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Deep Neural Network (DNN)

DNN is the central tool in the current AI breakthroughs:

Computer Vision

Natural Language Translation
Game Playing: AlphaGo

Autonomous Driving: Vision and Decision

Protein Structure Prediction: AlphaFold

and applications in almost every area
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Problems with DNNs

Trade the rigourous for representation power:

Robustness and Safety

Explainability and causality/reasoning

Transferability and catastrophic forgetting

Dependence too much on large amount of data and computation

Lack of rigourous and applicable theory for training and
generalization
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Adversarial Samples and Adversarial Attack

With little modifications which are essentially imperceptible to the
human eye, DNN outputs a wrong label

Adversarial Attack Adversarial Samples

(Goodfellow-Shlens-Szegedy, 2014)
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Targeted Adversary Attack

With little modifications, DNN outputs any label given by the adversary

Modify 4% pixels of MNIST: 97% images have adversaries

(Papernot et al. 2016)
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Single-pixel Adversary Attack

Modify a Single Pixel: 67% of CIFAR-10 have adversaries

(Su-Vargas-Sakurai, 2019)
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White-box vs Black-box Adversary Attacks

White-box Attack: the parameters of the DNN are known and the
gradients of the DNN are used to generate adversaries.

Black-box Attack: Based on transferability of adversarial examples:
An adversary of C1 is likely to be the adversary for a “similar” C2.

(Papernot et al, 2016)
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Defence against White-box Attack: Gradient Masking

Hides the gradient to avoid gradient based white-box attacks:

Let G(x) be a “small” step function or random function, which does
not have meaningful gradient.
Use G(x) instead of x as the input.

Defence does not work: Local minor changes can be recovered!

Gradient Masking Successful Attack

Shattered Gradients Approximate the step function

Stochastic Gradients Compute the expectation

Vanishing Gradients Reparameterization

(Athalye-Carlini-Wagner, 2018)
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Adversarial Training for More Robust DNNs

Normal Training: Θ∗ = arg minΘ∈RK E(x ,y)∼D Loss(CΘ(x), y)

Adversarial Training (Madry et al, 2017)
Given an attack radius ε ∈ R+, AT is a robust optimization problem:

Θ∗ = arg minΘ∈RK E(x,y)∼Dmax||x−x||≤ε Loss(CΘ(x), y)

Empirical risk minimization over the most-adversarial sample x of x

Adversarial training is the best empirical defence

ε
Without AT With AT

Accuracy Adv. Accu Accuracy Adv. Accu

MNIST 0.1 99% 76% 99% 97%

CIFAR10 0.03 90% 0% 83% 49%

Adversarial Accuracy: Percentage of samples without adversarial examples
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Adversarial Samples are Inevitable!

State-of-the-art DNNs have adversaries.

For any given DNN C, ∃D such that if C is accurate on D, then C
has adversaries over D with high probabilty. (Bastounis et al, 2020)

DNN is also extremely sensitive to its parameters:
If the width of a DNN C is sufficiently large,
then we can change the parameters of C as small as possible,
such that the modified DNN has adversarial samples as close as
possible to the normal samples. (Yu-Wang-Gao, 2022)

Adversary is a key factor for safety-critical applications, such as
autonomous driving, financial authentication, military camouflage
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Some Basic Issues of Adversarial Learning

Adversarial Learning: Learning at the existence of adversaries

Does there exists a robust classifier against any adversarial
attack?

How to train a classifier from a given hypothesis space, which
ensures optimal robustness against any adversarial attack?

Does there exist provable adversarial robust and practical
classifiers?

· · ·
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DNN: Piecewise Linear and Continuous Function

DNN: C : [0,1]d → Rm

l-th Hidden Layer:
xl = Relu(Wlxl−1 + bl )

Relu(x) = max{0, x}
Parameters of C: Θ = {Wl ,bl}L

l=1

Training:
Given a data set: D = {(xi , yi )}N

i=1

Empirical risk minimization

Θ∗ = arg minΘ

∑
i Loss(CΘ(xi ), yi )

Deep Learning: Approximate a high dimensional (d ∼ 784− 150528)
function with a piecewise continuous linear function
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Classification DNN

MNIST: Ten hand-written numbers
d = 28 · 28 = 784

CIFAR10: Ten objects
d = 32 · 32 · 3 = 3072

Classification DNN: C : [0,1]d → R10

The Classification Result: Ĉ(x) = arg max10
l=1Cl(x)
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Robust Memorization:
Existence of Robust DNNs
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Data Separation Bound

Data Set: D = {(xi , yi)}Ni=1 ⊂ Rd × [m], where [m] = {i}mi=1

Separation Bound for D:
λ(D) = min{||xi − xj ||∞ | (xi , yi), (xj , yj) ∈ D and yi 6= yj}.

Sep-Bound Attack-R Tr-Tr Tr-Te
MNIST 0.10 0.73 0.81

CIFAR10 0.03 0.21 0.22
TImageNet 0.005 0.18 0.22

The separation bounds are� the usually used attack radii.
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Memorization and Robust Memorization

Data Set: D = {(xi , yi)}Ni=1 ⊂ Rd × [m] with separation bound λ(D)

C : Rd → R is a memorization DNN of D, if C(xi) = yi , ∀i ∈ [N]

Memorization network exists:

With depth 2 and width O(N) (Zhang et al, 2017)

With width 12 and depth Õ(
√

N) for separated data (Vardi et al, 2021)

Robust Memorization with a network C : Rd → R
Robust Memorization with radius µ:

C(x) = yi for all ||x − xi || ≤ µ.

Optimal Robust Memorization: C is robust for all µ < λ(D)/2.
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Robust Memorization is Harder than Memorization

Data Set: D = {(xi , yi)}Ni=1 ⊂ Rd × [m]

Memorization with a network C : Rd → R, if C(xi) = yi , ∀i ∈ [N]

Memorization Networks exist:

With depth 2 and width O(N) (Zhang et al, 17)

With width 12 and depth Õ(
√

N) (Vardi et al, 21)

Robust memorization is more difficult than memorization:
If C is of depth 2, then there exists a data set D such that C is not an
optimal robust memorization of D.

If C is of fixed width, then there exists a data set D such that C is not an
optimal robust memorization of D.
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Optimal Robust Memorization with a DNN

Data: D = {(xi , yi)}Ni=1 ⊂ Rd × [m] with separation bound 2 = λ(D)

Robust Classifiers Exist:
F (x) = (y1 + ‖x −X1‖, . . . , ym + ‖x −Xm‖) is optimal-robust, because it
is 1-Lipschitz (Yang et al, 2020)

A robust DNN exists due to the universal approximation power of DNN
(Bastounis et al, 2020), (Liang-Huang, 2021)

But, the structure (depth/width) of the DNN is not given.

Theorem (Effective Memorization. Yu-Gao, 2022)
The set of DNNs with width O(d) and depth O(N) provides an optimal
robust memorization for D.

Compare: Approximate general functions needs exponential (3d ) width!
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Robust Memorization via Controlling Lipschitz

Achieving robustness by controlling Lipschitz is widely studied.

Using Lipschitz is potentially harder:
There exists a data set: T = {(xi , yi )}d

i=0 ⊂ Rd × {−1,1}, with λ(D) = 1

Optimal robust memorization exists: with depth 2 and width 2d

Networks with depth 2 cannot be optimal robust mem. for T via Lipschitz

Theorem (Yu-Gao, 2022)
There exists a network with width O(d) and depth O(N log(d)), which
is an optimal robust memorization for D via Lipschitz.
Comparing width O(d) and depth O(N) without using Lipschitz.
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Summary on the Existence of Robust DNNs

For a data set: D = {(xi , yi)}Ni=1 ⊂ Rd × [m]

Optimal robust DNNs width O(d) and depth O(N) exist and can
be computed in polynomial time.

But, the depth (N > 60000) is too big to be practical.

Finding robust DNNs with one hidden layer and width 2 is NP-hard
(Yu-Gao, 2022).

In between, we may ask

For DNNs with given fixed depth and width, how to achieve the
optimal robustness?
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Achieving Optimal Robustness

via Stackelberg Game
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Adversarial Learning as a Game

Player 1: Classifier:

Strategy Space: Sc = [−E ,E ]K

To compute robust DNN with parameters Θ ∈ Sc : CΘ : Id → Rm.

Player 2: Adversary:

Strategy Space: Sa = {A : X → Bε}, where Bε = {δ ∈ Rd : ||δ|| ≤ ε}
To compute Adversarial Sample: x + A(x) for x .

A two-player zero-sum game:
Payoff function: φ(Θ,A) = E(x,y)∼D Loss(CΘ(x + A(x)), y)

Goals of the players:
Classifier: minΘ∈Sc φ(Θ,A)

Adversary: maxA∈Sa φ(Θ,A)

Xiao-Shan Gao (AMSS, CAS) Mathematical Theory of Adversarial Learning 23 / 39



Adversarial Learning as a Game

Player 1: Classifier:

Strategy Space: Sc = [−E ,E ]K

To compute robust DNN with parameters Θ ∈ Sc : CΘ : Id → Rm.

Player 2: Adversary:

Strategy Space: Sa = {A : X → Bε}, where Bε = {δ ∈ Rd : ||δ|| ≤ ε}
To compute Adversarial Sample: x + A(x) for x .

A two-player zero-sum game:
Payoff function: φ(Θ,A) = E(x,y)∼D Loss(CΘ(x + A(x)), y)

Goals of the players:
Classifier: minΘ∈Sc φ(Θ,A)

Adversary: maxA∈Sa φ(Θ,A)

Xiao-Shan Gao (AMSS, CAS) Mathematical Theory of Adversarial Learning 23 / 39



Adversarial Learning as a Game

Player 1: Classifier:

Strategy Space: Sc = [−E ,E ]K

To compute robust DNN with parameters Θ ∈ Sc : CΘ : Id → Rm.

Player 2: Adversary:

Strategy Space: Sa = {A : X → Bε}, where Bε = {δ ∈ Rd : ||δ|| ≤ ε}
To compute Adversarial Sample: x + A(x) for x .

A two-player zero-sum game:
Payoff function: φ(Θ,A) = E(x,y)∼D Loss(CΘ(x + A(x)), y)

Goals of the players:
Classifier: minΘ∈Sc φ(Θ,A)

Adversary: maxA∈Sa φ(Θ,A)

Xiao-Shan Gao (AMSS, CAS) Mathematical Theory of Adversarial Learning 23 / 39



Nash Equilibrium of the Adversarial Game

Nash Equilibrium: (Θ∗,A∗) ∈ Sc × Sa

φ(Θ∗,A∗) ≤ φ(Θ,A∗) and φ(Θ∗,A∗) ≥ φ(Θ∗,A)

At Nash Equilibrium, no player can benefit by unilaterally changing its
strategy, so it gives an optimal defence against adversarial attacks.

Nash Equilibrium does not exist for DNNs!

Nash Equilibrium exists if

Sc is convex and Sa is prob distributions (Bose et al, 2020)
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Adversarial Learning as a Stackelberg Game

A zero-sum Stackelberg game: minΘ∈Sc maxA∈Sa φ(Θ,A)

Classifier plays first: minΘ∈Sc φ(Θ,A), knowing the Adversary

Adversary play subsequently knowing the decision of the
Classifier: maxA∈Sa φ(Θ,A)

Stackelberg Equilibrium: (Θ∗,A∗) ∈ Sc × Sa

A(Θ) = arg maxA∈SA
φ(Θ,A) exists for any Θ ∈ Sc , and

Θ∗ ∈ arg minΘ∈Sc
φ(Θ,A(Θ)) and A∗ = A(Θ∗)

Stackelberg equilibrium exists if the strategy spaces are compact and
the payoff function is continuous (Simaan-Cruz, 1973)

In our case, Sc is compact, but Sa is not.
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Stackelberg Equilibrium Exists

Theorem (Gao-Liu-Yu, 2022)
Game G has a Stackelberg equilibrium (Θ∗,A∗).
Θ∗ is the solution to the adversarial training (Madry et al, 17).

Key Observation:
Although Sa = {A : Id → Bε} is not compact
Bε = {δ ∈ Rd : ||δ|| ≤ ε} is compact. Thus

A(Θ) = arg maxA∈SA
φ(Θ,A) iff

A(Θ)(x) = arg maxA(x)∈Bε
Loss(CΘ(x + A(x)), y)

The solution gives optimal adversarial empirical risk:
E(x ,y)∼Dmax||x−x ||≤ε Loss(CΘ∗(x), y)

which depends on the loss function Loss and is not intrinsic.
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The Optimal Robust Classifier

Adversarial Accuracy of a DNN C wrt an attack radius ε: intrinsic
robustness measurement.

AAD(C, ε) = P(x ,y)∼D (∀x ∈ B(x , ε) (Ĉ(x) = y))

Carlini-Wagner loss function: Losscw(z, y) = maxl∈[m],l 6=y zl − zy

Theorem (Gao-Liu-Yu, 2022)
The game using loss function Losscw has a Stackelberg equilibrium
(Θ∗cw,A∗cw), and CΘ∗

cw is the optimal robust DNN against adversarial attacks:

AAD(CΘ∗
cw , ε) ≥ AAD(CΘ, ε), ∀Θ ∈ [−E ,E ]K

AT was recognized “the most successful empirical defense to date,”
“it is impossible to tell ... is truly robust.” (Cohen et at, 2019)

“it has shortages like ... non-provable.” (Bai et at, 2020)
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Carlini-Wagner loss function: Losscw(z, y) = maxl∈[m],l 6=y zl − zy

Theorem (Gao-Liu-Yu, 2022)
The game using loss function Losscw has a Stackelberg equilibrium
(Θ∗cw,A∗cw), and CΘ∗

cw is the optimal robust DNN against adversarial attacks:

AAD(CΘ∗
cw , ε) ≥ AAD(CΘ, ε), ∀Θ ∈ [−E ,E ]K

AT was recognized “the most successful empirical defense to date,”
“it is impossible to tell ... is truly robust.” (Cohen et at, 2019)

“it has shortages like ... non-provable.” (Bai et at, 2020)

Xiao-Shan Gao (AMSS, CAS) Mathematical Theory of Adversarial Learning 27 / 39



The Optimal Robust Classifier

Adversarial Accuracy of a DNN C wrt an attack radius ε: intrinsic
robustness measurement.

AAD(C, ε) = P(x ,y)∼D (∀x ∈ B(x , ε) (Ĉ(x) = y))
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Tradeoff Between Robustness and Accuracy

Tradeoff Phenomenon: (CIFAR10)

DNN ε
Normal With AT

Accuracy Adv. Accu Accuracy Adv. Accu
Resnet18 8/255 94% 0% 84% 52%
Resnet18 16/255 94% 0% 65% 35%
VGG16 8/255 93% 0% 79% 49%
VGG16 16/255 93% 0% 59% 31%

Tradeoff problem can be described as a bi-level optimization problem:

Θ∗o = arg minΘ∗ φ(Θ∗)
subject to Θ∗ = arg minΘ∈Sc

maxA∈Saφcw(Θ,A)

For a DNN which is not a robust memorization for D, tradeoff indeed
happens.
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Smale’s 18th Problem: Limits of Intelligence

“This project requires the development of a mathematical model
of intelligence, with variations to take into account the
differences between kinds of intelligence.”

For a given data set D, there exists a DNN which can correctly
classify D, but D is not computable. (Colbrook-Antun-Hansen, 21)

DNNs are Kolmogorov-optimal approximants for certain function
classes. (Bölcskei, 21)

Tradeoff between accuracy and robustness. If a DNN achieves
optimal robustness, then its accuracy is confined.
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Summary on the Optimal Robust DNNs

Adversarial training with CW loss gives the optimal robust DNNs.

But, the adversarial accuracy (CIFAR10) for the best DNN is still
not high 60%− 70%.

Does there exist provable adversarially robust classifiers?
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Information-theoretically Safe

Bias-Classifier against Adversaries
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Bias Classifier

C : Id → Rm a DNN with Relu as activation function

For any x ∈ Id , C(x) = Wxx + Bx = WC(x) + BC(x)

where Wx ∈ Rm×d and Bx ∈ Rm

Bias Classifier: Piecewise constant

BC(x) = C(x)−WC(x) = C(x)− ∇C(x)
∇x · x

Theorem (Existence of Bias Classifier)
For any data set and ε > 0, there exists a DNN C such that BC(x) gives
the correct label with probability > 1− ε.
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Training the Bias Classifier

Normal training:
minΘ

∑
(x,y)∈S Loss(C(x), y)

Adversarial training:
minΘ max||ζ||<ε

∑
(x,y)∈S Loss(C(x + ζ), y)

Adversarial training for Bias Classifier:
minΘ max||ζ||<ε

∑
(x,y)∈S [Loss(BC(x + ζ), y) + γLce(C(x + ζ), y)]

Accuracies of Network Lenet-5 for MNIST

WC BC C
Normal training 98.80% 15.62% 99.09%

Adversarial training 90.61% 98.77% 99.19%
Bias Adversarial training 0.28% 99.09 % 99.43%
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Information-theoretically Safety

Borrowed from cryptography, the ciphertext yields no information
regarding the plaintext if the cyphers are perfectly random.

Original-model Gradient Based Attack for BC :
A(x ,BC) = x + ρ sign(∇φ(Θ,x)

∇x ) = x + ρDA(x),
where DA(x) ∈ {−1,1}d is attacking direction

The attack is called information-theoretically safe:
The attack direction DA(x) is a random vector in {−1,1}d .

The adversary creation rate under attack A is the rate of random samples to
be adversaries:

C(C) = Px∼D,V∈{−1,1}d (Ĉ(x + ρV ) 6= Ĉ(x)), which is quite small:

ρ = 0.1/MNIST/LeNet5 ρ = 0.1/CIFAR10/VGG19
C(C) = 0.88% C(C) = 1.84%
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Information-theoretically Safety Result (1)

FGSM Attack: A1(C, x) = x + ρ sign(∇L(C(x),y)
∇x ).

DNN: C̃(x) = C(x) + WR · x , where WR is a random matrix

Random matrixMm,n(λ): i-th row in ±[(2i − 1),2i]λ

Theorem (Binary Classification)
If WR ∼Mm,n(λ) s.t. |J(C(x))|∞ < λ/2,
then BC̃ is information-theoretically safe against the attack A1.

Random matrix Um,n(λ): entries |u| ≤ λ.

Theorem (Binary Classification)
If WR ∼ Um,n(λ) s.t. |J(C(x))|∞ < µ/2 and λ > nµ/ ln(1 + ε), then
C(BC̃ ,A1) ≤ (1 + ε)C(C). (approximate information-theoretically safe)
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Information-theoretically Safety Result (2)

Signed margin attack (Carlini-Wagner):

A2(x , C̃) = x + ρ sign(∇C̃nx (x)
∇x − ∇C̃y (x)

∇x )

where y is the label of x , nx = arg maxi 6=y{Ci(x)}

DNN: C̃(x) = C(x) + WR · x

Theorem
If WR ∈Mm,n(λ) s.t. |J(C(x))|∞ < λ/2, then BC̃ is
information-theoretically safe against the attack A2(C̃).

If WR ∼ Um,n(λ), |J(C(x))|∞ < µ/2, and λ > µn/(εC(C, ρ)), then
C(BC̃ ,A1) ≤ (1 + ε)C(C). (approximate information-theoretically safe)
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Experiments: Adversary Creation Rate

Attack DNN
MNIST CIFAR10

1-1 1-2 1-3 1-1 1-2 1-3

White-box
BC 2% 6% 22% 41% 58% 77%

C 3% 17% 55% 54% 77% 90%

Black-box
BC 3% 6% 18% 27% 36% 43%

C 2% 3% 26% 30% 36% 48%

ITS
BC 1% 2% 2% 19% 20% 22%

C 1% 2% 2% 19% 20% 21%

Accuracy
BC 99.12% 82.84%

C 99.19% 81.23%

1. Bias classifier is more robust than DNNs with similar sizes.
2. Bias classifier can be made provably safe against the original-model
gradient-based attack.
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Summary

Robust Memorization: There exist optimal robust DNNs with
width O(d) and depth O(N).

Adversarial Stackelberg Game: For DNNs with given width and
depth, the equilibrium of the game gives optimal robust DNNs
against adversarial attacks.

Bias Classifier: Information-theoretically safe against
original-model gradient-based attack.

Thanks to my students: Lijia Yu, Yihang Wang, Shuang Liu

Papers can be found: http://www.mmrc.iss.ac.cn/˜ xgao
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Thanks!

Xiao-Shan Gao (AMSS, CAS) Mathematical Theory of Adversarial Learning 39 / 39


	Introduction to Adversarial Deep Learning
	Robust Memorization: Existence of Robust DNNs
	Achieving Optimal Robustness via Stackelberg Game
	Information-theoretically Safe Bias Classifier
	Summary

