, 𝑓 ≡ 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′) mod 𝐾 (𝑡)′. Note that 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′) belongs
to the 𝜃 -complement. Applying 𝜓𝜃 to the above congruence, we

conclude that𝜓𝜃 (𝑓 ) = 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′), because 𝐾 (𝑡)′ = ker(𝜓𝜃 ) and
the restriction of𝜓𝜃 to 𝐴𝜃 is the identity map. □

4 Complete reduction
In this section, we define primitive towers and remove the assump-

tions made in the first paragraph of Section 3.

Definition 4.1. Let 𝐾0 be a differential field whose subfield of
constants is denoted by 𝐶 . A primitive tower over 𝐾0 is

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛
∥ ∥

𝐾0 (𝑡1) 𝐾𝑛−1 (𝑡𝑛),
(10)

where 𝑡𝑖 is a primitive monomial over 𝐾𝑖−1 for all 𝑖 ∈ [𝑛].

Note that 𝐶 is the subfield of constants in a primitive tower 𝐾𝑛 .

Theorem 4.2. Let 𝐾𝑛 be a primitive tower as in (10), and Θ0 be
an effective 𝐶-basis of 𝐾0. Assume that 𝜙0 : 𝐾0 → 𝐾0 is a complete
reduction for 𝐾 ′

0
, and that there is an algorithm to compute an 𝑅-pair

of every element in 𝐾0. Then, for every 𝑖 ∈ [𝑛]0, 𝐾𝑖 has an effective
𝐶-basis Θ𝑖 and a complete reduction 𝜙𝑖 : 𝐾𝑖 → 𝐾𝑖 for 𝐾 ′𝑖 . Moreover,
there is an algorithm to compute an 𝑅-pair of every element in 𝐾𝑖 .

Proof. We proceed by induction on 𝑛. If 𝑛 = 0, then the con-

clusion clearly holds. Assume that 𝑛 > 0 and that there exists an

effective𝐶-basisΘ𝑛−1 of𝐾𝑛−1, a complete reduction 𝜙𝑛−1 for𝐾 ′𝑛−1
on 𝐾𝑛−1 and an algorithm to compute an R-pair of every element

in 𝐾𝑛−1. The first and second pairs

(
𝜆𝑛, 𝜙𝑛−1 (𝑡 ′𝑛)

)
and (𝜃𝑛, 𝑐𝑛) as-

sociated to 𝐾𝑛 can be constructed by 𝜙𝑛−1 and Θ𝑛−1, respectively.
The tower 𝐾𝑛 has an effective𝐶-basis Θ𝑛 by Remark 2.7. Replac-

ing 𝐾 with 𝐾𝑛−1, 𝑡 with 𝑡𝑛 , 𝜙 with 𝜙𝑛−1, and 𝜃 with 𝜃𝑛 in Theorem

3.13, we find a complete reduction 𝜓𝜃𝑛 for 𝐾 ′𝑛 on 𝐾𝑛 . Doing the

same replacements in Algorithms 3.4, 3.10, 3.12 and 3.14, we have

an algorithm to compute an R-pair of every element in 𝐾𝑛 with

respect to𝜓𝜃𝑛 . The induction is completed by setting 𝜙𝑛 = 𝜓𝜃𝑛 . □

Corollary 4.3. Let 𝐾𝑛 be a primitive tower as in (10) and 𝜙𝑖 be
the complete reduction constructed in the proof of the above theorem.
Then, for every 𝑖 ∈ [𝑛 − 1]0 and 𝑓 ∈ 𝐾𝑖 , 𝜙𝑛 (𝑓 ) − 𝜙𝑖 (𝑓 ) is a 𝐶-linear
combination of 𝜙𝑖 (𝑡 ′𝑖+1), . . . , 𝜙𝑛−1 (𝑡

′
𝑛), and belongs to 𝐾 ′𝑛 .

Proof. For every 𝑗 ∈ [𝑛− 1]0, 𝜙 𝑗+1 (𝑓 ) −𝜙 𝑗 (𝑓 ) = 𝑐 𝑗𝜙 𝑗 (𝑡 ′𝑗+1) for
some 𝑐 𝑗 ∈ 𝐶 by Corollary 3.16. Summing up these equalities from

𝑖 to 𝑛 − 1, we see that 𝜙𝑛 (𝑓 ) − 𝜙𝑖 (𝑓 ) is a 𝐶-linear combination of

𝜙𝑖 (𝑡 ′𝑖+1), . . . , 𝜙𝑛−1 (𝑡
′
𝑛). It belongs to 𝐾 ′𝑛 by Remark 3.5. □

To perform complete reductions in practice, we assume further

that [𝐾0 : 𝐶 (𝑥)] < ∞ and that 𝐾0 contains no new constant. Com-

plete reductions on 𝐶 (𝑥) and its finite algebraic extensions are

given in Example 1.1 and [15], respectively. Improvements on the

reduction for algebraic functions can be found in [12]. Algorithms

2.4 and 2.6 show that 𝐶 (𝑥) has an effective 𝐶-basis. So does 𝐾0 by

Remark 2.7. Consequently, a complete reduction for 𝐾 ′𝑛 on 𝐾𝑛 is

available by Theorem 4.2.

Let us make a notational convention so that we can illustrate

computations and proofs through a primitive tower concisely.

Convention 4.4. Let 𝐾𝑛 be a primitive tower as in (10), and 𝜙0
be a complete reduction for 𝐾 ′

0
on 𝐾0. Let Θ be the effective𝐶-basis of

𝐾𝑛 obtained from a repeated use of Remark 2.7. For all 𝑖 ∈ [𝑛],
• 𝜙𝑖 : 𝐾𝑖 → 𝐾𝑖 stands for the complete reduction for 𝐾 ′

𝑖
in the

proof of Theorem 4.2,
•

(
𝜆𝑖 , 𝜙𝑖−1 (𝑡 ′𝑖 )

)
and (𝜃𝑖 , 𝑐𝑖 ) for the first and second pairs associ-

ated to 𝐾𝑖 , respectively,
• 𝑆𝑖 for the set of simple elements in 𝐾𝑖 with respect to 𝑡𝑖 , and
• 𝐴𝑖 for the auxiliary subspace in 𝐾𝑖−1 [𝑡𝑖 ].

All associated pairs are constructed once and for all. So the

possible ambiguity mentioned in Remark 2.5 will never occur.

Example 4.5. Let 𝐾0=𝐶 (𝑥), 𝑡1= log(1−𝑥), and 𝑡2= polylog(2, 𝑥),
which is equal to −

∫
log(1−𝑥 )

𝑥 . Then 𝐾2 = 𝐾0 (𝑡1, 𝑡2) is a primitive

tower. We associate (𝜆1, 𝜙0 (𝑡 ′
1
)) =

(
0, 1

𝑥−1

)
, (𝜃1, 𝑐1) =

(
1

𝑥−1 , 1
)

and (𝜆2, 𝜙1 (𝑡 ′
2
)) =

(
0, − 𝑡1𝑥

)
, (𝜃2, 𝑐2) =

(
𝑡1
𝑥 , −1

)
to 𝐾1 and 𝐾2, re-

spectively. Let us compute respective 𝑅-pairs of

𝑓 =

(
(𝑥 − 1)2 𝑡1 + 𝑥

)
𝑡3
2
+ 𝑥 (𝑥 − 1) 𝑡1

𝑥2 (𝑥 − 1) 𝑡2
2

and ˜𝑓 = 𝑡2
2
.

First, HermiteReduce(𝑓 ) finds (𝑔, 𝑝, 𝑠) ∈ 𝐾1 (𝑡2) × 𝐾1 [𝑡2] × 𝑆2
such that (1) holds, where 𝑔 = 1

𝑡2
, 𝑝 =

(𝑥−1)2𝑡1+𝑥
𝑥2 (𝑥−1) 𝑡2 and 𝑠 = 0.

Second, AuxiliaryReduction(𝑝) yields (𝑞, 𝑟 ) ∈ 𝐾1 [𝑡2] ×𝐴2 such
that (3) holds, where 𝑞 =

𝑡1
𝑥 𝑡2 +

𝑥−1
𝑥 𝑡2

1
and 𝑟 = 𝑡1

𝑥 𝑡2 −
2𝑡1
𝑥 .

At last, we project 𝑟 to 𝐾1 [𝑡2]′ and the 𝜃2-complement by Projec-

tion. The respective projections are 𝑢′ and 0, where 𝑢 = − 𝑡
2

2

2
+ 2𝑡2.

So 𝑓 has an R-pair (𝑔 + 𝑞 + 𝑢, 0). Consequently,
∫
𝑓 = 𝑔 + 𝑞 + 𝑢.

In the same vein, an R-pair of ˜𝑓 is (𝑔, 𝑟 ), where
𝑔 = 𝑥𝑡2

2
+ (2𝑡1𝑥 − 2𝑡1 − 2𝑥) 𝑡2 + 2𝑡21𝑥 − 2𝑡

2

1
− 6𝑡1𝑥 + 6𝑡1 + 6𝑥

and 𝑟 = − 2𝑡2
1

𝑥 . So ˜𝑓 does not have any integral in 𝐾2. The remainder
𝑟 is “simpler” than ˜𝑓 in the sense that 𝑟 is of degree 0 in 𝑡2.

Example 4.6. Let𝐾0 = 𝐶 (𝑥,𝑦) with𝑦3−𝑥𝑦+1 = 0. Set 𝑡1 = log(𝑦).
Then 𝐾1 = 𝐾0 (𝑡1) is a primitive tower. Two associated pairs of 𝐾1
are (𝜆1, 𝜙0 (𝑡 ′

1
)) =

(
2𝑥𝑦
3
, −𝑦

)
and (𝜃1, 𝑐1) = (𝑦, −1), respectively. We

compute an R-pair of 𝑓 = 𝑦 (2 − 3𝑡1) .
HermiteReduce(𝑓 ) finds a triplet (𝑔, 𝑝, 𝑠) in 𝐾0 (𝑡1) ×𝐾0 [𝑡1] ×𝑆1

such that (1) holds, where 𝑔 = 0, 𝑝 = −3𝑦𝑡1 + 2𝑦 and 𝑠 = 0.

Since 𝜙0 (𝑡 ′
1
) = −𝑦, we see that 𝑦 ∈ im(𝜙0). Then 𝑝 ∈ 𝐴1. So (3)

holds by setting 𝑞 = 0 and 𝑟 = 𝑝 .
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Projection(𝑟, 𝜆1, 𝜙0 (𝑡 ′
1
), 𝜃1, 𝑐1) yields 𝑢 = 3

2
𝑡2
1
− (2𝑥𝑦)𝑡1 + 2𝑥𝑦

and 𝑣 = 0 such that (9) holds. Thus, an R-pair of 𝑓 is (𝑢, 0). Conse-
quently, 𝑢 is an integral of 𝑓 .

We have compared our preliminary implementation of the com-

plete reduction given in Theorem 4.2 with the Maple function int
and Algorithm AddDecompInField in [19, page 150] for in-field

integration. Empirical results are given in the appendix.

5 Applications of remainders
This section contains two applications: computing elementary in-

tegrals over 𝐾𝑛 with 𝐾0 = 𝐶 (𝑥), and constructing telescopers for

some non-D-finite functions. Convention 4.4 is kept in the sequel.

5.1 Elementary integrals
Let 𝑓 ∈ 𝐾𝑛 . Then 𝑓 has an elementary integral over 𝐾𝑛 if and only

if its remainder 𝜙𝑛 (𝑓 ) has one. Two properties of remainders allow

us to apply Algorithm 2.8 directly to compute elementary integrals.

To describe the properties, we need three 𝐶-subspaces of 𝐾𝑛 . Let

𝑃 =
∑︁
𝑖∈[𝑛]

𝑡𝑖𝐾𝑖−1 [𝑡𝑖 ], 𝑆 =
∑︁
𝑖∈[𝑛]

𝑆𝑖 ,

and 𝑇 be the 𝐶-subspace spanned by 𝜙0 (𝑡 ′
1
), 𝜙1 (𝑡 ′

2
), . . . , 𝜙𝑛−1 (𝑡 ′𝑛) .

Note that

∑
𝑖∈[𝑛] 𝑡𝑖𝐾𝑖−1 [𝑡𝑖 ],

∑
𝑖∈[𝑛] 𝑆𝑖 and 𝐾0 + 𝑃 + 𝑆 are all direct.

Proposition 5.1. im(𝜙𝑛) ⊂ 𝐾0 ⊕ 𝑃 ⊕ 𝑆.

Proof. The conclusion holds for 𝑛 = 0 because im(𝜙0) ⊂ 𝐾0.
Assume that 𝑛 > 0 and that the conclusion holds for 𝑛 − 1. By The-

orem 3.13, im(𝜙𝑛) ⊂ 𝐴𝑛 + 𝑆𝑛 . Since 𝐴𝑛 ⊂ im(𝜙𝑛−1) + 𝑡𝑛𝐾𝑛−1 [𝑡𝑛],
we see that im(𝜙𝑛) ⊂ im(𝜙𝑛−1) + 𝑡𝑛𝐾𝑛−1 [𝑡𝑛] +𝑆𝑛 . The proposition
then follows from the induction hypothesis. □

Proposition 5.2. If ℎ ∈ 𝐾0 ⊕ 𝑆 , then ℎ − 𝜙𝑛 (ℎ) ∈ 𝐾 ′
0
+𝑇 .

Proof. Assume ℎ = ℎ0 +
∑
𝑖∈[𝑛] 𝑠𝑖 , where ℎ0 ∈ 𝐾0 and 𝑠𝑖 ∈ 𝑆𝑖 .

Then 𝑠𝑖 = 𝜙𝑖 (𝑠𝑖 ) by Theorem 3.13, and 𝜙𝑖 (𝑠𝑖 ) ≡ 𝜙𝑛 (𝑠𝑖 ) mod 𝑇 by

Corollary 4.3. Hence, 𝑠𝑖 ≡ 𝜙𝑛 (𝑠𝑖 ) mod 𝑇 , which, together with the

application of 𝜙𝑛 to ℎ, implies ℎ − 𝜙𝑛 (ℎ) ≡ ℎ0 − 𝜙𝑛 (ℎ0) mod 𝑇 . By

Corollary 4.3 again,ℎ−𝜙𝑛 (ℎ) ≡ ℎ0−𝜙0 (ℎ0) mod𝑇 . The proposition

is proved by noting that ℎ0 − 𝜙0 (ℎ0) ∈ 𝐾 ′
0
. □

An element 𝑠 of 𝑆 can be uniquely written as

∑
𝑖∈[𝑛] 𝑠𝑖 , where

𝑠𝑖 ∈ 𝑆𝑖 . We say that all residues of 𝑠 are constants if all residues of

𝑠𝑖 as an element in 𝐾𝑖−1 (𝑡𝑖 ) belong to 𝐶 for every 𝑖 ∈ [𝑛].

Theorem 5.3. Let 𝐾𝑛 be a primitive tower as in (10) with 𝐾0 =

𝐶 (𝑥). Assume that 𝐶 is algebraically closed. Then 𝑓 ∈ 𝐾𝑛 has an
elementary integral over 𝐾𝑛 if and only if

(i) there exists 𝑠 ∈ 𝑆 such that 𝜙𝑛 (𝑓 ) ≡ 𝑠 mod 𝐾0 +𝑇, and
(ii) all residues of 𝑠 belong to 𝐶 .

Proof. Assume that both (i) and (ii) hold. By (ii) and [18, Propo-

sition 3.3], 𝑠 has an elementary integral over 𝐾𝑛 . Every element of

𝐾0 has an elementary integral over 𝐾0 because 𝐾0 = 𝐶 (𝑥). By Re-

mark 3.5, 𝑇 ⊂ 𝐾 ′𝑛 . It follows from (i) that 𝜙𝑛 (𝑓 ) has an elementary

integral over 𝐾𝑛 , and so does 𝑓 .

Conversely, assume that 𝑓 has an elementary integral over 𝐾𝑛 .

Then there exists a 𝐶-linear combination ℎ of logarithmic deriva-

tives in 𝐾𝑛 such that 𝑓 ≡ ℎ mod 𝐾 ′𝑛 by [8, Theorem 5.5.2]. Since

𝜙𝑛 (𝑓 ) = 𝜙𝑛 (ℎ), it suffices to show that 𝜙𝑛 (ℎ) satisfies both (i) and

(ii). By the logarithmic derivative identity, ℎ ≡ 𝑠 mod 𝐾0 for some

𝑠 ∈ 𝑆 , which has merely constant residues. Then ℎ ≡ 𝜙𝑛 (ℎ) mod

𝐾0 + 𝑇 by Proposition 5.2. Hence, 𝜙𝑛 (ℎ) ≡ 𝑠 mod 𝐾0 + 𝑇 by the

above two congruences. Both (i) and (ii) hold. □

Next, we outline an algorithm for computing elementary inte-

grals over 𝐾𝑛 . Let 𝑓 ∈ 𝐾𝑛 .
1. Compute an R-pair (𝑔, 𝜙𝑛 (𝑓 )). If 𝜙𝑛 (𝑓 ) = 0, then

∫
𝑓 = 𝑔

and we are done.

2. Assume that 𝜙𝑛 (𝑓 ) ≠ 0. By Proposition 5.1, we can write

𝜙𝑛 (𝑓 ) = 𝑟 + 𝑝 + 𝑠 and 𝜙𝑖−1 (𝑡 ′𝑖 ) = 𝑟𝑖 + 𝑝𝑖 + 𝑠𝑖 , where 𝑖 ∈ [𝑛],
𝑟, 𝑟𝑖 ∈ 𝐾0, 𝑝, 𝑝𝑖 ∈ 𝑃 and 𝑠, 𝑠𝑖 ∈ 𝑆 .

3. Let 𝑧1, . . . , 𝑧𝑛 be constant indeterminates.

- Use ConstantMatrix (Algorithm 2.8) to compute a ma-

trix 𝑀 ∈ 𝐶𝑘×𝑛 and v ∈ 𝐶𝑘 such that 𝑠 − ∑𝑖∈[𝑛] 𝑧𝑖𝑠𝑖 has
merely constant residues if and only if the linear system

given by the augmented matrix (𝑀, v) is consistent.
- Compute 𝑁 ∈ 𝐶𝑙×𝑛 and w ∈ 𝐶𝑙 such that 𝑝 =

∑
𝑖∈[𝑛] 𝑧𝑖𝑝𝑖

if and only if the linear system given by the augmented

matrix (𝑁,w) is consistent.

- Solve the linear system

(
𝑀

𝑁

) (
𝑧1, . . . , 𝑧𝑛

)𝜏
=

(
v
w

)
.

4. If the above system has no solution, then 𝑓 has no elementary

integral over 𝐾𝑛 by Theorem 5.3. Otherwise, let 𝑐1, . . . , 𝑐𝑛 be

such a solution. Set 𝑟 = 𝑟−∑𝑖∈[𝑛] 𝑐𝑖𝑟𝑖 and 𝑠 = 𝑠−
∑
𝑖∈[𝑛] 𝑐𝑖𝑠𝑖 .

Then

∫
𝑓 = 𝑔 +

∫
𝑟 +

∫
𝑠 +∑𝑖∈[𝑛] 𝑐𝑖 (𝑡𝑖 − 𝜆𝑖 ) . Note that

∫
𝑟

is elementary because 𝑟 ∈ 𝐶 (𝑥), and that

∫
𝑠 is elementary

over 𝐾𝑛 by Theorem 5.3.

Example 5.4. We follow the above outline to integrate

𝑓 =
𝑥 + (𝑥 − 1)𝑡2
(𝑥 − 1)𝑡1

+ 𝑡2 + 𝑡3 (1 − 𝑡1)
𝑥

,

1. By𝜙3, we find an R-pair (𝑡2𝑡3, 𝜙3 (𝑓 )), where𝜙3 (𝑓 ) = 𝑥
(𝑥−1)𝑡1 .

2. Compute 𝜙𝑖−1 (𝑡 ′𝑖 ) = 𝑟𝑖 + 𝑝𝑖 + 𝑠𝑖 , where
𝑖 1 2 3

(𝑟𝑖 , 𝑝𝑖 , 𝑠𝑖 )
(

1

𝑥−1 , 0, 0
) (

1

𝑥 ,−
𝑡1
𝑥 , 0

) (
1

𝑥 , 0,
1

𝑡1

)
3. By step 3 in the above outline, we have(

0 1 0

0 0 −1

) ©­«
𝑧1
𝑧2
𝑧3

ª®¬ =
(
0

−1

)
.

It has a solution 𝑧1 = 𝑧2 = 0 and 𝑧3 = 1.
4. Computing the residues yields

∫
𝑓 = 𝑡2𝑡3 + 𝑡3 + log

(
𝑡1
𝑥

)
.

Neither int() command in Maple 2021 nor Integrate[] com-

mand in Mathematica 14.1 found an elementary integral for 𝑓 .

The Axiom-based computer algebra system FriCAS 1.3.10 (see [20])

returned a correct integral. Comprehensive tests are given in [1]

for elementary integration in current computer algebra systems.

5.2 Telescopers
General connections between symbolic integration and creative-

telescoping are described in [26, Chapter 1]. Examples in [11, §7]

illustrate that additive decompositions help us detect the existence
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of telescopers for elements in some primitive towers. We present

two propositions for the same purpose by remainders and residues.

Let 𝐾 = 𝐶 (𝑥,𝑦) be the field of rational functions in 𝑥 and 𝑦

equipped with the usual partial derivatives 𝐷𝑥 and 𝐷𝑦 . Differential

fields related to integration for several derivations can be found in

[9, 30]. Let 𝑡 be an element in some partial differential field extension

of 𝐾 such that 𝑡 is transcendental over 𝐾 , 𝐷𝑦𝐷𝑥 (𝑡) = 𝐷𝑥𝐷𝑦 (𝑡),
𝐷𝑥 (𝑡) ∈ 𝐾 [𝑡] with degree less than two, and 𝐷𝑦 (𝑡) ∈ 𝐾 \ 𝐷𝑦 (𝐾).
Then 𝑡 is a primitive monomial over 𝐾 with respect to 𝐷𝑦 . The

extended derivatives are still denoted by 𝐷𝑥 and 𝐷𝑦 , respectively.

Every element of 𝐾 [𝑡] is D-finite over 𝐾 . But 𝐾 (𝑡) contains non-
D-finite elements. For instance, 𝑡−1 is not D-finite over 𝐾 , because
𝑡𝑖+1 is the monic denominator of 𝐷𝑖

𝑦 (𝑡−1) for all 𝑖 ∈ N.
For 𝑓 ∈ 𝐾 (𝑡), a differential operator 𝐿 ∈ 𝐶 (𝑥) [𝐷𝑥 ]× is called a

telescoper for 𝑓 if 𝐿(𝑓 ) ∈ 𝐷𝑦 (𝐾 (𝑡)).

Proposition 5.5. Let 𝜙 : 𝐾 (𝑡) → 𝐾 (𝑡) be the complete reduction
for 𝐷𝑦 (𝐾 (𝑡)) given in Convention 4.4 with 𝐾 = 𝐾0 and 𝜙 = 𝜙1. For
𝑓 ∈ 𝐾 (𝑡) and𝑚 ∈ N, 𝑓 has a telescoper of order no more than𝑚 if
and only if there exist 𝑙0 . . . , 𝑙𝑚 ∈ 𝐶 (𝑥), not all zero, such that∑︁

𝑖∈[𝑚]0
𝑙𝑖𝜙 (𝐷𝑖

𝑥 (𝑓 )) = 0. (11)

Proof. Let 𝐿 =
∑
𝑖∈[𝑚]0 𝑙𝑖𝐷

𝑖
𝑥 with 𝑙0, . . . , 𝑙𝑚 ∈ 𝐶 (𝑥), not all zero.

Then 𝜙 (𝐿(𝑓 )) = ∑
𝑖∈[𝑚]0 𝑙𝑖𝜙 (𝐷

𝑖
𝑥 (𝑓 )), because 𝜙 is 𝐶 (𝑥)-linear. As-

sume that (11) holds. Then 𝐿 is a telescoper for 𝑓 with order no

more than𝑚. Conversely, assume that 𝐿 is a telescoper for 𝑓 with

order no more than𝑚. Then 𝜙 (𝐿(𝑓 )) = 0 because 𝜙 is a complete

reduction. Hence, (11) holds. □

Below is a sufficient condition on the existence of telescopers.

Proposition 5.6. Let 𝑓 ∈ 𝐾 (𝑡). Then there exists a unique element
𝑠 ∈ 𝑆𝑡 such that 𝜙 (𝑓 ) ≡ 𝑠 mod 𝐾 [𝑡]. If all residues of 𝑠 with respect
to 𝐷𝑦 are in 𝐶 (𝑥), then 𝑓 has a telescoper.

Proof. There exists a unique pair (𝑞, 𝑠) in 𝐾 [𝑡] × 𝑆𝑡 such that

𝜙 (𝑓 ) = 𝑞 + 𝑠 by Proposition 5.1. Since 𝑞 is D-finite over 𝐾 , it has a

telescoper by [36, Lemma 4.1] or [25, Lemma 3].

It remains to prove that 𝑠 has a telescoper by [14, Remark 2.3].

Let 𝑠 = 𝑎
𝑏
, where 𝑎, 𝑏 ∈ 𝐾 [𝑡], 𝑏 is monic with respect to 𝑡 and

gcd(𝑎, 𝑏) = 1. Assume that 𝛼1, . . . , 𝛼𝑘 are the distinct roots of 𝑏. By

[18, Lemma 3.1 (i)], we have that

𝑠 =
∑︁
𝑗∈[𝑘 ]

𝛽 𝑗
𝐷𝑦 (𝑡 − 𝛼 𝑗 )
𝑡 − 𝛼 𝑗

, (12)

where 𝛽 𝑗 ∈ 𝐾 is the residue of 𝑓 at 𝛼 𝑗 with respect to𝐷𝑦 . Since each

𝛽 𝑗 is assumed to be in𝐶 (𝑥), there exists 𝐿 ∈ 𝐶 (𝑥) [𝐷𝑥 ] annihilating
all of them by [23, Theorem 3.29 (3)]. By the commutativity of

applying derivations and taking logarithmic derivatives, we have

𝐷𝑥

(
𝛾
𝐷𝑦 (𝑢)
𝑢

)
= 𝐷𝑦

(
𝛾
𝐷𝑥 (𝑢)
𝑢

)
+ 𝐷𝑥 (𝛾)

𝐷𝑦 (𝑢)
𝑢

.

for all 𝛾 ∈ 𝐶 (𝑥) and 𝑢 ∈ 𝐾 (𝑡). A repeated application of the above

equality to (12) yields 𝑔 ∈ 𝐶 (𝑥) (𝑦, 𝑡) such that

𝐿(𝑠) = 𝐷𝑦 (𝑔) +
∑︁
𝑗∈[𝑘 ]

𝐿
(
𝛽 𝑗
) 𝐷𝑦 (𝑡 − 𝛼 𝑗 )

𝑡 − 𝛼 𝑗
= 𝐷𝑦 (𝑔)

Moreover, 𝑔 is symmetric in 𝛼1, . . .𝛼𝑘 over 𝐾 (𝑡) so that 𝑔 actually

belongs to 𝐾 (𝑡). □

Example 5.7. Let 𝐾 = C(𝑥,𝑦) and 𝑡 = log(𝑥 + 𝑦). We try to
construct respective telescopers for

𝑓 =
2𝑥

(𝑥 + 𝑦) (𝑡2 − 𝑥)
and ˜𝑓 = 𝑦

𝐷𝑦 (𝑡 − 𝑦)
𝑡 − 𝑦 .

Note that 𝑓 is simple. So 𝜙 (𝑓 ) = 𝑓 . Its nonzero residues are ±
√
𝑥

by [8, Theorem 4.4.3]. By Proposition 5.6, 𝑓 has a telescoper. Using
the notation in Proposition 5.5, we have 2𝑥𝜙 (𝐷𝑥 (𝑓 )) = 𝑓 . Thus, the
minimal telescoper for 𝑓 is 2𝑥𝐷𝑥 − 1.

Again, ˜𝑓 is simple. So 𝜙 ( ˜𝑓 ) = ˜𝑓 . Since ˜𝑓 has a nonzero residue 𝑦,

Proposition 5.6 is not applicable. Let 𝑔 =
𝐷𝑦 (𝑡−𝑦)

𝑡−𝑦 and 𝛾 =
𝐷𝑥 (𝑡−𝑦)
𝐷𝑦 (𝑡−𝑦) .

Then ˜𝑓 = 𝑦𝑔 and 𝛾 = (1 − 𝑥 − 𝑦)−1. For 𝜔 ∈ 𝐶 (𝑥,𝑦), we calculate

𝐷𝑥 (𝜔𝑔) = 𝐷𝑥 (𝜔)𝑔 + 𝜔𝐷𝑥 (𝑔) = 𝐷𝑥 (𝜔)𝑔 + 𝜔𝐷𝑦

(
𝐷𝑥 (𝑡 − 𝑦)
𝑡 − 𝑦

)
≡ 𝐷𝑥 (𝜔)𝑔 − 𝐷𝑦 (𝜔)

𝐷𝑥 (𝑡 − 𝑦)
𝑡 − 𝑦 mod 𝐷𝑦 (𝐾 (𝑡))

≡
(
𝐷𝑥 (𝜔) − 𝛾𝐷𝑦 (𝜔)

)
𝑔 mod 𝐷𝑦 (𝐾 (𝑡)) .

Then 𝜙 (𝐷𝑥 (𝜔𝑔)) =
(
𝐷𝑥 (𝜔) − 𝛾𝐷𝑦 (𝜔)

)
𝑔 because 𝑔 is simple. Set

𝛾0 = 𝑦 and 𝛾𝑖 = 𝐷𝑥 (𝛾𝑖−1) − 𝛾𝐷𝑦 (𝛾𝑖−1) for 𝑖 ≥ 1. It follows from the
above calculation that 𝜙 (𝐷𝑖

𝑥 ( ˜𝑓 )) = 𝛾𝑖𝑔. Moreover, the denominator
of 𝛾𝑖 has degree 2𝑖 − 1 in 𝑦 for 𝑖 ≥ 1 by a straightforward induction.
Therefore, 𝜙 ( ˜𝑓 ), 𝜙 (𝐷𝑥 ( ˜𝑓 )), 𝜙 (𝐷2

𝑥 ( ˜𝑓 )), . . . are linearly independent
over 𝐶 (𝑥). Consequently, ˜𝑓 has no telescoper by Proposition 5.5.

6 Conclusions
In this article, we have developed a complete reduction for deriva-

tives in a primitive tower. The reduction algorithm decomposes

an element of such a tower as the sum of a derivative and a re-

mainder, where the derivative is unique up to an additive constant

and the remainder is unique. The algorithm can be applied to com-

pute elementary integrals over primitive towers and to construct

telescopers for some non-D-finite functions. The work is a step

forward in the development of complete reductions for derivatives

in transcendental Liouvillian extensions.
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A Empirical results
We present some empirical results about in-field integration ob-

tained by our complete reduction (CR), Algorithm AddDecompIn-

Field in [19, page 150] (AD), and the Maple function int. Experi-
ments were carried out with Maple 2021 on a computer with imac

CPU 3.6GHZ, Intel Core i9, 16G memory. Maple scripts of CR and
AD are available at http://mmrc.iss.ac.cn/~zmli/ISSAC2025.html.

Every integrand in experimental data was a derivative in the

primitive tower Q(𝑥) (𝑡1, 𝑡2, 𝑡3), where 𝑡1 = log(𝑥), 𝑡2 = log(𝑥 + 1)
and 𝑡3 = log(𝑡1). So CR, AD and int are all applicable and have the

same output, which is an integral of the input in the same tower.

Three integrands in the form 𝑝′
𝑖
were generated for each 𝑖 , where

𝑝𝑖 was a dense polynomial in some selected generators. Below is a

summary of the average timings (in seconds).

In the first suite of data, we set 𝑝𝑖 ∈ Q(𝑥, 𝑡1, 𝑡2) [𝑡3] such that

deg𝑡3
(𝑝𝑖 ) = 𝑖 and all coefficients of 𝑝𝑖 are rational functions whose

numerators and denominators are both sparse random polynomials

in Q[𝑥, 𝑡1, 𝑡2] with total degree 5.

𝑖 1 2 3 4 5 6

CR 1.42 8.32 37.01 122.55 1085.04 >3600

AD 0.96 10.42 47.36 149.02 >3600 >3600

int 1.15 4.52 23.30 53.43 166.27 346.29

In the second suite, 𝑝𝑖 ∈ Q(𝑥, 𝑡1, 𝑡2) [𝑡3] with degree 𝑖 in 𝑡3. Its

coefficients are quotients of linear polynomials in Q[𝑥, 𝑡1, 𝑡2].
𝑖 6 8 10 12 14 16

CR 0.90 2.09 7.05 12.56 30.35 62.11

AD 1.23 4.29 12.31 31.08 57.67 170.70

int 3.83 17.46 31.61 66.22 144.70 322.19

In the third suite, 𝑝𝑖 ∈ Q(𝑥) [𝑡1, 𝑡2, 𝑡3] whose total degree is equal
to 𝑖 and whose coefficients are quotients of random polynomials in

Q[𝑥] with degree 5.

𝑖 1 2 3 4 5 6

CR 0.35 0.19 0.59 4.02 21.32 88.51

AD 0.39 0.51 3.48 30.53 614.90 1453.61

int 0.53 0.63 4.68 51.82 154.31 1255.49

In the last suite, 𝑝𝑖 ∈ Q[𝑥, 𝑡1, 𝑡2, 𝑡3] with total degree 𝑖 . The Maple

function int returned expressions involving unevaluated integrals
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for some inputs. Whenever this happened, the corresponding entry

is marked by

∫
.

𝑖 5 10 15 20 25 30

CR 0.39 0.25 0.81 1.98 4.32 8.71

AD 0.45 1.06 6.69 32.83 141.09 280.47

int 0.49

∫ ∫
7.09

∫ ∫

The timings reveal that CR outperformed AD, and was more effi-

cient than int except for the integrands in the first suite. There are

also examples for which int took more than one hour without any

output, but both CR and AD returned correct results.

We also observe that HermiteReduce andAuxiliaryReduction

were much more time-consuming than Projection in the complete

reduction (see Algorithm 3.14).
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