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We provide a technique to detect the singularities of rational planar curves and to compute
the correct order of each singularity including the infinitely near singularities without
resorting to blow ups. Our approach employs the given parametrization of the curve and
uses a μ-basis for the parametrization to construct two planar algebraic curves whose
intersection points correspond to the parameters of the singularities including infinitely
near singularities with proper multiplicity. This approach extends Abhyankar’s method of
t-resultants from planar polynomial curves to rational planar curves. We also derive the
classical result that for a rational planar curve of degree n the sum of all the singularities
with proper multiplicity is (n − 1)(n − 2)/2. Examples are provided to flesh out our results.
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1. Introduction

Singularities are the most consequential points on rational planar curves. These critical points allow us to determine the
geometry and topology of the curve, and to develop robust rendering algorithms based on the locations and types of the
singularities. Over the years, a great deal of research has been devoted to the study of these singularities; see, for example,
Chen and Sederberg (2002), Coolidge (1931), Fulton (1989), Hilton (1920), Perez-Diaz (2007), and Walker (1950).

While singularities on rational planar curves are not so difficult to detect, the correct order of each singularity, including
the infinitely near singularities, is not so easy to compute. Often blow ups are required to resolve a singularity. The purpose
of this paper is to detect the singularities of rational planar curves and to compute the correct order of each singularity
including the infinitely near singularities without resorting to blow ups.

The technique we shall employ here uses the method of μ-bases. A μ-basis is a special basis for the syzygy module for
the parametrization of a rational planar curve. Fortuitously, μ-bases are easy to compute. Using μ-bases, we shall reduce
the problem of computing the singularities on a rational planar curve to the problem of computing the intersection points
on two related planar algebraic curves. The parameters of each singularity correspond to the intersection points of these
algebraic curves, and the multiplicity of the parameters, including all the infinitely near singularities, corresponds exactly
to the multiplicity of the corresponding intersection points. Thus using μ-bases, we shall find all the singularities with
their correct multiplicities without resorting to blow ups. This approach extends Abhyankar’s method (Abhyankar, 1990) of
t-resultants from planar polynomial curves to rational planar curves.

Nevertheless, the main contribution of this paper is not the development of better computational tools nor the proof of novel the-
oretical results, but rather the insights provided by the novel way in which these issues are addressed. In a sequel to this paper –
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see Jia and Goldman (2009) – we shall show how to apply our approach to prove an outstanding conjecture of Chen, Wang
and Liu using the Smith form of the Bezout matrix of a μ-basis to compute both the singular points and the infinitely near
singular points on a rational planar curve – see Chen et al. (2008). So far no other approach to the analysis of singularities
has proved powerful enough to establish this conjecture. Thus the main purpose of this paper is insight not computation.

We begin in Section 2 by characterizing singularities and infinitely near singularities for rational planar curves. We also
discuss the method of blow ups for rational planar curves. In Section 3 we review μ-bases and their properties. Section 4 is
devoted to stating and proving our main result: using μ-bases to construct two planar algebraic curves whose intersection
points correspond to the parameters of the singularities with proper multiplicity of a given rational planar curve. Based on
the results of Section 4, we provide, in Section 5, two examples to flesh out these theorems. We close in Section 6 with a
brief summary of our work and a few follow up problems for future research.

2. Singularities, infinitely near points and blow ups

Let k[s, u] be the set of homogeneous polynomials in the homogeneous parameter s : u with coefficients in the alge-
braically closed field k of characteristic zero. A degree n rational planar curve is usually written in homogeneous form
as

P(s, u) = (
a(s, u),b(s, u), c(s, u)

)
, (1)

where a(s, u), b(s, u), c(s, u) are degree n homogeneous polynomials in k[s, u]. To avoid the degenerate case where P(s, u)

parameterizes a line, we shall assume that the three homogeneous polynomials a(s, u), b(s, u), c(s, u) are relatively prime
and linearly independent. Moreover, throughout this paper we will assume for simplicity that the parametrization P(s, u) is
generically one-to-one.

2.1. Singularities

Every degree n rational planar curve P(s, u) as in Eq. (1) has an implicit polynomial representation. That is, up to a
constant multiple, there is a unique irreducible homogeneous polynomial f (x, y, w) of degree n such that

f
(
a(s, u),b(s, u), c(s, u)

) ≡ 0.

Singularities are usually defined in terms of the vanishing of the partial derivatives of f (x, y, w).

Definition 2.1. A point Q0 = (x0 : y0 : w0) ∈ P
2
k is a singularity of multiplicity r on the algebraic curve f (x, y, w) = 0 if and

only if

∂r−1 f

∂xi∂ y j∂ wk
(x0, y0, w0) = 0, i + j + k = r − 1, (2)

and at least one rth partial derivative of f at Q0 does not vanish.

Definition 2.1 is a classical definition for the multiplicity of singularities of algebraic curves. But for rational planar curves,
we have the following alternative characterization of the multiplicity of a singularity in terms of the number of parameter
values corresponding to the singular point.

Definition 2.2. Let Q0 = (x0 : y0 : w0) be a point on the rational planar curve P(s, u) = (a(s, u),b(s, u), c(s, u)). We say that
there are exactly r parameters corresponding to Q0 if and only if the equation P(s, u) = λQ0 has exactly r solutions counting
multiplicity, where λ is a nonzero constant.

Remark 2.1. Let Q0 = (x0 : y0 : w0) be a point on the rational planar curve P(s, u) = (a(s, u),b(s, u), c(s, u)). Without loss of
generality we can assume that w0 �= 0. Let h(s, u) = gcd(w0a(s, u) − c(s, u)x0, w0b(s, u) − c(s, u)y0). Then by Definition 2.2
there are exactly r parameters including multiplicity corresponding to the point Q0 if and only if deg(h) = r. Moreover,
the multiplicity of a parameter (s0, u0) corresponding to the singularity Q0 is the multiplicity of (s0, u0) as a root of the
polynomial h(s, u).

Proposition 2.1. A point Q0 = (x0 : y0 : w0) is a singularity of multiplicity r on the rational planar curve P(s, u) if and only if there
are exactly r parameters (si, ui) including multiplicities corresponding to the point Q0 .

Proof. It is enough to show that if there are exactly r parameters including multiplicities corresponding to a point Q0 on a
rational planar curve P(s, u), then the point Q0 is a singularity of order r. Without loss of generality we can assume that
the singularity Q0 = (0 : 0 : 1). Then the rational planar curve P(s, u) has the following parameterization:

P(s, u) = (
a(s, u)h(s, u),b(s, u)h(s, u), c(s, u)

)
, (3)
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Fig. 1. Singularities without any infinitely near singular points.

where gcd(h, c) = 1,gcd(a,b) = 1, deg(h) = r, and the roots of the polynomial h(s, u) give all the parameters corresponding
to the singular point Q0 on the rational planar curve P(s, u).

Intersect the parametric curve P(s, u) with a generic line y = mx, m �= 0. By Bezout’s Theorem we get n = deg(P) inter-
sections which are roots of the polynomial

b(s, u)h(s, u) − ma(s, u)h(s, u) = h(s, u)
(
b(s, u) − ma(s, u)

)
. (4)

We can choose the slope m of the line y = mx so that the roots of the degree n − r polynomial b(s, u)−ma(s, u) correspond
to n − r distinct points Qi , i = 1, . . . ,n − r, on the curve P(s, u). Hence the line intersects the curve P(s, u) at the points Qi ,
i = 0,1, . . . ,n − r.

On the other hand, let F (x, y, w) be the implicit equation of the rational planar curve P(s, u). Suppose that the lowest
degree term of F (x, y,1) is of degree k. Then we can write F (x, y,1) in the following form

F (x, y,1) = fk(x, y) + fk+1(x, y) + · · · + fn(x, y), (5)

where f i(x, y) is a homogeneous polynomial of degree i in x, y. Intersecting the implicit curve F (x, y,1) = 0 with the same
line y = mx, we get a univariate polynomial

F (x,mx,1) = xk( fk(1,m) + xfk+1(1,m) + · · · + xn−k fn(1,m)
)
. (6)

Since F (x, y,1) = 0 and P(s, u) represent the same planar curve and y = mx is a generic line, the x-coordinates of the n − r
distinct points Qi , i = 1, . . . ,n − r must be all the distinct solutions for the degree n − k factor fk(1,m)+ xfk+1(1,m)+ · · ·+
xn−k fn(1,m). Hence k = r. But by Definition 2.1, the point Q0 = (0 : 0 : 1) is a singularity of multiplicity r if and only if the
lowest degree term of the polynomial F (x, y,1) is of degree r. The proof is now complete. �

By Proposition 2.1 an intuitive geometric interpretation of the multiplicity r of a singular point on a rational planar curve
is that the curve passes through the singularity exactly r times. Hence there are precisely r tangents at the singular point
counted with multiplicities. If these r tangents are all distinct, we say that the singularity is ordinary. Otherwise, if some
of the tangents are repeated, the singularity is non-ordinary. If we perturb the curve slightly, an ordinary singularity will
be stable, while there might be extra singularities arising from non-ordinary singularities, which are usually called infinitely
near singular points.

Example 2.1. Fig. 1(a) illustrates the rational cubic planar curve P(s, u) = (s(s − u)u, s2(s − u), u3) with a node at Q = (0 : 0 :
1). Since the two tangents at the singular point Q are distinct, the point Q is an ordinary singularity. The second picture in
Fig. 1(a) is the curve P(s, u) under a small perturbation. We can see that the multiplicity of the singular point Q is stable
under small perturbations. Therefore, there are no infinitely near singular points arising from the singular point Q.

Example 2.2. Fig. 1(b) depicts the rational cubic planar curve P(s, u) = (s2u, s3, u3) with a cusp at Q = (0 : 0 : 1). Since the
tangent at the singular point Q is repeated twice at the parameter (s, u) = (0,1), the point Q is a non-ordinary singularity.
From the second picture in Fig. 1(b), we can see that the cusp becomes a node under a small perturbation of the curve,
which preserves the multiplicity of the singularity. Therefore, once again there are no infinitely near singular points arising
from the singular point Q.

Example 2.3. Fig. 2(a) shows the degree 5 rational planar curve P(s, u) = (s2u3, s5, u5) with a tacnode at Q = (0 : 0 : 1),
where the tangent is repeated twice at the same parameter (s, u) = (0,1). From the second picture in Fig. 2(a), we can
see that the tacnode becomes a node plus a cusp under a small perturbation of the curve, which means that there is an
infinitely near double point Q∗ arising from the singular point Q.



X. Jia, R. Goldman / Computer Aided Geometric Design 26 (2009) 970–988 973
Fig. 2. Singularities with infinitely near singular points.

Example 2.4. Fig. 2(b) depicts the degree 5 rational planar curve P(s, u) = ((s+u)2(s−u)3, (s+u)(s−u)u3, u5) with a double
point at Q = (0 : 0 : 1), where the curve has parallel tangents at distinct parameters (s, u) = (1,1) and (s, u) = (−1,1). From
the second picture in Fig. 2(b), we can see that the double point becomes two nodes under a small perturbation of the
curve, which means that there is an infinitely near double point Q∗ arising from the singular point Q.

Remark 2.2. Infinitely near singularities of a singular point Q on a rational planar curve P(s, u) are caused by the following
two conditions:

1. The curve P(s, u) has parallel tangents at different parameters corresponding to the point Q.
2. The curve P(s, u) has an extra multiple tangent at a multiple parameter (s∗, u∗) of the point Q, i.e., if u∗ �= 0, then

the rate of change of the slope of the curve P(s,1) with respect to the variable s at the parameter s = s∗/u∗ is zero;
and similarly if u∗ = 0, then the rate of change of the slope of the curve P(1, u) with respect to the variable u at the
parameter u∗ = 0 is zero.

Let Q be a singularity on the rational planar curve P(s, u). To prepare for our subsequent results, translate the coordinate
system so that the point Q is moved to the origin (0 : 0 : 1). Then the parametrization of the curve P(s, u) becomes:

P(s, u) = (
a(s, u)h(s, u),b(s, u)h(s, u), c(s, u)

)
, (7)

where gcd(a,b) = 1, gcd(h, c) = 1, and the roots of h are the parameters of Q with proper multiplicity. We can also make
sure that gcd(a,h) = 1 by a coordinate transformation.

Lemma 2.3. Let P(s, u) be a rational planar curve given by Eq. (7), and let (s∗, u∗) and (t∗, v∗) be two distinct parameters correspond-
ing to the singularity Q = (0 : 0 : 1). Then

1. The curve P(s, u) has parallel tangents at (s∗, u∗) and (t∗, v∗) if and only if

b(s∗, u∗)
a(s∗, u∗)

= b(t∗, v∗)
a(t∗, v∗)

. (8)

2. The curve P(s, u) has extra multiple tangents at a multiple parameter (s∗, u∗) corresponding to the point Q if and only if
(a)

( b(s,1)
a(s,1)

)′∣∣
s=s∗/u∗ = 0 if u∗ �= 0;

(b)
( b(1,u)

a(1,u)

)′∣∣
u=0 = 0 if u∗ = 0.

Proof. Let (s∗, u∗) be a parameter corresponding to the point Q. If u∗ �= 0, then we dehomogenize a(s, u), b(s, u), c(s, u) to
a(s,1), b(s,1), c(s,1) and let

x(s) � a(s,1)h(s,1)

c(s,1)
, y(s) � b(s,1)h(s,1)

c(s,1)
.

Now the slope of the tangent to the curve P(s, u) at the parameter (s∗, u∗) = (s∗/u∗,1) is:

dy

dx

∣∣∣∣
s=s∗/u∗

=
dy
ds
dx
ds

∣∣∣∣∣
s=s∗/u∗

=
( b(s,1)h(s,1)

c(s,1)

)′
( a(s,1)h(s,1)

c(s,1)

)′

∣∣∣∣∣
s=s∗/u∗

= b(s∗/u∗,1)

a(s∗/u∗,1)
= b(s∗, u∗)

a(s∗, u∗)
. (9)

Similarly if u∗ = 0, then we dehomogenize a(s, u), b(s, u), c(s, u) to a(1, u), b(1, u), c(1, u) and let

x(u) � a(1, u)h(1, u)
, y(u) � b(1, u)h(1, u)

.

c(1, u) c(1, u)
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Now the slope of the tangent to the curve P(s, u) at the parameter (s∗,0) = (1,0) is:

dy

dx

∣∣∣∣
u=0

=
dy
du
dx
du

∣∣∣∣∣
u=0

=
( b(1,u)h(1,u)

c(1,u)

)′
( a(1,u)h(1,u)

c(1,u)

)′

∣∣∣∣∣
u=0

= b(1,0)

a(1,0)
. (10)

Therefore, in either case the slope of the tangent to the curve P(s, u) at a parameter (s∗, u∗) corresponding to the point Q is
equal to b(s∗,u∗)

a(s∗,u∗)
. Hence the curve P(s, u) has parallel tangents at two distinct parameters (s∗, u∗) and (t∗, v∗) corresponding

to the point Q if and only if

b(s∗, u∗)
a(s∗, u∗)

= b(t∗, v∗)
a(t∗, v∗)

.

On the other hand, for a parameter (s∗, u∗) corresponding to the point Q with u∗ �= 0, the curve P(s, u) has extra multiple
tangents at the parameter (s∗, u∗) = (s∗/u∗,1) if and only if (

dy
dx )′|s∗/u∗ = 0. By Eq. (9) this means that(

dy

dx

)′∣∣∣∣
s=s∗/u∗

=
(

b(s,1)

a(s,1)

)′∣∣∣∣
s=s∗/u∗

= 0.

Case 2(b) can be treated similarly. �
2.2. Blow ups

Infinitely near singularities to a singular point Q can be found by blowing up the rational planar curve at Q. Most articles
in algebraic geometry on blowing up planar curves generally deal with algebraic curves and start from their implicit equation
(Hartshorne, 1977). Next we are going to translate the classical approach to blow ups into the language of parametrization
(for related work, see Abhyankar, 1990).

To blow up the curve P(s, u) in Eq. (7) at the singularity Q = (0 : 0 : 1), we let U = Y /X = ( bh
c )/( ah

c ) = b/a. Then the
dehomogenized form of the new curve is

(X, U ) =
(

ah

c
,

b

a

)
. (11)

Homogenizing (11), we get the new rational planar curve

P1(s, u) = (
a2h,bc,ac

)
. (12)

Certain singularities on the curve P1(s, u) are related to the infinitely near singularities of the point Q. To understand this
relationship, we examine how the two conditions in Lemma 2.3 affect the curve in Eq. (11):

• For the first condition in Lemma 2.3, Eq. (8) implies that U (s∗, u∗) = U (t∗, v∗) � U0. Since h(s∗, u∗) = h(t∗, v∗) = 0, we
also have X(s∗, u∗) = X(t∗, v∗) � X0. Therefore, (X0, U0) is a singularity on the curve (X, U ).

• For the second condition in Lemma 2.3, suppose that u∗ �= 0. Then we dehomogenize X(s, u) and U (s, u) to X(s,1)

and U (s,1). Now 2(a) in Lemma 2.3 means that U ′(s∗/u∗,1) = 0. Also note that h′(s∗/u∗,1) = 0 yields X ′(s∗/u∗,1) = 0.
This means that the parameter (s∗, u∗) = (s∗/u∗,1) is at least a double parameter corresponding to the point (X0, U0) =
(X(s∗, u∗), U (s∗, u∗)). Therefore, (X0, U0) is a singularity on the curve (X, U ). The case where u∗ = 0 can be treated
similarly.

Hence to find all the infinitely near singularities in the first neighborhood of Q, we just need to find the singularities
related to the point Q on the curve P1(s, u). Note that we say in the first neighborhood because we blow up the curve P(s, u)

once to get the curve P1(s, u). If we continue to blow up the curve P1(s, u) to get P2(s, u), the points on the curve P2(s, u)

related to the point Q are said to be in the second neighborhood of Q, and so on. Therefore, it is appropriate for us to give
the following definition:

Definition 2.3. We say that there is an infinitely near singular point of multiplicity m arising from the ith neighborhood of
the point Q, if there is a singularity Q∗ of multiplicity m on the ith blow up curve Pi(s, u), whose corresponding parameters
are a subset of all the parameters corresponding to the point Q.

Remark 2.4. When we blow up a curve P(s, u) at a singularity Q to get a new curve P1(s, u), we are interested only in
those singularities that are related to the point Q on the curve P1(s, u) – that is, the singularities whose parameters are a
subset of the parameters of the point Q on the curve P(s, u).

Example 2.5. Let a rational planar curve P(s, u) be given by

P(s, u) = (
s5u3, s8, u8).
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Fig. 3. The rational planar curve P(s, u) = (s5u3, s8, u8) and the first three blow ups P1(s, u),P2(s, u),P3(s, u).

By Proposition 2.1 the point Q = (0 : 0 : 1) is a singularity of order 5 corresponding to the parameter (0,1) on the curve
P(s, u). To check whether there are any infinitely near singularities arising from the point Q, we blow up the curve P(s, u)

at the point Q:

P1(s, u) = (
s5, s3u2, u5).

Again by Proposition 2.1 the point Q∗ = (0 : 0 : 1) is a triple point corresponding to the parameter (0,1) on the curve
P1(s, u). Therefore, Q∗ is an infinitely near triple point in the first neighborhood of Q.

Next we blow up the curve P1(s, u) at the point Q∗ . Note that for the curve P1(s, u), gcd(a,h) = s2. Thus we first reflect
the curve P1(s, u) about the 45 degree line to get a new curve for which gcd(a,h) = 1:

P̃1(s, u) = (
s3u2, s5, u5).

Now we blow up the curve P̃1(s, u) at the point Q∗ = (0 : 0 : 1) and get:

P2(s, u) = (
s3, s2u, u3).

There is a double point Q∗∗ = (0 : 0 : 1) related to the point Q on the curve P2(s, u), which is an infinitely near double point
in the second neighborhood of the point Q.

Next we continue to blow up the curve P2(s, u) at the point Q∗∗ . Again note that for the curve P2(s, u), gcd(a,h) = s2.
Thus again we reflect P2(s, u) about the 45 degree line to get a new curve for which gcd(a,h) = 1:

P̃ 2(s, u) = (
s2u, s3, u3).

Now we blow up the curve P̃2(s, u) at the point Q∗∗ = (0 : 0 : 1) and get:

P3(s, u) = (
s2, su, u2).

Note that there are no singularities on the curve P3(s, u). Therefore, we have found all the infinitely near singularities of
the original singular point Q. Fig. 3 shows the rational planar curve P1(s, u) and the blow ups P1(s, u),P2(s, u),P3(s, u).

Note that there is also a triple point (0 : 1 : 0) on the curve P(s, u). One can use methods similar to those presented
above to derive all the infinitely near singularities arising from the triple point (0 : 1 : 0). Fig. 4 shows the singularity trees
arising from the singular points (0 : 0 : 1) and (0 : 1 : 0).

3. Moving lines and μ-bases for rational planar curves

We are going to use moving lines and μ-bases to find all the singularities and all the infinitely near singularities of
rational planar curves without resorting to blow ups.
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Fig. 4. Singularity trees of the singular points (0 : 0 : 1) (left) and (0 : 1 : 0) (right) of the rational planar curve P(s, u) = (s5u3, s8, u8).

A moving line L(s, u; x, y, w) = A(s, u)x + B(s, u)y + C(s, u)w = 0 is a set of lines with each homogeneous parameter s : u
corresponding to a line and where A(s, u), B(s, u), C(s, u) are homogeneous polynomials in k[s, u]. For convenience we shall
also write a moving line in the form of a polynomial vector L(s, u) = (A(s, u), B(s, u), C(s, u)).

A moving line L(s, u) = (A(s, u), B(s, u), C(s, u)) is said to follow a rational planar curve P(s, u) = (a(s, u),b(s, u), c(s, u))

if and only if

L(s, u) · P(s, u) = A(s, u)a(s, u) + B(s, u)b(s, u) + C(s, u)c(s, u) ≡ 0. (13)

Eq. (13) means that for every homogeneous parameter s0 : u0, the line A(s0, u0)x+ B(s0, u0)y + C(s0, u0)w = 0 in the family
of lines L(s, u; x, y, w) passes through the point P(s0, u0) on the rational planar curve P(s, u).

The syzygy module of a rational planar curve P(s, u) consists of all the moving lines L(s, u) that follow the curve P(s, u).

The syzygy module of a rational planar curve P(s, u) is known to be a free module with two generators (Chen and Wang,
2003). We denote the syzygy module of the curve P(s, u) by Mp .

Definition 3.1. Two moving lines p(s, u) and q(s, u) are called a μ-basis for the rational planar curve P(s, u) if p and q form
a basis for Mp i.e., every moving line L(s, u) ∈ Mp can be written as

L(s, u) = α(s, u)p(s, u) + β(s, u)q(s, u), (14)

where α(s, u), β(s, u) ∈ R[s, u].

Note that since we are using homogeneous polynomials, Definition 3.1 implicitly implies the following degree constraint
of the elements of a μ-basis (Cox et al., 1998):

deg(p) + deg(q) = deg(P).

Every rational planar curve has a μ-basis. Moreover, there is a fast algorithm for computing μ-bases based on Gaussian
elimination (Chen and Wang, 2003).

μ-bases have many advantageous properties. For example, we can recover the parametrization of the rational planar
curve P(s, u) from the outer product of a μ-basis:

p(s, u) × q(s, u) = kP(s, u), (15)

where k is a nonzero constant. We can also retrieve the implicit equation f (x, y, w) = 0 of the rational planar curve P(s, u)

by taking the resultant of a μ-basis:

f (x, y, w) = Ress,u
(
p(s, u) · X,q(s, u) · X

)
, (16)

where X = (x, y, w) (Chen and Wang, 2003). Later on we shall make use of the following result.

Proposition 3.1. (See Chen and Wang, 2003.) Let p(s, u),q(s, u) be a μ-basis for the rational planar curve P(s, u). Then p(s, u) and
q(s, u) are linearly independent for every parameter (s, u).

Proof. This result follows from Eq. (15) and the fact that, by assumption, P(s, u) = (a(s, u),b(s, u), c(s, u)) has no base
points. �
4. Computing the singularities of rational planar curves

In this section we are going to show that the singularities of a rational planar curve are equivalent to the intersections
of two implicit polynomial curves constructed from a parametrization and a μ-basis of the rational planar curve. The
intersections of these two algebraic curves provide all the parameters of the singularities on the rational planar curve with
correct multiplicities, including the infinitely near singularities arising from each singularity. Moreover, we shall also prove a
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classical theorem in algebraic geometry for counting all these singularities with proper multiplicity – that is, the multiplicity
given by the δ-invariants of the singularities.

First we present a theorem that shows how to use a μ-basis to calculate all the parameters corresponding to a point Q
on a rational planar curve P(s, u).

Theorem 4.1. (See Chen et al., 2008.) Let p(s, u),q(s, u) be a μ-basis of a rational planar curve P(s, u), and let Q be a point on
P(s, u). Then the roots of the polynomial gcd(p(s, u) · Q,q(s, u) · Q) give all the parameters corresponding to the point Q with the
correct multiplicities.

Theorem 4.1 shows that the μ-bases contain all the information concerning the parameters of the singularities on ratio-
nal planar curves. Chen et al. (2008) use the Bezout matrix of the two μ-basis elements to compute all the singularities,
except for the infinitely near singularities, of rational planar curves. Their method also allows them to distinguish ordinary
from non-ordinary singularities. In addition, they present a conjecture on how to compute all the infinitely near singularities
from the Smith form of the Bezout matrix. Next we shall present a different approach also based on μ-bases to compute
the singularities of rational planar curves. In contrast to Chen et al. (2008), our approach provides not only the multiplici-
ties of the singularities but also the δ-invariant for each singularity. These δ-invariants indicate whether there are infinitely
near singularities arising from the singularities on the rational planar curve. Moreover, we can also provably detect all the
parameters that correspond to parallel tangents or extra multiple tangents and so correspond to infinitely near singularities
on rational planar curves. In a sequel to this paper – see Jia and Goldman (2009) – we shall also show how to apply our
approach to prove the conjecture of Chen, Wang and Liu.

We begin by constructing two functions from a μ-basis p(s, u),q(s, u) of the rational planar curve P(s, u):

F (s, u; t, v) � p(s, u) · P(t, v)

sv − tu
,

G(s, u; t, v) � q(s, u) · P(t, v)

sv − tu
. (17)

Note that F (s, u; t, v) and G(s, u; t, v) are both polynomials. In fact, since p,q are a μ-basis,

p(s, u) · P(s, u) = q(s, u) · P(s, u) ≡ 0. (18)

Thus

(sv − tu)|p(s, u) · P(t, v),

(sv − tu)|q(s, u) · P(t, v), (19)

so F (s, u; t, v) and G(s, u; t, v) are indeed polynomials.

Theorem 4.2. A parameter pair (s∗, u∗; t∗, v∗) is a common root of F (s, u; t, v) = 0 and G(s, u; t, v) = 0 if and only if the two
parameters (s∗, u∗) and (t∗, v∗) correspond to the same singularity on the curve P(s, u).

Proof. If (s∗, u∗) �= (t∗, v∗), then by Eq. (17)

F (s∗, u∗; t∗, v∗) = G(s∗, u∗; t∗, v∗) = 0

if and only if

p(s∗, u∗) · P(t∗, v∗) = q(s∗, u∗) · P(t∗, v∗) = 0.

By Proposition 3.1, the two vectors p(s∗, u∗) and q(s∗, u∗) are linearly independent. Hence since p(s∗, u∗) and q(s∗, u∗) are
both perpendicular to P(t∗, v∗),

p(s∗, u∗) × q(s∗, u∗) = k1P(t∗, v∗)

for some nonzero constant k1. But by Eq. (15),

p(s∗, u∗) × q(s∗, u∗) = k2P(s∗, u∗)

for some nonzero constant k2. Thus

P(t∗, v∗) = kP(s∗, u∗)

for some nonzero constant k, so (s∗, u∗) and (t∗, v∗) correspond to the same singularity Q = P(t∗, v∗) = kP(s∗, u∗).
If (s∗, u∗) = (t∗, v∗) and u∗ �= 0, then we dehomogenize the curve P(s, u) to P(s,1), and dehomogenize the μ-basis

elements p(s, u),q(s, u) to p(s,1),q(s,1). Now by Eq. (17)
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F

(
s∗

u∗ ,1; s∗

u∗ ,1

)
= p′

(
s∗

u∗

)
· P

(
s∗

u∗

)
= 0,

G

(
s∗

u∗ ,1; s∗

u∗ ,1

)
= q′

(
s∗

u∗

)
· P

(
s∗

u∗

)
= 0. (20)

Let Q � P( s∗
u∗ ). By Theorem 4.1, the parameter s∗

u∗ is a root of the polynomial gcd(p(s,1) · Q,q(s,1) · Q). But by Eq. (20),

the parameter s∗
u∗ is at least a double root of the polynomial gcd(p(s,1) · Q,q(s,1) · Q). Hence again by Theorem 4.1, the

parameter ( s∗
u∗ ,1) is at least a double parameter corresponding to the point Q. Therefore, the point Q is a singular point on

the curve P(s, u). The case that u∗ = 0 can be treated similarly. �
Remark 4.3. By Theorem 4.2 the parameter pair (s∗, u∗; t∗, v∗) is an intersection point of the two algebraic curves
F (s, u; t, v) = 0 and G(s, u; t, v) = 0 if and only if the parameter pair (t∗, v∗; s∗, u∗) is also an intersection point of the
two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0.

Theorem 4.2 shows that the intersection points of the two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0
correspond to the parameters of the singularities on the rational planar curve P(s, u). Thus the two algebraic curves
F (s, u; t, v) = 0 and G(s, u; t, v) = 0 have no common components; otherwise there would be an infinite number of sin-
gularities on the rational planar curve, which is impossible.

Next we shall show that the intersection of the two curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0 also gives the correct
multiplicity for each singular point on the curve P(s, u).

Theorem 4.4. Let (s∗, u∗; t∗, v∗) be an intersection point of the two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0. Then the
roots of the polynomial

h(s, u) � (su∗ − s∗u)gcd
(

F (s, u; s∗, u∗), G(s, u; s∗, u∗)
)

or

h(s, u) � (sv∗ − t∗u)gcd
(

F (s, u; t∗, v∗), G(s, u; t∗, v∗)
)

give all the parameters corresponding to the singular point Q = P(s∗, u∗) = P(t∗, v∗) with the correct multiplicities.

Proof. Since P(s∗, u∗) = Q, we have

F (s, u; s∗, u∗) = p(s, u) · Q

su∗ − s∗u
, G(s, u; s∗, u∗) = q(s, u) · Q

su∗ − s∗u
. (21)

By Theorem 4.1, the roots of the polynomial gcd(p(s, u) · Q,q(s, u) · Q) give all the parameters corresponding to the point Q
with the correct multiplicities. But by Eq. (21),

gcd
(
p(s, u) · Q,q(s, u) · Q

) = (su∗ − s∗u)gcd
(

F (s, u; s∗, u∗), G(s, u; s∗, u∗)
)
.

The proof is the same for (t∗, v∗). �
By Theorem 4.4 we directly have

Corollary 4.1. Let (s∗, u∗; t∗, v∗) be an intersection point of the two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0. Then the
singular point P(s∗, u∗) = P(t∗, v∗) = Q is of multiplicity

deg
(
gcd

(
F (s, u; s∗, u∗), G(s, u; s∗, u∗)

)) + 1

or

deg
(
gcd

(
F (s, u; t∗, v∗), G(s, u; t∗, v∗)

)) + 1.

Theorem 4.4 and Corollary 4.1 provide an efficient way to determine the multiplicity of a singular point together with all
the parameters corresponding to the singular point directly from the intersection of the two algebraic curves F (s, u; t, v) = 0
and G(s, u; t, v) = 0 without actually computing the singular point.

The intersection of the two algebraic curves not only provides the multiplicity of the singularities on the rational planar
curve, but also gives a very important index describing the multiplicity of the singularities including all the infinitely near
singularities arising from the singularities.

Definition 4.1. Let S = (s∗, u∗; t∗, v∗) be a parameter pair. Then IS(F , G) denotes the intersection multiplicity of the two
curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0 at the point S = (s∗, u∗; t∗, v∗).
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Definition 4.2. Let Q be a singular point on the rational planar curve P(s, u), and let (si, ui), i = 1, . . . ,k be all the distinct
parameters corresponding to the point Q. Then we define the intersection multiplicity of F (s, u; t, v) = 0 and G(s, u; t, v) = 0
contributed by the singularity Q as

IQ(F , G) �
∑
i, j

ISi j (F , G), (22)

where Si j = (si, ui; s j, u j), i, j = 1, . . . ,k.

Now we can state our main result.

Theorem 4.5. Let νQ∗ denote the multiplicity of an infinitely near point Q∗ of a singular point Q on the curve P(s, u). Then

IQ(F , G) =
∑
Q∗

νQ∗(νQ∗ − 1),

where the sum is taken over all the infinitely near points Q∗ of the point Q including Q itself.

In order to prove this theorem, we first introduce several lemmas. To proceed, note that the two polynomials F (s, u; t, v)

and G(s, u; t, v) are constructed from a μ-basis p,q, which is a basis for the syzygy module of the curve P(s, u). Now let
p̃(s, u) and q̃(s, u) be any pair of syzygies that are linearly independent for the parameters corresponding to the point Q on
the rational planar curve P(s, u). Then we can construct two polynomials in the same way as in Eq. (17):

F̃ (s, u; t, v) � p̃(s, u) · P(t, v)

sv − tu
,

G̃(s, u; t, v) � q̃(s, u) · P(t, v)

sv − tu
. (23)

Lemma 4.6.

IQ( F̃ , G̃) = IQ(F , G). (24)

Proof. Since p̃(s, u) and q̃(s, u) are syzygies of the curve P(s, u), and p(s, u) and q(s, u) are a μ-basis, there must be
polynomials α(s, u), β(s, u), γ (s, u), δ(s, u) such that

p̃(s, u) = α(s, u)p(s, u) + β(s, u)q(s, u),

q̃(s, u) = γ (s, u)p(s, u) + δ(s, u)q(s, u). (25)

Therefore

F̃ (s, u; t, v) = α(s, u)F (s, u; t, v) + β(s, u)G(s, u; t, v),

G̃(s, u; t, v) = γ (s, u)F (s, u; t, v) + δ(s, u)G(s, u; t, v). (26)

But α(s, u)δ(s, u) − β(s, u)γ (s, u) = 0 if and only if the two moving lines p̃(s, u) and q̃(s, u) are linearly dependent, which
by assumption never happens for parameters (s, u) corresponding to the point Q. Therefore, by (26) we conclude that

IQ( F̃ , G̃) = IQ(F , G). � (27)

By Lemma 4.6 in order to prove Theorem 4.5, we can turn to another pair of syzygies, which are much easier to study.
Without loss of generality, we can assume that the singularity Q = (0 : 0 : 1). Then the curve P(s, u) has the parametriza-

tion

P(s, u) = (
a(s, u)h(s, u),b(s, u)h(s, u), c(s, u)

)
, (28)

where gcd(h, c) = gcd(a,b) = 1, and h gives all the parameters corresponding to the point Q with the correct multiplicities.
Moreover, if gcd(a,h) �= 1, we can make a coordinate transformation so that gcd(a,h) = 1.

Now there are two obvious syzygies of the parametrization (28):

M(s, u) = (−b,a,0), L(s, u) = (c,0,−ah). (29)

From these two syzygies we can construct two polynomials:

M(s, u; t, v) = M(s, u) · P(t, v)

sv − tu
= a(s, u)b(t, v) − b(s, u)a(t, v)

sv − tu
h(t, v),

L(s, u; t, v) = L(s, u) · P(t, v) = c(s, u)a(t, v)h(t, v) − c(t, v)a(s, u)h(s, u)
. (30)
sv − tu sv − tu
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Note that M(s, u) and L(s, u) are linearly independent for any parameter (s, u) corresponding to the point Q, since, by
assumption, a(s, u) �= 0. Hence, we next examine IQ(M, L) instead of IQ(F , G).

Lemma 4.7. Let m � deg(h) be the multiplicity of the singularity Q. Then

IQ
(
h(t, v), L(s, u; t, v)

) = m(m − 1). (31)

Proof. Let {si, ui}k
i=1 be all the distinct parameters corresponding to the point Q and let Si j = (si, ui; s j, u j). If mi is the

multiplicity of (si, ui) as a root of h(s, u), then

ISi j (h, L) = ISi j

(
h(t, v),

c(s, u)a(t, v) − a(s, u)c(t, v)

sv − tu
h(t, v) + a(s, u)c(t, v)

h(t, v) − h(s, u)

sv − tu

)

= ISi j

(
h(t, v),a(s, u)c(t, v)

h(t, v) − h(s, u)

sv − tu

)

= ISi j

(
h(t, v),

h(t, v) − h(s, u)

sv − tu

)

=
{

mi(mi − 1), i = j,

mim j, i �= j.
(32)

Therefore

IQ(h, L) =
∑
i, j

ISi j (h, L) =
k∑

i=1

mi(mi − 1) +
∑
i �= j

mim j

=
k∑

i, j=1

mim j −
k∑

i=1

mi = m2 − m = m(m − 1). � (33)

Theorem 4.8. Let νQ∗ denote the multiplicity of an infinitely near point Q∗ of the point Q = (0 : 0 : 1) on the parametrization (28).
Then

IQ(M, L) =
∑
Q∗

νQ∗(νQ∗ − 1), (34)

where the sum is taken over all the infinitely near points Q∗ of the singularity Q including Q itself.

Proof. Set

P0 = P = (ah,bh, c),

where gcd(a,b) = gcd(h, c) = 1. We can also make a coordinate transformation so that gcd(a,h) = 1. Set a0 = a,b0 = b, c0 =
c,h0 = h. We assume that the curve P0(s, u) has no infinitely near singularities after k blow ups. We shall prove the theorem
by induction on k.

Blowing up the curve P0(s, u) at the singularity (0 : 0 : 1), we get

P1(s, u) = (
a2

0h0,b0c0,a0c0
)
. (35)

Assume that Q∗ is a singular point on P1(s, u) related to Q. To blow up the curve P1(s, u) at the singular point Q∗ , we
translate the coordinates so that the point Q∗ is moved to (0 : 0 : 1). Then we have another parametrization for the curve
P1(s, u):

P1(s, u) = (a1h1,b1h1, c1), (36)

where gcd(a1,b1) = gcd(h1, c1) = 1, and the roots of h1 are parameters of the point Q∗ with the correct multiplicity. (Strictly
speaking the coordinate transformation leads to a different curve, but we are examining the parameters corresponding to
the points on the curve, which never change under coordinate transformations.)

We have a pair of syzygies for the parametrization (35) of the curve P1:

S1(s, u) � (0,a0,−b0),

T1(s, u) � (c0,0,−a0h0). (37)

Construct two polynomials from S1(s, u) and T1(s, u):
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S1(s, u; t, v) � S1(s, u) · P1(t, v)

sv − tu
= a0(s, u)b0(t, v) − b0(s, u)a0(t, v)

sv − tu
c0(t, v),

T1(s, u; t, v) � T1(s, u) · P1(t, v)

sv − tu
= c0(s, u)a0(t, v)h0(t, v) − c0(t, v)a0(s, u)h0(s, u)

sv − tu
a0(t, v). (38)

We also have a pair of syzygies for the parametrization (36) of the curve P1:

M1(s, u) = (−b1(s, u),a1(s, u),0
)
,

L1(s, u) = (
c1(s, u),0,−a1(s, u)h1(s, u)

)
. (39)

Define

M1(s, u; t, v) � M1(s, u) · P1(t, v)

sv − tu

= a1(s, u)b1(t, v) − b1(s, u)a1(t, v)

sv − tu
h1(t, v)

= M1(s, u; t, v)h1(t, v),

L1(s, u; t, v) � L1(s, u) · P1(t, v)

sv − tu

= c1(s, u)a1(t, v)h1(t, v) − c1(t, v)a1(s, u)h1(s, u)

sv − tu
. (40)

Note that S1(s, u),T1(s, u) and M1(s, u),L1(s, u) are both independent syzygy pairs of the same curve P1(s, u). By
Lemma 4.6, for each infinitely near point Q∗ in the first neighborhood of the point Q, we have

IQ∗(S1, T1) = IQ∗(M1, L1) = IQ∗(M1, L1) + IQ∗
(
h1(t, v), L1

)
. (41)

On the other hand, let

M0(s, u; t, v) � M(s, u; t, v)

= a0(s, u)b0(t, v) − b0(s, u)a0(t, v)

sv − tu
h0(t, v)

� M0(s, u; t, v)h0(t, v),

L0(s, u; t, v) � L(s, u; t, v)

= c0(s, u)a0(t, v)h0(t, v) − c0(t, v)a0(s, u)h0(s, u)

sv − tu
. (42)

By Remark 2.2 and Lemma 2.3, a parameter pair (s, u; t, v) corresponds to an infinitely near singularity in the first neighbor-
hood of Q if and only if M0(s, u; t, v) = L0(s, u; t, v) = 0. Hence the intersection of M0(s, u; t, v) and L0(s, u; t, v) provides
all the parameters of the infinitely near singularities in the first neighborhood of Q whereas the intersection of h(t, v) and
L0(s, u; t, v) provides all the parameters corresponding to the singularity Q. Comparing the expressions of M0, L0 and S1, T1
in Eqs. (42) and (38) and recalling that a(s, u), c(s, u) �= 0 at parameters corresponding to Q, we get

IQ∗(M0, L0) = IQ∗(S1, T1). (43)

Thus

IQ(M0, L0) =
∑
Q∗

IQ∗(S1, T1), (44)

where the sum is taken over all the infinitely near singularities Q∗ in the first neighborhood of Q. Substituting Eqs. (41)
into (44), we get

IQ(M0, L0) =
∑
Q∗

(
IQ∗(M1, L1) + IQ∗

(
h1(t, v), L1

))
. (45)

But by Lemma 4.7

IQ∗
(
h1(t, v), L1

) = νQ∗(νQ∗ − 1). (46)

Therefore

IQ(M0, L0) =
∑

∗

(
IQ∗(M1, L1) + νQ∗(νQ∗ − 1)

)
, (47)
Q



982 X. Jia, R. Goldman / Computer Aided Geometric Design 26 (2009) 970–988
where the sum is taken over all the infinitely near singularities Q∗ in the first neighborhood of Q.
For each infinitely near singularity Q∗ in the first neighborhood of Q, continue to examine IQ∗(M1, L1) by blowing up

the curve P1(s, u) at the point Q∗ . After k blow ups we will finally get

IQ(M0, L0) =
∑
Q∗

νQ∗(νQ∗ − 1), (48)

where the sum is taken over the infinitely near singularities in all the neighborhoods of the point Q (not including Q itself).
Invoking Lemma 4.7 again, we finally have

IQ(M, L) = IQ(M0, L0) + IQ(h0, L0) =
∑
Q∗

νQ∗(νQ∗ − 1), (49)

where the sum is taken over all the infinitely near singularities of the point Q including Q itself. �
Remark 4.9. The procedure in the proof of Theorem 4.8 must stop after a finite number of blow ups; otherwise IQ(M, L)

would be infinite, which is impossible. Therefore we have proved the following result.

Corollary 4.2. Every singularity on a rational planar curve reduces to an ordinary singularity after a finite number of blow ups.

Now by Lemma 4.6 and Theorem 4.8 we arrive directly at the result in Theorem 4.5.

Remark 4.10. The above proof also implies that the intersection of M(s, u; t, v) and L(s, u; t, v) (as well as the intersection of
F (s, u; t, v) and G(s, u; t, v)) gives the correct multiplicities for parameter pairs (si, ui; s j, u j) such that h(si, ui) = h(s j, u j) =
0. That is,

ISi j (M, L) =
⎧⎨
⎩

∑
Q∗ mQ∗

i mQ∗
j , if (si, ui) �= (s j, u j),∑

Q∗ mQ∗
i (mQ∗

i − 1), if (si, ui) = (s j, u j),
(50)

where mQ∗
i is the multiplicity of (si, ui) as a parameter for the infinitely near singularity Q∗ , and the sum is taken over all

the infinitely near singularities Q∗ of Q including Q itself.

Corollary 4.3. Let (s0, u0) and (s1, u1) be two parameters of multiplicity m0 and m1 corresponding to the same singularity Q on the
curve P(s, u). Then

• If (s0, u0) �= (s1, u1), and if I(s0,u0;s1,u1)(F , G) > m0m1 , then there are infinitely near singularities corresponding to the parame-
ters (s0, u0) and (s1, u1);

• If (s0, u0) = (s1, u1), and if I(s0,u0;s1,u1)(F , G) > m0(m0 − 1), then there are infinitely near singularities corresponding to the
parameter (s0, u0).

Proof. This result follows directly from Remark 4.10. Moreover, the first situation implies that the curve P(s, u) has parallel
tangents at the two distinct parameters (s0, u0) and (t0, v0); while the second situation implies that the curve P(s, u) has
extra multiple tangents at the parameter (s0, u0). �
Remark 4.11. Theorem 4.5 shows that IQ(F , G) = 2δ, where in algebraic geometry δ = ∑

Q∗ νQ∗(νQ∗ − 1)/2 is usually called
the δ-invariant of a singularity Q. The multiplicity m and the δ-invariant of a singularity Q can both be computed by the
MAPLE command ‘singularities’.

Corollary 4.4. Let H(s, u) � Rest,v(F (s, u; t, v), G(s, u; t, v)). Then the roots of H(s, u) are the parameters corresponding to the
singularities on the rational planar curve P(s, u). Moreover, let (si, ui) be all the distinct roots of H(s, u) corresponding to the same
singularity Q, and let the multiplicity of (si, ui) as a root of H(s, u) be ki . Then the δ-invariant of the singularity Q is δ = ∑

i ki/2.

Proof. A parameter (s0, u0) is a root of H(s, u) if and only if there exists a parameter (t0, v0) such that F (s0, u0; t0, v0) =
G(s0, u0; t0, v0) = 0. Thus by Theorem 4.2, a root (s0, u0) of H(s, u) must correspond to a singularity on the curve P(s, u).

Let (si, ui; s j, u j) be all the distinct common roots of F (s, u; t, v) and G(s, u; t, v) that correspond to the same singularity
Q on the curve P(s, u). Then by Remark 4.11 and Definition 4.2,

δ = IQ(F , G)/2 =
∑

ISi j (F , G)/2.
i, j
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Since H(s, u) � Rest,v(F (s, u; t, v), G(s, u; t, v)),∑
j

ISi j (F , G) = ki .

Therefore δ = ∑
i ki/2. �

Remark 4.12. Abhyankar showed in Abhyankar (1990, p. 153) that to find all the singularities of a planar polynomial curve
P(s) = (a(s),b(s),1), one need only study the Taylor t-resultant

Resτ

(
a′(s) + a′′(s)

2! τ + a′′′(s)

3! τ 2 + · · · , b′(s) + b′′(s)

2! τ + b′′′(s)

3! τ 2 + · · ·
)

. (51)

In our approach, since L1(s) = (−1,0,a(s)) and L2(s) = (0,−1,b(s)) are a pair of syzygies for the curve P(s), we study the
resultant H(s) of the two polynomials

L1(s, t) � L1(s) · P(t)

s − t
= a(s) − a(t)

s − t

= a′(s) + a′′(s)

2! (s − t) + a′′′(s)

3! (s − t)2 + · · · ,

L2(s, t) � L2(s) · P(t)

s − t
= b(s) − b(t)

s − t

= b′(s) + b′′(s)

2! (s − t) + b′′′(s)

3! (s − t)2 + · · · . (52)

Let

L̃1(s, τ ) � a′(s) + a′′(s)

2! τ + a′′′(s)

3! τ 2 + · · · ,

L̃2(s, τ ) � b′(s) + b′′(s)

2! τ + b′′′(s)

3! τ 2 + · · · .

Comparing the matrices Sylt(L1(s, t), L2(s, t)) and Sylτ (L̃1(s, τ ), L̃2(s, τ )) we can conclude that Rest(L1(s, t), L2(s, t)) =
Resτ (L̃1(s, τ ), L̃2(s, τ )). Therefore, the polynomial H(s) in our approach agrees with the t-resultant of Abhyankar when
rational planar curves are replaced by the simpler case of polynomial planar curves. Thus our approach extends Abhyankar’s
method from polynomial curves to rational curves. For an alternative approach, see Buse (2009).

Theorem 4.5 shows that the intersection of the two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0 constructed
from a parametrization and a μ-basis not only provides all the parameters of the singularities on the rational planar curve,
but also provides the correct multiplicities of the singularities including all the infinitely near singularities. Next we shall
apply Theorem 4.5 to prove a classical result in algebraic geometry.

Theorem 4.13. Let νQ∗ denote the multiplicity of the point Q∗ on a degree n rational planar curve. Then

(n − 1)(n − 2) =
∑
Q∗

νQ∗(νQ∗ − 1), (53)

where the sum is taken over all the singularities on the curve including the infinitely near singularities.

Proof. By Theorem 4.2, a parameter pair (s, u; t, v) corresponds to a singularity on the curve P(s, u) if and only if
F (s, u; t, v) = G(s, u; t, v) = 0. By Theorems 4.2 and 4.5, the total number of intersections of F (s, u; t, v) and G(s, u; t, v)

is ∑
Q

IQ(F , G) =
∑
Q∗

νQ∗(νQ∗ − 1), (54)

where the sum is taken over all the singularities on the curve P(s, u) including the infinitely near singularities. On the other
hand, let μ and n −μ be the degrees of a μ-basis for the curve P(s, u). By Bezout’s Theorem on a product of two projective
lines, the total number of intersections of F (s, u; t, v) = 0 and G(s, u; t, v) = 0 is (n − 1)(μ − 1) + (n − 1)(n − μ − 1) =
(n − 1)(n − 2). Therefore we conclude that

(n − 1)(n − 2) =
∑

∗
νQ∗(νQ∗ − 1). � (55)
Q
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In classical algebraic geometry both sides of Eq. (53) are divided by 2. Our extra factor of 2 arises because by Re-
mark 4.3 each parameter pair (s, u; t, v) corresponding to a singular point Q is counted twice: once as (s, u; t, v) and once
as (t, v; s, u).

5. Examples

In this section we shall illustrate our theorems in the previous section with two examples.

Example 5.1. Consider the planar rational quartic curve

P(s, u) = (
s4 + s3u − 5s2u2 − 3su3 − 3u4, s4 − 2s3u − 5s2u2 + 6su3 + 6u4, u4).

A μ-basis for P(s, u) is given by:

p(s, u) = (
2u2 − su, u2 + su,6s2 − 9su

)
,

q(s, u) = (
s2 − 3su,−s2 + 3u2,15s2 − 27su − 18u2).

Computing the two polynomials F (s, u; t, v) and G(s, u; t, v), we get

F (s, u; t, v) = p(s, u) · P(t, v)

sv − tu
= 6sv3 − 3t3u + 15tv2u,

G(s, u; t, v) = q(s, u) · P(t, v)

sv − tu
= 3st3 − 9stv2 + 6sv3 − 3t3u + 6t2 vu + 15tv2u − 18v3u.

Now compute

H(s, u) � Res(t,v)

(
F (s, u; t, v), G(s, u; t, v)

)
= −5832(s − u)(s − 2u)(s + 2u)(s + u)

(
s − √

3u
)(

s + √
3u

)
.

Hence by Corollary 4.4 there are 6 parameters on the curve P(s, u) corresponding to singularities:

(s1, u1) = (1,1), (s2, u2) = (−2,1), (s3, u3) = (2,1),

(s4, u4) = (−1,1), (s5, u5) = (√
3,1

)
, (s6, u6) = (−√

3,1
)
.

Grouping these 6 parameters, we get three singular points:

Q1 = P(s1, u1) = P(s2, u2) = (−9 : 6 : 1),

Q2 = P(s3, u3) = P(s4, u4) = (−5 : −2 : 1),

Q3 = P(s5, u5) = P(s6, u6) = (−9 : 0 : 1).

Next compute the inversion formula for Qi , i = 1,2,3:

h1 = (su1 − s1u)gcd
(

F (s, u; s1, u1), G(s, u; s1, u1)
) = 6(s − 1)(s + 2),

h2 = (su3 − s3u)gcd
(

F (s, u; s3, u3), G(s, u; s3, u3)
) = 6(s − 2)(s + 1),

h3 = (su5 − s5u)gcd
(

F (s, u; s5, u5), G(s, u; s5, u5)
) = (

s − √
3
)(

s + √
3
)
.

Hence Qi , i = 1,2,3, are all double points with multiplicity mi = 2. Since deg(P) = 4 and (4 − 1) × (4 − 2) = ∑3
i=1 mi(mi −

1) = 3 × 2 = 6, by Theorem 4.13 there are no infinitely near singularities arising from Qi, i = 1,2,3.
Fig. 5 shows the intersection of the two algebraic curves F (s, u; t, u) = 0 and G(s, u; t, u) = 0. Note that by Remark 4.3,

the intersection points are symmetric with respect to the dashed line s = t because if (s, t) corresponds to a singularity of
P(s, u), then so too does (t, s). Fig. 6 shows the quartic rational planar curve P(s, u) with three double points.

Example 5.2. Consider the planar rational septic curve

P(s, u) = (
(s − u)2(s − 2u)2(s − 3u)u2, (s − u)2(s − 2u)4(s − 3u), u7).

A μ-basis for P(s, u) is given by:

p(s, u) = (−u5,0, s5 − 9s4u + 31s3u2 − 51s2u3 + 40su4 − 12u5),
q(s, u) = (

s2 − 4su + 4u2,−u2,0
)
.

Computing the two polynomials F (s, u; t, v) and G(s, u; t, v), we get:
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Fig. 5. Intersection of the two algebraic curves F (s, u; t, u) and G(s, u; t, u).

Fig. 6. Rational quartic planar curve with three double points.

Fig. 7. Intersection of the two algebraic curves F (s,1; t,1) and G(s,1; t,1).

F (s, u; t, v) = p(s, u) · P(t, v)

sv − tu

= (
v4s4 − 9s3uv4 + s3tuv3 + 31s2u2 v4 − 9s2tu2 v3 + s2t2u2 v2

− 51su3 v4 + 31stu3 v3 − 9st2u3 v2 + st3u3 v + 40u4 v4 − 51tu4 v3

+ 31t2u4 v2 − 9t3u4 v + t4u4)v2,

G(s, u; t, v) = q(s, u) · P(t, v)

sv − tu

= svt5 − 9st4 v2 − 12sv6 + 31st3 v3 − 51st2 v4 + 40stv5 − 172v5tu

+ 48v6u + 67v2ut4 − 13vut5 + 244v4ut2 − 175v3ut3 + t6u.

Fig. 7 shows the intersection of the two algebraic curves F (s,1; t,1) and G(s,1; t,1). Note that G(s,1; t,1) can be factored
into three double lines t − 1 = 0, t − 2 = 0, t − 3 = 0 and a line s + t − 4 = 0. Again notice that the intersection points (s, t)
are symmetric with respect to the dashed line s = t .
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Table 1
Parameters corresponding to infinitely near singularities.

Singularity Intersection parameter Actual multiplicity Expected multiplicity Infinitely near singularities?

(1,1;1,1) 2 2 × 1
(2,1;2,1) 4 2 × 1 Yes
(1,1;2,1) 4 2 × 2

Q1 (2,1;1,1) 4 2 × 2
(1,1;3,1) 3 2 × 1 Yes
(3,1;1,1) 3 1 × 2 Yes
(2,1;3,1) 2 2 × 1
(3,1;2,1) 2 1 × 2

Q2 (1,0;1,0) 6 2 × 1 Yes

Computing

H(s, u) � Res(t,v)

(
F (s, u; t, v), G(s, u; t, v)

)
= (s − u)9(s − 2u)10(s − 3u)5u6,

we find that there are 4 different parameters on the curve P(s, u) corresponding to singularities:

(s1, u1) = (1,1), (s2, u2) = (2,1), (s3, u3) = (3,1), (s4, u4) = (1,0).

Grouping these four parameters, we get two singularities

Q1 = P(s1, u1) = P(s2, u2) = P(s3, u3) = (0 : 0 : 1),

Q2 = P(s4, u4) = (1 : 1 : 0).

The inversion formulas for Q1 and Q2 are:

h1 = (su1 − s1u)gcd
(

F (s, u; s1, u1), G(s, u; s1, u1)
) = (s − u)2(s − 2u)2(s − 3u),

h2 = (su4 − s4u)gcd
(

F (s, u; s4, u4), G(s, u; s4, u4)
) = u2.

Hence the point Q1 has multiplicity m1 = 5 and the point Q2 has multiplicity m2 = 2.
Next we check whether there are infinitely near singularities arising from Q1 and Q2. Let ki be the highest power of

(sui − siu) that divides H(s, u). Then k1 = 9, k2 = 10, k3 = 5, k4 = 6. Therefore, the δ-invariants of the point Q1 and Q2
are δ1 = (k1 + k2 + k3)/2 = 12 and δ2 = k4/2 = 3. Note that 12 = δ1 > m1(m1 − 1)/2 = 10 and 3 = δ2 > m2(m2 − 1)/2 = 1.
Therefore, there are infinitely near singularities arising form both Q1 and Q2.

Now we need to find the parameters corresponding to the infinitely near singularities. To find these parameters, we must
compute the intersection multiplicity kij of the two algebraic curves F = 0 and G = 0 at each parameter pair (si, ui; s j, u j).
Observing Fig. 7, we can see that there are several different intersections of F = 0 and G = 0 along the vertical lines
(s, u) = (1,1), (s, u) = (2,1) and (s, u) = (3,1). So we rotate the coordinates by setting

s = 1

2
s̄ +

√
3

2
t̄, t =

√
3

2
s̄ − 1

2
t̄.

Then the two polynomials F (s,1; t,1) and G(s,1; t,1) become F̃ (s̄,1; t̄,1) and G̃(s̄,1; t̄,1), and

H(s̄) � Rest̄

(
F̃ (s̄,1; t̄,1), G̃(s̄,1; t̄,1)

)
= 1

1048576

(−2s̄ + 3 + 2
√

3
)2(−2s̄ + 1 + √

3
)2(−2s̄ + 2 + 3

√
3
)2

× (−2s̄ + 1 + 3
√

3
)3(−2s̄ + 3 + √

3
)3(−2s̄ + 2 + √

3
)4(−2s̄ + 1 + 2

√
3
)4(−s̄ + 1 + √

3
)4

.

The parameter pairs (si, ui; s j, u j) are also changed under rotation. For example, the parameter pair (s1, u1; s2, u2) =
(1,1;2,1) becomes ( 1

2 + √
3,1;

√
3

2 − 1,1). Now the intersection multiplicity for the parameter pair (s1, u1; s2, u2) is the

highest power of 2s̄ − 1 − 2
√

3 that divides H(s̄), i.e., k12 = 4. Similarly, we can get the other values of kij directly from the
expression for H(s̄).

Table 1 compares the actual intersection multiplicity kij and the expected multiplicity of each parameter pair
(si, ui; s j, u j) as an intersection of the two algebraic curves F (s, u; t, v) = 0 and G(s, u; t, v) = 0. Note that if there is
no corresponding infinitely near point, then the expected multiplicity is mim j if (si, ui) �= (s j, u j) and mi(mi − 1) if
(si, ui) = (s j, u j).

From Table 1 we can see that for Q1 there are infinitely near singular points arising from the parameters (2,1;2,1),
(1,1;3,1) and (3,1;1,1), whose expected multiplicities are less than the actual multiplicities as intersections of
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Fig. 8. Rational planar curve and its blow up curve for the point Q1 = (0 : 0 : 1).

Fig. 9. Singularity trees of the singular points (0 : 0 : 1) (left) and (0 : 1 : 0) (right) of the rational planar curve P(s, u) = ((s − u)2(s − 2u)2(s − 3u)u2, (s −
u)2(s − 2u)4(s − 3u), u7).

F (s, u; t, v) = 0 and G(s, u; t, v) = 0. This observation suggests that the curve P(s, u) has a multiple tangent at (s, u) = (2,1),
and has parallel tangents at the two distinct parameters (s, u) = (1,1) and (s, u) = (3,1). Thus Q1 has two infinitely near
double points. Fig. 8(a) shows the singularity Q1 of multiplicity 5 on the rational planar curve P(s, u). Fig. 8(b) shows the
two infinitely near double points of the blow up curve P1(s, u).

For the other double point Q2, from the expression for H(s, u) we get k44 = 6, but m4(m4 − 1) = 2 × 1 = 2. Therefore
there are also two infinitely near double points to Q2.

Fig. 9 shows the singularity trees of the singular points Q1 and Q2.

Finally note that the theorems described in this paper for degree n rational planar curves P(s, u) = (a(s, u),b(s, u), c(s, u))

remain valid if we replace the μ-basis p(s, u),q(s, u) by the two obvious syzygies (−c(s, u),0,a(s, u)) and (0,−c(s, u),

b(s, u)). The proofs are essentially the same. The main computational advantages of using these two moving lines instead
of a μ-basis is that we do not need to calculate a μ-basis. But we pay a price in this approach because the algebraic curves

F (s, u; t, v) � −a(t, v)c(s, u) + c(t, v)a(s, u)

sv − tu
,

G(s, u; t, v) � −b(t, v)c(s, u) + c(t, v)b(s, u)

sv − tu
(56)

have n(n − 1) extraneous roots where c(s, u) = c(t, v) = 0, and these roots must be discarded in order to correctly com-
pute the singularities of P(s, u). Thus in this approach the degrees of F and G are unnecessarily high. Hence the main
computational advantage of the μ-basis approach is that there are no extraneous roots and the associated algebraic curves
F (s, u; t, v) and G(s, u; t, v) have minimal degree.

6. Conclusions and future research

We have shown how to apply μ-bases to construct two algebraic curves whose intersection points are the param-
eters with proper multiplicity of the singularities of a given rational planar curve. This approach extends Abhyankar’s
method of t-resultants from planar polynomial curves to rational planar curves. We have also derived the classical re-
sult that for a rational planar curve of degree n the sum of all the singularities including infinitely near singularities
with proper multiplicity is (n − 1)(n − 2)/2. Based on these results we have developed algorithms to find all the sin-
gularities for rational planar curves. Notice, however, that in these algorithms, we first need to solve for the roots of
H(s, u) = Rest,v(F (s, u; t, v), G(s, u; t, v)), for which we can typically get only approximate solutions. Therefore our approach
sometimes suffers from numerical problems. We hope to address these numerical issues in our subsequent research.

One way to address these numerical issues would be to avoid altogether the computation of the roots of H(s, u) and
instead to prove the conjecture of Chen, Wang and Liu, using the Smith form of the Bezout matrix of the μ-basis to compute
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the parameters both for the singular points and for the infinitely near singular points. Since our current methods allow us
to use resultants to compute the parameters corresponding to infinitely near singular points, we plan to provide such a
proof in a sequel to this paper – see Jia and Goldman (2009).

In the future we also hope to extend our results both to rational spaces curves and to rational surfaces. For rational
space curves, we would like to develop similar techniques using μ-bases to find all the singularities with their proper
multiplicities. We also hope to find some tight bounds on the number of these singularities with their proper multiplicities.
For rational surfaces, we plan first to extend our techniques to rational ruled surfaces, where the theory of computing the
singular locus of rational ruled surfaces via μ-bases is already well developed (Jia et al., 2009). Here we expect to use the
method of μ-bases to find the singular locus and to characterize the multiplicity of each point on this locus. Eventually,
when the theory of μ-bases is fully developed, we hope to extend these results to arbitrary rational surfaces.
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