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Abstract

Based on the Gröbner basis method, we present algorithms for a com-
plete solution to the following problems in the implicitization of a set
of rational parametric equations. (1) Find a basis of the implicit prime
ideal determined by a set of rational parametric equations. (2) Decide
whether the parameters of a set of rational parametric equations are in-
dependent. (3) If the parameters of a set of rational parametric equations
are not independent, reparameterize the parametric equations so that the
new parametric equations have independent parameters. (4) Compute
the inversion maps of parametric equations, and as a consequence, give a
method to decide whether a set of parametric equations is proper. (5) In
the case of algebraic curves, find a proper reparameterization for a set of
improper parametric equations.

1 Introduction

For curves and surfaces, to transform their parametric equations to the implicit
form are of fundamental importance in geometric modeling and computer graph-
ics and many methods have been given to do this, see e.g. [Sederberg, 1984],
[Arnon & Sederberg, 1984], [Chuang & Hoffmann, 1989], [Li, 1989], [Hoffmann,
1990], [Chionh, 1990], [Manocha & Canny, 1990], [Kalkbrener, 1990], and [Gao
& Chou, 1991a,b]. However, in more general cases, many problems remain un-
touched. For example, the parameters of a set of parametric equations might
not be independent as shown by the following example. At first sight, one might
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think that the parametric equations

x =
u + v

u− v
, y =

2v2 + 2u2

(u− v)2
, z =

2v3 + 6u2v

(u− v)3
(1.1)

represent a space surface. Actually, they represent a space curve, since if we let
t = u+v

u−v , then the above parametric equations become

x = t, y = t2 + 1, z = t3 − 1.

For the above example, each point of the curve corresponds to infinitely many
values of u and v. Hence the solution of the inversion problem here is not clear.
Therefore, in the implicitization problem we should check whether the param-
eters of a set of parametric equations are independent, and if the parameters
are not independent, reparameterize the parametric equations to make the new
parameters independent.

In this paper we address the implicitization problem for rational parametric
equations. Our algorithms are based on the Gröbner basis method, a powerful
tool in computer algebra [Buchberger, 1985], which was introduced by Buch-
berger in 1965 to solve a system of polynomial equations and to determine
whether a polynomial belongs to an ideal.

In [Buchberger, 1987] and [Shannon & Sweedler, 1988], a method was given
to compute a basis of the implicit ideal (see Definition 2.2) for a set of polynomial
parametric equations. But a straight forward extension of their method to the
implicitization of rational parametric equations may not work (see the remark
after Example 3.3.) because of the existence of base points. Various methods
are designed to solve the implicitization problem for parametric equations with
base points in the case of rational surfaces [Chionh, 1991], [Hoffmann, 1990],
[Manocha & Canny, 1990]. In this paper, based on the Rabinowitsch’s trick
we present a method to find a basis of the implicit ideal for general rational
parametric equations with or without base points. A similar method has also
been presented independently in [Kalkbrener, 1990].

In the case of rational space surfaces, the independence of the parameters
of parametric equations can be checked by counting the base points properly
[Chionh, 1990]. In this paper, we present a method to decide the independence
of the parameters in the general case. Furthermore, if the parameters of the
parametric equations are not independent, we can reparameterize them so that
the new parametric equations have independent parameters.

The inversion problem – given a point in the image of a set of parametric
equations, to find a set of values for the parameters which corresponds to the
given point – can be reduced to an equation solving problem [Buchberger, 1987].
In this paper, we present a method to find a closed form solution to the inversion
problem, i.e., we give a method to compute the inversion maps of a set of
parametric equations in the general form. As a consequence of our method,
we can decide whether the parametric equations are proper or faithful, i.e.,
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whether the implicit curves or surfaces are not multiply traced by the parametric
equations. The inversion problem is also discussed in [Bajaj et al, 1988], section
6.2. Their method is for some special cases: (1) By using the Cramer’s rule, the
method only applies to faithful parametric equations. Our method can apply
to more general cases (see Example 5.6). (2) Their method only applies to
parametric equations with the same number of the parameters and parametric
equations, because only in this case the “true image” of a hypersurface under the
rational map defined by the parametric equations is also a hypersurface [Bajaj
et al, 1988]. Most of the parametric equations used in geometric modeling fail
to satisfy case (2).

If the parametric equations are not proper, naturally we would ask whether
we can reparameterize them so that the new parametric equations are proper.
In general cases, the answer is negative. However, in the case of algebraic
curves, the existence of a proper reparametrization for the original improper
parametric equations is guaranteed by Lüroth’s theorem [Walker, 1950]. Seder-
berg gave a probabilistic method to find proper reparametrization for a set of
improper parametric equations for algebraic curves [Sederberg 1986]. Manocha
gave a deterministic method for improperly parametrized polynomial paramet-
ric equations [Manocha, 1990]. As an application of our method, we provide a
deterministic method to find a proper reparametrization for a set of improper
parametric equations of an algebraic curve. In the case of algebraic surfaces, if
the base field K is the complex number field C, then there always exists a proper
reparametrization for the original improper parametric equations [Castelnuvo
1894]. However if the base field K is Q (the field of rational numbers) or R
(the field of real numbers), this needs not to be the case [Segre 1951]. If the
implicit variety determined by the parametric equations are of dimension > 2,
then even for K = C there exist improper parametric equations that do not
have a proper reparametrization [Artin & Mumford 1971].

Finally, we remark that all the above tasks can be done by computing only
one Gröbner basis. But in the case of space rational surfaces or in the more
general case when the implicit variety is a hypersurface, the method based on
computing the Gröbner basis is slow comparing with various specialized meth-
ods, e.g., the resultant methods [Bajaj et al, 1988], [Chionh, 1990], [Manocha
et al, 1990] and the base conversion method [Hoffmann, 1990].

This paper is organized as follows. In section 2, we give some basic defini-
tions and properties of parametric equations. In section 3, we give a method
to compute a basis of the implicit ideal for a set of rational parametric equa-
tions. In section 4, we present a method to reparameterize a set of parametric
equations (if its parameters are not independent) so that the parameters of the
new parametric equations are independent. In section 5, we give a method to
compute the inversion maps, and in the case of algebraic curves, give a method
to find a set of proper parametric equations for a set of improper parametric
equations. Section 6 is a summary of the paper.
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2 Preliminaries on Parametric Equations

Let K be a computable field of characteristic zero, e.g., Q. We use K[x1, ..., xn]
or K[x] to denote the ring of polynomials in the indeterminates x1, ..., xn. Unless
explicitly mentioned otherwise, all polynomials in this paper are in K[x]. Let
E be a universal extension of K, i.e., an algebraic closed extension of K which
contains sufficiently many independent indeterminates over K. For a polynomial
set PS, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}.
For two polynomial sets PS and DS, we define

Zero(PS/DS) = Zero(PS)− ∪d∈DSZero(d).

Let t1, ..., tm be indeterminates in E which are independent over K. For
polynomials P1, ..., Pn, Q1, ..., Qn in K[t1, ..., tm] (Qi 6= 0), we call

x1 =
P1

Q1
, ..., xn =

Pn

Qn
(2.1)

a set of (rational) parametric equations. We assume that not all Pi and Qi are
constants and gcd(Pi, Qi) = 1. The maximum of the degrees of Pi and Qj is
called the degree of (2.1). The image of (2.1) in En is

IM(P, Q) = {(x1, ..., xn) | ∃t ∈ Em(xi = Pi(t)/Qi(t))}.
We have

Lemma 1 There is an algorithm to find polynomial sets PS1, ..., PSt and poly-
nomials d1, ..., dt such that

IM(P, Q) = ∪t
i=1Zero(PSi/{di}). (2.1.1)

Proof It is obvious that IM(P, Q) = {(x1, ..., xn) | ∃t ∈ Em(Qi(t)xi − Pi(t) =
0 ∧ Qi(t) 6= 0)}. Thus by the quantifier elimination methods for algebraically
closed fields (see, e.g., [Heintz, 1983] or [Wu, 1989]), we can find the PSi and
di such that (2.1.1) is correct.

Definition 2 The implicit ideal of (2.1) is

I = {F ∈ K[x] | F (P1/Q1, ..., Pn/Qn) ≡ 0}.
Zero(I) is called the implicit variety of (2.1).

It is clear that I is a prime ideal whose dimension equals to the transcen-
dental degree of K(P1/Q1, ..., Pn/Qn) over K. The following result gives the
relation between the image and the implicit variety of a set of parametric equa-
tions.
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Theorem 3 Let V be the implicit variety of (2.1) and d the dimension of V ,
then

(1) IM(P, Q) ⊂ V ; and
(2) V −IM(P, Q) is a quasi variety with dimension less than d. Furthermore,

we can find this quasi variety.

Proof. (1) is clear from the definitions. By (2.1.1), IM(P, Q) = ∪t
i=1Zero(PSi/{di}).

We can further assume that for each PSi, Ideal(PSi) (the ideal generated by
PSi) is a prime ideal and di is not in Ideal(PSi). Let I be the implicit ideal
of (2.1). Since η = (P1/Q1, ..., Pn/Qn) ∈ IM(P, Q), η must be in some com-
ponents of IM(P, Q), say in Zero(PS1/{d1}). Note that η is a generic point
for V and Zero(PS1) ⊂ V , then Zero(PS1) = V and Ideal(PS1) = I. Hence
V − IM(P, Q) = Zero(I ∪ {d1}) − ∪t

i=2Zero(PSi/{di}). Since d1 is not in I,
the dimension of Zero(I ∪ {d1}) is less than d.

3 The Computation of Implicit Ideals

For a set of rational parametric equations of the form (2.1), let

Fi = Qixi − Pi, Di = Qizi − 1, i = 1, ..., n. (3.1)

where the zi are new variables. Let

ID = Ideal(F1, ..., Fn, D1, ..., Dn) (3.2)

i.e., the ideal generated by the Fi and Di in K[t, x, z].

Theorem 4 We use the same notations as above. The implicit ideal of (2.1)
is ID ∩K[x1, ..., xn].

Proof. The implicit ideal of (2.1) is

I = {F ∈ K[x] | F (P1/Q1, ..., Pn/Qn) ≡ 0}.

For B ∈ I, replacing Pi/Qi by xi − Fi/Qi in B(P1/Q1, ..., Pn/Qn) = 0 and
clearing denominators, we have

(
n∏

i=1

Qki
i )B(x1, ..., xn) =

n∑

j=1

CjFj (3.1.1)

where Cj ∈ K[x, t]. Multiplying both sides of (3.1.1) by G =
∏n

i=1 zki
i , we have

(
n∏

i=1

(ziQi)ki)B(x1, ..., xn) =
n∑

j=1

GCjFj (3.1.2)
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Since Di = Qizi − 1, (3.1.2) shows that B(x1, ..., xn) can be expressed as linear
combination of Fi and Di. Therefore B is in ID ∩ K[x]. We have proved
I ⊂ ID ∩K[x]. To prove the other direction, let P ∈ ID ∩K[x]. Then we have

P =
n∑

i=1

CiFi +
n∑

j=1

BjDj

Setting xi = Pi/Qi, zi = 1/Qi in the above formula, we have P (P1/Q1, ..., Pn/Qn) ≡
0, i.e., P is in I. This completes the proof.

Using the following Lemma and Theorem 3.1, we can compute a basis for
the implicit ideal of (2.1)

Lemma 5 (Lemma 6.8 in [Buchberger, 1985]) Let GB be a Gröbner basis of an
ideal ID ⊂ K[x1, ..., xn, y1, ..., yk] in the pure lexicographic order x1 < ... < xn <
y1 < ... < yk, then GB ∩K[x1, ..., xn] is a Gröbner basis of ID ∩K[x1, ..., xn].

Example 6 For parametric equations (1.1), let

PS = {(v−u)x+v+u, (v−u)2y−2v2−2u2, (v−u)3z+2v3+6u2v, (v−u)z1−1}
(3.3.1)

Note that we can omit (u− v)2z2 − 1, (u− v)3z3 − 1 because of the appearance
of (v − u)z1 − 1. Under the pure lexicographical order x < y < z < u < v < z1,
the Gröbner basis of Ideal(PS) is

{y−x2−1, z−x3 +1, (x+1)v +(−x+1)u, 2uyz1 +x+1, 2vz1 +x−1} (3.3.2)

By Theorem 3.1 and Lemma 3.2, a basis of the implicit ideal of (1.1) is {y −
x2 − 1, z − x3 + 1}.
Remark The inequation part Di = 0 (which is equivalent to Qi 6= 0) is essential
for Theorem 3.1 to be true. In Example 3.3, let PS′ = PS − {(v − u)z1 − 1},
then the Gröbner basis GB′ of Ideal(PS′) is

(z + 2)v3 + 6uv2 + 18u2v + (−x3 + 6x2 − 18x + 13)u3

((z + 2)u)v2 + 6u2v + (−x3 + 4x2 − 8x + 5)u3

(y − 2)v2 − 4uv + (−x2 + 4x− 3)u2

((z + 2)u2)v + (−x3 + 2x2 − 2x + 1)u3

((y − 2)u)v + (−x2 + 2x− 1)u2

(x + 1)v + (−x + 1)u
(z − x3 + 1)u3

(y − x2 − 1)u2

Note that GB′ ∩K[x] = ∅.
The following are some well known results about the properties of the Gröbner

basis for a prime ideal which will be used in the next two sections. For S ⊂
{x1, ...., xn}, we denote K[S] to be the polynomial ring of the variables in S.
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A set of variables S is called independent modulo a prime ideal I ⊂ K[x] if
I ∩K[S] = {0}. It is known that if S is a maximal independent set modulo I
then |S| is the dimension of I. A maximal set of independent variables for a
prime ideal I is called a parameter set of I.

Lemma 7 Let I be a prime ideal with a parameter set S and P be a polynomial
not in I, then there is a nonzero polynomial Q ∈ K[S] ∩ Ideal(I ∪ {P}).

Proof. It is a direct consequence of the dimension theorem (p48, [Hartshorne,
1977]).

The leading variable of a nonconstant polynomial P ∈ K[x] is the smallest
i ≤ n such that P ∈ K[x1, ..., xi].

Lemma 8 Let GB be a Gröbner basis of a prime ideal I in the lexicographical
order x1 < ... < xn, and S be the set of distinct leading variables of the polyno-
mials in GB, then T = {x1, ..., xn} − S is a set of parameters of I and hence I
is of dimension |T |.

Proof. See [Kredel et al, 1989].

Lemma 9 Let GB be the reduced Gröbner basis of a zero-dimension prime ideal
I in the pure lexicographical order x1 < ... < xn, then GB = {A1, ..., An} where
Ai is a polynomial of x1, ..., xi with a power of xi as its leading term.

Proof. See Proposition 5.5 and 5.9 in [Gianni et al, 1988].

Lemma 10 Let GB be the reduced Gröbner basis of a prime ideal I under the
lexicographical order x1 < ... < xn, and S be the parameter set of I, then the
Gröbner basis of the ideal generated by I in K(S)[T ], (T = {x1, ..., xn}− S), is
{P | for each xi0 in T , P ∈ GB is the least polynomial with xi0 as its leading
variable }.

Proof. It is a consequence of Lemma 3.4.

4 The Independent Parameters

We will use the notations introduced in (2.1), (3.1), and (3.2).

Definition 11 The parameters t1, ..., tm of (2.1) are called independent if the
implicit ideal of (2.1) is of dimension m, or equivalently the transcendental
degree of K(P1/Q1, ..., Pn/Qn) over K is m (by Theorem 2.3).

Lemma 12 ID and ID ∩K[t, x] are prime ideals of dimension m.
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Proof. Similar to the proof of Theorem 3.1, we have

ID = {P ∈ K[t, x, z] | P (t1, ..., tm, P1/Q1, ..., Pn/Qn, 1/Q1, ..., 1/Qn) ≡ 0}

i.e., ID is a prime ideal with (t1, ..., tm, P1/Q1, ..., Pn/Qn, 1/Q1, ..., 1/Qn) as a
generic point. Therefore, the dimension of ID is m. Similarly,

ID ∩K[t, x] = {P ∈ K[t, x] | P (t1, ..., tm, P1/Q1, ..., Pn/Qn) ≡ 0}.

Therefore ID ∩K[t, x] is also a prime ideal of dimension m.
Let GB be a Gröbner basis of ID in the lexicographical order x1 < ... < xn <

t1 < ... < tm < z1 < ... < zn. Since ID and ID ∩K[t, x] have the same dimen-
sion (Lemma 4.2), by Lemma 3.5, each zi must be the leading variable for some
polynomials in GB. Thus without loss of generality we can assume the leading
variables of the polynomials in GB be xd+1, xd+2, ..., xn, ts+1, ts+2, ..., tm, z1, ..., zn.
Therefore, {x1, ..., xd, t1, ..., ts} is a parameter set of the prime ideal ID and d+s
is the dimension of ID, i.e., d + s = m by Lemma 4.2. For the same reason,
{x1, ..., xd} is a parameter set of the ideal ID ∩ K[x] and the dimension of
ID ∩K[x] is d. Summing up, we have

Theorem 13 (a) The implicit ideal of (2.1) is of dimension d > 0. (b) The
parameters of (2.1) are independent iff s = 0, i.e., each ti occurs as the leading
variable for some polynomials in GB.

Proof. For (a), we only need to show d > 0. Since not all of Pi and Qi are in K
and gcd(Pi, Qi) = 1, some xi must dependent on the t effectively, i.e., we must
have d > 0. Since d+ s = m, the parameters of (2.1) are independent iff d = m,
or s = 0.

Theorem 14 If the parameters of (2.1) are not independent, we can find a set
of new parametric equations

x1 = P ′1/Q′1, · · · , xn = P ′n/Q′n (4.4.1)

which has the same implicit ideal as (2.1) and a set of independent parameters.

Proof. Use the notations introduced in the paragraph before Theorem 4.3. Then
{ x1, ..., xd, t1, ..., ts } (d + s = m) is a parameter set for ID. Thus the ideal
ID′ generated by ID in

R = K(x1, ..., xd, t1, ..., ts)[xd+1, ..., xn, ts+1, ..., tm, z1, ..., zn]

is a prime ideal of zero dimension. By Lemma 3.6 and Lemma 3.7, a Gröbner
basis of ID′ under the lexicographical order xd+1 < ... < xn < ts+1 < ... <
tm < z1 < ... < zn can be found and is of the following form

A1(xd+1)
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· · ·
An−d(xd+1, ..., xn)
B1(xd+1, · · · , xn, ts+1)
· · · (4.4.2)
Bm−s(xd+1, · · · , xn, ts+1, · · · , tm)
C1(xd+1, ..., xn, ts+1, ..., tm, z1)
· · ·
Cn(xd+1, ..., xn, ts+1, ..., tm, z1, ..., zn)

where the leading term of each Ai (Bj and Ck) is a power of xd+i (ts+j and zk)
with coefficient 1. The coefficients of Ai, Bj and Ck are in K(x1, ..., xd, t1, ..., ts).
Let M be the least common divisor of the denominators of the coefficients of the
Ai, Bj , and Ck, then M is a polynomial of x1, ..., xd and t1, ..., ts. Let h1, ..., hs

be integers such that when replacing ti by hi, i = 1, ..., s, M becomes a nonzero
polynomial M ′ of x1, ..., xd. Let P ′i and Q′i be polynomials obtained from Pi

and Qi by replacing ti by hi, i = 1, ..., s. In the next paragraph, we will show
that Q′i 6= 0. Thus we have obtained (4.4.1).

Let the implicit varieties defined by (4.4.1) and (2.1) be W and V respec-
tively. We want to prove W = V . By the selection of hi, it is clear that W ⊂ V .
For each Fh, h = 1, ..., n, since Fh ∈ ID′, we have

Fh =
n−d∑

i=1

HiAi +
m−s∑

j=1

GjBj +
n∑

k=1

EkCk

where the Hi, Gj and Ek can be taken as polynomials in K[t, x, z], because the
leading terms of Ai, Bj , and Ck are powers of variables. Replacing ti by hi,
i = 1, ..., s, in the above formula, we have

F ′h =
n−d∑

i=1

H ′
iAi +

m−s∑

j=1

G′jB
′
j +

n∑

k=1

E′
kC ′k (4.4.3)

where F ′h = Q′hxh−P ′h. By the selection of hi, B′
j and C ′k are well defined. Since

{x1, ..., xd} is a parameter set of the implicit ideal whose zero set is V , there
exists a generic zero x0 = (x′1, ..., x

′
n) of V such that x′1, ..., x

′
d are independent

variables over K. (It is easy to show that A1 = 0, ..., An−d = 0 can determine
such a generic zero.) Without loss of generality, we assume that the coefficients
of B′

j , as polynomials in R, have the form P/M ′ where P is a polynomial in
K[x1, ..., xd] and M ′ is defined as the above paragraph. Then by the selection
of the x0, we can replace x by x0 in B′

j and obtain a polynomial B′′
j . B′′

j is
a nonzero polynomial of ts+1, ..., tj whose leading term is a power of tj . Then
B′′

1 = 0, ..., B′′
m−s = 0 can determine a set of solutions for ts+1, ..., tm. Let such

a set of solutions be t′s+1, ..., t
′
m. Similarly, we can determine a set of solutions

z′1, ..., z
′
n for z1, ..., zn from C ′1, ..., C

′
n. Now replacing x by x0, ti by t′i, i =

s + 1, ..., m, and zk by z′k, k = 1, ..., n, in (4.4.3), we have Q′′hx′h−P ′′h = 0 where
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Q′′h and P ′′h are obtained from Q′h and P ′h by replacing ti by t′i, i = s + 1, ..., m.
Since Dk = Qkzk − 1 ∈ ID′, similarly we can show that Q′′kz′k − 1 = 0. Thus
Q′′k 6= 0 (hence Q′k 6= 0). Therefore we have x0 = (P ′′1 /Q′′1 , ..., P ′′n /Q′′n), i.e., x0 is
in the image of (4.4.1) hence in W . This implies V ⊂ W . Thus we have proved
V = W . Since V is of dimension d, by Theorem 4.3, the parameters ts+1, ..., tm
of (4.4.1) are independent.

Example 15 In example (1.1), by (3.3.2), {x, u} is a set of parameters of
Ideal(PS). Here d = 1, s = 1; hence the parameters u and v are not inde-
pendent. To reparameterize (1.1), by Theorem 4.4, we need to compute the
Gröbner basis of Ideal(PS) in K(x, u)[y, z, v, z1] in the pure lexicographical or-
der y < z < v < z1. Such a Gröbner basis is

{y − x2 − 1, z − x3 + 1, v +
(−x + 1)u

(x + 1)
, z1 +

x + 1
2u

}.

Then the M in the proof of Theorem 4.4 is 2(x + 1)u. Selecting a value of u,
say 1, which does not make M zero, we get a new parametric equation

x =
v + 1
1− v

, y =
2v2 + 2
(1− v)2

, z =
2v3 + 6v

(1− v)3

which has the same implicit prime ideal as (1.1) and has an independent pa-
rameter v.

5 Inversion Maps and Proper Parameterization

Definition 16 Inversion maps for (2.1) are functions

t1 = f1(x1, ..., xn), ..., tm = fm(x1, ..., xn)

such that xi ≡ Pi(f1, ..., fm)/Qi(f1, ..., fm) are true on the implicit variety V of
(2.1) except a subset of V which has a lower dimension than that of V .

The inversion problem is closely related to whether a set of parametric equa-
tions is proper or faithful.

Definition 17 (2.1) is called proper if, except a subset of IM(P, Q) which
has lower dimension, for each (a1, ..., an) ∈ IM(P, Q) there exists only one
(τ1, ..., τm) ∈ Em such that ai = Pi(τ1, ..., τm)/Qi(τ1, ..., τm), i = 1, ..., n.

Now we assume that the parameters t1, ..., tm of (2.1) are independent, i.e.,
s = 0, then (4.4.2) becomes

A1(xm+1)
· · ·
An−m(xm+1, · · · , xn)

10



B1(xm+1, · · · , xn, t1)
· · · (5.1)
Bm(xm+1, · · · , xn, t1, · · · , tm)
C1(xm+1, · · · , xn, t1..., tm, z1)
· · ·
Cn(xm+1, · · · , xn, t1..., tm, z1, ..., zn)

Theorem 18 Using the same notations as above, we have
(a) Bi(x, t1, ..., ti) = 0 determine ti (i = 1, ..., m) as functions of x1, ..., xn

which are a set of inversion maps for (2.1).
(b) (2.1) is proper if and only if Bi are linear in ti for i = 1, ..., m, and if

this is case, the inversion maps are

t1 = U1/I1, ..., tm = Um/Im

where the Ii and Ui are polynomials in K[X].

Proof. Similar to the proof of Theorem 4.4, let the least common divisor of
the denominators of the coefficients of the Ai, Bj , and Ck be M , then M is a
polynomial of x1, ..., xd. Let x′ = (x′1, ..., x

′
n) be a zero on the implicit variety

V of (2.1) such that M(x′) 6= 0. Then similar to the proof of Theorem 4.4,
we can show that Bi(x′, t1, ..., ti) = 0, i = 1, ..., m, determine a set of values
t′ = (t′1, ..., t

′
m) for the ti and Ck(x′, t′, z1, ..., zk) = 0, k = 1, ..., n, determine a set

of values z′ = (z′1, ..., z
′
n) for the zi. Furthermore, (t′, x′, z′) is a zero of ID (see

(3.2)) which implies that Qi(t′) 6= 0. Thus Fh(t′, x′) = Ph(t′)x′h − Qh(t′) = 0,
i.e., x′h = Ph(t′)/Qh(t′). Note that Zero(M) ∩ V has a lower dimension than
that of V , we have proved (a).

To prove (b), first note that the Bi = 0 (i = 1, ..., m) are the relations
between the x and t1, ..., ti in ID′ which have the lowest degree in ti. Also
different solutions of Bi = 0 for the same x give same value for the xi. Since
(5.1) is a basis of a zero dimensional prime ideal ID′, for a generic zero x′ on
the implicit variety V , Bi(x′, t1, ..., ti) = 0, i = 1, ..., m, have no repeated roots
for the ti. Therefore a point x ∈ IM(P, Q) corresponds to one set of values for
ti iff Bi are linear in ti, i = 1, ..., m. Let Bi = Iiti − Ui where Ii and Ui are in
K[x] then the inversion maps are ti = Ui/Ii, i = 1, ..., m.

Theorem 5.3 gives a method to find the inversion maps and a method to
decide whether the parametric equations are proper.

Remark. In the terminology of algebraic geometry, if (2.1) is proper, then the
variety V defined by (2.1) is a rational variety, i.e., V is birational to Em.

Theorem 19 If m = 1 and (2.1) is not proper, we can find a new parameter
s = f(t1)/g(t1) where f and g are in K[t1] such that the reparametrization of
(2.1) in terms of s

x1 =
F1(s)
G1(s)

, ..., xn =
Fn(s)
Gn(s)

(5.4.1)

are proper.
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Proof. Since m = 1, (2.1) defines a curve C. Let K ′ = K(P1/Q1, ..., Pn/Qn) be
the rational field of C. Note that P1(t1)−Q1(t1)λ = 0 where λ = P1(t1)/Q1(t1) ∈
K ′, then t1 is algebraic over K ′. Let f(y) = ary

r + ... + a0 be an irreducible
polynomial K ′[y] for which f(t1) = 0. Then at least one of ai/ar, say η = as/ar,
is not in K. By a proof of Lüroth’s theorem (p149, [Walker, 1950]), we have
K ′ = K(η). This means that xi = Pi/Qi can be expressed as rational functions
of η and η also can be expressed as a rational function of xi = Pi/Qi, i.e., there
is a one to one correspondence between the values of the xi = Pi/Qi and η.
Therefore η is the new parameter we seek. Now the only problem is how to
compute the f .

By Theorem 5.3, we can find an inversion map B1(x1, ..., xn, t1) = 0 of the
curve. Then B1 is a relation between the x and t1 with lowest degree in t1
module the curve, in other words B′

1(y) = B1(P1/Q1, ..., Pn/Qn, y) = 0 is a
polynomial in K ′[y] with lowest degree in y such that B′

1(t1) = 0, i.e., B′
1(y)

can be taken as f(y). So the s can be obtained as follows. If B1 is linear in t1
then (2.1) is already proper. We can take s = t1. Otherwise let

B1 = brt
r
1 + · · ·+ b0

where the bi are in K[x]. By (2.1), bi can also be expressed as rational functions
ai(t1), i = 1, ..., r. At least one of ai/ar, say a0/ar, is not an element in K. Let
s = a0/ar. Eliminating t1 from (2.1) and ars − a0, we can get (5.4.1). Note
that ai comes from bi by substituting xj by Pj/Qj , j = 1, ..., n, then s = b0/br

is an inversion map of (5.4.1).
Theorem 5.4 provides a new constructive proof for Lüroth’s Theorem, i.e.,

we have

Corollary 20 Let g1(t), ..., gr(t) be elements of K(t), then we can find a g(t) ∈
K(t) such that K(g1, ..., gr) = K(g).

Example 21 Consider the parametric equations for a Bézier curve [Sederberg,
1986]:

x = 8s6−12s5+32s3+24s2+12s
s6−3s5+3s4+3s2+3s+1 (5.6.1)

y = 24s5+54s4−54s3−54s2+30s
s6−3s5+3s4+3s2+3s+1

Let HS = {(s6 − 3s5 + 3s4 + 3s2 + 3s + 1)x− (8s6 − 12s5 + 32s3 + 24s2 +
12s), (s6 − 3s5 + 3s4 + 3s2 + 3s + 1)y− (24s5 + 54s4 − 54s3 − 54s2 + 30s), (s6 −
3s5 +3s4 +3s2 +3s+1)z−1}. Under the variable order y < s < z, the Gröbner
basis of Ideal(HS) in K(x)[s, y, z] is

g1 = 224y3 +(−2268x+7632)y2 +(−54x2− 1512x− 480384)y +34263x3−
424224x2 + 1200960x

g2 = (15273x2 +1098792x−9767808)s2 +(7280y2 +(−27006x−125592)y−
174069x2 + 598788x− 9767808)s− 7280y2 + (27006x + 125592)y + 189342x2 +
500004x
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q3 = (488736x+39071232)z+(33488y2+(−95718x+1701432)y−712134x2+
9970488x−34187328)s+27888y2+(−81210x+1297128)y−584109x2+8885196x−
39071232

Since (5.6.1) defines a plane curve, by Theorem 3.1 and Theorem 5.4, (5.6.1)
is a set of improper parametric equations for the curve g1 = 0. An inversion
map of (5.6.1) can be obtained by solving g2 = 0 as a quadratic equation of s.
To find a set of proper parametric equations for g1 = 0, by Theorem 5.4, we
select a new parameter

t1 =
(7280y2 + (−27006x− 125592)y − 174069x2 + 598788x− 9767808)

(15273x2 + 1098792x− 9767808)
=

s2 + 1
1− s

(5.6.2)
Eliminating s from (5.6.2) and (5.6.1), we have

x =
8t31 + 12t21 − 36t1 + 16

t31 + 3t21 − 3t1
, y =

−24t21 + 78t1 − 54
t31 + 3t21 − 3t1

(5.6.3)

By Theorem 5.4, we can easily check that (5.6.3) is a set of proper parametric
equations of g1 = 0 with an inversion map (5.6.2).

6 Conclusions

The main results of this paper can be summarized as follows.

(a) We can find a basis for the implicit ideal of (2.1).
(b) We can decide whether the parameters t1, ..., tm of (2.1) are independent,

and if not, reparameterize (2.1) so that the parameters of the new parametric
equations are independent.

(c) If the parameters of (2.1) are independent, we can construct a set of
polynomial equations

B1(x1, ..., xn, t1) = 0, ..., Bm(x1, ..., xn, t1, ..., tm) = 0

the solution of the ti in terms of the xi are the inversion maps of (2.1), and (2.1)
is proper iff the Bi are linear in ti, i = 1, ..., m.

(d) If m = 1 and (2.1) is not proper, we can reparameterize (2.1) such that
the new parametric equations are proper.

The general case of (d), i.e., to decide weather the implicit variety of (2.1)
is rational (or equivalently, birational to Ek for some k), and if it is, to find a
set of proper reparametrization for (2.1), is still open. In the case m = 2, see
[Gao & Chou, 1991b] for further discussions.
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