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ABSTRACT
A complete reduction 𝜙 for derivatives in a differential field 𝐾 is

a linear operator on 𝐾 that enables us to decompose 𝑓 ∈ 𝐾 as the

sum of a derivative and 𝜙 (𝑓 ). The derivative is unique up to an

additive constant, and there exists

∫
𝑓 ∈ 𝐾 if and only if 𝜙 (𝑓 ) = 0.

In this paper, we present a complete reduction for derivatives in

a primitive tower algorithmically. Typical examples for primitive

towers are differential fields generated by (poly-)logarithmic func-

tions and logarithmic integrals. The in-field integrability is directly

determined by 𝜙 , and elementary integrability over such towers

can be determined by computing parametric logarithmic parts re-

lated to 𝜙 (𝑓 ). Moreover, we discuss how to compute telescopers

for non-D-finite functions by the images of 𝜙 .
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1 INTRODUCTION
Let 𝐶 be a field, 𝑉 a linear space over 𝐶 , and 𝑈 a subspace of 𝑉 .

A linear operator 𝜙 on 𝑉 is called a complete reduction for 𝑈 if
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𝑣 − 𝜙 (𝑣) ∈ 𝑈 for all 𝑣 ∈ 𝑉 and𝑈 = ker(𝜙) by [23, Definition 5.6.7].

Such an operator 𝜙 is an idempotent and results in 𝑉 = 𝑈 ⊕ im(𝜙).
Let𝐾 be a differential field with derivation

′
and𝐶 be the subfield

of constants in 𝐾 . For 𝐿 ⊂ 𝐾 , 𝐿′ := {𝑙 ′ | 𝑙 ∈ 𝐾}. Then 𝐾 ′ is a 𝐶-
subspace. For a complementary subspace 𝑅 of 𝐾 ′, the projection
from 𝐾 to 𝑅 is a complete reduction for 𝐾 ′. So there always exist
complete reductions for 𝐾 ′. It remains

(1) to fix a complementary subspace 𝑅 of 𝐾 ′, and
(2) to develop an algorithm that, for every 𝑓 ∈ 𝐾 , computes

𝑔 ∈ 𝐾 and 𝑟 ∈ 𝑅 such that 𝑓 = 𝑔′ + 𝑟 .
In general, both 𝐾 ′ and 𝑅 are infinite-dimensional.

Example 1.1. Let 𝐶 be a field of characteristic zero, and ′ be the
usual derivation𝑑/𝑑𝑥 on𝐶 (𝑥). A complementary subspace 𝑅 of𝐶 (𝑥)′
is the set of proper rational functions with squarefree denominators.
For every 𝑓 ∈ 𝐶 (𝑥), the Hermite-Ostrogradsky reduction on [7, page
40] computes (𝑔, 𝑟 ) ∈ 𝐶 (𝑥) × 𝑅 such that 𝑓 = 𝑔′ + 𝑟 . The projection
from 𝐶 (𝑥) to 𝑅 is a complete reduction for 𝐶 (𝑥)′.

Our work is motivated by reduction-based creative telescoping

(see [23, §5.6] and [31, §15]) and integration (summation) in finite

terms (see [7, 22, 28, 29, 32, 33]). Both need preprocessors to split

an integrand (summand) as the sum of an integrable (summable)

part and a possibly non-integrable (non-summable) part.

A commonly-used preprocessor in reduction-based creative tele-

scoping is also known as an additive decomposition, which can be

described in terms of linear algebra below: Let𝑉 and𝑈 be the same

as those in the first paragraph. For 𝑣 ∈ 𝑉 , an additive decomposition

for 𝑈 computes 𝑢 ∈ 𝑈 and 𝑟 ∈ 𝑉 such that 𝑣 = 𝑢 + 𝑟 , where 𝑟 is
minimal in some sense. And 𝑣 ∈ 𝑈 if and only if 𝑟 = 0. It is proposed

for constructing minimal telescopers in [2–4, 24], in which 𝑉 is

the𝐶 (𝑥,𝑦)-subspace spanned by a hypergeometric term in 𝑥 and 𝑦,

and 𝑈 is the 𝐶-subspace {𝑔(𝑥,𝑦 + 1) − 𝑔(𝑥,𝑦) | 𝑔 ∈ 𝑉 }. Additive
decompositions also appear in [11, 19], in which 𝑉 is a primitive

tower of some special kinds, and𝑈 consists of all derivatives in 𝑉 .

A complete reduction is interpreted as an additive decomposition

in [21, §1.2] as follows. Let 𝜙 : 𝑉 → 𝑉 be a complete reduction for

𝑈 , 𝐺 be a basis of 𝑈 , and 𝐻 be a basis of im(𝜙). Then 𝐺 ∪ 𝐻 is a

basis of𝑉 . For every 𝑣 ∈ 𝑉 , 𝑣 = ∑
𝑤∈𝐺∪𝐻 𝑐𝑤𝑤 with 𝑐𝑤 ∈ 𝐶 . Define

supp(𝑣) = {𝑤 ∈ 𝐺 ∪ 𝐻 | 𝑐𝑤 ≠ 0}. For 𝑣1, 𝑣2 ∈ 𝑉 , we say that 𝑣1 is

not higher than 𝑣2 if supp(𝑣1) ⊆ supp(𝑣2). If 𝑣 = 𝑢 + 𝑟 = 𝑢̃ + 𝑟 for
some 𝑢, 𝑢̃ ∈ 𝑈 , 𝑟 ∈ im(𝜙) and 𝑟 ∈ 𝑉 , then supp(𝑟 ) ⊆ supp(𝑟 ) by an

easy linear-algebra argument. Thus, 𝑟 is not higher than 𝑟 .
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Additive decompositions do not always induce linear maps. So

they are not necessarily complete reductions. Since linearity brings

a lot of convenience into both theory and practice, it is worthwhile

to seek complete reductions. So far they have been developed for hy-

perexponential functions [5], algebraic functions [12, 15], fuchsian

D-finite functions [16] and D-finite functions [6, 13, 34].

A classical topic in symbolic integration is to compute elemen-

tary integrals of transcendental Liouvillian functions (see [7, 17,

26, 28]). Results about this topic are usually described in monomial

extensions (see [7, §3.4]). Algorithm HermiteReduce in [7, §5.3]

decomposes an element of a monomial extension as the sum of a

derivative, a simple element and a reduced one. The simple element

is handled by the residue criterion [27, Theorem 3], while the re-

duced one is handled by solving parametric Risch equations [29]

and the parametric logarithmic derivative problem [7, §7.3].

To develop a complete reduction for derivatives in a monomial

extension, we proceed by a different approach to handling reduced

elements. Note that reduced elements form a differential subalgebra

𝑊 by [7, Corollary 4.4.1 (iii)]. A complete reduction for𝑊 ′ will be
constructed in the following three steps:

(1) Define an auxiliary subspace 𝐴 such that𝑊 =𝑊 ′ +𝐴.
(2) Determine a basis of𝑊 ′ ∩𝐴.
(3) Fix a complementary subspace of𝑊 ′ contained in 𝐴.

The projection from𝑊 to the complementary subspace is a com-

plete reduction for𝑊 ′, which, together with AlgorithmHermiteRe-

duce, leads to a complete reduction for derivatives in a monomial

extension. Auxiliary subspaces are defined for hyperexponential

towers in [9]. Steps 2 and 3 are worked out in exponential and

hyperexponential towers in [21] and [10], respectively.

In this paper, we develop a complete reduction for derivatives

in primitive towers by the above approach. The reduction leads

naturally to an algorithm for determining the in-field integrability

(see Examples 4.4 and 4.5), and can be applied to compute elemen-

tary integrals over such towers (see Example 5.4). Furthermore,

we construct telescopers for some non-D-finite functions by the

reduction (see Example 5.7).

Our idea is also different from that for the additive decomposition

in S-primitive towers [19], although both make essential use of

integration by parts to reduce polynomial integrands. In addition,

primitive towers include S-primitive ones as a special case.

The rest of this paper is organized as follows. In Section 2, we

specify notation and present several algorithms to be used in the

sequel. Basic constructions in the above three steps are described

in Section 3. The constructions yield an algorithm for our complete

reduction, as soon as the notion of primitive towers is introduced

in Section 4. Some applications of the complete reduction are pre-

sented in Section 5. Concluding remarks are given in Section 6.

2 PRELIMINARIES
This section has three parts. In Section 2.1, we introduce some

basic notion concerning symbolic integration and fix notation to

be used. Effective bases are defined and constructed in Section 2.2.

They allow us to apply dual techniques. In Section 2.3, we review

an algorithm in the proof of [26, Theorem 3.9], which helps us

compute elementary integrals in Section 5.

2.1 Notation and rudimentary notions
Throughout the paper, 𝐺× denotes 𝐺 \ {0} for an additive group

(𝐺, +, 0). For 𝑛 ∈ N, the sets {1, . . . , 𝑛} and {0, 1, . . . , 𝑛} are denoted
by [𝑛] and [𝑛]0, respectively. The transpose of a matrix is denoted

by (·)𝜏 . In the description of an algorithm, a list is written as [· · · ]
and comments are placed between (∗ · · · ∗).

All fields are of characteristic zero in the paper. Let 𝐾 be a field.

We denote its algebraic closure by 𝐾 . For a univariate polynomial 𝑝

over𝐾 , its degree and leading coefficient are denoted by deg(𝑝) and
lc(𝑝), respectively, when the indeterminate is clear from context.

In particular, deg(0) := −∞ and lc(0) := 0. Similarly, a univariate

rational function is said to be proper if the degree of its numerator is

less than that of denominator. A rational function 𝑟 can be uniquely

written as the sum of a polynomial and a proper rational function,

which are denoted by poly(𝑟 ) and proper(𝑟 ), respectively.
A map

′
: 𝐾 → 𝐾 is called a derivation on 𝐾 if (𝑎 + 𝑏)′ = 𝑎′ + 𝑏′

and (𝑎𝑏)′ = 𝑎𝑏′ + 𝑎′𝑏 for all 𝑎, 𝑏 ∈ 𝐾 . A differential field is a field

equipped with a derivation. Let (𝐾, ′) be a differential field. An

element 𝑐 of 𝐾 is called a constant if 𝑐′ = 0. All constants in 𝐾

form a subfield. A differential field (𝐸, 𝛿) is called a differential field
extension of (𝐾, ′) if 𝐾 is a subfield of 𝐸 and

′
is the restriction of 𝛿

to 𝐾 . We still use
′
to denote 𝛿 when there is no confusion.

Assume that 𝑡 belongs to a differential field extension of 𝐾 . If 𝑡

is transcendental over 𝐾 and 𝑡 ′ ∈ 𝐾 [𝑡], then 𝑡 is called a monomial
over 𝐾 and 𝐾 (𝑡) is called a monomial extension of 𝐾 .

Let 𝑡 be a monomial over𝐾 . A polynomial 𝑝 ∈ 𝐾 [𝑡]× is said to be
normal if gcd(𝑝, 𝑝′) = 1. An element 𝑓 of 𝐾 (𝑡) is said to be simple if
it is proper and has a normal denominator. The subset consisting of

all simple elements is denoted by 𝑆𝑡 , which is a 𝐾-subspace. Note

that 𝑓 is simple if it has a normal denominator in [7, Definition

3.5.2]. We further require that 𝑓 is proper for the uniqueness of 𝑠 in

(1) given below. We call 𝑡 a primitive monomial over𝐾 if 𝑡 ′ ∈ 𝐾 \𝐾 ′ .
A primitive monomial extension 𝐾 (𝑡) has no new constant other

than the constants in 𝐾 by [7, Theorem 5.1.1].

Let 𝑡 be a primitive monomial over 𝐾 . Then 𝐾 [𝑡] is a differential
𝐾-algebra. For every 𝑓 ∈ 𝐾 (𝑡), there exists 𝑔 ∈ 𝐾 (𝑡), 𝑝 ∈ 𝐾 [𝑡] and
a unique 𝑠 ∈ 𝑆𝑡 such that

𝑓 = 𝑔′ + 𝑝 + 𝑠 . (1)

The uniqueness of 𝑠 is due to [11, Lemma 2.1].

Algorithm 2.1. InitialReduction

Input: 𝑓 ∈ 𝐾 (𝑡), where 𝑡 is a primitive monomial over 𝐾
Output: (𝑔, 𝑝, 𝑠) ∈ 𝐾 (𝑡) × 𝐾 [𝑡] × 𝑆𝑡 such that (1) holds

1. compute (𝑔, 𝑝1, 𝑠1) ∈ 𝐾 (𝑡) × 𝐾 [𝑡] × 𝐾 (𝑡) by Algorithm Her-

miteReduce in [7, §5.3] such that 𝑓 = 𝑔′ + 𝑝1 + 𝑠1 and that
𝑠1 has a normal denominator

2. 𝑝2 ← poly(𝑠1), 𝑠2 ← proper(𝑠1), return (𝑔, 𝑝1 + 𝑝2, 𝑠2)
The algorithm is correct by Algorithm HermiteReduce.

Example 2.2. Let 𝐾 = 𝐶 (𝑥), 𝑡 = log(𝑥) and

𝑓 =
(𝑥 + 1)𝑡2 + (𝑥2 + 2𝑥 + 2)𝑡 + 𝑥 + 1

𝑥 (𝑡 + 1) ∈ 𝐾 (𝑡) .

InitialReduction(𝑓 ) finds (𝑔, 𝑝, 𝑠) ∈ 𝐾 (𝑡) ×𝐾 [𝑡] ×𝑆𝑡 such that (1)
holds, where 𝑔 = 0, 𝑝 = 𝑥+1

𝑥 𝑡 + 𝑥2+𝑥+1
𝑥 , and 𝑠 = − 𝑥

𝑡+1 . Unfortunately,
the algorithm does not extract any in-field integrable part from 𝑓 . It
will be shown that 𝑝 ∈ 𝐾 (𝑡)′ in Example 3.12.
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The next lemma presents important properties concerning de-

composition and contraction in primitive monomial extensions.

Lemma 2.3. If 𝑡 is a primitive monomial over 𝐾 , then

(i) 𝐾 (𝑡) = (𝐾 (𝑡)′ + 𝐾 [𝑡]) ⊕ 𝑆𝑡 , and
(ii) 𝐾 (𝑡)′ ∩ 𝐾 [𝑡] = 𝐾 [𝑡]′ .

Proof. (i) holds by (1), and (ii) holds because the derivative of a

proper element of 𝐾 (𝑡) remains proper. □

2.2 Effective bases
This section is a preparation for some dual techniques to be used

in Sections 3 and 4.

Definition 2.4. Let 𝐸 be a field with a subfield 𝐹 ,Θ be an 𝐹 -linear
basis of 𝐸, 𝜃 ∈ Θ and 𝑎 ∈ 𝐸. Then

(i) 𝜃∗ stands for the 𝐹 -linear function on 𝐸 that maps 𝜃 to 1 and
any other element of Θ to 0.

(ii) 𝜃 is said to be effective for 𝑎 if 𝜃∗ (𝑎) ≠ 0.
(iii) Θ is called an effective 𝐹 -basis if there are two algorithms :

– one finds 𝜃 ∈ Θ effective for 𝑎 if 𝑎 ≠ 0; and
– the other computes 𝜃∗ (𝑎).

Let 𝐹 be a field and 𝐹 (𝑦) the field of rational functions in 𝑦.

Set 𝑌 =
{
𝑦𝑖 | 𝑖 ∈ N

}
and 𝑄 to be the set consisting of monic and

irreducible polynomials with positive degrees. Then

Θ = 𝑌 ∪
{
𝑦𝑖

𝑞 𝑗
| 𝑞 ∈ 𝑄, 0 ≤ 𝑖 < deg(𝑞), 𝑗 ∈ Z+

}
(2)

is an effective 𝐹 -basis of 𝐹 (𝑦) by the irreducible partial fraction

decomposition. The two algorithms required in Definition 2.4 (iii)

are given below. Their correctness is evident.

Algorithm 2.5. BasisElement

Input: 𝑎 ∈ 𝐹 (𝑦)× Output: (𝜃, 𝑐) ∈ Θ ×𝐶× with 𝑐 = 𝜃∗ (𝑎)
1. 𝑝 ← poly(𝑎), 𝑟 ← proper(𝑎), 𝑑 ← the denominator of 𝑟

2. if 𝑝 ≠ 0 then return

(
𝑦deg(𝑝 ) , lc(𝑝)

)
end if

3. 𝑞 ← a factor of 𝑑 in 𝑄 ,𝑚 ← the multiplicity of 𝑞 in 𝑑
4. ℎ ← the coefficient of 𝑞−𝑚 in the 𝑞-adic expansion of 𝑟

5. return

(
𝑦deg(ℎ)/𝑞𝑚, lc(ℎ)

)
Remark 2.6. There is no obvious rule for choosing an irreducible

factor 𝑞 of 𝑑 in step 3 of Algorithm 2.5. For example, let 𝑓 = 1

𝑦 (𝑦+1) .
One may set 𝑞 to be either 𝑦 or 𝑦 + 1. Then 𝜃 obtained in step 5 may be
either 1

𝑦 or 1

𝑦+1 . So the algorithm does not guarantee that the same
output will be returned when it is applied to the same input twice.

In practice, we choose 𝑞 to be the first member in the list of

irreducible factors of 𝑑 computed by a factorization algorithm.

Algorithm 2.7. Coefficient

Input: (𝑏, 𝜃 ) ∈ 𝐹 (𝑦) × Θ Output: 𝜃∗ (𝑏)
1. 𝑝 ← poly(𝑏), 𝑟 ← proper(𝑏)
2. Write 𝜃 = 𝑦𝑘/𝑞𝑚 for some 𝑘,𝑚 ∈ N, 𝑞 ∈ 𝑄 , gcd(𝑦, 𝑞) = 1

3. if𝑚 = 0 then return the coefficient of 𝑦𝑘 in 𝑝 end if

4. ℎ ← the coefficient of 𝑞−𝑚 in the 𝑞-adic expansion of 𝑟
5. return the coefficient of 𝑦𝑘 in ℎ

Remark 2.8. Let 𝐹 and 𝐸 be given in Definition 2.4 and𝐶 a subfield
of 𝐹 . Assume that 𝐹 has an effective 𝐶-basis Θ0 and that 𝐸 has an
effective 𝐹 -basis Θ. Then {𝜃0𝜃 | 𝜃0 ∈ Θ0, 𝜃 ∈ Θ} is an effective
𝐶-basis of 𝐸 by a straightforward recursive argument.

2.3 Constant residues
Let (𝐾, ′) be a differential field with constant subfield 𝐶 , and 𝑡 be a

monomial over 𝐾 . For 𝑓 ∈ 𝑆𝑡 and 𝛼 ∈ 𝐾 , an element 𝛽 ∈ 𝐾 is the

residue of 𝑓 at 𝛼 if and only if 𝑓 = 𝑔 + 𝛽 (𝑡−𝛼 )
′

𝑡−𝛼 for some 𝑔 ∈ 𝐾 (𝑡)
whose denominator is coprime with 𝑡 − 𝛼 . The residue of 𝑓 at 𝛼 is

nonzero if and only if 𝛼 is a root of its denominator.

Below is a minor variant of an algorithm described in the proof of

[26, Theorem 3.9]. In its pseudo-code, 𝐷𝑡 stands for the derivation

on 𝐾 (𝑡) that maps every element of 𝐾 to 0 and 𝑡 to 1, and 𝜅 for the

coefficient-lifting derivation from (𝐾, ′) to 𝐾 (𝑡) (see [7, §3.2]).

Algorithm 2.9. ConstantMatrix

Input: 𝑓 , 𝑔1, · · · , 𝑔𝑙 ∈ 𝑆𝑡
Output:𝑀 ∈ 𝐶𝑘×𝑙 and v ∈ 𝐶𝑘 such that all residues of 𝑓 −∑𝑙

𝑖=1 𝑐𝑖𝑔𝑖

belong to 𝐶 if and only if

𝑀
(
𝑐1, · · · , 𝑐𝑙

)𝜏
= v (3)

1. ℎ ← 𝑓 − 𝑐1𝑔1 − · · · − 𝑐𝑙𝑔𝑙 ,
where 𝑐1, . . . , 𝑐𝑙 are constant indeterminates

2. 𝑝 ← the numerator of ℎ, 𝑞 ← the denominator of ℎ
3. 𝑢 ← the inverse of 𝑞′ mod 𝑞, 𝑣 ← the inverse of 𝐷𝑡 (𝑞) mod 𝑞
𝑤 ← 𝜅 (𝑝𝑢) −𝐷𝑡 (𝑝𝑢) · 𝑣 ·𝜅 (𝑞), 𝑟 ← the remainder of𝑤 on 𝑞

4. (𝑀, v) ← an augmented matrix of the linear system
in 𝑐1, . . . , 𝑐𝑙 obtained by setting 𝑟 = 0

5. return𝑀, v

To see its correctness, we note that 𝑞 obtained from step 2 is

normal and free of 𝑐1, . . . 𝑐𝑙 . Then gcd(𝑞′, 𝑞) = gcd(𝐷𝑡 (𝑞), 𝑞) = 1.

Hence, both 𝑢 and 𝑣 can be computed in step 3. Let 𝛼 be a root

of 𝑞. Then 𝛼 ′ = −𝑣 (𝛼) ·𝜅 (𝑞) (𝛼) by [7, Theorem 3.2.3]. On the other

hand, the residue 𝛽 of ℎ at 𝛼 is equal to (𝑝𝑢) (𝛼) so that 𝛽′ = 𝑤 (𝛼),
where𝑤 is also computed in step 3. Hence, 𝑟 = 0 if and only if all

residues of ℎ belong to 𝐶 . The system obtained in step 4 is linear

because 𝑐1, . . . , 𝑐𝑙 appear linearly in the coefficients of 𝑟 .

3 BASIC CONSTRUCTIONS
In this section, we let (𝐾, ′) be a differential field and 𝐶 be the sub-

field of its constants. Assume that there exists a complete reduction

𝜙 on 𝐾 for 𝐾 ′, and an algorithm that, for every 𝑓 ∈ 𝐾 , computes

𝑔 ∈ 𝐾 and 𝜙 (𝑓 ) such that 𝑓 = 𝑔′ + 𝜙 (𝑓 ). We call 𝜙 (𝑓 ) the remain-
der of 𝑓 and (𝑔, 𝜙 (𝑓 )) a reduction pair of 𝑓 (with respect to 𝜙). A

reduction pair will be abbreviated as an R-pair in the sequel.

Let 𝑡 be a primitive monomial over 𝐾 . We are going to define a

complete reduction 𝜓 on 𝐾 (𝑡) for 𝐾 (𝑡)′. It suffices to construct a

complementary subspace of 𝐾 [𝑡]′ in 𝐾 [𝑡] by Lemma 2.3.

As a matter of notation, the 𝐶-subspace
⊕

𝑖∈N𝑉 · 𝑡𝑖 for some

𝐶-subspace 𝑉 of 𝐾 is denoted by 𝑉 ⊗ 𝐶 [𝑡] in virtue of the 𝐶-

isomorphism 𝑣 ⊗ 𝑡𝑖 ↦→ 𝑣𝑡𝑖 from 𝑉 ⊗𝐶 𝐶 [𝑡] to
⊕

𝑖∈N𝑉 · 𝑡𝑖 .
First, we decompose𝐾 [𝑡] as the sum of𝐾 [𝑡]′ and the𝐶-subspace

consisting of all polynomials whose coefficients are remainders with

respect to 𝜙 . In other word, the subspace is im(𝜙) ⊗ 𝐶 [𝑡].
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Lemma 3.1. Let 𝑝 ∈ 𝐾 [𝑡] with deg(𝑝) = 𝑑 . There exists 𝑞 ∈ 𝐾 [𝑡]
with deg(𝑞) ≤ 𝑑 and 𝑟 ∈ im(𝜙) ⊗ 𝐶 [𝑡] with deg(𝑟 ) ≤ 𝑑 such that

𝑝 = 𝑞′ + 𝑟 . (4)

Proof. If 𝑝 = 0, then set 𝑞 = 𝑟 = 0. Assume that 𝑝 is nonzero

with degree 𝑑 and leading coefficient 𝑙 .

Let (𝑔, 𝜙 (𝑙)) be an R-pair of 𝑙 , and ℎ = 𝑝 − 𝑙𝑡𝑑 . With integration

by parts, we have

𝑝 = 𝑔′𝑡𝑑 + 𝜙 (𝑙)𝑡𝑑 + ℎ =

(
𝑔𝑡𝑑

)′
+ 𝜙 (𝑙)𝑡𝑑 + ℎ − (𝑑𝑔𝑡 ′)𝑡𝑑−1 . (5)

Since 𝜙 (𝑙)𝑡𝑑 ∈ im(𝜙) ⊗ 𝐶 [𝑡] and 𝑑 > deg

(
ℎ − (𝑑𝑔𝑡 ′)𝑡𝑑−1

)
, the

lemma follows from an induction on 𝑑 . □

Definition 3.2. The 𝐶-subspace im(𝜙) ⊗ 𝐶 [𝑡], denoted by 𝐴, is
called the auxiliary subspace for 𝐾 [𝑡]′ in 𝐾 [𝑡].

Corollary 3.3. 𝐾 [𝑡] = 𝐾 [𝑡]′ +𝐴.

Proof. It is immediate from Lemma 3.1. □

The next algorithm is direct from the proof of Lemma 3.1.

Algorithm 3.4. AuxiliaryReduction

Input: 𝑝 ∈ 𝐾 [𝑡]
Output: (𝑞, 𝑟 ) ∈ 𝐾 [𝑡] ×𝐴 such that (4) holds

1. 𝑝 ← 𝑝 , 𝑞 ← 0, 𝑟 ← 0

2. while 𝑝 ≠ 0 do

𝑑 ← deg(𝑝), 𝑙 ← lc(𝑝), compute an R-pair (𝑔, 𝜙 (𝑙)) of 𝑙
𝑞 ← 𝑞 + 𝑔𝑡𝑑 , 𝑟 ← 𝑟 + 𝜙 (𝑙)𝑡𝑑 , 𝑝 ← 𝑝 − 𝑙𝑡𝑑 − (𝑑𝑔𝑡 ′)𝑡𝑑−1

end do

3. return (𝑞, 𝑟 )

Next, let us construct a 𝐶-basis of 𝐾 [𝑡]′ ∩𝐴. To this end, we fix

an R-pair (𝜆𝑡 , 𝜙 (𝑡 ′)) of 𝑡 ′ and call it the first pair associated to 𝐾 (𝑡).

Remark 3.5. The remainder 𝜙 (𝑡 ′) ∈ 𝐾 [𝑡]′, because it is (𝑡 − 𝜆𝑡 )′.
Moreover, 𝜙 (𝑡 ′) ≠ 0 because 𝑡 is a primitive monomial.

For all 𝑖 ∈ Z+, we calculate

𝜙 (𝑡 ′)𝑡𝑖 = 𝑡 ′𝑡𝑖 − 𝜆′𝑡 𝑡𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖

)′
+ (𝑖𝜆𝑡 𝑡 ′)𝑡𝑖−1 . (6)

There exists a pair (𝑞𝑖 , 𝑟𝑖 ) ∈ 𝐾 [𝑡] ×𝐴 such that (𝑖𝜆𝑡 𝑡 ′)𝑡𝑖−1 = 𝑞′𝑖 + 𝑟𝑖
and deg(𝑟𝑖 ) ≤ 𝑖 − 1 by Lemma 3.1. It follows that

𝜙 (𝑡 ′)𝑡𝑖 − 𝑟𝑖 =
(
𝑡𝑖+1

𝑖 + 1 − 𝜆𝑡 𝑡
𝑖 + 𝑞𝑖

)′
. (7)

Lemma 3.6. Let 𝑣0 = 𝜙 (𝑡 ′) and 𝑣𝑖 be the left-hand side of (7). Then
(i) deg(𝑣𝑖 ) = 𝑖 and lc(𝑣𝑖 ) = 𝜙 (𝑡 ′) for all 𝑖 ∈ N.
(ii) The set {𝑣0, 𝑣1, . . .} is a 𝐶-basis of 𝐾 [𝑡]′ ∩𝐴.

Proof. (i) holds because 𝜙 (𝑡 ′) ≠ 0 and 𝑟𝑖 in (7) has degree < 𝑖 .

(ii) Set 𝐼 = 𝐾 [𝑡]′ ∩𝐴. Then 𝑣0 ∈ 𝐼× by Remark 3.5 and Definition

3.2. For 𝑖 > 0, 𝑣𝑖 ∈ 𝐾 [𝑡]′ by (7). It is in 𝐴 because 𝜙 (𝑡 ′)𝑡𝑖 , 𝑟𝑖 ∈ 𝐴.
Thus, 𝑣𝑖 ∈ 𝐼 for all 𝑖 ∈ N. The 𝑣𝑖 ’s are 𝐶-linearly independent by (i).

Assume that 𝑝 ∈ 𝐼 . Then 𝑝 ∈ 𝐾 (𝑡)′ ∩ 𝐾 [𝑡]. It follows from [11,

Lemma 2.3] that lc(𝑝) = 𝑐𝑡 ′ + 𝑏′ for some 𝑐 ∈ 𝐶 and 𝑏 ∈ 𝐾 . On the

other hand, 𝑝 ∈ 𝐴 implies that lc(𝑝) ∈ im(𝜙). Hence, applying 𝜙 to

lc(𝑝) = 𝑐𝑡 ′ + 𝑏′ yields lc(𝑝) = 𝑐𝜙 (𝑡 ′), because 𝜙 is an idempotent

and 𝜙 (𝑏′) = 0. Let 𝑖 = deg(𝑝) and 𝑞 = 𝑝 − 𝑐𝑣𝑖 . Then 𝑞 ∈ 𝐼 with

deg(𝑞) < 𝑖 . Thus, 𝑝 is a 𝐶-linear combination of 𝑣0, . . . , 𝑣𝑖 by a

straightforward induction on 𝑖 . □

The next algorithm constructs the basis in the above lemma up

to a given degree. It is correct by (6) and (7).

Algorithm 3.7. Basis

Input: 𝑑 ∈ N and the first pair (𝜆𝑡 , 𝜙 (𝑡 ′)) associated to 𝐾 (𝑡)
Output: a list [(𝑢0, 𝑣0), (𝑢1, 𝑣1), . . . , (𝑢𝑑 , 𝑣𝑑 )], in which 𝑣0 = 𝜙 (𝑡 ′),
𝑣𝑖 is given in (7) and 𝑢𝑖 ∈ 𝐾 [𝑡] with 𝑢′𝑖 = 𝑣𝑖

1. 𝐿 ← [(𝑡 − 𝜆𝑡 , 𝜙 (𝑡 ′))]
2. for 𝑖 from 1 to 𝑑 do

𝑎 ← 𝑡𝑖+1/(𝑖 + 1) − 𝜆𝑡 𝑡𝑖 , 𝑏 ← (𝑖𝜆𝑡 𝑡 ′)𝑡𝑖−1
(𝑞, 𝑟 ) ← AuxiliaryReduction(𝑏) (∗Algorithm 3.4∗)
(𝑢, 𝑣) ← (𝑎 + 𝑞, 𝜙 (𝑡 ′)𝑡𝑖 − 𝑟 )
𝐿 ← the list obtained by appending (𝑢, 𝑣) to 𝐿

end do

3. return 𝐿

Now, we turn the sum in Corollary 3.3 to a direct one by con-

structing a subspace of𝐴 that is a complement of 𝐾 [𝑡]′. To proceed,
we need to assume further that 𝐾 has an effective 𝐶-basis, which

is denoted by Θ. Then there exists a pair (𝜃, 𝑐) ∈ Θ ×𝐶× such that

𝑐 = 𝜃∗ (𝜙 (𝑡 ′)). We fix such a pair and call it the second pair associ-
ated to 𝐾 (𝑡). The complementary subspace consists of polynomials

in 𝐴 whose coefficients are free of 𝜃 . In other words, the subspace

is equal to (im(𝜙) ∩ ker(𝜃∗)) ⊗ 𝐶 [𝑡].

Lemma 3.8. Let (𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡). Then
(i) 𝐴 = (𝐾 [𝑡]′∩𝐴) ⊕𝐴𝜃 , where𝐴𝜃 = (im(𝜙) ∩ ker (𝜃∗)) ⊗𝐶 [𝑡];
(ii) 𝐾 [𝑡] = 𝐾 [𝑡]′ ⊕ 𝐴𝜃 .

Proof. (i) Similar to the proof of Lemma 3.6, we set 𝐼 = 𝐾 [𝑡]′∩𝐴.
First, we show 𝐴 = 𝐼 +𝐴𝜃 . Since 𝐼 ⊂ 𝐴 and 𝐴𝜃 ⊂ 𝐴, it suffices to

show 𝐴 ⊂ 𝐼 +𝐴𝜃 . Let {𝑣0, 𝑣1, . . .} be the basis of 𝐼 in Lemma 3.6 (ii),

and 𝑝 ∈ 𝐴. Set 𝑑= deg(𝑝), 𝑙= lc(𝑝) and 𝑧=𝜃∗ (𝑙). By Lemma 3.6 (i),

𝑝 − 𝑐−1𝑧𝑣𝑑 = 𝑔𝑡𝑑 + ℎ, (8)

where 𝑔 = 𝑙 −𝑐−1𝑧𝜙 (𝑡 ′) and ℎ ∈ 𝐾 [𝑡] with deg(ℎ) < 𝑑 . Since 𝑝 ∈ 𝐴,
we have that 𝑙 ∈ im(𝜙), and, thus, 𝑔 ∈ im(𝜙) by its definition.

Furthermore, 𝜃∗ (𝑔) = 𝜃∗ (𝑙) − 𝑐−1𝑧𝜃∗ (𝜙 (𝑡 ′)) = 𝑧 − 𝑧 = 0. Hence,

𝑔 ∈ ker(𝜃∗). Consequently, 𝑔 ∈ im(𝜙) ∩ ker(𝜃∗). We conclude that

𝑔𝑡𝑑 ∈ 𝐴𝜃 . It follows from (8) that ℎ ∈ 𝐴 and 𝑝 − ℎ ∈ 𝐼 +𝐴𝜃 , which
allow us to carry out an induction on 𝑑 as follows.

If 𝑑 = 0, then ℎ = 0. So 𝑝 ∈ 𝐼 +𝐴𝜃 . Suppose that all elements of𝐴

with degree < 𝑑 are in 𝐼 +𝐴𝜃 . Then ℎ ∈ 𝐼 +𝐴𝜃 . Hence, 𝑝 ∈ 𝐼 +𝐴𝜃 .
Second, we show that 𝐼 ∩ 𝐴𝜃 = {0}. Assume that 𝑞 ∈ 𝐼 ∩ 𝐴𝜃 .

Then 𝑞 is a 𝐶-linear combination of the 𝑣𝑖 ’s. So lc(𝑞) is the product
of a constant and 𝜙 (𝑡 ′). Since lc(𝑞) ∈ ker(𝜃∗) and 𝜙 (𝑡 ′) ∉ ker(𝜃∗),
the constant is equal to zero, and so is lc(𝑞). Accordingly, 𝑞 = 0.

(ii) By Corollary 3.3 and (i), 𝐾 [𝑡] = 𝐾 [𝑡]′ + 𝐴𝜃 . Since 𝐴𝜃 ⊂ 𝐴,
we have that 𝐾 [𝑡]′ ∩𝐴𝜃 = 𝐾 [𝑡]′ ∩𝐴 ∩𝐴𝜃 , which is equal to {0}
by (i). So (ii) holds. □

The𝐶-subspace𝐴𝜃 in Lemma 3.8 will be called the 𝜃 -complement
of 𝐾 [𝑡]′ in 𝐾 [𝑡] in the rest of this section. The next algorithm

projects an element of 𝐴 to 𝐾 [𝑡]′ and the 𝜃 -complement, respec-

tively. It is correct by the first part in the proof of Lemma 3.8 (i).
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Algorithm 3.9. Projection

Input: 𝑟 ∈ 𝐴, the first and second pairs (𝜆𝑡 , 𝜙 (𝑡 ′)) and (𝜃, 𝑐)
associated to 𝐾 (𝑡)

Output: (𝑢, 𝑣) ∈ 𝐾 [𝑡] ×𝐴𝜃 such that

𝑟 = 𝑢′ + 𝑣 (9)

1. 𝑢 ← 0, 𝑣 ← 𝑟 , 𝑑 ← deg(𝑟 )
2. 𝐵 ← Basis(𝑑, 𝜆𝑡 , 𝜙 (𝑡 ′)) (∗Algorithm 3.7 ∗)
3. for 𝑖 from 0 to 𝑑 do

𝑎 ← the coefficient of 𝑡𝑑−𝑖 in 𝑣 , 𝑏 ← 𝜃∗ (𝑎)
(𝑢̃, 𝑣) ← the element of 𝐵 with deg(𝑣) = 𝑑 − 𝑖 ,
𝑐 ← 𝑐−1𝑏, 𝑢 ← 𝑢 + 𝑐𝑢̃, 𝑣 ← 𝑣 − 𝑐𝑣

end do

4. return (𝑢, 𝑣)

We are ready to present the main result of this section.

Theorem 3.10. Let (𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡),
and𝐴𝜃 be the 𝜃 -complement of 𝐾 [𝑡]′. Then 𝐾 (𝑡) = 𝐾 (𝑡)′ ⊕𝐴𝜃 ⊕ 𝑆𝑡 .
Moreover, the projection𝜓𝜃 from 𝐾 (𝑡) to 𝐴𝜃 ⊕ 𝑆𝑡 with respect to the
above direct sum is a complete reduction for 𝐾 (𝑡)′.

Proof. By Lemma 2.3 (i) and Lemma 3.8,𝐾 (𝑡) = (𝐾 (𝑡)′+𝐴𝜃 )⊕𝑆𝑡 .
By Lemma 2.3 (ii) and𝐴𝜃 ⊂ 𝐾 [𝑡], we have𝐾 (𝑡)′∩𝐴𝜃 = 𝐾 [𝑡]′∩𝐴𝜃 ,
which is trivial by Lemma 3.8 (ii). So 𝐾 (𝑡) = 𝐾 (𝑡)′ ⊕ 𝐴𝜃 ⊕ 𝑆𝑡 . It
follows that𝜓𝜃 is a complete reduction for 𝐾 (𝑡)′. □

Below is an algorithm for the complete reduction given in the

above theorem.

Algorithm 3.11. CompleteReduction

Input: 𝑓 ∈ 𝐾 (𝑡), the first and second pairs (𝜆𝑡 , 𝜙 (𝑡 ′)) and (𝜃, 𝑐)
associated to 𝐾 (𝑡)

Output: an 𝑅-pair of 𝑓 with respect to𝜓𝜃 in Theorem 3.10

1. (𝑔, 𝑝, 𝑠) ← InitialReduction(𝑓 ) (∗Algorithm 2.1∗)
if 𝑝 = 0 then return (𝑔, 𝑠) end if

2. (𝑞, 𝑟 ) ← AuxiliaryReduction(𝑝) (∗Algorithm 3.4∗)
if 𝑟 = 0 then return (𝑔 + 𝑞, 𝑠) end if

3. (𝑢, 𝑣) ← Projection(𝑟, 𝜆𝑡 , 𝜙 (𝑡 ′), 𝜃, 𝑐) (∗Algorithm 3.9∗)
return (𝑔 + 𝑞 + 𝑢, 𝑠 + 𝑣)

Example 3.12. Let 𝐾 (𝑡) and 𝑓 be given in Example 2.2. The first
and second associated pairs are (0, 𝑥−1) and (𝑥−1, 1), respectively.
The above algorithm computes an 𝑅-pair of 𝑓 as follows.

1. (𝑔, 𝑝, 𝑠) =
(
0, 𝑥+1𝑥 𝑡 + 𝑥2+𝑥+1

𝑥 ,− 𝑥
𝑡+1

)
by Example 2.2.

2. Algorithm 3.4 finds (𝑞, 𝑟 ) =
(
𝑥𝑡 + 𝑥2

2
, 𝑡+1𝑥

)
∈ 𝐾 [𝑡] × 𝐴 such

that (4) holds, where 𝐴 = 𝑆𝑥 ⊗ 𝐶 [𝑡].
3. Algorithm 3.9 finds (𝑢, 𝑣) =

(
𝑡2

2
+ 𝑡, 0

)
such that (9) holds.

Thus, 𝑝 = (𝑞 +𝑢)′ and (𝑔 +𝑞 +𝑢, 𝑠) is an R-pair of 𝑓 . Algorithm 3.11
finds 𝑠 = − 𝑥

𝑡+1 as a “minimal” non-in-field integrable part.

At last, we describe the restriction of𝜓𝜃 to 𝐾 .

Corollary 3.13. Let 𝜙 : 𝐾 → 𝐾 be a complete reduction for 𝐾 ′,
(𝜃, 𝑐) be the second pair associated to 𝐾 (𝑡) and 𝜓𝜃 be the complete
reduction given in Theorem 3.10. Then, for every 𝑓 ∈ 𝐾 , we have that
𝜓𝜃 (𝑓 ) = 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′), where 𝑐 = −𝜃∗ (𝜙 (𝑓 )) 𝑐−1 .

Proof. Since 𝑓 ∈ 𝐾 , we have 𝑓 ≡ 𝜙 (𝑓 ) mod 𝐾 ′. By Remark

3.5, 𝑓 ≡ 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′) mod 𝐾 (𝑡)′. Note that 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′) belongs
to the 𝜃 -complement. Applying 𝜓𝜃 to the above congruence, we

conclude that𝜓𝜃 (𝑓 ) = 𝜙 (𝑓 ) + 𝑐𝜙 (𝑡 ′), because 𝐾 (𝑡)′ = ker(𝜓𝜃 ) and
the restriction of𝜓𝜃 to 𝐴𝜃 is the identity map. □

4 COMPLETE REDUCTION
In this section, we define primitive towers and remove the assump-

tions made in the previous section.

Definition 4.1. Let 𝐾0 be a differential field whose subfield of
constants is denoted by 𝐶 . A primitive tower over 𝐾0 is

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛
q q

𝐾0 (𝑡1) 𝐾𝑛−1 (𝑡𝑛),
(10)

where 𝑡𝑖 is a primitive monomial over 𝐾𝑖−1 for all 𝑖 ∈ [𝑛].

Note that 𝐶 is the subfield of constants in a primitive tower 𝐾𝑛 .

Theorem 4.2. Let 𝐾𝑛 be a primitive tower in (10), and Θ0 be an
effective 𝐶-basis of 𝐾0. Assume that 𝜙0 : 𝐾0 → 𝐾0 is a complete
reduction for 𝐾 ′

0
, and that there is an algorithm to compute an 𝑅-pair

of every element in 𝐾0. Then the following two assertions hold.
(i) For every 𝑖 ∈ [𝑛]0, 𝐾𝑖 has an effective 𝐶-basis Θ𝑖 and a com-

plete reduction 𝜙𝑖 for 𝐾 ′𝑖 . Moreover, there is an algorithm to
compute an 𝑅-pair of every element in 𝐾𝑖 .

(ii) For every 𝑖 ∈ [𝑛 − 1]0 and 𝑓 ∈ 𝐾𝑖 , 𝜙𝑛 (𝑓 ) −𝜙𝑖 (𝑓 ) is a𝐶-linear
combination of 𝜙𝑖 (𝑡 ′𝑖+1), . . . , 𝜙𝑛−1 (𝑡

′
𝑛), and belongs to 𝐾 ′𝑛 .

Proof. (i) We proceed by induction on 𝑛. If 𝑛 = 0, then the

conclusion clearly holds. Assume that there exists an effective 𝐶-

basis Θ𝑛−1 of 𝐾𝑛−1, a complete reduction 𝜙𝑛−1 on 𝐾𝑛−1 for 𝐾 ′𝑛−1
and an algorithm to compute an R-pair of every element in 𝐾𝑛−1.

The first and second pairs

(
𝜆𝑛, 𝜙𝑛−1 (𝑡 ′𝑛)

)
and (𝜃𝑛, 𝑐𝑛) associated

to 𝐾𝑛 can be constructed by 𝜙𝑛−1 and Θ𝑛−1, respectively.
The tower 𝐾𝑛 has an effective𝐶-basis Θ𝑛 by Remark 2.8. Replac-

ing 𝐾 with 𝐾𝑛−1, 𝑡 with 𝑡𝑛 , 𝜙 with 𝜙𝑛−1, and 𝜃 with 𝜃𝑛 in Theorem

3.10, we find a complete reduction 𝜓𝜃𝑛 on 𝐾𝑛 for 𝐾 ′𝑛 . Doing the

same replacements in Algorithms 2.1, 3.4, 3.7, 3.9 and 3.11, we have

an algorithm to compute an R-pair of every element in 𝐾𝑛 with

respect to𝜓𝜃𝑛 . Then (i) is proved by setting 𝜙𝑛 = 𝜓𝜃𝑛 .

(ii) For every 𝑗 ∈ [𝑛 − 1]0, 𝜙 𝑗+1 (𝑓 ) − 𝜙 𝑗 (𝑓 ) = 𝑐 𝑗𝜙 𝑗 (𝑡 ′𝑗+1) for
some 𝑐 𝑗 ∈ 𝐶 by Corollary 3.13. Summing up these equalities from

𝑖 to 𝑛 − 1, we see that 𝜙𝑛 (𝑓 ) − 𝜙𝑖 (𝑓 ) is a 𝐶-linear combination of

𝜙𝑖 (𝑡 ′𝑖+1), . . . , 𝜙𝑛−1 (𝑡
′
𝑛). It belongs to 𝐾 ′𝑛 by Remark 3.5. □

To perform complete reductions in practice, we assume further

that [𝐾0 : 𝐶 (𝑥)] < ∞ and that 𝐾0 contains no new constant. Com-

plete reductions in𝐶 (𝑥) and its finite algebraic extensions are given
in Example 1.1 and [15], respectively. Improvements on the reduc-

tion for algebraic functions can be found in [12]. Algorithms 2.5 and

2.7 show that 𝐶 (𝑥) has an effective 𝐶-basis. So does 𝐾0 by Remark

2.8. We have a complete reduction on 𝐾𝑛 for 𝐾 ′𝑛 by Theorem 4.2.

Let us make a notational convention so that we can illustrate

computations and proofs through a primitive tower concisely.

Convention 4.3. Let 𝐾𝑛 be a primitive tower in (10), and 𝜙0 be
a complete reduction on 𝐾0 for 𝐾 ′

0
. Let Θ be the effective 𝐶-basis of

𝐾𝑛 obtained from a repeated use of Remark 2.8. For all 𝑖 ∈ [𝑛],
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• 𝜙𝑖 : 𝐾𝑖 → 𝐾𝑖 stands for the complete reduction for 𝐾 ′
𝑖
in the

proof of Theorem 4.2,
•

(
𝜆𝑖 , 𝜙 (𝑡 ′𝑖 )

)
and (𝜃𝑖 , 𝑐𝑖 ) for the first and second pairs associated

to 𝐾𝑖 , respectively,
• 𝑆𝑖 for the set of simple elements in 𝐾𝑖 with respect to 𝑡𝑖 , and
• 𝐴𝑖 for the auxiliary subspace in 𝐾𝑖−1 [𝑡𝑖 ].

All associated pairs are constructed once for all. So the possible

ambiguity mentioned in Remark 2.6 will never occur.

Example 4.4. Let𝐾0 = 𝐶 (𝑥), 𝑡1 = log(1−𝑥), and 𝑡2 be polylog(2, 𝑥),
which is equal to −

∫
log(1−𝑥 )

𝑥 . Then 𝐾2 = 𝐾0 (𝑡1, 𝑡2) is a primitive

tower. We associate (𝜆1, 𝜙0 (𝑡 ′
1
)) =

(
0, 1

𝑥−1

)
, (𝜃1, 𝑐1) =

(
1

𝑥−1 , 1
)

and (𝜆2, 𝜙1 (𝑡 ′
2
)) =

(
0, − 𝑡1𝑥

)
, (𝜃2, 𝑐2) =

(
𝑡1
𝑥 , −1

)
to 𝐾1 and 𝐾2, re-

spectively. Let us compute respective 𝑅-pairs of

𝑓 =

(
(𝑥 − 1)2 𝑡1 + 𝑥

)
𝑡3
2
+ 𝑥 (𝑥 − 1) 𝑡1

𝑥2 (𝑥 − 1) 𝑡2
2

and ˜𝑓 = 𝑡2
2
.

First, InitialReduction(𝑓 ) finds (𝑔, 𝑝, 𝑠) ∈ 𝐾1 (𝑡2) ×𝐾1 [𝑡2] × 𝑆2
such that (1) holds, where

𝑔 =
1

𝑡2
, 𝑝 =

(𝑥 − 1)2𝑡1 + 𝑥
𝑥2 (𝑥 − 1)

𝑡2 and 𝑠 = 0.

Second, AuxiliaryReduction(𝑝) yields (𝑞, 𝑟 ) ∈ 𝐾1 [𝑡2] ×𝐴2 such
that (4) holds, where

𝑞 =
𝑡1

𝑥
𝑡2 +

𝑥 − 1
𝑥

𝑡2
1

and 𝑟 =
𝑡1

𝑥
𝑡2 −

2𝑡1

𝑥
.

At last, we project 𝑟 to 𝐾1 [𝑡2]′ and the 𝜃2-complement by Projec-

tion. The projections are 𝑢 = − 𝑡
2

2

2
+ 2𝑡2 and 0, respectively. So 𝑓 has

an R-pair (𝑔 + 𝑞 + 𝑢, 0). Consequently,
∫
𝑓 = 𝑔 + 𝑞 + 𝑢.

In the same vein, an R-pair of ˜𝑓 is (𝑔, 𝑟 ), where
𝑔 = 𝑥𝑡2

2
+ (2𝑡1𝑥 − 2𝑡1 − 2𝑥) 𝑡2 + 2𝑡21𝑥 − 2𝑡

2

1
− 6𝑡1𝑥 + 6𝑡1 + 6𝑥

and 𝑟 = − 2𝑡2
1

𝑥 . So ˜𝑓 does not have any integral in 𝐾2. The remainder
𝑟 is “simpler” than ˜𝑓 in the sense that 𝑟 is of degree 0 in 𝑡2.

Example 4.5. Let𝐾0 = 𝐶 (𝑥,𝑦) with𝑦3−𝑥𝑦+1 = 0. Set 𝑡1 = log(𝑦).
Then 𝐾1 = 𝐾0 (𝑡1) is a primitive tower. Two associated pairs of 𝐾1
are (𝜆1, 𝜙0 (𝑡 ′

1
)) =

(
2𝑥𝑦
3
, −𝑦

)
and (𝜃1, 𝑐1) = (𝑦, −1), respectively. We

compute an R-pair of 𝑓 = 𝑦 (2 − 3𝑡1).
InitialReduction(𝑓 ) finds a triplet (𝑔, 𝑝, 𝑠) in 𝐾0 (𝑡1) ×𝐾0 [𝑡1] ×

𝑆1 such that (1) holds, where 𝑔 = 0, 𝑝 = −3𝑦𝑡1 + 2𝑦 and 𝑠 = 0.

Since 𝜙0 (𝑡 ′
1
) = −𝑦, we see that 𝑦 ∈ im(𝜙0). Then 𝑝 ∈ 𝐴1. So (4)

holds by setting 𝑞 = 0 and 𝑟 = 𝑝 .
Projection(𝑟, 𝜆1, 𝜙0 (𝑡 ′

1
), 𝜃1, 𝑐1) yields 𝑢 = 3𝑡2

1
− (2𝑥𝑦)𝑡1 + 2𝑥𝑦

and 𝑣 = 0 such that (9) holds. Thus, an R-pair of 𝑓 is (𝑢, 0), and 𝑢 is
an integral of 𝑓 .

We present some empirical results about in-field integration

obtained by our complete reduction (CR), Algorithm AddDecomp-

InField in [19, page 150] (AD), and the Maple function int. Experi-
ments were carried out with Maple 2021 on a computer with imac

CPU 3.6GHZ, Intel Core i9, 16G memory. Maple scripts of CR and
AD are available at http://mmrc.iss.ac.cn/~zmli/ISSAC2025.html.

Every integrand in experimental data was a derivative in the

primitive tower Q(𝑥) (𝑡1, 𝑡2, 𝑡3), where 𝑡1 = log(𝑥), 𝑡2 = log(𝑥 + 1)

and 𝑡3 = log(𝑡1). So CR, AD and int are all applicable and have the

same output, which is an integral of the input in the same tower.

Three integrands in the form 𝑝′
𝑖
were generated for each 𝑖 , where

𝑝𝑖 was a dense polynomial in some selected generators with (total)

degree 𝑖 . Below is a summary of the average timings (in seconds).

In the first suite of data, we set 𝑝𝑖 ∈ Q(𝑥, 𝑡1, 𝑡2) [𝑡3] such that

deg𝑡3
(𝑝𝑖 ) = 𝑖 and all coefficients of 𝑝𝑖 are rational functions whose

numerators and denominators are both sparse random polynomials

in Q[𝑥, 𝑡1, 𝑡2] with total degree 5.

𝑖 1 2 3 4 5 6

CR 1.42 8.32 37.01 122.55 1085.04 >3600

AD 0.96 10.42 47.36 149.02 >3600 >3600

int 1.15 4.52 23.30 53.43 166.27 346.29

In the second suite, 𝑝𝑖 is still inQ(𝑥, 𝑡1, 𝑡2) [𝑡3]. But its coefficients

are quotients of linear polynomials in Q[𝑥, 𝑡1, 𝑡2].
𝑖 6 8 10 12 14 16

CR 0.90 2.09 7.05 12.56 30.35 62.11

AD 1.23 4.29 12.31 31.08 57.67 170.70

int 3.83 17.46 31.61 66.22 144.70 322.19

In the third suite, 𝑝𝑖 ∈ Q(𝑥) [𝑡1, 𝑡2, 𝑡3] whose coefficients are

quotients of random polynomials in Q[𝑥] with degree 5.

𝑖 1 2 3 4 5 6

CR 0.35 0.19 0.59 4.02 21.32 88.51

AD 0.39 0.51 3.48 30.53 614.90 1453.61

int 0.53 0.63 4.68 51.82 154.31 1255.49

In the last suite, 𝑝𝑖 ∈ Q[𝑥, 𝑡1, 𝑡2, 𝑡3]. The Maple function int re-

turned expressions involving unevaluated integrals for some inputs.

Whenever this happened, the corresponding entry is marked by

∫
.

𝑖 5 10 15 20 25 30

CR 0.39 0.25 0.81 1.98 4.32 8.71

AD 0.45 1.06 6.69 32.83 141.09 280.47

int 0.49

∫ ∫
7.09

∫ ∫
The timings reveal that CR outperformed AD, and was more effi-

cient than int except for the integrands in the first suite. There are

also examples for which int took more than one hour without any

output, but both CR and AD returned correct results.

We also observe that InitialReduction and AuxiliaryReduc-

tion were much more time-consuming than Projection in the

complete reduction (see Algorithm 3.11).

5 APPLICATIONS OF REMAINDERS
This section contains two applications: computing elementary in-

tegrals over 𝐾𝑛 with 𝐾0 = 𝐶 (𝑥), and constructing telescopers for

some non-D-finite functions. Convention 4.3 is kept in the section.

5.1 Elementary integrals
Let 𝑓 ∈ 𝐾𝑛 . Then 𝑓 has an elementary integral over 𝐾𝑛 if and only

if its remainder 𝜙𝑛 (𝑓 ) has one. Two properties of remainders allow

us to apply Algorithm 2.9 directly to compute elementary integrals.

To describe the properties, we need three 𝐶-subspaces of 𝐾𝑛 . Set

𝑃 =
∑︁
𝑖∈[𝑛]

𝑡𝑖𝐾𝑖−1 [𝑡𝑖 ], 𝑆 =
∑︁
𝑖∈[𝑛]

𝑆𝑖 ,

http://mmrc.iss.ac.cn/~zmli/ISSAC2025.html
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The above two sums are both direct. Set 𝑇 to be the 𝐶-subspace

spanned by 𝜙0 (𝑡 ′
1
), . . . , 𝜙𝑛−1 (𝑡 ′𝑛) . The sum 𝐾0 + 𝑃 + 𝑆 is direct by a

straightforward verification.

Proposition 5.1. im(𝜙𝑛) ⊂ 𝐾0 ⊕ 𝑃 ⊕ 𝑆.

Proof. The conclusion holds for 𝑛 = 0 because im(𝜙0) ⊂ 𝐾0.
Assume that 𝑛 > 0 and that the conclusion holds for 𝑛 − 1. By

Theorem 3.10, im(𝜙𝑛) ⊂ 𝐴𝑛 + 𝑆𝑛 . Since 𝐴𝑛 = im(𝜙𝑛−1) ⊗ 𝐶 [𝑡𝑛], it
is contained in im(𝜙𝑛−1) + 𝑡𝑛𝐾𝑛−1 [𝑡𝑛]. So

im(𝜙𝑛) ⊂ im(𝜙𝑛−1) + 𝑡𝑛𝐾𝑛−1 [𝑡𝑛] + 𝑆𝑛 .

The proposition then follows from the induction hypothesis. □

Proposition 5.2. If ℎ ∈ 𝐾0 ⊕ 𝑆 , then ℎ − 𝜙𝑛 (ℎ) ∈ 𝐾 ′
0
+𝑇 .

Proof. Assume ℎ = ℎ0 +
∑
𝑖∈[𝑛] 𝑠𝑖 , where ℎ0 ∈ 𝐾0 and 𝑠𝑖 ∈ 𝑆𝑖 .

Then 𝑠𝑖 = 𝜙𝑖 (𝑠𝑖 ) by Theorem 3.10, and 𝜙𝑖 (𝑠𝑖 ) ≡ 𝜙𝑛 (𝑠𝑖 ) mod 𝑇 by

Theorem 4.2 (ii). Hence, 𝑠𝑖 ≡ 𝜙𝑛 (𝑠𝑖 ) mod 𝑇 , which, together with

the application of 𝜙𝑛 to ℎ, implies ℎ − 𝜙𝑛 (ℎ) ≡ ℎ0 − 𝜙𝑛 (ℎ0) mod 𝑇 .

By Theorem 4.2 (ii) again, ℎ − 𝜙𝑛 (ℎ) ≡ ℎ0 − 𝜙0 (ℎ0) mod 𝑇 . The

proposition is proved by noting that ℎ0 − 𝜙0 (ℎ0) ∈ 𝐾 ′
0
. □

An element 𝑠 of 𝑆 can be uniquely written as

∑
𝑖∈[𝑛] 𝑠𝑖 , where

𝑠𝑖 ∈ 𝑆𝑖 . We say that all residues of 𝑠 are constants if all residues of

𝑠𝑖 as an element in 𝐾𝑖−1 (𝑡𝑖 ) belong to 𝐶 for all 𝑖 ∈ [𝑛].

Theorem 5.3. Let 𝐾𝑛 be the primitive tower in (10) with 𝐾0 =

𝐶 (𝑥). Assume that 𝐶 is algebraically closed. Then 𝑓 ∈ 𝐾𝑛 has an
elementary integral over 𝐾𝑛 if and only if

(i) there exists 𝑠 ∈ 𝑆 such that 𝜙𝑛 (𝑓 ) ≡ 𝑠 mod 𝐾0 +𝑇, and
(ii) all residues of 𝑠 belong to 𝐶 .

Proof. Assume that both (i) and (ii) hold. By (ii) and [18, Propo-

sition 3.3], 𝑠 has an elementary integral over 𝐾𝑛 . Every element of

𝐾0 has an elementary integral over 𝐾0 because 𝐾0 = 𝐶 (𝑥). By Re-

mark 3.5, 𝑇 ⊂ 𝐾 ′𝑛 . It follows from (i) that 𝜙𝑛 (𝑓 ) has an elementary

integral over 𝐾𝑛 , and so does 𝑓 .

Conversely, assume that 𝑓 has an elementary integral over 𝐾𝑛 .

Then there exists a 𝐶-linear combination ℎ of logarithmic deriva-

tives in 𝐾𝑛 such that 𝑓 ≡ ℎ mod 𝐾 ′𝑛 by [7, Theorem 5.5.2]. Since

𝜙𝑛 (𝑓 ) = 𝜙𝑛 (ℎ), it suffices to show that 𝜙𝑛 (ℎ) satisfies both (i) and

(ii). By the logarithmic derivative identity, ℎ ≡ 𝑠 mod 𝐾0 for some

𝑠 ∈ 𝑆 , which has merely constant residues. Then ℎ ≡ 𝜙𝑛 (ℎ) mod

𝐾0 + 𝑇 by Proposition 5.2. Hence, 𝜙𝑛 (ℎ) ≡ 𝑠 mod 𝐾0 + 𝑇 by the

above two congruences. Both (i) and (ii) hold. □

Next, we outline an algorithm for computing elementary inte-

grals over 𝐾𝑛 . Let 𝑓 ∈ 𝐾𝑛 .
1. Compute an R-pair (𝑔, 𝜙𝑛 (𝑓 )). If 𝜙𝑛 (𝑓 ) = 0, then

∫
𝑓 = 𝑔

and we are done.

2. Assume that 𝜙𝑛 (𝑓 ) ≠ 0. By Proposition 5.1, we can write

𝜙𝑛 (𝑓 ) = 𝑟 + 𝑝 + 𝑠 and 𝜙𝑖−1 (𝑡 ′𝑖 ) = 𝑟𝑖 + 𝑝𝑖 + 𝑠𝑖
where 𝑖 ∈ [𝑛], 𝑟, 𝑟𝑖 ∈ 𝐾0, 𝑝, 𝑝𝑖 ∈ 𝑃 and 𝑠, 𝑠𝑖 ∈ 𝑆 .

3. Let 𝑧1, . . . , 𝑧𝑛 be constant indeterminates.

- Use ConstantMatrix (Algorithm 2.9) to compute a ma-

trix 𝑀 ∈ 𝐶𝑘×𝑛 and v ∈ 𝐶𝑘 such that 𝑠 − ∑𝑖∈[𝑛] 𝑧𝑖𝑠𝑖 has
merely constant residues if and only if (3) holds.

- Compute 𝑁 ∈ 𝐶𝑙×𝑛 and w ∈ 𝐶𝑙 such that 𝑝 =
∑
𝑖∈[𝑛] 𝑧𝑖𝑝𝑖

if and only if 𝑁
(
𝑐1, . . . , 𝑐𝑛

)𝜏
= w has a solution.

- Solve the linear system

(
𝑀

𝑁

) (
𝑧1, . . . , 𝑧𝑛

)𝜏
=

(
v
w

)
.

4. If the above system has no solution, then 𝑓 has no elementary

integral over 𝐾𝑛 by Theorem 5.3. Otherwise, let 𝑐1, . . . , 𝑐𝑛 be

such a solution. Set

𝑟 = 𝑟 −
∑︁
𝑖∈[𝑛]

𝑐𝑖𝑟𝑖 and 𝑠 = 𝑠 −
∑︁
𝑖∈[𝑛]

𝑐𝑖𝑠𝑖 .

Note that

∫
𝑟 is elementary because 𝑟 ∈ 𝐶 (𝑥), and that

∫
𝑠

is elementary over 𝐾𝑛 by Theorem 5.3. So∫
𝑓 = 𝑔 +

∫
𝑟 +

∫
𝑠 +

∑︁
𝑖∈[𝑛]

𝑐𝑖 (𝑡𝑖 − 𝜆𝑖 ) .

An elementary integral of 𝑠 can be computed by algorithms in [7,

§5.6] and [18, 27].

Example 5.4. We follow the above outline to integrate

𝑓 =
𝑥 + (𝑥 − 1)𝑡2
(𝑥 − 1)𝑡1

+ 𝑡2 + 𝑡3 (1 − 𝑡1)
𝑥

.

where 𝑡1= log(1−𝑥), 𝑡2= log(𝑥)+ polylog(2, 𝑥), 𝑡3= log(𝑥)− Li(1−𝑥).
Let 𝐾3 = 𝐾0 (𝑡1, 𝑡2, 𝑡3).

1. With 𝜙3, we find an R-pair (𝑡2𝑡3, 𝜙3 (𝑓 )) of 𝑓 , where

𝜙3 (𝑓 ) =
𝑥

(𝑥 − 1)𝑡1
.

2. Compute 𝜙𝑖−1 (𝑡 ′𝑖 )=𝑟𝑖 + 𝑝𝑖 + 𝑠𝑖 where
𝑖 1 2 3

(𝑟𝑖 , 𝑝𝑖 , 𝑠𝑖 )
(

1

𝑥−1 , 0, 0
) (

1

𝑥 ,−
𝑡1
𝑥 , 0

) (
1

𝑥 , 0,
1

𝑡1

)
3. By ConstantMatrix (Algorithm 2.9), we have(

0 1 0

0 0 −1

) ©­«
𝑐1
𝑐2
𝑐3

ª®¬ =
(
0

−1

)
.

It has a solution 𝑐1 = 𝑐2 = 0 and 𝑐3 = 1.
4. Computing the residues yields

∫
𝑓 = 𝑡2𝑡3 + 𝑡3 + log

(
𝑡1
𝑥

)
.

Neither int() command in Maple 2021 nor Integrate[] com-

mand in Mathematica 14.1 found an elementary integral for 𝑓 .

The Axiom-based computer algebra system FriCAS 1.3.10 (see [20])

returned a correct integral. Comprehensive tests for elementary

integration in current computer algebra systems are given in [1].

5.2 Telescopers
In this subsection, we let𝐾 = 𝐶 (𝑥,𝑦) be a differential field equipped
with the usual partial derivatives 𝐷𝑥 and 𝐷𝑦 . Differential fields

related to integration for several derivations can be found in [8, 30].

Let 𝑡 be an element in some partial differential field extension

of 𝐾 such that 𝑡 is transcendental over 𝐾 , 𝐷𝑦𝐷𝑥 (𝑡) = 𝐷𝑥𝐷𝑦 (𝑡),
𝐷𝑥 (𝑡) ∈ 𝐾 [𝑡] with degree less than two, and 𝐷𝑦 (𝑡) ∈ 𝐾 \ 𝐷𝑦 (𝐾).
Then 𝑡 is a primitive monomial over 𝐾 with respect to 𝐷𝑦 . The

extended derivatives are still denoted by 𝐷𝑥 and 𝐷𝑦 , respectively.

Every element of 𝐾 [𝑡] is D-finite over 𝐾 . But 𝐾 (𝑡) contains non-
D-finite elements. For instance, 𝑡−1 is not D-finite over 𝐾 , because
𝑡𝑖+1 is the monic denominator of 𝐷𝑖

𝑦 (𝑡−1) for all 𝑖 ∈ N.
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Let 𝑓 ∈ 𝐾 (𝑡). A differential operator 𝐿 ∈ 𝐶 (𝑥) [𝐷𝑥 ]× is called a

telescoper for 𝑓 if 𝐿(𝑓 ) ∈ 𝐷𝑦 (𝐾 (𝑡)). A preliminary discussion on

the existence of telescopers for elements in some primitive towers

is given in [11, §7]. We discuss on it by means of remainders.

Proposition 5.5. Let 𝜙 : 𝐾 (𝑡) → 𝐾 (𝑡) be the complete reduction
for 𝐷𝑦 (𝐾 (𝑡)) given in Convention 4.3 with 𝐾 = 𝐾0 and 𝜙 = 𝜙1. For
𝑓 ∈ 𝐾 (𝑡) and𝑚 ∈ N, 𝑓 has a telescoper of order no more than𝑚 if
and only if there exist 𝑙0 . . . , 𝑙𝑚 ∈ 𝐶 (𝑥), not all zero, such that∑︁

𝑖∈[𝑚]0
𝑙𝑖𝜙 (𝐷𝑖

𝑥 (𝑓 )) = 0. (11)

Proof. Let 𝐿 =
∑
𝑖∈[𝑚]0 𝑙𝑖𝐷

𝑖
𝑥 with 𝑙0, . . . , 𝑙𝑚 ∈ 𝐶 (𝑥). Then

𝜙 (𝐿(𝑓 )) =
∑︁

𝑖∈[𝑚]0
𝑙𝑖𝜙 (𝐷𝑖

𝑥 (𝑓 )), (12)

because 𝜙 is 𝐶 (𝑥)-linear. Assume that (11) holds. Then 𝐿 is a tele-

scoper for 𝑓 with order no more than𝑚. Conversely, assume that 𝐿

is a telescoper for 𝑓 with order no more than𝑚. Then 𝜙 (𝐿(𝑓 )) = 0

because 𝜙 is a complete reduction. Hence, (11) holds by (12). □

Below is a sufficient condition on the existence of telescopers.

Proposition 5.6. Let 𝑓 ∈ 𝐾 (𝑡). Then there exists a unique element
𝑠 ∈ 𝑆𝑡 such that 𝜙 (𝑓 ) ≡ 𝑠 mod 𝐾 [𝑡]. If all residues of 𝑠 with respect
to 𝐷𝑦 are in 𝐶 (𝑥), then 𝑓 has a telescoper.

Proof. There exists a unique pair (𝑞, 𝑠) in 𝐾 [𝑡] × 𝑆𝑡 such that

𝜙 (𝑓 ) = 𝑞 + 𝑠 by Proposition 5.1. Since 𝑞 is D-finite over 𝐾 , it has a

telescoper by [35, Lemma 4.1] or [25, Lemma 3].

It remains to prove that 𝑠 has a telescoper by [14, Remark 2.3].

Let 𝑠 = 𝑎
𝑏
, where 𝑎, 𝑏 ∈ 𝐾 [𝑡], 𝑏 is monic with respect to 𝑡 and

gcd(𝑎, 𝑏) = 1. Assume that 𝛼1, . . . , 𝛼𝑘 are the distinct roots of 𝑏. By

[18, Lemma 3.1 (i)], we have that

𝑠 =
∑︁
𝑗∈[𝑘 ]

𝛽 𝑗
𝐷𝑦 (𝑡 − 𝛼 𝑗 )
𝑡 − 𝛼 𝑗

(13)

where 𝛽 𝑗 ∈ 𝐾 is the residue of 𝑓 at 𝛼 𝑗 with respect to𝐷𝑦 . Since each

𝛽 𝑗 is assumed to be in𝐶 (𝑥), there exists 𝐿 ∈ 𝐶 (𝑥) [𝐷𝑥 ] annihilating
all of them by [23, Theorem 3.29 (3)]. By the commutativity of

applying derivations and taking logarithmic derivatives, we have

𝐷𝑥

(
𝛾
𝐷𝑦 (𝑢)
𝑢

)
= 𝐷𝑦

(
𝛾
𝐷𝑥 (𝑢)
𝑢

)
+ 𝐷𝑥 (𝛾)

𝐷𝑦 (𝑢)
𝑢

.

for all 𝛾 ∈ 𝐶 (𝑥) and 𝑢 ∈ 𝐾 (𝑡). A repeated application of the above

equality to (13), we find 𝑔 ∈ 𝐶 (𝑥) (𝑦, 𝑡) such that

𝐿(𝑠) = 𝐷𝑦 (𝑔) +
∑︁
𝑗∈[𝑘 ]

𝐿
(
𝛽 𝑗
) 𝐷𝑦 (𝑡 − 𝛼 𝑗 )

𝑡 − 𝛼 𝑗
= 𝐷𝑦 (𝑔)

Moreover, (13) implies that 𝑔 is symmetric in 𝛼1, . . .𝛼𝑘 over 𝐾 (𝑡) so
that 𝑔 actually belongs to 𝐾 (𝑡). □

Example 5.7. Let 𝐾 = C(𝑥,𝑦) and 𝑡 = log(𝑥 + 𝑦). We try to
construct respective telescopers for

𝑓 =
2𝑥

(𝑥 + 𝑦) (𝑡2 − 𝑥)
and ˜𝑓 = 𝑦

𝐷𝑦 (𝑡 − 𝑦)
𝑡 − 𝑦 .

Note that 𝑓 is simple. So 𝜙 (𝑓 ) = 𝑓 . Its nonzero residues are ±
√
𝑥

by [7, Theorem 4.4.3]. By Proposition 5.6, 𝑓 has a telescoper. Using

notation in Proposition 5.5, we have 2𝑥𝜙 (𝐷𝑥 (𝑓 )) = 𝑓 . Thus, the
minimal telescoper for 𝑓 is 2𝑥𝐷𝑥 − 1.

Again, ˜𝑓 is simple. So 𝜙 ( ˜𝑓 ) = ˜𝑓 . Since ˜𝑓 has a nonzero residue 𝑦,
Proposition 5.6 is not applicable. Let

𝑔 =
𝐷𝑦 (𝑡 − 𝑦)
𝑡 − 𝑦 and 𝛾 =

𝐷𝑥 (𝑡 − 𝑦)
𝐷𝑦 (𝑡 − 𝑦)

.

Then ˜𝑓 = 𝑦𝑔 and 𝛾 = (1 − 𝑥 − 𝑦)−1. For 𝜔 ∈ 𝐶 (𝑥,𝑦), we calculate
𝐷𝑥 (𝜔𝑔) = 𝐷𝑥 (𝜔)𝑔 + 𝜔𝐷𝑥 (𝑔)

= 𝐷𝑥 (𝜔)𝑔 + 𝜔𝐷𝑦

(
𝐷𝑥 (𝑡 − 𝑦)
𝑡 − 𝑦

)
≡ 𝐷𝑥 (𝜔)𝑔 − 𝐷𝑦 (𝜔)

𝐷𝑥 (𝑡 − 𝑦)
𝑡 − 𝑦 mod 𝐷𝑦 (𝐾 (𝑡))

≡
(
𝐷𝑥 (𝜔) − 𝛾𝐷𝑦 (𝜔)

)
𝑔 mod 𝐷𝑦 (𝐾 (𝑡)).

Then 𝜙 (𝐷𝑥 (𝜔𝑔)) =
(
𝐷𝑥 (𝜔) − 𝛾𝐷𝑦 (𝜔)

)
𝑔 because 𝑔 is simple. Set

𝛾0 = 𝑦 and 𝛾𝑖 = 𝐷𝑥 (𝛾𝑖−1) − 𝛾𝐷𝑦 (𝛾𝑖−1) for 𝑖 ≥ 1. It follows from the
above calculation that 𝜙 (𝐷𝑖

𝑥 ( ˜𝑓 )) = 𝛾𝑖𝑔. Moreover, the denominator
of 𝛾𝑖 has degree 2𝑖 − 1 in 𝑦 for 𝑖 ≥ 1 by a straightforward induction.
Therefore, 𝜙 ( ˜𝑓 ), 𝜙 (𝐷𝑥 ( ˜𝑓 )), 𝜙 (𝐷2

𝑥 ( ˜𝑓 )), . . . are linearly independent
over 𝐶 (𝑥). Consequently, ˜𝑓 has no telescoper by Proposition 5.5.

6 CONCLUSIONS
In this article, we have developed a complete reduction for deriva-

tives in a primitive tower. The reduction algorithm decomposes an

element of such a tower as the sum of a derivative and a remain-

der, where the derivative is unique up to an additive constant and

the remainder is unique. The algorithm can be applied to compute

elementary integrals over primitive towers and to construct tele-

scopers for some non-D-finite functions. The work is a step forward

in the development of complete reductions for derivatives in tran-

scendental Liouvillian extensions or, more generally, admissible

differential fields (see [26, Definition 3.3]).
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