Check for
Updates

Complete Reduction for Derivatives in a Primitive Tower

Hao Du
School of Mathematical Sciences, Beijing University of
Posts and Telecommunications
Bejing, China
haodu@bupt.edu.cn

Wengiao Li
Key Lab of Mathematics Mechanization, AMSS, University
of Chinese Academy of Sciences
Beijing, China
liwenqiao@amss.ac.cn

Abstract

A complete reduction ¢ for derivatives in a differential field is a
linear operator on the field over its constant subfield. The reduction
enables us to decompose an element f as the sum of a derivative
and the remainder ¢(f). A direct application of ¢ is that f is in-field
integrable if and only if ¢(f) = 0.

In this paper, we present a complete reduction for derivatives in
a primitive tower algorithmically. Typical examples for primitive
towers are differential fields generated by (poly-)logarithmic func-
tions and logarithmic integrals. Using remainders and residues, we
provide a necessary and sufficient condition for an element from a
primitive tower to have an elementary integral, and discuss how
to construct telescopers for non-D-finite functions in some special
primitive towers.
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1 Introduction

Let V be a linear space and U a subspace of V. A linear operator
¢ on V is called a complete reduction for U if v — ¢(v) € U for all
v € Vand U = ker(¢) by [23, Definition 5.67]. Such an operator ¢
is an idempotent and results in V = U @ im(¢).

Let K be a differential field with derivation” and C be the subfield
of constants in K. For L ¢ K,L" := {l' | l € L}. Then L is a C-
subspace. For a complementary subspace R for K’, the projection
from K to R is a complete reduction for K’. So there always exist
complete reductions for K’. It remains

(1) to fix a complementary subspace R for K’, and
(2) to develop an algorithm that, for every f € K, computes
g€ Kandr € Rsuchthat f=¢g" +r.

In general, both K’ and R are infinite-dimensional.

ExampLE 1.1. Let C be a field of characteristic zero, and’ be the
usual derivation d/dx on C(x). A complementary subspace R for
C(x)’ is the set of proper rational functions with squarefree denomi-
nators. For every f € C(x), the Hermite-Ostrogradsky reduction on
[8, page 40] computes (g,r) € C(x) X R such that f = g’ +r. The
projection from C(x) to R is a complete reduction for C(x)’.

Our work is motivated by reduction-based creative telescoping
(see [23, §5.6] and [31, §15]) and integration (summation) in finite
terms (see [8, 22, 28, 29, 32, 33]). Both need preprocessors to split
an integrand (summand) as the sum of an integrable (summable)
part and a possibly non-integrable (non-summable) part.

A commonly-used preprocessor in reduction-based creative tele-
scoping is also known as an additive decomposition, which can be
described in terms of linear algebra below.

Let V and U be the same as those in the first paragraph. For an
element v € V, an additive decomposition for U computes u € U
and r € V such that v = u + r, where r is minimal in some sense.
And v € U if and only if r = 0. It is proposed for constructing
minimal telescopers in [2—4, 24], in which V is the C(x, y)-subspace
spanned by a hypergeometric term in x and y, and U is the C-
subspace {g(x,y + 1) — g(x,y) | g € V}. Additive decompositions
also appear in [11, 19], in which V is a primitive tower of some
special kinds, and U consists of all derivatives in V.

A complete reduction is interpreted as an additive decomposition
in [21, §1.2] as follows. Let ¢ be a complete reduction for U on V,
G be a basis of U, and H be a basis of im(¢). Then G U H is a basis
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of V. For every v € V, v = },,cgur cww With ¢y, € C. Define
supp(v) = {w € GUH | ¢y, # 0}. For v1,v3 € V, we say that v; is
not higher than vy if supp(v1) C supp(vz). Ifv = u+r =i + 7 for
some u, € U, r € im(¢§) and 7 € V, then supp(r) C supp(#) by an
easy linear-algebra argument. Thus, r is not higher than 7.

Additive decompositions do not always induce linear maps. So
they are not necessarily complete reductions. Since linearity brings
a lot of convenience into both theory and practice, it is worthwhile
to seek complete reductions. So far complete reductions have been
developed for hyperexponential functions [5], algebraic functions
[12, 15], fractions of differential polynomials [7], fuchsian D-finite
functions [16] and D-finite functions [6, 13, 35].

A classical topic in symbolic integration is to compute ele-
mentary integrals of transcendental Liouvillian functions (see
[8, 17, 26, 28, 34]). Results about this topic are usually described in
monomial extensions (see [8, §3.4]).

Let K and C be given in the second paragraph, and t be a mono-
mial over K (see [8, Definition 3.4.1]). The monomial extension
K(t) contains three C-subspaces highly relevant to integration.
They are: K(¢)” consisting of all derivatives in K(¢), S; consisting
of proper fractions whose denominators are normal polynomials,
and W; consisting of elements whose denominators are coprime
with every normal polynomial (see [8, Definition 3.4.2]). Algorithm
HERMITEREDUCE in [8, §5.3] decomposes an element f of K(t) as
the sum of a derivative, an element s of Sy and an element w of W;.

Assume further that ¢ is either primitive or hyperexponential (see
[8, Definition 5.1.1]) and that K(¢) and K have the same constants.
One tries to integrate s by the residue criterion [27, Theorem 3],
and w by solving parametric Risch equations [29, MAIN THEOREM]
and the parametric logarithmic derivative problem [8, §7.3]. This
approach results in an algorithm for deciding in-field integrability
in arbitrary primitive towers (see Definition 4.1). The algorithm
may be turned into an additive decomposition.

To develop a complete reduction, we take a different approach
to handling elements in W;. The approach proceeds in three steps:

1. Define an auxiliary subspace A such that W; = W/ + A.
2. Determine a basis of W/ N A.
3. Fix a complement of W} in W; by the above basis.

The projection from W; to the complement is a complete reduction
for W}, which, together with Algorithm HERMITEREDUCE, leads to
a complete reduction for derivatives in K(t).

We prefer to work out all the details for the case, in which ¢ is a
primitive monomial, although our approach is likely applicable to
other cases (see [10, 21]). This is because the approach for primitive
monomials does not lead to any complicated case distinction, which
seems unavoidable in other cases (see [5, Section 4.1]).

The auxiliary reduction (Algorithm 3.4) developed in step 1 and
construction of a basis for W/ N A in step 2 benefit from the way
of using integration by parts to reduce polynomial integrands in
[11, 19], while the key lemma (Lemma 3.6) for step 2 is based on
not only integration by parts but also the fact that the parametric
Risch equation in our case is of the form y’ = ct’ +a, where a € K is
given, and (y, ¢) € KXC is to be determined. If a complete reduction
¢ : K — K for K’ is available, then t’ = v’ +¢(¢') and a = v’ + ¢ (a)
for some u,v € K. An application of ¢ to the above equation yields
ch(t’) + ¢(a) = 0. Thus, ¢ is determined, and y can be taken as
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cu + o when ¢(a)¢(t') ! is a constant. There is no need to solve
any limited integration problem [8, §7.2]. Algorithm 3.12 developed
in step 3 is a dual technique for representing a subspace by the
intersection of kernels of linear functions.

In this paper, we develop a complete reduction for derivatives in
primitive towers by the above approach. The reduction leads to an
algorithm for determining in-field integrability (see Examples 4.5
and 4.6), and can be applied to compute elementary integrals over
such towers (see Example 5.4). We also construct telescopers for
some non-D-finite functions by the reduction (see Example 5.7).

The rest of this paper is organized as follows. In Section 2, we
specify notation and present several algorithms to be used in the
sequel. Basic constructions in the above three steps are described
in Section 3. The constructions yield an algorithm for our complete
reduction, as soon as the notion of primitive towers is introduced
in Section 4. Some applications of the complete reduction are pre-
sented in Section 5. Concluding remarks are given in Section 6.

2 Preliminaries

This section has three parts. In Section 2.1, we introduce some basic
notions concerning symbolic integration and fix notation to be used.
Effective bases are defined and constructed in Section 2.2. They
allow us to apply a dual technique in linear algebra. In Section 2.3,
we review an algorithm in the proof of [26, Theorem 3.9], which
helps us compute elementary integrals in Section 5.

2.1 Notation and rudimentary notions

Throughout the paper, G* denotes G \ {0} for an additive group
(G,+,0).For n € N, the sets {1,...,n} and {0, 1,...,n} are denoted
by [n] and [n]o, respectively. The transpose of a matrix is denoted
by (-)7. Comments in an algorithm are placed between (* --- *).

All fields are of characteristic zero in the paper. Let K be a field.
We denote its algebraic closure by K. For a univariate polynomial p
over K, its degree and leading coefficient are denoted by deg(p) and
le(p), respectively, when the indeterminate is clear from context.
In particular, deg(0) := —oco and 1c(0) := 0. Similarly, a univariate
rational function is said to be proper if the degree of its numerator
is less than that of its denominator. A rational function r can be
uniquely written as the sum of a polynomial and a proper rational
function, which are denoted by poly(r) and proper(r), respectively.

Amap’ : K — K is called a derivation on K if (a+ b)’ = a’ + b’
and (ab)’ = ab’ + a’bfor all a, b € K. A differential field is a field
equipped with a derivation. Let (K, ”) be a differential field. An
element ¢ of K is called a constant if ¢/ = 0. All constants in K
form a subfield. A differential field (E, §) is called a differential field
extension of (K, ") if K is a subfield of E and ’ is the restriction of §
to K. We still use ’ to denote § when there is no confusion.

Assume that ¢ belongs to a differential field extension of K. If ¢
is transcendental over K and t’ € K[t], then t is called a monomial
over K and K(t) is called a monomial extension of K.

Let t be a monomial over K. A polynomial p € K[t]* is said to be
normalif ged(p, p’) = 1. An element f of K(t) is said to be simple if
it is proper and has a normal denominator. The subset consisting of
all simple elements is denoted by S;, which is a K-subspace. Note
that f is simple if it has a normal denominator in [8, Definition
3.5.2]. We further require that f is proper for the uniqueness of s in
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(1) given below. We call ¢ a primitive monomial over K ift’ € K\K’.
A primitive monomial extension K () has no new constant other
than the constants in K by [8, Theorem 5.1.1].

Let ¢ be a primitive monomial over K. For every f € K(t), there
exists g € K(t), p € K[t] and a unique s € S; such that

f=g+p+s @
The uniqueness of s is due to [11, Lemma 2.1]. Algorithm HER-
MITEREDUCE in [8, §5.3] computes a triplet (g, p, s) € K(#)xXK[¢]xS;
such that the above equation holds.

ExAMPLE 2.1. Let K = C(x), t = log(x) and

(x+ D2+ (P +2x+2)t+x+1

= K t .

f X +1) €k®
HerMITEREDUCE(f) finds (g, p,s) € K(t) x K[t] X S; such that (1)
holds, whereg = 0, p = Xt + x4t gnds = — 47~ Unfortunately,

the algorithm does not extract any in-field integrable part from f. It
will be shown that p € K(t)" in Example 3.15.

The next lemma presents two properties concerning decomposi-
tion and contraction in primitive monomial extensions. They play
an important role in the proof of our main result (Theorem 3.13).

LEMMA 2.2. If't is a primitive monomial over K, then
(i) K(t) = (K(t)’ +K[t]) ® S, and
(i) K(¢t) nK[t] =K[t]'.

ProoF. (i) holds by (1), and (ii) holds because the derivative of a
proper element of K(t) remains proper. ]

2.2 Effective bases

This section is a preparation for a dual technique to be used in
Sections 3 and 4.

DEFINITION 2.3. Let E be a field with a subfield F, © be an F-linear
basis of E,0 € © and a € E. Then
(i) 6* stands for the F-linear function on E that maps 6 to 1 and

any other element of © to 0.

(ii) 0 is said to be effective for a if 0 (a) # 0.

(iii) © is called an effective F-basis if there are two algorithms :
— one finds 0 € © effective for a ifa # 0; and
— the other computes 6*(a).

Let F be a field and F(y) the field of rational functions in y.
SetY = {y‘ |ie N} and Q to be the set consisting of monic and
irreducible polynomials with positive degrees. Then

i
®:YU{y—j|q€Q,0§i<deg(q),j€Z+} (2)
q

is an effective F-basis of F(y) by the irreducible partial fraction
decomposition. The two algorithms required in Definition 2.3 (iii)
are given below. Their correctness is evident.

ALGORITHM 2.4. BASISELEMENT
INpUT:a € F(y)*  Ourtput: (6,¢) € © X C* withc = 6*(a)
1. p « poly(a), r « proper(a), d < the denominator of r
2. IF p # 0 THEN RETURN (ydeg(1’>, lc(p)) END IF

3. q < a factor of d in Q, m < the multiplicity of q ind
4. h « the coefficient of g~™ in the q-adic expansion of r
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5. RETURN (ydeg(h)/qm, lc(h))

REMARK 2.5. There is no obvious rule for choosing an irreducible
factor q of d in step 3 of Algorithm 2.4. For example, let = m
One may set q to be eithery ory+ 1. Then 6 obtained in step 5 may be
either % or ﬁ So the algorithm does not guarantee that the same
output will be returned when it is applied to the same input twice.

In practice, we choose g to be the first member in the list of
irreducible factors of d computed by a factorization algorithm.

ALGORITHM 2.6. COEFFICIENT
Inrut: (b, 0) € F(y) x© OutputT: 0*(b)
1. p « poly(b), r « proper(b)
2. Write 0 = y* /¢ for somek,m € N, q € Q, ged(y, q) = 1
3. IF m = 0 THEN RETURN the coefficient of y* in p END IF
4. h « the coefficient of g~™ in the q-adic expansion of r
5. RETURN the coefficient ofyk inh

REMARK 2.7. Let F and E be given in Definition 2.3 and C a subfield
of F. Assume that F has an effective C-basis ©y and that E has an
effective F-basis ©. Then {000 | 6y € ©,0 € O} is an effective
C-basis of E by a straightforward recursive argument.

2.3 Constant residues

Let (K, ) be a differential field with constant subfield C, and ¢ be a
monomial over K. For f € S; and « € I?, an element f € K is the
residue of f at a ifand only if f =g+ f ([t__f;)/ for some g € K(t)
whose denominator is coprime with ¢ — a. The residue of f at « is
nonzero if and only if « is a root of its denominator.

Below is a minor variant of an algorithm described in the proof of
[26, Theorem 3.9]. In its pseudo-code, D; stands for the derivation
on K (t) that maps every element of K to 0 and ¢ to 1, and « for the
coefficient-lifting derivation from (K, ”) to K(t) (see [8, §3.2]).

ALGORITHM 2.8. CONSTANTMATRIX
INPUT: f,g1,-*, 9] € St
oureut: M € CK*! andv € CK such that all residues off—Zgzl Cigi
belong to C if and only if M (.- ,cl)T =v
1. he—f—-cig1—-—c9
where c1, ..., c] are constant indeterminates
2. p « the numerator of h, ¢ « the denominator of h
3. (u,v) « the respective inverses of (¢’, D¢(q)) mod q
W k(pu) — D (pu) - v - k(q)
r « remainder of w on division by q
4. (M,v) < an augmented matrix of the linear system
incy,...,cy obtained by settingr =0
5. RETURN M,V

To see its correctness, we note that g obtained from step 2 is
normal and free of ¢y, ...c;. Then ged(q’, q) = ged(D:(q), q) = 1.
Therefore, both u and v can be computed in step 3. Let @ be a
root of g. Then @’ = —v(a) - k(q)(«) by [8, Theorem 3.2.3]. On
the other hand, the residue f§ of h at « is equal to (pu)(«) by [8,
Lemma 4.4.2]. Then 8’ = w(a), where w is also computed in step 3.
Therefore, r = 0 if and only if all residues of h belong to C. The
system obtained in step 4 is linear because cj, . . ., ¢; appear linearly
in the coefficients of r.
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3 Basic constructions

In this section, we let (K, ”) be a differential field and C be the sub-
field of its constants. Assume that there exists a complete reduction
¢ on K for K’, and an algorithm that, for every f € K, computes
g € K such that f = ¢’ + ¢(f). We call ¢(f) the remainder of f and
(9, 9(f)) a reduction pair of f (with respect to ¢). A reduction pair
will be abbreviated as an R-pair in the sequel.

Let t be a primitive monomial over K. We are going to define a
complete reduction ¢ on K(t) for K(t)’. It suffices to construct a
complementary subspace of K[t]” in K[t] by Lemma 2.2.

As a matter of notation, the C-subspace @ieN V - t! for some
C-subspace V of K is denoted by V ® C[t] in virtue of the C-
isomorphism o ® t! — ot! from V ®c C[t] to Pien V- £,

First, we decompose K[¢] as the sum of K[¢]” and im(¢) ® C[¢].

LEMMA 3.1. Let p € K[t] with deg(p) = d. There exists q € K[t]
with deg(q) < d andr € im(¢) ® C[t] with deg(r) < d such that

p=q+r. (3)

Proor. If p = 0, then set ¢ = r = 0. Assume that p is nonzero
with degree d and leading coefficient .

Let (¢, ¢(1)) be an R-pair of [, and h = p — [+%. With integration
by parts, we have

p=gtd ()t + h= (gtd)' +otd +h— (dgt")% L. (9)

Since ¢(1)t? € im($) ® C[t] and d > deg (h - (dgt’)td_l), the

lemma follows from an induction on d. O

DEFINITION 3.2. The C-subspace im(¢$) ® C[t], denoted by A, is
called the auxiliary subspace for K[t]” in K[t].

CoroLLARY 3.3. K[t] = K[t]’ + A.
Proor. It is immediate from Lemma 3.1. m]

The next algorithm is direct from the proof of Lemma 3.1.

ALGORITHM 3.4. AUXILIARYREDUCTION
INPUT: p € K[t]
OutpuT: (q,7) € K[t] X A such that (3) holds
1L.pe—p,qe—0,r0
2. WHILE p # 0 DO
d « deg(p), | < lc(p), compute an R-pair (g, $(1)) of 1
q — q+gtd, r—r+¢), pe—p- It - (dgt’)td_1
END DO
3. RETURN (q, 1)

Next, let us construct a C-basis of K[t]” N A. To this end, we fix
an R-pair (As, ¢(¢")) of t’ and call it the first pair associated to K(t).

REMARK 3.5. The remainder ¢(t’) € K[t]’, because it is equal to
(t = Ap)’. Moreover, (') # 0 because t is a primitive monomial.

For all i € Z*, we calculate
i+1

’
. . . t . .
p(t) =t = A = (i+1 —Att’) +LHETL (5)
There exists a pair (g, 7;) € K[t] X A such that (id.t')t!~! = q;+ri

and deg(r;) < i —1by Lemma 3.1. It follows that

. i+l . 4
¢(l”)l’l —-ri = (i+ 1 —).ttl +qi) . (6)

H. Du, Y. Gao, W. Li and Z. Li.

LEMMA 3.6. Letvg = ¢(¢') and v; be the left-hand side of (6). Then
(i) deg(vi) =i andlc(v;) = ¢(t') foralli € N.
(ii) The set {vo,01,...} is a C-basis of K[t]” N A.

Proor. (i) holds because ¢(t’) # 0 and r; in (6) has degree < i.

(ii) Set I = K[t]” NA. Then vy € I* by Remark 3.5 and Definition
3.2. For i > 0,v; € K[t]’ by (6). It is in A because ¢(t')t!,r; € A.
Thus, v; € I for all i € N. The v;’s are C-linearly independent by (i).

Assume that p € I. Then p € K(¢)’ N K[¢]. It follows from [11,
Lemma 2.3] that lc(p) = ct’ + b’ for some ¢ € C and b € K. On the
other hand, p € A implies that lc(p) € im(¢). Hence, applying ¢ to
le(p) = ct’ + b’ yields le(p) = cg(t”), because ¢ is an idempotent
and ¢(b’) = 0. Let i = deg(p) and q = p — cv;. Then q € [ with
deg(q) < i. Thus, p is a C-linear combination of vy, ...,v; by a
straightforward induction on i. O

REMARK 3.7. [11, Lemma 2.3] cited in the above proof combines
two results in [8] into one statement. A referee of our manuscript
points out that the two results are given in equation (5.13) and the
second paragraph on page 176, respectively.

Calculations in (5) and (6) lead to a naive algorithm to construct
the basis {vg, v1, ...} of K[t]’ N A in Lemma 3.6 (ii) up to a given
degree d. A more elaborated algorithm suggested by a referee mini-
mizes R-pairs to be computed. To present the algorithm, we need
some notation and a technical lemma.

Let (A¢, ¢(¢")) be the first pair associated to K(t). Set pio = A; and
(415 Vir1) to be an R-pair of p ¢’ with respect to ¢ for all k € N.
Furthermore, we define two families of differential operators:

i i
Lij= ) (- Df and Mij= ) (-0 Df ()
k=1 k=1
foralli € Z* and j € N, where Dy is the same as in Section 2.3.

LEMMA 3.8. With the notation just introduced, we have
. . ’ .
ipjt,tl_l = (Li,j(tl)) +Mi’j(tl)
forallie Z* and j € N.
Proor. We proceed by induction on i and regard j as an arbitrary
nonnegative integer. For i = 1, pjt’ = y}ﬂ +vj41 by definition. So
pjt’ =Ly j(t)" + My j(t) by (7). The conclusion holds for i = 1.

Assume that i > 1 and the conclusion holds for values lower
than i and every j € N. We calculate

i—1 i—1
pit't " = (u}+1 +Vj+1) t

. ’ . ’ .
,llj+1tl_1) — fj+1 (tl—l) +Vj+1tl_1

i-1)’ ’ =2 i-1
= (pj+1t ) —(i—l)[.lj+1t t +vjt1t
I U 7% 2 1N LA S U
=|\Hj+1t Lz—l,]+1(lL ) +Vjs1t Ml—l,j+l(t )
=it (L (8) 7 My (8
1] L] >
in which the first equality holds because y;t’ = ,u}+1 + Vj41; the

second is derived from integration by parts, the third is by a direct
calculation; the fourth is due to the induction hypothesis

. . 7’ .
(i-Dpint't %= (Lifl,j+1(l‘kl)) + Mi—q e (871);
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and the last holds by replacing in (t=1) with Df (t%) and shifting
the index k to k + 1 in (7). o

COROLLARY 3.9. Foralli € Z™, the element v; in Lemma 3.6 can be

taken as ¢(t')t' —M; o (t'), which is equal to (ﬂ —Ath+ Lilo(ti)) .

[
Proor. It follows from Remark 3.5 that

i+1
Pt = ( !

’
— )Ltti) +idgt L
i+1
Setting j = 0 in Lemma 3.8 and noticing pio = A, we see that
i+1

Pt = (lt+—1 = At +Li,0(ti)) + Mo (th).

Since M; (t') belongs to A and is of degree less than i, the corollary
holds when we set g; = L; o(t") and r; = M; o(t") in (6). O

ALGORITHM 3.10. Basis
InpuT: d € N and the first pair (A¢, ¢(t’)) associated to K(t)
OutpuT: (up,vp)s - - -, (g, vq), where (ug,v9)=(t — A, ¢(¢')) and,

foralli € [d], (us,01) = (f—1 — At + Lig(t)), (') — Mi,o(ti))

i+1
with Li o and Mo given in (7).

We skip the pseudo-code for the above algorithm, because both
Lio (') and Mo (') can be easily constructed iteratively according
to (7). In the algorithm, one computes R-pairs (p;, ¢(pi—1t")) for
every i € [d], whereas the number of R-pairs needed is proposional
to d? if one constructs vy, . . .,0q by Algorithm 3.4 directly.

Now, we turn the sum in Corollary 3.3 to a direct one by con-
structing a subspace of A that is a complement of K[t]’. To proceed,
we need to assume further that K has an effective C-basis, which
is denoted by ©. Then there exists a pair (6, ¢) € © X C* such that
¢ =0"(4(t")). We fix such a pair and call it the second pair associ-
ated to K(t). A complementary subspace consists of polynomials
in A whose coefficients are free of 6. In other words, the subspace
is equal to (im(¢) N ker(6*)) ® C[¢].

LEMMA 3.11. Let (0, c) be the second pair associated to K (t). Then
(i) A= (K[t]’NA)® Ay, where Ag = (im(¢) Nker (6*))®C[t];
(i) K[t] = K[t]’ ® Ayp.

ProoF. (i) Similar to the proof of Lemma 3.6, we set I = K[t]’ NA.

First, we show A =T+ Ay. Since I C A and Ay C A, it suffices to
show A C I+ Ag. Let {vg, v1, . . .} be the basis of I in Lemma 3.6 (ii),
and p € A. Set d=deg(p), I=1c(p) and z=0"(I). By Lemma 3.6 (i),

®
where g = [—c712¢(¢') and h € K[t] with deg(h) < d. Since p € A,
we have that | € im(¢), and, thus, g € im(¢) by its definition.
Furthermore, 6*(g) = 8*(I) — ¢ 120" (¢(t’)) = z — z = 0. Hence,
g € ker(6"). Consequently, g € im(¢) N ker(6*). We conclude that
gt? € Ag. It follows from (8) that h € A and p—hel+Ag, which
allow us to carry out an induction on d as follows.

Ifd =0,thenh = 0. So p € I + Ag. Assume that d > 0 and
that all elements of A with degree lower than d are in I + Ag. Then
h eI+ Ag.Hence, p €I+ Ag.

Second, we show that I N Ay = {0}. Assume that ¢ € I N Ap.
Then q is a C-linear combination of the v;’s. So lc(g) is the product
of a constant and ¢(t’) by Lemma 3.6 (i). Since lc(q) € ker(6*)

p-clzog=gt?+h
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and ¢(t') ¢ ker(6"), the constant is equal to zero, and so is lc(g).
Accordingly, g = 0.

(i) By Corollary 3.3 and (i), K[t] = K[t]’” + Ag. Since Ag C A,
we have that K[t]’ N Ag = (K[t]’ N A) N Ay, which is equal to {0}
by (i). So (ii) holds. O

The C-subspace Ay in Lemma 3.11 is called the 8-complement of
K[t]” in K[t] in the rest of this section. The next algorithm projects
an element of A to K[t]” and the 6-complement, respectively. It is
correct by the proof of Lemma 3.11 (i).

ALGORITHM 3.12. PROJECTION
INPUT: r € A, the first and second pairs (A, $(¢’)) and (0, ¢) associ-
ated to K(t)
OuTPUT: (u,v) € K[t] X Ag such that

’
r=u +v

©)

1. u 0,0« r,d« deg(r)

2. B « Basis(d, Ay, §(¢)) (*Algorithm 3.10)

3. FOR i FROM 0 TO d DO
a « the coefficient of t~! inv, b — 0*(a)
(@1,0) « the element of B with deg(d) =d — i,
Ee—c b, ue—u+éit, ve—0v-2

END DO
4. RETURN (u,0)

We are ready to present the main result of this section.

THEOREM 3.13. Let (0,c) be the second pair associated to K(t),
and Ag be the 0-complement of K[t]’. Then K(t) = K(t)’ ® Ag ® S;.
Moreover, the projection g from K(t) to Ag @ S with respect to the
above direct sum is a complete reduction for K(t)’.

ProoF. By Lemma 2.2 (i) and Lemma 3.11,
K(t) = (K()" + Ag) ® S¢.

By Lemma 2.2 (ii) and Ay C K[t], we have K(t)’ N Ag = K[t]' N Ay,
which is trivial by Lemma 3.11 (ii). So K(t) = K(¢)" & Ag & S;. It
follows that iy is a complete reduction for K(t)’. O

Below is an algorithm for the complete reduction given in the
above theorem.

ALGORITHM 3.14. COMPLETEREDUCTION
InpuT: f € K(t), the first and second pairs (A, $(¢')) and (6, c)
associated to K(t)
OuTPUT: an R-pair of f with respect to g in Theorem 3.13

1. (g,p,s) < HErMITEREDUCE(f) (¥[8, §5.3]%)
IF p = 0 THEN RETURN (g, s) END IF

2. (q,r) « AuxiLIARYREDUCTION(p) (*Algorithm 3.4%)
IF r = 0 THEN RETURN (g + ¢, S) END IF

3. (u,v) « PROJECTION(r, A, ¢(¢'),0,¢) (*Algorithm 3.12%)
RETURN (g + g+ u,s +0)

ExAMPLE 3.15. Let K(t) and f be given in Example 2.1, and © be
the C-basis given in (2) with F = C and y = x. The first and second
associated pairs are (0,x~ 1) and (x~1, 1), respectively. The above
algorithm computes an R-pair of f as follows.

1 (g.p5) = (0, XL ¢4 22855 0 by Example 2.1
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2. Algorithm 3.4 finds (q,r) = (xt + x;, %) € K[t] X A such
that (3) holds, where A = Sy ® C|[t].
3. Algorithm 3.12 finds (u,v) = (% +t, 0) such that (9) holds.
Thus, p = (q+u)’ and (g+ q+u,s) is an R-pair of f. Algorithm 3.14
finds s = =325 as a “minimal” non-in-field integrable part.

At last, we describe the restriction of /gy to K.

COROLLARY 3.16. Let ¢ : K — K be a complete reduction for K’,
(0, c) be the second pair associated to K(t) and g be the complete
reduction given in Theorem 3.13. Then, for every f € K, we have that

Yo (f) = ¢(f) +E¢(t'), where e = ~0" ($(f)) c™".

Proor. Since f € K, we have f = ¢(f) mod K’. By Remark
3.5, f = ¢(f) + é¢(t') mod K(t)’. Note that ¢(f) + é¢(t’) belongs
to the -complement. Applying ¢y to the above congruence, we
conclude that ¥y (f) = ¢(f) + é¢p(t’), because K(t)" = ker(ip) and
the restriction of /g to Ag is the identity map. O

4 Complete reduction
In this section, we define primitive towers and remove the assump-
tions made in the first paragraph of Section 3.
DEFINITION 4.1. Let Ky be a differential field whose subfield of
constants is denoted by C. A primitive tower over Ky is
Ky c K; [ C K,

l I
Ko(t1) Kn-1(tn),

where t; is a primitive monomial over K;_1 for alli € [n].

(10)

Note that C is the subfield of constants in a primitive tower K.

THEOREM 4.2. Let Ky, be a primitive tower as in (10), and ©¢ be
an effective C-basis of Ky. Assume that ¢ : Ko — Ky is a complete
reduction for K/, and that there is an algorithm to compute an R-pair
of every element in Ky. Then, for every i € [n]o, K; has an effective
C-basis ©; and a complete reduction ¢; : K; — K; for Kl' Moreover,
there is an algorithm to compute an R-pair of every element in K;.

Proor. We proceed by induction on n. If n = 0, then the con-
clusion clearly holds. Assume that n > 0 and that there exists an
effective C-basis ©,—1 of Kj,—1, a complete reduction ¢, for K”1_1
on K1 and an algorithm to compute an R-pair of every element
in K,,—1. The first and second pairs (An, Pn-1 (t,'i)) and (0, c,) as-
sociated to K,, can be constructed by ¢,,—1 and ©,_1, respectively.

The tower K, has an effective C-basis ©, by Remark 2.7. Replac-
ing K with Kj,_1, t with t,,, ¢ with ¢,,_1, and 0 with 6, in Theorem
3.13, we find a complete reduction yp, for K;, on Kj. Doing the
same replacements in Algorithms 3.4, 3.10, 3.12 and 3.14, we have
an algorithm to compute an R-pair of every element in K,, with
respect to /g, . The induction is completed by setting ¢, = p,. O

COROLLARY 4.3. Let K, be a primitive tower as in (10) and ¢; be
the complete reduction constructed in the proof of the above theorem.
Then, for everyi € [n—1]o and f € Kj, dn(f) — ¢i(f) is a C-linear

combination of i (t], ), ..., ¢n-1(tp), and belongs to Kj,.

ProOF. For every j € [n—1]o, pjs1(f) —¢;(f) = ngﬁj(t}_H) for
some c; € C by Corollary 3.16. Summing up these equalities from
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iton— 1, we see that ¢, (f) — ¢i(f) is a C-linear combination of
$i(t{,1)s ---» pn-1(tp). It belongs to K, by Remark 3.5. o

To perform complete reductions in practice, we assume further
that [Kp : C(x)] < oo and that Ky contains no new constant. Com-
plete reductions on C(x) and its finite algebraic extensions are
given in Example 1.1 and [15], respectively. Improvements on the
reduction for algebraic functions can be found in [12]. Algorithms
2.4 and 2.6 show that C(x) has an effective C-basis. So does Ky by
Remark 2.7. Consequently, a complete reduction for K}, on K, is
available by Theorem 4.2.

Let us make a notational convention so that we can illustrate
computations and proofs through a primitive tower concisely.

CONVENTION 4.4. Let Ky, be a primitive tower as in (10), and ¢
be a complete reduction for K| on Ko. Let © be the effective C-basis of
K, obtained from a repeated use of Remark 2.7. For all i € [n],

e ¢; : K; — K; stands for the complete reduction for K| in the
proof of Theorem 4.2,

o (Ai,¢i-1(t])) and (6;, c;) for the first and second pairs associ-
ated to K;, respectively,

o S; for the set of simple elements in K; with respect to t;, and

o A; for the auxiliary subspace in K;_1[t;].

All associated pairs are constructed once and for all. So the
possible ambiguity mentioned in Remark 2.5 will never occur.

ExampLE 4.5. Let Ko=C(x), t1=1log(1 — x), and t,=polylog(2, x),
which is equal to — f w. Then K, = Ko(t1,t2) is a primitive
tower. We associate (Al,qﬁo(t{)) = (O, ﬁ), (01,c1) = (ﬁ, 1)
and (A2, $1(t)) = (0, —;—1) (02,¢2) = (;—1, —1) to Ky and K, re-

spectively. Let us compute respective R-pairs of

((x—1)2t1+x)tg+x(x—1)t1 -

= and =1,.

f x2(x-1) tg f=t
First, HERMITEREDUCE(f) finds (g, p,s) € Ki1(t2) X Kq[t2] X Sz

such that (1) holds, where g = % p= %tz ands = 0.

Second, AUXILIARYREDUCTION(p) yields (q,r) € Ky [t2] X Az such

t = t 2t
that (3) holds, whereq = 1tz + letf andr =1t - =1
At last, we project r to K1[t2]" and the 02-complement by PRoOJEC-
t2
TION. The respective projections are u’ and 0, where u = —% + 2t.

So f has an R-pair (g + q + u, 0). Consequently, /f =g+q+u.

In the same vein, an R-pair of f is (g, ), where

G =xt? + (2t1x — 2ty — 2x) tp + 2t2x — 2t7 — 6t1x + 6t1 + 6x

N 2t? H ; . .
and ¥ = —=1. So f does not have any integral in Ky. The remainder
7 is “simpler” than f in the sense that 7 is of degree 0 in to.

EXAMPLE 4.6. LetKo = C(x, y) withy3—xy+1 = 0. Sett; = log(y).
Then Ky = Ko(t1) is a primitive tower. Two associated pairs of K1

are (A1, ¢o(t])) = (ZxTy, —y) and (01,¢1) = (y, —1), respectively. We
compute an R-pair of f = y(2 — 3t1).

HerRMITEREDUCE( f) finds a triplet (g, p, s) in Ko(t1) X Ko[t1] X S1
such that (1) holds, where g = 0, p = =3yt; + 2y and s = 0.

Since ¢o(t]) = —y, we see thaty € im(¢o). Then p € A;. So (3)
holds by settingq =0 andr = p.
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PROJECTION(r, A1, do(t]), 01, 1) yields u = 3t% — (2xy)t; + 2xy
and v = 0 such that (9) holds. Thus, an R-pair of f is (u,0). Conse-
quently, u is an integral of f.

We have compared our preliminary implementation of the com-
plete reduction given in Theorem 4.2 with the MAPLE function int
and Algorithm AppDEcomPINFIELD in [19, page 150] for in-field
integration. Empirical results are given in the appendix.

5 Applications of remainders
This section contains two applications: computing elementary in-

tegrals over K, with Ky = C(x), and constructing telescopers for
some non-D-finite functions. Convention 4.4 is kept in the sequel.

5.1 Elementary integrals

Let f € Kp,. Then f has an elementary integral over K}, if and only
if its remainder ¢, (f) has one. Two properties of remainders allow
us to apply Algorithm 2.8 directly to compute elementary integrals.
To describe the properties, we need three C-subspaces of Kj,. Let

tiKi-1[ti], S= Z Si,
ie[n] i€[n]

and T be the C-subspace spanned by ¢o(t;), $1(3), ..., n-1(ty,).
Note that Zie[n] tiKi—1[ti], Zie[n] S; and Ky + P + S are all direct.

pP=

PRroPOSITION 5.1. im(¢p,) C Ko @ P @ S.

Proor. The conclusion holds for n = 0 because im(¢y) C Kp.
Assume that n > 0 and that the conclusion holds for n — 1. By The-
orem 3.13, im(¢,) C Ap + Sp. Since A, C im(Pn—1) + tnKn—1[tn],
we see that im(¢p,) C im(¢,—1) +tnKn—1[tn] + Sn- The proposition
then follows from the induction hypothesis. ]

PROPOSITION 5.2. Ifh € Ky & S, then h — ¢ (h) € K(; +T.

PrOOF. Assume h = hy + Zie[n] sj, where hy € Ky and s; € S;.
Then s; = ¢;(s;) by Theorem 3.13, and ¢;(s;) = ¢n(s;) mod T by
Corollary 4.3. Hence, s; = ¢ (s;) mod T, which, together with the
application of ¢, to h, implies h — ¢, (h) = hg — $n(ho) mod T. By
Corollary 4.3 again, h—¢p (h) = ho—¢do(ho) mod T. The proposition
is proved by noting that ho — ¢o(ho) € K{. m]

An element s of S can be uniquely written as };c[n] Si, where
si € Si. We say that all residues of s are constants if all residues of
s; as an element in Kj_1(#;) belong to C for every i € [n].

THEOREM 5.3. Let K, be a primitive tower as in (10) with Ky =
C(x). Assume that C is algebraically closed. Then f € K, has an
elementary integral over Ky, if and only if

(i) there existss € S such that ¢p(f) =s mod Ko + T, and
(ii) all residues of s belong to C.

PRrROOF. Assume that both (i) and (ii) hold. By (ii) and [18, Propo-
sition 3.3], s has an elementary integral over K,,. Every element of
Kp has an elementary integral over K because Ky = C(x). By Re-
mark 3.5, T c K},. It follows from (i) that ¢, (f) has an elementary
integral over K, and so does f.

Conversely, assume that f has an elementary integral over Kj,.
Then there exists a C-linear combination h of logarithmic deriva-
tives in K, such that f = h mod K}, by [8, Theorem 5.5.2]. Since
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én(f) = pn(h), it suffices to show that ¢, (h) satisfies both (i) and
(ii). By the logarithmic derivative identity, h = s mod Ko for some
s € S, which has merely constant residues. Then h = ¢, (h) mod
Ko + T by Proposition 5.2. Hence, ¢,(h) = s mod Ko + T by the
above two congruences. Both (i) and (ii) hold. O

Next, we outline an algorithm for computing elementary inte-
grals over Kp,. Let f € K.

1. Compute an R-pair (g, ¢, (f)). If ¢n(f) = 0, then ff =g
and we are done.

2. Assume that ¢, (f) # 0. By Proposition 5.1, we can write
$n(f) =r+p+sand ¢;—1(t]) = ri +p; +si, where i € [n],
r,ri € Ko, p,pi € Pands,s; € S.

3. Let z1, ..., zp be constant indeterminates.

- Use CONSTANTMATRIX (Algorithm 2.8) to compute a ma-
trix M € C**" and v € C¥ such that s — Yie[n] zisi has
merely constant residues if and only if the linear system
given by the augmented matrix (M, v) is consistent.

- Compute N € C™*" and w e C! such that p = Yie[n] ZiDi
if and only if the linear system given by the augmented
matrix (N, w) is consistent.

M v

N wj’

4. If the above system has no solution, then f has no elementary
integral over K, by Theorem 5.3. Otherwise, let ¢y, . .., ¢, be
suchasolution. Set 7 = r—3;c ) €iri and § = s— ;e[ n] €iSi-
Then /f =g+/f+/§+2i€[n] ¢i(t; — A;). Note that ff
is elementary because 7 € C(x), and that f § is elementary
over K, by Theorem 5.3.

- Solve the linear system (21, .. .,zn)T =

ExaMPpLE 5.4. We follow the above outline to integrate

x+(x—1Dty tr+t3(1—1ty)
(x =1ty x

>

f=

1. By @3, we find an R-pair (t2t3, ¢3(f)), where g3 (f) = ﬁ
2. Compute ¢i—1(t]) = ri + p; +si, where
i 1 2
(ri:Pi,si) ()%1’0’0) (%’_%’0) (

3. By step 3 in the above outline, we have

o 1 o)) (o
o o —1){*?)"\-1)

Z3
It has a solution z1 = z2 = 0 and z3 = 1.
4. Computing the residues yields ff =tyt3 + 13 + log (;—1)

w

2=
=
fond (5N
1

Neither int() command in MAPLE 2021 nor Integrate[] com-
mand in MATHEMATICA 14.1 found an elementary integral for f.
The Ax1oM-based computer algebra system FRICAS 1.3.10 (see [20])
returned a correct integral. Comprehensive tests are given in [1]
for elementary integration in current computer algebra systems.

5.2 Telescopers

General connections between symbolic integration and creative-
telescoping are described in [26, Chapter 1]. Examples in [11, §7]
illustrate that additive decompositions help us detect the existence
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of telescopers for elements in some primitive towers. We present
two propositions for the same purpose by remainders and residues.

Let K = C(x,y) be the field of rational functions in x and y
equipped with the usual partial derivatives Dy and D. Differential
fields related to integration for several derivations can be found in
[9,30]. Let t be an element in some partial differential field extension
of K such that ¢ is transcendental over K, DyDx(t) = DxDy(1),
Dy (t) € K[t] with degree less than two, and Dy(t) € K \ Dy(K).
Then ¢ is a primitive monomial over K with respect to Dy. The
extended derivatives are still denoted by Dy and D, respectively.

Every element of K[¢] is D-finite over K. But K(t) contains non-
D-finite elements. For instance, t ! is not D-finite over K, because
t*1 is the monic denominator of Diy(t_l) foralli e N.

For f € K(t), a differential operator L € C(x)[Dy]*
telescoper for f if L(f) € Dy(K(t)).

is called a

PROPOSITION 5.5. Let ¢ : K(t) — K(t) be the complete reduction
for Dy(K(t)) given in Convention 4.4 with K = Ky and ¢ = ¢;. For
f € K(t) andm € N, f has a telescoper of order no more than m if
and only if there existly ..., I, € C(x), not all zero, such that

> hp(Dk(f) =o.

ie[m]o

(11)

ProoF. LetL = Zie[m]o l,'ch with ly, . .., I, € C(x), not all zero.
Then ¢(L(f)) = Zie[m], ;¢ (DL(f)), because ¢ is C(x)-linear. As-
sume that (11) holds. Then L is a telescoper for f with order no
more than m. Conversely, assume that L is a telescoper for f with
order no more than m. Then ¢(L(f)) = 0 because ¢ is a complete
reduction. Hence, (11) holds. O

Below is a sufficient condition on the existence of telescopers.

PROPOSITION 5.6. Let f € K(t). Then there exists a unique element
s € S; such that ¢(f) = s mod K[t]. If all residues of s with respect
to Dy are in C(x), then f has a telescoper.

Proor. There exists a unique pair (g, s) in K[t] X S; such that
#(f) = g+ s by Proposition 5.1. Since q is D-finite over K, it has a
telescoper by [36, Lemma 4.1] or [25, Lemma 3].

It remains to prove that s has a telescoper by [14, Remark 2.3].
Lets = b’ where a,b € K[t], b is monic with respect to ¢t and
ged(a,b) = 1. Assume that aj, . . ., oy are the distinct roots of b. By
[18, Lemma 3.1 (i)], we have that

y(t aj)
s= Z Bi————,
jey T

where f§; € K is the residue of f at aj with respect to Dy. Since each

(12)

Bj is assumed to be in C(x), there exists L € C(x)[Dx] annihilating
all of them by [23, Theorem 3.29 (3)]. By the commutativity of
applying derivations and taking logarithmic derivatives, we have

Dbeﬁw):Dy@Dﬁm) Doy 2L,

for all y € C(x) and u € K(t). A repeated application of the above
equality to (12) yields g € C(x)(y, t) such that

D
“Dy9)+ Y Lipy) DL

Jjelk]

L(s) =Dy(9)
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Moreover, g is symmetric in a1, ... over K(t) so that g actually
belongs to K(t). o

ExaMmpLE 5.7. Let K = C(x,y) and t
construct respective telescopers for

(t-y)

and f = y—y

I e =y
Note that f is simple. So ¢(f) = f. Its nonzero residues are ++/x
by [8, Theorem 4.4.3]. By Proposition 5.6,  has a telescoper. Using
the notation in Proposition 5.5, we have 2x$(Dx (f)) = f. Thus, the
minimal telescoper for f is 2xDy — 1.
Again, f is simple. So ¢(f) = f Sincef has a nonzero residue y,

Proposition 5.6 is not applicable. Let g = Dyt(_t;y) g"x:zg .
y

Thenf =ygandy = (1—x—y)~'. Forw € C(x,y), we calculate

Dx(t-y)
I-y

mod Dy (K(t))

= log(x +y). We try to

2x

andy =

Dx (0g) = Dx(w)g + @Dx (9) = Dx(w)g + wDy (

Dx(t y)

= Dx(w)g — Dy(w)
= (Dx(w)
Then ¢(Dx(wg)) = (Dx(®) - yDy(a))) g because g is simple. Set
Yo =y and y; = Dx(yi-1) — yDy(yi-1) fori > 1. It follows from the

above calculation that ¢(D;( (f)) = yig. Moreover, the denominator
of yi has degree 2i — 1 iny fori > 1 by a straightforward induction.

Therefore, ¢(f) ¢(Dy (f)) $(D2 (f)) ...are linearly independent
over C(x). Consequently, f has no telescoper by Proposition 5.5.

- )/Dy(a))) g mod Dy(K(t)).

6 Conclusions

In this article, we have developed a complete reduction for deriva-
tives in a primitive tower. The reduction algorithm decomposes
an element of such a tower as the sum of a derivative and a re-
mainder, where the derivative is unique up to an additive constant
and the remainder is unique. The algorithm can be applied to com-
pute elementary integrals over primitive towers and to construct
telescopers for some non-D-finite functions. The work is a step
forward in the development of complete reductions for derivatives
in transcendental Liouvillian extensions.
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A Empirical results

We present some empirical results about in-field integration ob-
tained by our complete reduction (CR), Algorithm ADDDEcCOMPIN-
FIELD in [19, page 150] (AD), and the MAPLE function int. Experi-
ments were carried out with MAPLE 2021 on a computer with imac
CPU 3.6GHZ, Intel Core i9, 16G memory. MAPLE scripts of CR and
AD are available at http://mmrc.iss.ac.cn/~zmli/ISSAC2025.html.

Every integrand in experimental data was a derivative in the
primitive tower Q(x)(t1, t2, 13), where t; = log(x), t2 = log(x + 1)
and 3 = log(#1). So CR, AD and int are all applicable and have the
same output, which is an integral of the input in the same tower.
Three integrands in the form p] were generated for each i, where
pi was a dense polynomial in some selected generators. Below is a
summary of the average timings (in seconds).

In the first suite of data, we set p; € Q(x, t1,12)[#3] such that
deg,, (pi) = i and all coefficients of p; are rational functions whose
numerators and denominators are both sparse random polynomials
in Q[x, t1, t2] with total degree 5.

i 1 2 3 4 5 6
CR | 1.42 | 832 | 37.01 | 122.55 | 1085.04 | >3600
AD | 0.96 | 10.42 | 47.36 | 149.02 | >3600 | >3600
int | 1.15 | 4.52 | 23.30 | 53.43 166.27 | 346.29

In the second suite, p; € Q(x, t1, 2)[t3] with degree i in #3. Its
coefficients are quotients of linear polynomials in Q[x, 1, t2].

i 6 8 10 12 14 16
CR | 090 | 2.09 | 7.05 | 12.56 | 30.35 62.11
AD | 1.23 | 4.29 | 12.31 | 31.08 | 57.67 | 170.70
int | 3.83 | 17.46 | 31.61 | 66.22 | 144.70 | 322.19

In the third suite, p; € Q(x)[#1, t2, 3] whose total degree is equal
to i and whose coefficients are quotients of random polynomials in
Q[x] with degree 5.

i 1 2 3 4 5 6
CR | 035 0.19 | 059 | 4.02 | 21.32 88.51
AD | 0.39 | 0.51 | 3.48 | 30.53 | 614.90 | 1453.61
int | 0.53 | 0.63 | 4.68 | 51.82 | 154.31 | 1255.49

In the last suite, p; € Q[x, t1, t2, t3] with total degree i. The MAPLE
function int returned expressions involving unevaluated integrals
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for some inputs. Whenever this happened, the corresponding entry

is marked by / .
i [ 5 1015 2 [ 25 30
CR [ 039025 081 1.98 [ 432 | 871
AD [0.45 | 1.06 [ 6.69 | 32.83 | 141.09 | 280.47
int[o4o | [ | [ 700 [ [ Ji
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The timings reveal that CR outperformed AD, and was more effi-
cient than int except for the integrands in the first suite. There are
also examples for which int took more than one hour without any
output, but both CR and AD returned correct results.

We also observe that HERMITEREDUCE and AUXILIARYREDUCTION
were much more time-consuming than PROJECTION in the complete
reduction (see Algorithm 3.14).
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