第二次作业

1. 设 $\alpha, \beta \in \mathbb{R}$. 考虑线性方程组

$$\begin{cases}
\cos\theta x - \sin\theta y = a \\
\sin\theta x + \cos\theta y = b
\end{cases}$$

- (a) 证明该方程组是确定的;
- (b) 设

$$\mathbb{R}^2 = \left\{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\},\,$$

如果 α 和 β 不全为零,则记 $\ell(\alpha,\beta)$ 是点 $\binom{\alpha}{\beta}$ 与原点 $\binom{0}{0}$ 的连线,计算 $\ell(u,v)$ 和 $\ell(a,b)$ 的夹角,其中 $\binom{u}{v}$ 是上述方程组的解且 $\binom{a}{b} \neq \binom{0}{0}$.

- 2. 设 $f:A \rightarrow B, g:B \rightarrow C$ 是两个映射. 证明:
 - (a) 若 $g \circ f$ 是单射,则 f 是单射;
 - (b) 若 $g \circ f$ 是满射,则 g 是满射.
- 3. 设 A, B 是集合 X 的两个子集合, $f: X \to Y$ 是一个映射, 证明:
 - (a) $f(A \cup B) = f(A) \cup f(B)$;
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$, 并举例说明存在真包含的情况.
- 4. 用 $S\Delta T$ 表示两个集合 S 与 T 的对称差: $S\Delta T = (S \setminus T) \cup (T \setminus S)$. 证明:

$$S\Delta T = (S \cup T) \setminus (S \cap T).$$

- 5. 设 $S = \mathbb{R}^2 \setminus \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$. 如果二维向量 $\mathbf{u}, \mathbf{v} \in S$ 在以原点为圆心的某个圆上,则称 \mathbf{u}, \mathbf{v} 有关系 R,记为 $\mathbf{u}R\mathbf{v}$.
 - (a) 验证 R 是等价关系;
 - (b) 设 $\binom{u}{v}$ 和 $\binom{a}{b}$ 由习题 1 给出. 说明 $\binom{u}{v}R\binom{a}{b}$ 是否成立.