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ABSTRACT

A complete reduction ¢ for derivatives in a differential field K is
a linear operator on K that enables us to decompose f € K as the
sum of a derivative and ¢(f). The derivative is unique up to an
additive constant, and there exists f f e Kifand only if #(f) = 0.

In this paper, we present a complete reduction for derivatives in
a primitive tower algorithmically. Typical examples for primitive
towers are differential fields generated by (poly-)logarithmic func-
tions and logarithmic integrals. The in-field integrability is directly
determined by ¢, and elementary integrability over such towers
can be determined by computing parametric logarithmic parts re-
lated to ¢(f). Moreover, we discuss how to compute telescopers
for non-D-finite functions by the images of ¢.
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1 INTRODUCTION

Let C be a field, V a linear space over C, and U a subspace of V.
A linear operator ¢ on V is called a complete reduction for U if
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v—¢(v) € Uforallv € Vand U = ker(¢) by [23, Definition 5.6.7].
Such an operator ¢ is an idempotent and results in V = U & im(¢).

Let K be a differential field with derivation ” and C be the subfield
of constants in K. For L ¢ K, L’ := {I’ | | € K}. Then K’ is a C-
subspace. For a complementary subspace R of K’, the projection
from K to R is a complete reduction for K’. So there always exist
complete reductions for K’. It remains

(1) to fix a complementary subspace R of K’, and
(2) to develop an algorithm that, for every f € K, computes
g€ Kandr € Rsuchthat f=¢" +r.

In general, both K’ and R are infinite-dimensional.

ExampLE 1.1. Let C be a field of characteristic zero, and’ be the
usual derivation d/dx on C(x). A complementary subspace R of C(x)’
is the set of proper rational functions with squarefree denominators.
For every f € C(x), the Hermite-Ostrogradsky reduction on [7, page
40] computes (g,r) € C(x) X R such that f = g’ + r. The projection
from C(x) toR is a complete reduction for C(x)’.

Our work is motivated by reduction-based creative telescoping
(see [23, §5.6] and [31, §15]) and integration (summation) in finite
terms (see [7, 22, 28, 29, 32, 33]). Both need preprocessors to split
an integrand (summand) as the sum of an integrable (summable)
part and a possibly non-integrable (non-summable) part.

A commonly-used preprocessor in reduction-based creative tele-
scoping is also known as an additive decomposition, which can be
described in terms of linear algebra below: Let V and U be the same
as those in the first paragraph. For v € V, an additive decomposition
for U computes u € U and r € V such that v = u + r, where r is
minimal in some sense. And v € U if and only if r = 0. It is proposed
for constructing minimal telescopers in [2-4, 24], in which V is
the C(x, y)-subspace spanned by a hypergeometric term in x and y,
and U is the C-subspace {g(x,y + 1) — g(x,y) | g € V}. Additive
decompositions also appear in [11, 19], in which V is a primitive
tower of some special kinds, and U consists of all derivatives in V.

A complete reduction is interpreted as an additive decomposition
in [21, §1.2] as follows. Let ¢ : V. — V be a complete reduction for
U, G be a basis of U, and H be a basis of im(¢). Then GU H is a
basis of V. For every v € V,v = },,eguH cwW With ¢, € C. Define
supp(v) = {w € GUH | ¢4y # 0}. For v1,v3 € V, we say that v; is
not higher than vy if supp(v1) € supp(vz). fo =u+r =i +7 for
some u, % € U, r € im(¢) and 7 € V, then supp(r) C supp(¥) by an
easy linear-algebra argument. Thus, r is not higher than 7.
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Additive decompositions do not always induce linear maps. So
they are not necessarily complete reductions. Since linearity brings
a lot of convenience into both theory and practice, it is worthwhile
to seek complete reductions. So far they have been developed for hy-
perexponential functions [5], algebraic functions [12, 15], fuchsian
D-finite functions [16] and D-finite functions [6, 13, 34].

A classical topic in symbolic integration is to compute elemen-
tary integrals of transcendental Liouvillian functions (see [7, 17,
26, 28]). Results about this topic are usually described in monomial
extensions (see [7, §3.4]). Algorithm HERMITEREDUCE in [7, §5.3]
decomposes an element of a monomial extension as the sum of a
derivative, a simple element and a reduced one. The simple element
is handled by the residue criterion [27, Theorem 3], while the re-
duced one is handled by solving parametric Risch equations [29]
and the parametric logarithmic derivative problem [7, §7.3].

To develop a complete reduction for derivatives in a monomial
extension, we proceed by a different approach to handling reduced
elements. Note that reduced elements form a differential subalgebra
W by [7, Corollary 4.4.1 (iii)]. A complete reduction for W’ will be
constructed in the following three steps:

(1) Define an auxiliary subspace A such that W = W’ + A.
(2) Determine a basis of W' N A.
(3) Fix a complementary subspace of W’ contained in A.

The projection from W to the complementary subspace is a com-
plete reduction for W/, which, together with Algorithm HERMITERE-
DUCE, leads to a complete reduction for derivatives in a monomial
extension. Auxiliary subspaces are defined for hyperexponential
towers in [9]. Steps 2 and 3 are worked out in exponential and
hyperexponential towers in [21] and [10], respectively.

In this paper, we develop a complete reduction for derivatives
in primitive towers by the above approach. The reduction leads
naturally to an algorithm for determining the in-field integrability
(see Examples 4.4 and 4.5), and can be applied to compute elemen-
tary integrals over such towers (see Example 5.4). Furthermore,
we construct telescopers for some non-D-finite functions by the
reduction (see Example 5.7).

Our idea is also different from that for the additive decomposition
in S-primitive towers [19], although both make essential use of
integration by parts to reduce polynomial integrands. In addition,
primitive towers include S-primitive ones as a special case.

The rest of this paper is organized as follows. In Section 2, we
specify notation and present several algorithms to be used in the
sequel. Basic constructions in the above three steps are described
in Section 3. The constructions yield an algorithm for our complete
reduction, as soon as the notion of primitive towers is introduced
in Section 4. Some applications of the complete reduction are pre-
sented in Section 5. Concluding remarks are given in Section 6.

2 PRELIMINARIES

This section has three parts. In Section 2.1, we introduce some
basic notion concerning symbolic integration and fix notation to
be used. Effective bases are defined and constructed in Section 2.2.
They allow us to apply dual techniques. In Section 2.3, we review
an algorithm in the proof of [26, Theorem 3.9], which helps us
compute elementary integrals in Section 5.
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2.1 Notation and rudimentary notions

Throughout the paper, G* denotes G \ {0} for an additive group
(G,+,0).Forn € N, the sets {1,...,n} and {0, 1,.. ., n} are denoted
by [n] and [n]o, respectively. The transpose of a matrix is denoted
by (). In the description of an algorithm, a list is written as [- - - ]
and comments are placed between (* --- *).

All fields are of characteristic zero in the paper. Let K be a field.
We denote its algebraic closure by K. For a univariate polynomial p
over K, its degree and leading coefficient are denoted by deg(p) and
le(p), respectively, when the indeterminate is clear from context.
In particular, deg(0) := —co and 1c(0) := 0. Similarly, a univariate
rational function is said to be proper if the degree of its numerator is
less than that of denominator. A rational function r can be uniquely
written as the sum of a polynomial and a proper rational function,
which are denoted by poly(r) and proper(r), respectively.

Amap’ : K — K is called a derivationon K if (a+b)’ = a’ + b’
and (ab)’ = ab’ + a’b for all a,b € K. A differential field is a field
equipped with a derivation. Let (K, /) be a differential field. An
element ¢ of K is called a constant if ¢’ = 0. All constants in K
form a subfield. A differential field (E, §) is called a differential field
extension of (K, ") if K is a subfield of E and ’ is the restriction of §
to K. We still use ’ to denote § when there is no confusion.

Assume that t belongs to a differential field extension of K. If ¢
is transcendental over K and t’ € K[t], then t is called a monomial
over K and K(t) is called a monomial extension of K.

Let t be a monomial over K. A polynomial p € K[t]* is said to be
normal if ged(p, p’) = 1. An element f of K(¢) is said to be simple if
it is proper and has a normal denominator. The subset consisting of
all simple elements is denoted by S;, which is a K-subspace. Note
that f is simple if it has a normal denominator in [7, Definition
3.5.2]. We further require that f is proper for the uniqueness of s in
(1) given below. We call t a primitive monomial over K ift’ € K\ K’.
A primitive monomial extension K(t) has no new constant other
than the constants in K by [7, Theorem 5.1.1].

Let ¢ be a primitive monomial over K. Then K[¢] is a differential
K-algebra. For every f € K(t), there exists g € K(¢), p € K[¢t] and
a unique s € S; such that

f=g+p+s. €
The uniqueness of s is due to [11, Lemma 2.1].

ALGORITHM 2.1. INITIALREDUCTION
INPUT: f € K(t), wheret is a primitive monomial over K
OutrUT: (g, p,s) € K(t) X K[t] X S; such that (1) holds
1. compute (g, p1,s1) € K(t) X K[t] X K(t) by Algorithm HER-
MITEREDUCE in [7, §5.3] such that f = ¢’ + p1 + s1 and that
s1 has a normal denominator

2. pz « poly(s1), s < proper(si), RETURN (g, p1 + p2, 52)
The algorithm is correct by Algorithm HERMITEREDUCE.
ExAMPLE 2.2. Let K = C(x), t = log(x) and

(x+DE2+ (P +2x+ 2t +x+1

= € K(t).

f x(t+1) )
InrTIALREDUCTION( f) finds (g, P s) € K(t) XK|[t] X S; such that (1)
holds, whereg = 0, p = X1t + %, and s = — 25 . Unfortunately,

the algorithm does not extract any in-field integrable part from f. It
will be shown that p € K(t)’ in Example 3.12.
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The next lemma presents important properties concerning de-
composition and contraction in primitive monomial extensions.

LEMMA 2.3. If't is a primitive monomial over K, then

(i) K(t) = (K(t)’ +K[t]) ® S, and
(i) K(t) nK[t] =K[t]’.

Proor. (i) holds by (1), and (ii) holds because the derivative of a
proper element of K(t) remains proper. O

2.2 Effective bases

This section is a preparation for some dual techniques to be used
in Sections 3 and 4.

DEFINITION 2.4. Let E be a field with a subfield F, © be an F-linear
basis of E,0 € © and a € E. Then

(i) 6* stands for the F-linear function on E that maps 6 to 1 and
any other element of © to 0.
(ii) O is said to be effective for a if 0 (a) # 0.
(iii) O is called an effective F-basis if there are two algorithms :
— one finds 0 € O effective for a ifa # 0; and
— the other computes 6% (a).

Let F be a field and F(y) the field of rational functions in y.
SetY = {y‘ |ie N} and Q to be the set consisting of monic and
irreducible polynomials with positive degrees. Then

i
®:YU{y—j|q€Q,0§i<deg(q),j€Z+} (2)
q

is an effective F-basis of F(y) by the irreducible partial fraction
decomposition. The two algorithms required in Definition 2.4 (iii)
are given below. Their correctness is evident.

ALGORITHM 2.5. BASISELEMENT
INpUT:a € F(y)*  Outpur: (6,¢) € © X C* withc = 0*(a)
1. p « poly(a), r « proper(a), d < the denominator of r
2. IF p # 0 THEN RETURN (ydeg(f’), lc(p)) END IF
3. q « a factor of d in Q, m « the multiplicity of q ind
4. h « the coefficient of g~™ in the q-adic expansion of r
5. RETURN (ydeg(h) /9™, lc(h))

REMARK 2.6. There is no obvious rule for choosing an irreducible
factor q of d in step 3 of Algorithm 2.5. For example, let f = m
One may set q to be eithery ory+ 1. Then 0 obtained in step 5 may be
either é or # So the algorithm does not guarantee that the same
output will be returned when it is applied to the same input twice.

In practice, we choose g to be the first member in the list of
irreducible factors of d computed by a factorization algorithm.

ALGORITHM 2.7. COEFFICIENT
InvuT: (b,0) € F(y) Xx©® OutpuT: 0*(b)
1. p « poly(b), r « proper(b)
2. Write 0 = y* /g™ for somek,m € N, q € Q, ged(y,q) = 1
3. IF m = 0 THEN RETURN the coefficient ofyk in p END IF
4. h « the coefficient of g~™ in the q-adic expansion of r
5. RETURN the coefficient of y* in h
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REMARK 2.8. Let F and E be given in Definition 2.4 and C a subfield
of F. Assume that F has an effective C-basis ©y and that E has an
effective F-basis ©. Then {000 | 0y € ©,0 € O} is an effective
C-basis of E by a straightforward recursive argument.

2.3 Constant residues

Let (K, ’) be a differential field with constant subfield C, and ¢ be a
monomial over K. For f € S; and & € K, an element f € K is the
residue of f at ¢ ifand only if f = g+ f (tt_—l;)/ for some g € K(t)
whose denominator is coprime with ¢ — a. The residue of f at « is
nonzero if and only if « is a root of its denominator.

Below is a minor variant of an algorithm described in the proof of
[26, Theorem 3.9]. In its pseudo-code, D; stands for the derivation
on K(t) that maps every element of K to 0 and t to 1, and « for the
coefficient-lifting derivation from (K, ”) to K(t) (see [7, §3.2]).

ALGORITHM 2.9. CONSTANTMATRIX
INPUT: f, g1, ., 9] € St
Outeut: M € CK¥! andv € CK such that all residues Off—ZLl Cigi
belong to C if and only if

Mer,-+-¢) =v (3)
L hef-cgr—-—cgn
where c1, ..., c; are constant indeterminates

2. p « the numerator of h, ¢ < the denominator of h

3. u « the inverse of ¢’ modq, v « the inverse of D¢(q) mod q
w « k(pu) —D¢(pu) -v-k(q), r « the remainder of w on q

4. (M, v) « an augmented matrix of the linear system
incy,...,cy obtained by settingr =0

5. RETURN M,V

To see its correctness, we note that g obtained from step 2 is
normal and free of ¢y, ... ¢;. Then ged(q’, q) = ged(D(g),q) = 1.
Hence, both u and v can be computed in step 3. Let a be a root
of ¢. Then a’ = —v(a) - k(q) (@) by [7, Theorem 3.2.3]. On the other
hand, the residue § of h at « is equal to (pu)(«) so that f’ = w(a),
where w is also computed in step 3. Hence, r = 0 if and only if all
residues of h belong to C. The system obtained in step 4 is linear
because ci, . .., c; appear linearly in the coefficients of r.

3 BASIC CONSTRUCTIONS

In this section, we let (K, ’) be a differential field and C be the sub-
field of its constants. Assume that there exists a complete reduction
¢ on K for K’, and an algorithm that, for every f € K, computes
g € K and ¢(f) such that f = g’ + ¢(f). We call ¢(f) the remain-
der of f and (g, $(f)) a reduction pair of f (with respect to ¢). A
reduction pair will be abbreviated as an R-pair in the sequel.

Let t be a primitive monomial over K. We are going to define a
complete reduction ¥ on K(t) for K(t)’. It suffices to construct a
complementary subspace of K[¢]” in K[¢] by Lemma 2.3.

As a matter of notation, the C-subspace @, V - t* for some
C-subspace V of K is denoted by V ® C[t] in virtue of the C-
isomorphism v ® t' — vt! from V &c C[t] to P, V - L.

First, we decompose K] as the sum of K[¢]” and the C-subspace
consisting of all polynomials whose coefficients are remainders with
respect to ¢. In other word, the subspace is im(¢) ® C[¢].
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LEMMA 3.1. Let p € K[t] with deg(p) = d. There exists q € K[t]
with deg(q) < d andr € im(¢§) ® C[t] with deg(r) < d such that

p=q +r. )

Proor. If p = 0, then set ¢ = r = 0. Assume that p is nonzero
with degree d and leading coefficient .

Let (¢, ¢(1)) be an R-pair of [, and h = p — [+%. With integration
by parts, we have

=g+t +h= (gtd)' + (e +h— (dgt)d1. (5)

Since ¢(1)t? € im($) ® C[t] and d > deg (h - (dgt’)td_l), the

lemma follows from an induction on d. m}

DEFINITION 3.2. The C-subspace im(¢$) ® C[t], denoted by A, is
called the auxiliary subspace for K[t]” in K[t].

CoRrOLLARY 3.3. K[t] = K[t]’ + A.
Proor. It is immediate from Lemma 3.1. ]
The next algorithm is direct from the proof of Lemma 3.1.

ALGORITHM 3.4. AUXILIARYREDUCTION
INpUT: p € K[#]
OutruT: (q,7) € K[t] X A such that (4) holds
1L.pe—p,qe0,r«0
2. WHILE p # 0 DO
d — deg(p), ! « lc(p), compute an R-pair (g, $(1)) of 1
g—q+gt? r—r+¢Ot?, p— p—1t¢ - (dgt')t?!
END DO
3. RETURN (g,r)

Next, let us construct a C-basis of K[t]” N A. To this end, we fix

an R-pair (A4, #(t')) of t’ and call it the first pair associated to K(t).

REMARK 3.5. The remainder ¢(t’) € K[t]’, because it is (t — A¢)’.
Moreover, $(t') # 0 because t is a primitive monomial.

For all i € Z*, we calculate
. ) . i+l AW .
p(t) =t - At = (m —Att’) + (@)L (6)
There exists a pair (g, 7;) € K[t] X A such that (id.t')t!~! = q;+ri
and deg(r;) < i—1by Lemma 3.1. It follows that
. i+l ) ’
PNt —ri = (m = Aet! +¢1i) . ()

LEMMA 3.6. Letvg = ¢(t’) andv; be the left-hand side of (7). Then
(i) deg(vi) =i andlc(v;) = ¢(t') foralli € N.

(i) The set {vg,v1, ...} is a C-basis of K[t]" N A.

Proor. (i) holds because ¢(t’) # 0 and r; in (7) has degree < i.
(i) Set I = K[t]’ N A. Then vy € I* by Remark 3.5 and Definition

3.2. For i > 0,0; € K[t]’ by (7). It is in A because ¢(t')t!,r; € A.
Thus, v; € I for all i € N. The v;’s are C-linearly independent by (i).

Assume that p € I. Then p € K(¢)’ N K[¢]. It follows from [11,
Lemma 2.3] that Ic(p) = ct’ + b’ for some ¢ € C and b € K. On the
other hand, p € A implies that lc(p) € im(¢). Hence, applying ¢ to
le(p) = ct’ + b’ yields le(p) = cg(t'), because ¢ is an idempotent
and ¢(b’) = 0. Let i = deg(p) and q = p — cv;. Then q € I with
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deg(q) < i. Thus, p is a C-linear combination of vy,...,v; by a
straightforward induction on i. O

The next algorithm constructs the basis in the above lemma up
to a given degree. It is correct by (6) and (7).

ALGORITHM 3.7. BaAsis
INPUT: d € N and the first pair (A¢, ¢(t")) associated to K(t)
Ourtrurt: a list [(ug,v0), (u1,01), - .., (ug,vg)], in whichvg = $(t’),
v; is given in (7) and u; € K[t] with u] = v;
L Le [(t=An¢(t))]
2. FOR i FROM 1 TO d DO
a— i+ 1) = Atf, b (idgt!)ET
(g, r) « AuxiLiarYREDUCTION(b) (*Algorithm 3.4%)
(w,0) — (a+q ¢(t)t' =7)
L « the list obtained by appending (u,v) to L
END DO
3. RETURN L

Now, we turn the sum in Corollary 3.3 to a direct one by con-
structing a subspace of A that is a complement of K[¢]’. To proceed,
we need to assume further that K has an effective C-basis, which
is denoted by ©. Then there exists a pair (6, c) € ® x C* such that
¢ =0%(¢(t")). We fix such a pair and call it the second pair associ-
ated to K(t). The complementary subspace consists of polynomials
in A whose coefficients are free of 6. In other words, the subspace
is equal to (im(¢) Nker(6%)) ® C[t].

LEmMA 3.8. Let (0, c) be the second pair associated to K(t). Then

(i) A= (K[t]'NA)® Ay, where Ag = (im(¢p) N ker (6%)) ®C[¢];
(i) K[t] =K[t]” & Ap.

ProoF. (i) Similar to the proof of Lemma 3.6, we set I = K[t]' NA.

First, we show A = I+ Ay. Since I € A and Ay C A, it suffices to
show A C I+ Ay. Let {vg, v1, ...} be the basis of I in Lemma 3.6 (ii),
and p € A. Set d=deg(p), I=1c(p) and z=0"(I). By Lemma 3.6 (i),

p—clzog=gt? +h, )

where g = [—c~!z¢(t') and h € K[t] with deg(h) < d.Since p € A,
we have that | € im(¢), and, thus, g € im(¢) by its definition.
Furthermore, 6*(g) = 6*(I) — ¢~ 120*(¢(t')) = z — z = 0. Hence,
g € ker(0%). Consequently, g € im(¢) N ker(6*). We conclude that
gt € Ap. It follows from (8) that h € A and p — h € I + Ay, which
allow us to carry out an induction on d as follows.

Ifd = 0,then h = 0.So p € I+Ay. Suppose that all elements of A
with degree < d are in I + Ag. Then h € I + Ay. Hence, p € I + Ay.

Second, we show that I N Ag = {0}. Assume that g € I N Ay.
Then q is a C-linear combination of the v;’s. So lc(q) is the product
of a constant and ¢(t’). Since lc(q) € ker(0*) and ¢(t’) ¢ ker(6*),
the constant is equal to zero, and so is lc(q). Accordingly, g = 0.

(i) By Corollary 3.3 and (i), K[t] = K[t]” + Ag. Since Ag C A,
we have that K[t]” N Ag = K[t]’ N AN Ay, which is equal to {0}
by (i). So (ii) holds. O

The C-subspace Ap in Lemma 3.8 will be called the 8-complement
of K[t]’ in K[¢] in the rest of this section. The next algorithm
projects an element of A to K[¢]’ and the §-complement, respec-
tively. It is correct by the first part in the proof of Lemma 3.8 (i).
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ALGORITHM 3.9. PROJECTION
INPUT: r € A, the first and second pairs (A, $(¢')) and (6, ¢)
associated to K(t)
OuTtpUT: (u,0) € K[t] X Ag such that

r=u’ +v 9)

1. u 0,0« r,d« deg(r)
2. B« Basis(d, As, p(¢")) (*Algorithm 3.7 %)
3. FOR i FROM 0 TO d DO
a « the coefficient of t%~1 inv, b — 0*(a)
(@1, 0) « the element of B with deg(d) =d — i,
Ee—c b, ue—u+éii, ve—0-2
END DO
4. RETURN (u,0)

We are ready to present the main result of this section.

THEOREM 3.10. Let (6, c) be the second pair associated to K(t),
and Ag be the 0-complement of K[t]’. Then K(t) = K(t)' ® Ag ® S¢.
Moreover, the projection g from K(t) to Ag @ Sy with respect to the
above direct sum is a complete reduction for K(t)’.

Proor. By Lemma 2.3 (i) and Lemma 3.8, K (¢) = (K (t)'+Ag)®S;.
By Lemma 2.3 (ii) and Ag C K[t], we have K(¢)’ NAg = K[t]' N Ay,
which is trivial by Lemma 3.8 (ii). So K(¢) = K(¢)" & Ag & S¢. It
follows that iy is a complete reduction for K(¢)’. O

Below is an algorithm for the complete reduction given in the
above theorem.

ALGORITHM 3.11. COMPLETEREDUCTION
InpUT: f € K(2), the first and second pairs (A, $(t')) and (6, c)
associated to K(t)
OUTPUT: an R-pair of f with respect to g in Theorem 3.10

1. (g, p,s) « InrT1aLREDUCTION(f) (*Algorithm 2.1%)
IF p = 0 THEN RETURN (¢, s) END IF

2. (g, r) « AuxiLIARYREDUCTION(p) (*Algorithm 3.4%)
IF r = 0 THEN RETURN (g + ¢, S) END IF

3. (u,0) < PROJECTION(r, As, §(¢'), 0,¢) (*Algorithm 3.9%)
RETURN (g +q+u, s +0)

EXAMPLE 3.12. Let K(t) and f be given in Example 2.2. The first
and second associated pairs are (0,x~1) and (x71,1), respectively.
The above algorithm computes an R-pair of f as follows.

L (g.ps) = (O, g xz?ﬂ,—%) by Example 2.2.

2. Algorithm 3.4 finds (q,r) = (xt + ’(72 %) € K[t] X A such

that (4) holds, where A = Sy ® C|[t].
3. Algorithm 3.9 finds (u,v) = (% +t, 0) such that (9) holds.
Thus, p = (q+u)’ and (9+q+u,s) is an R-pair of f. Algorithm 3.11
finds s = —337 as a “minimal” non-in-field integrable part.

At last, we describe the restriction of /g to K.

COROLLARY 3.13. Let ¢ : K — K be a complete reduction for K’,
(0, ¢) be the second pair associated to K(t) and yg be the complete
reduction given in Theorem 3.10. Then, for every f € K, we have that

Yo(f) = ¢(f) +E¢(t'), where e = =0 ((f)) ™.
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Proor. Since f € K, we have f = ¢(f) mod K’. By Remark
3.5, f = ¢(f) + ¢ (¢') mod K(¢)'. Note that #(f) + é¢(t") belongs
to the O-complement. Applying ¢y to the above congruence, we
conclude that Y (f) = ¢(f) + ¢¢(t'), because K(¢)” = ker(yy) and
the restriction of /g to Ay is the identity map. O

4 COMPLETE REDUCTION

In this section, we define primitive towers and remove the assump-
tions made in the previous section.

DEFINITION 4.1. Let Ky be a differential field whose subfield of
constants is denoted by C. A primitive tower over Ky is

Ky cC K; [ C K,
I [ (10)
Ko(t1) Kn-1(tn),

where t; is a primitive monomial over K;_ for alli € [n].
Note that C is the subfield of constants in a primitive tower Kj,.

THEOREM 4.2. Let K, be a primitive tower in (10), and ©¢ be an
effective C-basis of K. Assume that ¢o : Ko — Ko is a complete
reduction for K/, and that there is an algorithm to compute an R-pair
of every element in Ky. Then the following two assertions hold.

(i) Foreveryi € [n]o, Ki has an effective C-basis ©; and a com-
plete reduction ¢; for K. Moreover, there is an algorithm to
compute an R-pair of every element in K.

(ii) Foreveryi e [n—1]o and f € K;, ¢n(f) — ¢i(f) is a C-linear

combination of $i(t], ), ..., pn-1(t;,), and belongs to Kj,.

Proor. (i) We proceed by induction on n. If n = 0, then the
conclusion clearly holds. Assume that there exists an effective C-
basis ©,-1 of Kj,—1, a complete reduction ¢,_1 on K,_; for Kr’l_1
and an algorithm to compute an R-pair of every element in Kp,_.

The first and second pairs (A4, ¢n—1(ty,)) and (6p, c,) associated
to K, can be constructed by ¢,,—1 and ©,_1, respectively.

The tower Kj, has an effective C-basis ©, by Remark 2.8. Replac-
ing K with Kj,_1, t with t,,, ¢ with ¢,,_1, and 0 with 6, in Theorem
3.10, we find a complete reduction iy, on K for Kj. Doing the
same replacements in Algorithms 2.1, 3.4, 3.7, 3.9 and 3.11, we have
an algorithm to compute an R-pair of every element in K, with
respect to g, . Then (i) is proved by setting ¢, = g,

(ii) For every j € [n — 1]o, ¢j+1(f) — ¢;(f) = cj-¢wj(t;.+l) for
some c; € C by Corollary 3.13. Summing up these equalities from
i ton— 1, we see that ¢, (f) — ¢;i(f) is a C-linear combination of
$i(t], 1), ..., pn—1(t,). It belongs to K;, by Remark 3.5. O

To perform complete reductions in practice, we assume further
that [Kp : C(x)] < oo and that K contains no new constant. Com-
plete reductions in C(x) and its finite algebraic extensions are given
in Example 1.1 and [15], respectively. Improvements on the reduc-
tion for algebraic functions can be found in [12]. Algorithms 2.5 and
2.7 show that C(x) has an effective C-basis. So does Ky by Remark
2.8. We have a complete reduction on K, for K}, by Theorem 4.2.

Let us make a notational convention so that we can illustrate
computations and proofs through a primitive tower concisely.

CONVENTION 4.3. Let K, be a primitive tower in (10), and ¢o be
a complete reduction on Ko for K;. Let © be the effective C-basis of
K, obtained from a repeated use of Remark 2.8. For alli € [n],
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e ¢; : Ki — K; stands for the complete reduction for K] in the
proof of Theorem 4.2,

o (A ¢(tl')) and (0;, c;) for the first and second pairs associated
to Kj, respectively,

o S; for the set of simple elements in K; with respect to t;, and

o A; for the auxiliary subspace in K;_1[t;].

All associated pairs are constructed once for all. So the possible
ambiguity mentioned in Remark 2.6 will never occur.

ExamMpLE4.4. LetKy = C(x),t; = log(1—x), andt; bepolylog(2, x),
which is equal to —/ w. Then K, = Ko(t1,t2) is a primitive
tower. We associate (A1, ¢o(t])) = (0, ﬁ) , (01,¢1) = (ﬁ, l)

and (A2, $1(13)) = (0, —%), (09,¢0) = (;—‘ - ) to K1 and Ky, re-

spectively. Let us compute respective R-pairs of

((x—1)2t1+x)tg+x(x—l)t1 -
= and =1,.
f X2 (x—1)t2 f=t
First, INTTIALREDUCTION( f) finds (g, p,s) € Ki(t2) X K1[t2] X Sz
such that (1) holds, where
1 (x = 1%t +x
=—, =1 d
g t P x2(x-1) 2 an
Second, AUXILIARYREDUCTION(p) yields (q,r) € Ki[t2] X A such
that (4) holds, where

s=0.

t 2t
and r= —1t2 -1

51 x—1,
= —fh+—t
1 xz X 1 X

At last, we project r to K1 [t2]” and the 03-complement by PROJEC-
2

TION. The projections are u = —%2 + 2ty and 0, respectively. So f has
an R-pair (g + q + u,0). Consequently, ff =g+q+u.
In the same vein, an R-pair off is (g, ¥), where

G =xt? + (2t1x — 211 — 2x) tp + 2t2x — 267 — 611X + 6t1 + 6x

- 212 = . . .
and 7 = —=1}. So f does not have any integral in Ky. The remainder
7 is “simpler” than f in the sense that 7 is of degree 0 in t;.

ExaMPLE4.5. LetKg = C(x,y) withy3—xy+1 = 0. Sett; = log(y).
Then Ky = Ko(t1) is a primitive tower. Two associated pairs of Ky
are (A1, ¢o(t])) = (szy, —y) and (01, ¢1) = (y, —1), respectively. We
compute an R-pair of f = y(2 — 3t1).

IntTIALREDUCTION( f) finds a triplet (g, p,s) in Ko(t1) X Ko[t1] X
S1 such that (1) holds, where g = 0, p = =3yt; + 2y and s = 0.

Since ¢o(t]) = —y, we see that y € im(¢o). Then p € A;. So (4)
holds by setting q = 0 andr = p.

PROJECTION(r, A1, do(t]), 01, c1) yields u = 3t12 — (2xy)t; + 2xy
and v = 0 such that (9) holds. Thus, an R-pair of f is (u,0), and u is
an integral of f.

We present some empirical results about in-field integration
obtained by our complete reduction (CR), Algorithm AppDEcomp-
INFIELD in [19, page 150] (AD), and the MAPLE function int. Experi-
ments were carried out with MAPLE 2021 on a computer with imac
CPU 3.6GHZ, Intel Core 19, 16G memory. MAPLE scripts of CR and
AD are available at http://mmrc.iss.ac.cn/~zmli/ISSAC2025.html.

Every integrand in experimental data was a derivative in the
primitive tower Q(x)(#1, t2, t3), where t; = log(x), t2 = log(x + 1)
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and 3 = log(#1). So CR, AD and int are all applicable and have the
same output, which is an integral of the input in the same tower.
Three integrands in the form p] were generated for each i, where
pi was a dense polynomial in some selected generators with (total)
degree i. Below is a summary of the average timings (in seconds).

In the first suite of data, we set p; € Q(x, t1, 2)[#3] such that
deg,, (pi) = i and all coefficients of p; are rational functions whose
numerators and denominators are both sparse random polynomials
in Q[x, t1, tz] with total degree 5.

i 1 2 3 4 5 6
CR | 1.42 | 832 | 37.01 | 122.55 | 1085.04 | >3600
AD | 0.96 | 10.42 | 47.36 | 149.02 | >3600 | >3600
int | 1.15 | 4.52 | 23.30 | 53.43 166.27 | 346.29

In the second suite, p; is still in Q(x, 1, t2) [#3]. But its coefficients
are quotients of linear polynomials in Q[x, #1, f2].

i 6 8 10 12 14 16
CR | 090 | 2.09 | 7.05 | 12.56 | 30.35 62.11
AD | 1.23 | 4.29 | 12.31 | 31.08 | 57.67 | 170.70
int | 3.83 | 17.46 | 31.61 | 66.22 | 144.70 | 322.19

In the third suite, p; € Q(x)[#1, t2, t3] whose coefficients are
quotients of random polynomials in Q[x] with degree 5.

i 1 2 3 4 5 6
CR | 035 0.19 | 0.59 | 4.02 | 21.32 88.51
AD | 0.39 | 0.51 | 3.48 | 30.53 | 614.90 | 1453.61
int | 0.53 | 0.63 | 4.68 | 51.82 | 154.31 | 1255.49

In the last suite, p; € Q[x, t1, t2, t3]. The MAPLE function int re-
turned expressions involving unevaluated integrals for some inputs.
Whenever this happened, the corresponding entry is marked by / .

i 5 10 15 20 25 30
CR 1039025 0.81| 198 4.32 8.71
AD | 0.45 | 1.06 | 6.69 | 32.83 | 141.09 | 280.47

int [o49| [ | [ [ 7.09 [ /

The timings reveal that CR outperformed AD, and was more effi-
cient than int except for the integrands in the first suite. There are
also examples for which int took more than one hour without any
output, but both CR and AD returned correct results.

We also observe that INITIALREDUCTION and AUXILIARYREDUC-
TION were much more time-consuming than PRoJECTION in the
complete reduction (see Algorithm 3.11).

5 APPLICATIONS OF REMAINDERS

This section contains two applications: computing elementary in-
tegrals over K, with Ky = C(x), and constructing telescopers for
some non-D-finite functions. Convention 4.3 is kept in the section.

5.1 Elementary integrals

Let f € Kp. Then f has an elementary integral over Kj, if and only
if its remainder ¢, (f) has one. Two properties of remainders allow
us to apply Algorithm 2.9 directly to compute elementary integrals.
To describe the properties, we need three C-subspaces of K. Set

P= Z tiKi—1[ti], S= Z Si,
] i€[n]

i€[n
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The above two sums are both direct. Set T to be the C-subspace
spanned by ¢o(t]), ..., ¢n-1(ty,). The sum Ko + P + S is direct by a
straightforward verification.

ProposITION 5.1. im(¢p,) C Ko @ P @ S.

Proor. The conclusion holds for n = 0 because im(¢p) C Kp.
Assume that n > 0 and that the conclusion holds for n — 1. By
Theorem 3.10, im(¢,) C Ay + Sy,. Since A, = im(Pp—1) ® Clt,], it
is contained in im(¢p—1) + tnKpn—1[tn]. So

im(@n) C im(pp—1) + thnKn—1[tn] + Sn.

The proposition then follows from the induction hypothesis. O
PROPOSITION 5.2. Ifh € Ko ® S, then h — ¢, (h) € Kj +T.

PrOOF. Assume h = ho + Xje[n] Si» Where hg € Ko and s; € ;.
Then s; = ¢;(s;) by Theorem 3.10, and ¢;(s;) = ¢,(s;) mod T by
Theorem 4.2 (ii). Hence, s; = ¢, (s;) mod T, which, together with
the application of ¢, to h, implies h — ¢, (h) = hg — ¢pn(ho) mod T.
By Theorem 4.2 (ii) again, h — ¢, (h) = ho — ¢o(ho) mod T. The
proposition is proved by noting that kg — ¢ (ho) € K. O

An element s of S can be uniquely written as };¢[n] Si, where
si € Si. We say that all residues of s are constants if all residues of
si as an element in Kj_1(#;) belong to C for all i € [n].

THEOREM 5.3. Let K, be the primitive tower in (10) with Ky =
C(x). Assume that C is algebraically closed. Then f € K, has an
elementary integral over K, if and only if

(i) there existss € S such that ¢p(f) =s mod Ko + T, and
(ii) all residues of s belong to C.

ProOF. Assume that both (i) and (ii) hold. By (ii) and [18, Propo-
sition 3.3], s has an elementary integral over K. Every element of
Ko has an elementary integral over Ky because Ky = C(x). By Re-
mark 3.5, T C Kj,. It follows from (i) that ¢, (f) has an elementary
integral over Ky, and so does f.

Conversely, assume that f has an elementary integral over K.
Then there exists a C-linear combination h of logarithmic deriva-
tives in K, such that f = A mod K}, by [7, Theorem 5.5.2]. Since
¢n(f) = ¢pn(h), it suffices to show that ¢, (h) satisfies both (i) and
(ii). By the logarithmic derivative identity, A = s mod Kj for some
s € S, which has merely constant residues. Then h = ¢ (h) mod
Ko + T by Proposition 5.2. Hence, ¢,(h) = s mod Koy + T by the
above two congruences. Both (i) and (ii) hold. O

Next, we outline an algorithm for computing elementary inte-
grals over K. Let f € K.
1. Compute an R-pair (g, ¢n(f)). If ¢pn(f) = 0, then ff =g
and we are done.
2. Assume that ¢, (f) # 0. By Proposition 5.1, we can write

$u(f)=r+p+s and ;i 1(t) =ri+pi+si
where i € [n],r,r;i € Ko, p,pi € Pands,s; € S.
3. Let z1,. .., z, be constant indeterminates.
- Use CONSTANTMATRIX (Algorithm 2.9) to compute a ma-

trix M € CK*" and v € C¥ such that s — Yie[n] ziSi has
merely constant residues if and only if (3) holds.
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- Compute N € C™*" andw € ¢! such that p = Yie[n] 2ipi

if and only if N (cl, e cn)T = w has a solution.
. M v
- Solve the linear system (N) (z1,.. ,,zn)T — (w) .
4. If the above system has no solution, then f has no elementary
integral over K, by Theorem 5.3. Otherwise, let ¢y, . . ., ¢, be

such a solution. Set

F=r-— Z ¢iri and S=s-— Z Cisi.
]

ie[n i€[n]

Note that f 7 is elementary because 7 € C(x), and that _/ S
is elementary over K, by Theorem 5.3. So

/f:g+‘/F+/§+ie%l]5,~(ti—Ai).

An elementary integral of § can be computed by algorithms in [7,
§5.6] and [18, 27].
ExaMPLE 5.4. We follow the above outline to integrate
f_x+(x—l)t2 ty +1t3(1—t1)
T (x-Dh x ’

where t;=log(1-x), t2=1log(x)+ polylog(2, x), t3=1og(x)— Li(1-x).
Let K3 = Ko (ty, t2, t3).

1. With ¢3, we find an R-pair (t2t3, ¢3(f)) of f, where
B = o p
2. Compute ¢;—1(t])=r; + p; +s; where
i 1 2 3
oo [ [ (- [0 7]
3. By CoNsTANTMATRIX (Algorithm 2.9), we have

o 1 o)) _(o
0 o -1\ \-1)
C

3

It has a solutionc1 = c3 =0 and c3 = 1.

4. Computing the residues yields /f = tyt3 + 13 + log (;—1)

Neither int() command in MAPLE 2021 nor Integrate[] com-
mand in MATHEMATICA 14.1 found an elementary integral for f.
The Ax1oM-based computer algebra system FRICAS 1.3.10 (see [20])
returned a correct integral. Comprehensive tests for elementary
integration in current computer algebra systems are given in [1].

5.2 Telescopers

In this subsection, we let K = C(x, y) be a differential field equipped
with the usual partial derivatives Dy and Dy. Differential fields
related to integration for several derivations can be found in [8, 30].

Let t be an element in some partial differential field extension
of K such that ¢ is transcendental over K, DyDx(t) = DxDy(t),
Dy (t) € K[t] with degree less than two, and Dy(t) € K \ Dy(K).
Then t is a primitive monomial over K with respect to Dy. The
extended derivatives are still denoted by Dy and Dy, respectively.
Every element of K[t] is D-finite over K. But K(t) contains non-
D-finite elements. For instance, t ! is not D-finite over K, because
t*1 is the monic denominator of D;(t‘l) foralli e N.
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Let f € K(t). A differential operator L € C(x)[Dx]* is called a
telescoper for f if L(f) € Dy(K(t)). A preliminary discussion on
the existence of telescopers for elements in some primitive towers
is given in [11, §7]. We discuss on it by means of remainders.

PROPOSITION 5.5. Let ¢ : K(t) — K(t) be the complete reduction
for Dy(K(t)) given in Convention 4.3 with K = Ky and ¢ = ¢1. For
f €K(t) andm €N, f has a telescoper of order no more than m if
and only if there existly ..., I, € C(x), not all zero, such that

D, gD =0. (1)

ie[m]o
PrOOF. Let L = 3¢ m), LiDk with Iy, .. .,
S = D LpDL(f), (12)

ie[m]o
because ¢ is C(x)-linear. Assume that (11) holds. Then L is a tele-
scoper for f with order no more than m. Conversely, assume that L
is a telescoper for f with order no more than m. Then ¢(L(f)) =0
because ¢ is a complete reduction. Hence, (11) holds by (12). O

Iy € C(x). Then

Below is a sufficient condition on the existence of telescopers.

PROPOSITION 5.6. Let f € K(t). Then there exists a unique element
s € St such that ¢(f) = s mod K[t]. If all residues of s with respect
to Dy are in C(x), then f has a telescoper.

Proor. There exists a unique pair (g, s) in K[t] X S; such that
¢(f) = q+ s by Proposition 5.1. Since q is D-finite over K, it has a
telescoper by [35, Lemma 4.1] or [25, Lemma 3].

It remains to prove that s has a telescoper by [14, Remark 2.3].
Let s = 4, where a,b € K[t], b is monic with respect to ¢ and
ged(a,b) = 1. Assume that aj, . . ., o are the distinct roots of b. By
[18, Lemma 3.1 (i)], we have that

s= Y pru 0
Jjelk]

—Ufj

where f§; € K is the residue of f at @ 7 with respect to Dy. Since each

pj is assumed to be in C(x), there exists L € C(x)[Dy] annihilating
all of them by [23, Theorem 3.29 (3)]. By the commutativity of
applying derivations and taking logarithmic derivatives, we have

Dy Do o
20) =0y (122 a2

Dy (y

forall y € C(x) and u € K(¢). A repeated application of the above
equality to (13), we find g € C(x)(y, t) such that

(t - aj)
L =Dy@)+ X L(s) L < py(g)
jelk] !
Moreover, (13) implies that g is symmetric in a1, ... o over K(t) so
that g actually belongs to K(t). ]

ExaMmpLE 5.7. Let K = C(x,y) and t = log(x +y). We try to
construct respective telescopers for
D t—
and f= y( y)

I= 9@ r

Note that f is simple. So ¢(f) = f. Its nonzero residues are ++/x
by [7, Theorem 4.4.3]. By Proposition 5.6, f has a telescoper. Using

2x ~
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notation in Proposition 5.5, we have 2x¢(Dx(f)) = f. Thus, the
minimal telescoper for f is 2xDx — 1.

Again, f is simple. So ¢(f) f Slncef has a nonzero residue y,
Proposition 5.6 is not applicable. Let

Dy(t — D.(t —
_ y(t-y) and v x ( y).
t-y D y(t -y)

Thenf =ygandy = (1—x—y)~'. Forw € C(x, 1), we calculate

Dy (wg) = Dx(w)g + wDx (g)

Dx(t-1y)
t-y

x( y)
-y

= Dx(w)g + wDy (

= Dx(w)g - Dy(0) ———

= (Dx(w) — yDy(w)) g mod Dy(K(t)).
Then ¢(Dx(wg)) = (Dx(®) - yDy(w)) g because g is simple. Set
Yo =y andy; = Dx(yi-1) — yYDy(yi-1) fori = 1. It follows from the
above calculation that ¢(DL(f)) = yig. Moreover, the denominator
of yi has degree 2i — 1 iny fori > 1 by a straightforward induction.

Therefore, gb(f) ¢(Dx (f)), (D2 (f)), ...are linearly independent
over C(x). Consequently, f has no telescoper by Proposition 5.5.

mod Dy (K(t))

6 CONCLUSIONS

In this article, we have developed a complete reduction for deriva-
tives in a primitive tower. The reduction algorithm decomposes an
element of such a tower as the sum of a derivative and a remain-
der, where the derivative is unique up to an additive constant and
the remainder is unique. The algorithm can be applied to compute
elementary integrals over primitive towers and to construct tele-
scopers for some non-D-finite functions. The work is a step forward
in the development of complete reductions for derivatives in tran-
scendental Liouvillian extensions or, more generally, admissible
differential fields (see [26, Definition 3.3]).
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