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Characteristic Set Method for

Differential-Difference Polynomial Systems

Xiao-Shan Gao1, Joris van der Hoeven2, Chunming Yuan1, and Guilin Zhang1

Abstract. In this paper, we present a characteristic set method for mixed difference
and differential polynomial systems. We introduce the concepts of coherent, regular,
proper irreducible, and strong irreducible ascending chains and study their properties.
We give an algorithm which can be used to decompose the zero set for a finitely gener-
ated difference and differential polynomial set into the union of the zero sets of regular
ascending chains.

Keywords. Characteristic set, difference and differential polynomial, coherent ascend-
ing chain, regular ascending chain, irreducible ascending chain, zero decomposition algo-
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1. Introduction

The characteristic set method is a tool for studying systems of polynomial or algebraic
differential equations [9, 11]. Modern approaches to the characteristic set method, which are
related to this paper, could be found in [1, 2, 3, 8, 17, 18]. The idea of the method is to
priviledge systems which have been put in a special “triangular form”, also called ascending
chains. The zero-set of any finitely generated polynomial or differentially algebraic system
of equations may be decomposed into the union of the zero-sets of ascending chains. With
this method, solving an equation system can be reduced to solving univariate equations.
We can also use the method to determine the dimension, the degree, and the order for a
finitely generated polynomial or differential polynomial system, to solve the radical ideal
membership problem, and to prove theorems from elementary and differential geometries.

The notion of characteristic set for difference polynomial systems was proposed by Ritt
and Raudenbush [12, 13]. The general theory of difference algebra was established by Cohn
[4]. Due to the major difference between the difference case and the differential case, algo-
rithms and properties for difference ascending chains were studied only very recently [6, 7].

A natural problem is to consider the mixed difference and differential polynomial (DD-
polynomial) systems. In [15], it was outlined how to generalize the characteristic set method
to DD-polynomial systems. However, the author overlooked an additional difficulty in the
proof of Rosenfeld’s Lemma. Although all theoretical properties of differential algebra (di-
mension polynomials, finite generation of ideals, etc.; see also [10]) do generalize to the
DD-setting, the algorithmic counterparts have to be redeveloped.

In this paper, we will present a characteristic set method for ordinary mixed DD-
polynomial systems. The following results are established in this paper.
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1. Based on the concept of characteristic sets, we prove that DD-polynomial systems are
Noetherian in the sense that the solutions for any set of DD-polynomials are the same
as a finite set of DD-polynomials. This result is different from that in [10], because our
assumption on the difference-differential structure is more general.

2. We introduce the concepts of coherent and regular ascending chains and prove that an
ascending chain is coherent and regular if and only if it is the characteristic set for its
saturation ideal (see Section 4 for details).

3. We define proper irreducible chains and prove that a proper irreducible chain is regular.
This gives a constructive criterion for a chain to be regular. We further introduce the
concept of strong irreducible chains and prove that an ideal is prime and reflexive if
and only if its characteristic set is strong irreducible and coherent.

4. Based on the above results, we propose an algorithm which can be used to decompose
the zero set for a finitely generated DD-polynomial set into the union of zero sets of
proper irreducible chains.

The rest of the paper is organized as follows. In Section 2, we introduce notations. In
Section 3, we prove the Noetherian property for DD-polynomial systems. In Section 4, we
prove the properties for regular chains. In Section 5, we prove the properties for proper and
strong irreducible chains. In Section 6, we give the zero decomposition algorithm.

2. DD-ring and DD-polynomials

2.1. DD-Polynomials
Let K be a computable field containing the field Q(x) of rational functions in an inde-

terminant x. A differential operator ∂ defined on K is a map ∂ : K→ K satisfying

∂(f + g) = ∂(f) + ∂(g)
∂(fg) = ∂(f) · g + ∂(g) · f

for any f, g ∈ K. A difference operator δ defined on K is a map δ : K→ K satisfying

δ(f + g) = δ(f) + δ(g)
δ(fg) = δ(f)δ(g)
δ(f) = 0 ⇐⇒ f = 0

for any f, g ∈ K. δ(f) is also called the transform of f . If all elements of K are functions
in x, then the ordinary differentiation w.r.t. x is a differential operator. The shift operator
δ(x) = x + 1 and the q-difference operator δ(x) = qx are examples of difference operators.

A key fact to deal with the hybrid differential-difference case is to make an assumption
on how both the differential and the difference operator interact. In this paper, we always
assume that indeterminates should be considered as functions in x. This amounts to the
requirement

∂δ(y) = h · δ∂(y) (1)
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for some non-zero element h ∈ K. It is easy to check that for a positive integer s, we have

∂δs(y) =
s−1∏

i=0

δi(h) · δs∂(y). (2)

A product of the form
k∏

i=0
δi(h)ni is called an h-product.

When h = 1, (1) implies that the two operators are commutative, which is the case
assumed in [10]. Also, (1) models most commonly used difference operators, such as the
shift operator δ(x) = x + 1 and the q-difference operator δ(x) = qx, then (1) is valid.
Intuitively, if we treat the difference operator as the right-composition with a non-trivial
function. Indeed, if

δ(f(x)) = f(φ(x))

for any function f(x) and a fixed function φ(x), then

∂δ(f(x)) = ∂(f(φ(x))) =
∂φ(x)

∂x
δ

(
∂f(x)

∂x

)
=

∂φ(x)
∂x

δ∂(f(x)),

whence (1) is satisfied for h = ∂φ(x)/∂x.
We denote Ω0 = {1},Ω1 = {δ, ∂}. For each r ∈ N, we define Ωr+1 = Ωr ∪ δΩr ∪ ∂Ωr

inductively. These sets are subsets of Ω, with Ω =
⋃

r∈NΩr. An element of Ω is called a
word. It is clear that

Ω = {δn0∂m0 · · · δnt∂mt}
where ni and mi are non-negative integers and where we understand that δ0 = ∂0 = IdK.
Given ω ∈ Ω, we define its total order to be the smallest r = ord(ω) with ω ∈ Ωr. Let

Θ = {δα∂β |α, β ∈ N},
Θ<[i,j] = {δk∂l|k ≤ i, l ≤ j, k + l < i + j}.

Note that Θ is a proper subset of Ω. A shuffle of a word with letters in {δ, ∂} is obtained by
repeated transposition of these letters.

Lemma 2.1 If ω = δn1∂m1 · · · δnt∂mt is a shuffle of δn∂m, then n =
∑t

i=1 ni, m =
∑t

i=1 mi

and ω = gω · δn∂m + Pω, where gω is an h-product and Pω is in K[Θ<[n,m]].

Proof: We prove the lemma by induction on t. For t = 1, the result obviously holds. Assume
that we proved the lemma for t = i. Then for t = i + 1,

ω = δn1∂m1 · · · δni+1∂mi+1 = δn1∂m1

(
gδn−n1∂m−m1 +

∑
QjAj

)
,

where g is an h-product and Qj ∈ K, Aj ∈ Θ<[n−n1,m−m1]. Since δn1∂m1QjAj ∈ Θ<[n,m] for
any Aj ∈ Θ<[n−n1,m−m1], we obtain

δn1∂m1

(
gδn−n1∂m−m1 +

∑
QjAj

)
= δn1(g)δn1∂m1δn−n1∂m−m1 +

∑
Q′

kBk,
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where Q′
k ∈ K, Bk ∈ Θ<[n,m]. By equation (2), we have

∂m1δn−n1 = g′ · δn−n1∂m1 +
∑

QsCs,

where g′ is an h-product and Qs ∈ K, Cs ∈ Θ<[n−n1,m1]. We conclude that

δn1∂m1 · · · δni+1∂mi+1 = g′′ · δn∂m + P,

where g′′ is an h-product and P is in K[Θ<[n,m]]. ¤
Let Y = {y1, . . . , yn} be a finite number of indeterminates, considered as functions of x.

We denote

ΩY = {ωyi|ω ∈ Ω, yi ∈ Y}
ΘY = {δd∂syi|d, s ∈ N, yi ∈ Y}.

For convenience, we also denote
yi,d,s = δd∂s(yi).

The set
R = K{Y} = K[ΩY]

is called the DD-ring of DD-polynomials over K in Y. DD-polynomials in K{Y} have a
canonical representation as polynomials in K[ΘY]:

Proposition 2.2 K{Y} = K[ΘY].

Proof: Any element in K{Y} is a K-linear combination of products of elements in ΩY, so it
suffices to prove that ωyk ∈ ΘY for ωyk ⊆ ΩY. But this directly follows from Lemma 2.1.

¤

Remark 2.3 When using a DD-polynomial P to form a triangular set {θP |θ ∈ Θ<[n,m]} ∪
{δn∂mP}, Lemma 2.1 will imply that the saturation ideals of ωP and δn∂mP coincide.

A DD-ideal, or simply an ideal, is a subset I of R, which is an algebraic ideal in R and
is closed under ∂ and δ. An ideal I is called reflexive if δP ∈ I implies P ∈ I, for all P ∈ R.
Let P be a set of elements of R. The ideal generated by P is denoted by [P]. Obviously, [P]
is the set of all linear combinations of the DD-polynomials in P and their differentiations
and transforms. An ideal I is called perfect if the presence in I of a product of powers
of transforms of a DD-polynomial P implies P ∈ I. The perfect ideal generated by P is
denoted as {P}. A perfect ideal is always reflexive. An ideal I is called a prime ideal if for
DD-polynomials P and Q, PQ ∈ I implies P ∈ I or Q ∈ I.

For a set of DD-polynomials P, we write (P) for the ordinary or algebraic ideal generated
by P, and [P]∂ for the differential ideal generated by P.
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2.2. Admissible ordings
Consider a total ordering ≤ on ΘY. Given P ⊆ K[ΘY ], we denote by VP ⊆ ΘY the set of

elements of ΘY occurring in P. For a DD-polynomial P , we let VP = V{P}. If VP 6= ∅, then
VP has a maximal element for ≤, which is denoted by vP or v(P ). We call it the leader of P .

The ordering ≤ is said to be admissible if

A1 : v(θy) < v(δθy), for any θy ∈ ΘY ;
v(θy) < v(∂θy), for any θy ∈ ΘY ;

A2 : v(δθy) ≤ v(δθ′y′), for any θy ≤ θ′y′ in ΘY ;
v(∂θy) ≤ v(∂θ′y′), for any θy ≤ θ′y′ in ΘY.

Admissible orderings exist: one example is the ordering ≤l defined by:

δd1∂s1yc1 ≤l δd2∂s2yc2 ⇐⇒ (c1, d1, s1) ≤lex (c2, d2, s2),

where ≤lex stands for the pure lexicographical ordering. Another popular ordering is the
total order based ordering:

δd
1∂s

1yi <o δd
2∂s

2yj ⇐⇒ (d1 + s1, d1, s1, i) <lex (d2 + s2, d2, s2, j).

In this paper, we will always assume that ≤ is admissible. We will also assume that y1 <
· · · < yn, which can always be made to hold after a permutation of indexes.

An extended variable is an element of ΘY raised to some strictly positive power. The
set of such variables will be denoted by (ΘY)∗, and we use letters with star exponents v∗ to
denote extended variables. We extend the admissible ordering ≤ on variables to extended
variables by vd ≤ (v′)e, if and only if either v < v′, or v = v′ and d ≤ e. The extended leader
of a non ground DD-polynomial P is denoted by v∗P = v

deg(P,vP )
P . The admissible ordering

≤ can be extended to DD-polynomials. For DD-polynomials P and Q, we will write P ≤ Q
if v∗P ≤ v∗Q. If v∗P = v∗Q, then we will write P ∼ Q.

Lemma 2.4 Let Pi ∈ K[ΘY]. Then any descending sequence P1 > P2 > P3 > · · · is finite.

Proof: The sequence (Pi)i∈N induces a sequence (ai, bi, ci, di)i∈N with v∗(Pi) = (δbi∂ciyai)
di .

Similarly, the ordering ≤ on (ΘY)∗ induces a total ordering ≤′ on {1, . . . , n} × N3, which
extends the canonical partial product ordering. Now for any ai, the sequence (bi, ci, di)i∈N
is strictly decreasing for ≤′, whence its finiteness, by Dickson’s Lemma. ¤

2.3. Pseudo-Remainder
We consider the DD-ring K[ΘY], where Y = {y1, . . . , yn}. Let Yc = {y1, . . . , yc}. For a

DD-polynomial P ∈ K[ΘY], we define the class of P to be the smallest c = cls(P ) such that
P ∈ K[ΘYc]. If P ∈ K, then we set cls(P ) = 0. If the leader of P is θyc = yc,i,j , then we
define ord(P ) = i + j, ordδ(P, yc) = i, ord∂(P, yc) = j.

If the leader of P ∈ R \K is yc,d,s, then P has the following canonical representation:

P = Pty
t
c,d,s + Pt−1y

t−1
c,d,s + · · ·+ P0. (3)

IP = Pt is called the initial of P . ldeg(P ) = t is called the leading degree of P . Applying ∂
and δ to P , we have
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Algorithm 1 — rprem(Q,P )

Input: DD-polynomials P, Q ∈ R with P 6= 0.
Output: The pseudo-remainder of Q w.r.t. P .

If P ∈ K then return 0.
Set R := Q.
While ∃ω∗ ∈ V ∗

R, v∗P ¹ ω∗ do
Choose the highest ω∗ under ≤.
Set R := aprem(R, (ω/vP )P ). /*/

Return R

/*/ aprem(P, Q) stands for the algebraic pseudo-remainder of P w.r.t. Q in variable vQ.

Lemma 2.5 Let P be of form (3). Then

δP = (δPt)yt
c,d+1,s + (δPt−1)yt−1

c,d+1,s + · · ·+ δP0

∂P = SP yc,d,s+1 + R,

where

SP =
d−1∏

i=0

δi(h)
∂P

∂yc,d,s

is called the separant of P and R is a DD-polynomial with lower leading variable than yc,d,s+1.

Proof: The first equation is obvious. The second one is a consequence of (2). ¤
If the leader of P ∈ R \ K is yc,d,s, then we say that Q is reduced w.r.t. P if and only if

(1) yc,d+k,s+l does not occur in Q for k ≥ 0, l > 0 and (2) deg(Q, yc,d+k,s) < deg(P, yc,d,s) for
k ≥ 0. If P ∈ K \ {0}, then 0 is the only DD-polynomial which is reduced w.r.t. P .

We define a partial ordering ¹ on Θ by

θ = δα∂β ¹ δα′∂β′ = θ′ ⇐⇒ α ≤ α′ ∧ β ≤ β′.

If θ ¹ θ′, then we define
θ′/θ = δα′−α∂β′−β

and notice that (θ′/θ)θ is a shuffle of θ′.
We define a partial ordering ¹ on extended variables by v∗ = (θyi)d ¹ (θ′yi)e = (v′)∗, if

and only if θ ¹ θ′ and either d ≤ e, or θ′/θ is not a pure difference operator. We remark
that ¹ is still a well-quasi-ordering.

Consider DD-polynomials P, Q ∈ R with P 6= 0. Then the algorithm rprem computes
the pseudo-remainder of Q w.r.t. P . It is easily checked that rprem(Q,P ) is reduced w.r.t. P .

Lemma 2.6 Define

HP = {Ia0
P · · · δkIak

P Sb0
P · · · δlSbl

P |a0, . . . , ak, b0, . . . , bl ∈ N}
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and let R = rprem(Q,P ). Then there exists a J ∈ HP such that vJ < vQ and

JQ = R mod [P ],

where [P ] denotes the ideal generated by P .

Proof: For every step of the loop of the above procedure, the order of the initial of v((ω/vP )P )
is less than the order of v(Q), so this is a direct consequence of the above procedure and
Lemma 2.5. ¤

3. Characteristic Set of DD-Polynomial Ideals

3.1. Auto-reduced Sets
A subset A ⊆ K{Y} \K is said to be auto-reduced, if each P ∈ A is reduced w.r.t. each

DD-polynomial in A \ {P}. An auto-reduced set A = {A1, . . . , Ar} with vA1 < · · · < vAr is
called an ascending chain or simply a chain.

Lemma 3.1 Any auto-reduced set is finite.

Proof: Assume the contrary and consider an infinite auto-reduced set {P1, P2, . . .}. The
sequence P1, P2, . . . induces a sequence (ai, bi, ci, di)i∈N with v∗(Pi) = (δbi∂ciyai)

di and modulo
the extraction of a subsequence, we may assume without loss of generality that ai = aj for
all i, j. If Pi is reduced w.r.t. Pj , then we cannot have (bi, ci, di) º (bj , cj , dj) for the partial
product ordering on N3. It follows that (b1, c1, d1), (b2, c2, d2), . . . are pairwise distinct and
incomparable for ¹. This contradicts Dickson’s Lemma. ¤

Let A = {A1, . . . , Ap} and B = {B1, . . . , Bq} be chains. We define a partial ordering ≤
on chains by setting A ≤ B if there exists a j with Ai ∼ Bi for 1 ≤ i < j and either Aj < Bj

or j = q + 1 ≤ p. The ordering ≤ is also called a ranking .

Lemma 3.2 Any descending chain A1 > A2 > A3 > . . . is finite.

Proof: Assume the contrary. The first elements of the chains A1,A2, . . . satisfy A1,1 ≥ A2,1 ≥
· · · . By Lemma 2.4, there exists an index j1 with Ai,1 ∼ Aj1,1 for all i ≥ j1. Similarly, there
exists an index j2 > j1 with Ai,2 ∼ Aj2,2 for all i ≥ j2. By induction, we get a sequence
j1 < j2 < . . . with Ai,k ∼ Ajk,j for all k and i ≥ jk. But then {Aj1,1, Aj2,2, . . .} is an infinite
auto-reduced set, which contradicts Lemma 3.1. ¤

Let P be a set of DD-polynomials and consider the set of chains of DD-polynomials in P.
Among all those chains, the above lemma implies that there exists at least one chain with
lowest rank. Such a chain is called a characteristic set of P.

A DD-polynomial is said to be reduced w.r.t. a chain if it is reduced to every DD-
polynomial in the chain.

Lemma 3.3 If A is a characteristic set of P and A′
a characteristic set of P ∪ {P} for a

DD-polynomial P , then we have A ≥ A′
. Moreover, if P is reduced w.r.t. A, then A > A′

.
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Algorithm 2 — Extension(A,P)

Input: A chain A and a set P of DD-polynomials.
Output: The extension AP of A w.r.t. P.

S0. Let L = LA, Q = A ∪ P, H = {y
c,d

(c)
Q ,s

(c)
Q

, c = 1, . . . , n}, V = VH \ L, and AP = A.

S1. If there exist ω, η and c with ωyc ∈ V , ηyc ∈ L and η ¹ ω, then choose ω and c such
that ωyc is largest for ≤. If there are no such ω, η and c, then return AP.

S2. If for all the θyc ∈ L satisfying θ ¹ ω, ω/θ is a difference operator, let η be the largest
of those θ under ≤, go to S4.

S3. If there exists a θyc ∈ L such that ω/θ is not a difference operator, let η be the one with
largest in ordδ. Go to S4.

S4. Let Ai ∈ A such that vAi = ηyc. Let Q = (ω/η)Ai, AP = AP∪{Q}, V = V ∪(VQ\LAP).
Delete ωyc from V and goto S1. Since all the variables in VQ \ LAP are less than ωyc,
this process will terminate.

Proof: The first statement is obviously true, since the characteristic set of P is in P ∪ {P}.
As to the second statement, assume A = A1, . . . , Ap and P ∈ P, with cls(P ) = m, is
reduced w.r.t. A. If m > cls(Ap), then the chain A1, . . . , Ap, P is of rank lower than A. If
cls(Ak−1) < m ≤ cls(Ak) ≤ cls(Ap), then the chain A1, . . . , Ak−1, P is of rank lower than A.
Hence A > A′

. ¤

Lemma 3.4 A chain A is a characteristic set of P if and only if P does not contain a
nonzero DD-polynomial which is reduced w.r.t. A.

Proof: By Lemma 3.3, we just need to prove the sufficiency. Assume B = B1, . . . , Bs is the
characteristic set of P, while A is not. We have B < A. If there exists a k ≤ min{s, p} with
Bk < Ak, then Bk is reduced w.r.t. A. Otherwise s > p and Bp+1 is reduced w.r.t. A. Both
of the cases constradict the hypothesis and show that A is the characteristic set of P. ¤

3.2. Extension of chains and pseudo-remainder
Let A be a chain. A variable yc,d,s is called a principal variable of A if there exists an

A ∈ A such that vA ¹ yc,d,s. Otherwise, it is called a parametric variable of A. Denote the
set of principal variables and the parametric variables of A by MA and PA respectively. It
is clear that MA ∪ PA = ΘY,

For a DD-polynomial set P and 1 ≤ c ≤ n, let d
(c)
P be the largest d such that yc,d,s occurs

in P, s
(c)
P the largest s such that yc,d,s occurs in P, and

VP = {yc,s,t ∈MA|∃P ∈ P, a, b : deg(P, yc,a,b) > 0, 1 ≤ c ≤ n, s ≤ a, t ≤ b}.
LP = {yc,s,t|∃P ∈ P : vP = yc,s,t}.



Characteristic Set Method for DD-Polynomial Systems 65

i
i

i i

Fig. 1. The indices of chain A from (4)
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Fig. 2. The indices of chain AP

Given DD-polynomial set P, the algorithm Extension shows how to compute the so called
extension of A w.r.t. P. This definition is motivated by the following result, which is clear
from the construction algorithm.

Proposition 3.5 For a chain A and a set of DD-polynomials P, we have

• AP is an algebraic triangular set under the ordering ≤ when all yc,n,m are considered
as independent variables.

• LAP = VAP.

• A DD-polynomial P is reduced w.r.t. A if and only if P is reduced w.r.t. AP in the
algebraic sense.

Example 3.6 Consider the following chain for the ordering ≤l from Section 2.2.

A = {A1, A2, A3, A4}
A1 = y2

1,2,3

A2 = y2
1,3,2 + y1,1,1

A3 = y2
1,5,0 + y1,4,1

A4 = y1,7,0 + y1,4,0.

(4)

The DD-indices for the DD-polynomials in A are given in Figure 1. For P = y2
1,7,4 + y1,3,2,

we have d
(1)
Q = 7, s

(1)
Q = 4, and

AP = {A1, ∂A1, ∂2A1, ∂3A1,
A2, ∂A2, ∂2A2, ∂3A2, ∂4A2, δA2, δ∂A2, δ∂2A2, δ∂3A2, δ∂4A2,
A3, ∂A3, ∂2A3, ∂3A3, ∂4A3, ∂5A3, δA3, δ∂A3, δ∂2A3, δ∂3A3, δ∂4A3,
A4, ∂A4, ∂2A4, ∂3A4, ∂4A4}.

Let ωy1 = y1,5,4. Then for each of A1, A2, and A3, its leader satisfies the condition in S1.
The condition in S2 is not satisfied. In S3, we choose the one with largest ordδ, which is A3.
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As a consequence, we will add ∂4A3 to AP. Note that the DD-polynomial with the largest
ordδ will have the smallest ord∂ for its leading variable.

Given yi,dj ,sj
∈ LA, we define its index to be (dj , sj). The indices for the DD-polynomials

in AP are given in Figure 2, where a solid dot represents the index of a newly added DD-
polynomial. This figure is called the index figure of AP.

Remark 3.7 For a chain A and a set of DD-polynomials P, the DD-polynomial correspond-
ing to the bottom index in each column in the index figure of AP is of form δdA for an A ∈ A.

For a DD-polynomial P , let AP = A{P}. The pseudo-remainder of a DD-polynomial P
w.r.t. to a chain A is defined to be the algebraic pseudo-remainder of P w.r.t. to the algebraic
triangular set AP :

rprem(P,A) = aprem(P,AP ).

Let A = A1, . . . , Ap be a chain. We define

HA = {Ii1
A1

Sj1
A1
· · · Iip

Ap
S

jp

Ap
|i1, j1, . . . , ip, jp ∈ N}

HA = {H1 · · ·Hp|H1 ∈ HA1 , . . . , Hp ∈ HAp}

Lemma 3.8 Let R = rprem(Q,A). Then R is reduced w.r.t. A and there exists a J ∈ HA
such that vJ < vQ and

JQ ≡ R mod [A]
JQ ≡ R mod (AQ)

Proof: This is a direct consequence of the procedure to compute AQ and rprem. ¤
The saturation ideal of A is defined to be

sat(A) = [A] : HA = {P ∈ K[ΘY] | ∃J ∈ HA : JP ∈ [A]}.

Note that HA is closed under transforming and multiplication. Hence sat(A) is a DD-
ideal. It is also clear that if rprem(P,A) = 0 then P ∈ sat(A). Conversely, P ∈ sat(A)
generally does not imply rprem(P,A) = 0 and the condition for this to be valid will be given
in Section 4.

3.3. Noetherian property of perfect ideals
As an application, we may prove that all perfect ideals in K[ΘY] are finitely generated,

or equivalently, the solutions for any set of DD-polynomials are the same as a finite set of
DD-polynomials.

For a DD-polynomial set P, let P be any element in K[ΘY] with some product of positive
powers of transforms of P in P. The totality of such elements P will be denoted by P′.
Let P1 = [P]′ and, continuing inductively, let Pn = [Pn−1]′ for every n > 1. We have
P0 ⊆ P1 ⊆ P2 ⊆ · · · and

⋃
k∈N Pk = {P}.

Lemma 3.9 Let P be any set of elements of K[ΘY] and P and Q any two elements of
K[ΘY]. If S is contained in (P ∪ P )n and T in (P ∪ Q)n, n ≥ 1, then ST is contained in
(P ∪ PQ)n+2.
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Proof: First, let n = 1, S ∈ (P ∪ P )1, T ∈ (P ∪ Q)1. There exists a product S of positive
powers of transforms of S, and an T similarly related to T , which have expressions

S = GA + · · ·+ HB + k(ωP ) + · · ·+ L(θP ),
T = G′A′ + · · ·+ H ′B′ + K ′(ω′Q) + · · ·+ L′(θ′Q),

where A, · · · , B, A′, · · · , B′ ∈ ΘP, ω, · · · , ω′, θ, · · · , θ′ ∈ Θ and the coefficients G,G′ · · · , L, L′ ∈
K[ΘY]. Thus ST has an expression in which some terms are in [P] and the others are of the
type F · η1P · η2Q for some η1, η2 ∈ Θ. Denote η1 = δr1∂r2 , η2 = δs1∂s2 , then by [11], Page
9, we have ∂r2P · ∂s2Q ∈ [PQ]′, so we have δr1∂r2P · δs1∂s2Q ∈ [PQ]2. So we have ST is in
[(P ∪ PQ)2]. Some of product of powers of transforms of ST is a multiple of ST . Thus ST
is in (P ∪ PQ)3.

Now, let n = 2. Let S, described as above, be in [(P ∪ P )1]. Then, S is a linear
combination of elements of [(P ∪ P )1]. We use an T , described as above, which is linear in
elements of [(P∪Q)1]. Then ST has an expression in which each term is of type F · ηA ·ωB,
where A,B ∈ (P∪Q)1, η, ω ∈ Θ. Now ηA ·ωB, by the case of n = 1, is in (P∪PQ)3. Hence
ST is in [(P ∪ PQ)3]. This puts ST in (P ∪ PQ)4.

The proof continues by induction. ¤

Lemma 3.10 Let P be any set of elements of K[ΘY] and P and Q any two elements of
K[Y]. Then {P ∪ PQ} = {P ∪ P} ∩ {P ∪Q}.
Proof: We need only to show that, S being any element in the intersection, S is contained
in {P ∪ PQ}. Let n be such that S is contained in (P ∪ P )n and in (P ∪ Q)n. Then by
Lemma 3.9, S2 is in (P ∪ PQ)n+2. Thus S is also in (P ∪ PQ)n+2. ¤

Lemma 3.11 Let P,Q be two sets of elements of K[ΘY]. Then {P} ∩ {Q} = {PQ}.
Proof: Similar to the proof of Lemma 3.9, we have Pn ∩ Qn ⊆ (PQ)n+2, the conclusion
follows. ¤

Lemma 3.12 Let P be a subset of K[ΘY] and P ∈ {P}. Then there exists a finite subset Σ
of P, such that P ∈ {Σ}.
Proof: Since {P} =

⋃
n∈N

Pn, we have P ∈ Pn for some n. Let us prove the Lemma by

induction on n. The case n = 0 is trivial. Assume that we have proved the Lemma up to
n − 1. We have

∏
i(δ

tiP )si ∈ [Pn−1], for some ti, si ∈ N. Hence
∏

i(δ
tiP )si ∈ [Q1, . . . , Qq]

for some Q1, . . . , Qq ∈ Pn−1. For each 1 ≤ j ≤ q, there exists a finite subset Σj of P, such
that Qj ∈ {Σj}, by the induction hypothesis. Then we can taken Σ = Σ1 ∪ · · · ∪ Σq and
P ∈ {Σ}. ¤

Lemma 3.13 If there exists a non finitely generated perfect DD-ideal, then the set of non
finitely generated perfect DD-ideals admits a maximal element, and every such a maximal
element is prime.
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Proof: The union of a totally ordered set of non finitely generated perfect DD-ideals is
again a non finitely generated perfect DD-ideal. The existence of a maximal element follows
therefore by Zorn’s Lemma. Now let m be any such maximal element. Clearly m 6= K.
Choose P, Q ∈ K[ΘY] \ K. Then {m, P} and {m, Q} are finitely generated, say by P,Σ
respectively. Thus by Lemma 3.10, {m,PQ} = {P} ∩ {Σ}. By Lemma 3.11, PQ 6∈ m, we
have that m is prime. ¤

Theorem 3.14 The DD-ring K[ΘY] is Noetherian in the sense that all perfect ideals in
K[ΘY] are finitely generated.

Proof: First we fix some admissible ordering on ΘY. Suppose that the conclusion of the
theorem is false. By Lemma 3.13, there exists a maximal non finitely generated perfect
DD-ideal m, which is prime. Let C be a characteristic set for m.

Let P be in m. We can write JP P = R mod [C], where R is reduced w.r.t. C, JP ∈ HC .
By Lemma 3.4, R = 0. Hence JP P ∈ [C], whence HCP ∈ {C}. This proves that HCm ⊆ {C}.

Since the initials and separants of C are reduced w.r.t. C, they are not in m. Since m is
prime, we have HC 6∈ m. So the perfect DD-ideal {HC ,m} strictly contains m. Therefore,
{HC ,m} is finitely generated by the maximality hypothesis. Applying Lemma 3.12, each
generator is in a perfect DD-ideal generated by a finite subset of m ∪ {HC}. Hence, we
can write {HC ,m} = {HC ,P}, for some P ⊆ m and P is a finite set. Finally, m is finitely
generated, since m = m ∩ {HC ,m} = m ∩ {HC ,P} = {HCm,P} ⊆ {C,P}. ¤

4. Coherent and regular chains

A key property for a chain A is that whether A is the characteristic set of sat(A). In
this section, we will give a necessary and sufficient condition for this to be true.

4.1. Coherent Chains
If we want to compute the pseudo-remainder of P = y3

1,3,3 w.r.t. A in (4), we have two
choices: we could either select A1 and use δA1 to eliminate y1,3,3 from P , or select A2 and
use ∂A2 to eliminate y1,3,3 from P . To ensure that we obtain the same remainder with these
two choices, we need to make sure that δA3 and ∂A1 satisfy some consistence conditions.
This observation leads to the following definition.

Let A be a chain and A1, A2 ∈ A. If cls(A1) 6= cls(A2), define ∆(A1, A2) = 0. If
cls(A1) = cls(A2) = c, let vA1 = θ1yc, vA2 = θ2yc, and θ ∈ Θ the smallest under ≤ such that
θ1 ¹ θ, θ2 ¹ θ. If deg((θ/θ1)A1) ≥ deg((θ/θ2)A2), we define the ∆-polynomial of A1 and A2

to be
∆(A1, A2) = aprem((θ/θ1)A1, (θ/θ2)A2, θyc).

We denote by ∆(A) the set of non-zero ∆-polynomials ∆(A1, A2) for all A1, A2 ∈ A. A
chain A is said to be coherent, if for any P ∈ ∆(A), rprem(P,A) = 0.

Let A = A1, . . . , As be a chain. A linear combination C =
∑
θ∈Θ

QθθAi is called canonical

if θAi in the expression are distinct elements in AP for a DD-polynomial P . In other words,
C ∈ (AP ).
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Lemma 4.1 Let A be a coherent chain, A ∈ A, and θ ∈ Θ. Then there exist a DD-
polynomial P and a J ∈ HA such that vJ < vθA and JθA has a canonical representation:

JθA =
∑

vB≤vA,B∈AP

QBB. (5)

Proof: Let c = cls(A). The DD-polynomials inA with class c are Ac,1, . . . , Ac,kc and A = Ac,i.
If θA ∈ AθA, the Lemma is true. Otherwise, we will prove this by induction on the

ordering of vθA. Let Ac,k be largest w.r.t. ≤, such that ordδ(Ac,k) ≤ ordδ(θA). Then the
canonical polynomial corresponding to vθA must be θ̄kAc,k for a θ̄k ∈ Θ. We will form the
∆-polynomial for Ac,k and Ac,i. Let R = ∆(Ac,i, Ac,k). Then there exists t ∈ N, θi ∈ Θ, and
θk ∈ Θ, such that vθiAc,i

= vθkAc,k
and

J t
1θiA = QθkAc,k + R

where J1 is either the initial or the separant of Ac,k and vR < vθiA. We have vJ1 < vθiA.
Since A is a coherent chain, rprem(R,A) = aprem(R, AR) = 0. We have

J2R =
∑

A∈AR,vA≤vR

BAA

where J2 ∈ HA such that vJ2 < vR < vθiA So we have

J2J
t
1θiA = J2QθkAc,k +

∑

A∈AR,vA<vθiA

BAA.

From the index diagram (Figure 2), we have θi ¹ θ. Let θ̄ = θ/θi = δd∂s and θ̄k ∈ Θ be
a shuffle of θ̄θk. Perform θ̄ on the above equation, by Lemma 2.1, we have

gδd(J2J
t
1)θA = F θ̄kAc,k +

∑

B∈A,η∈Θ,vηB<vθA

CBηB,

where g ∈ K. Use the induction hypothesis, we have that each ηB has a canonical represen-
tation. So there exist a DD-polynomial P ′ and a J3 ∈ HA with vJ3 < vθA such that

J3(
∑

B∈A,η∈Θ,vηB<vθA

CBηB) =
∑

vC<vθA,C∈A′P
QCC.

Let J = J3gδd(J2J
t
1). Then vJ < vθA, J ∈ HA and JθA has a canonical representation of

form (5). ¤

Lemma 4.2 Let A = A1, . . . , Al be a coherent chain. For any f =
∑

gi,jηjAi, there is a
J ∈ HA such that J · f has a canonical representation, and vJ < max{vηjAi}.
Proof: This is a direct consequence of Lemma 4.1. ¤
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4.2. Regular chains
We will introduce some notations and results about invertibility of algebraic polynomials

with respect to an algebraic chain.
Let A = A1, . . . , Ap be a nontrivial triangular set in K[x1, . . . , xn] over a field K of char-

acteristic zero. Let yi be the leading variable of Ai, y = {y1, . . . , yp} and u = {x1, . . . , xn}\y.
u is called the parameter set of A. We can denote K[x1, . . . , xn] as K[u, y]. For a triangular
set A, let IA be the set of products of the initials of the polynomials in A, and HA the set of
products of the initials and separants of the polynomials in A. The quotient ideal (A) : IA
is called the algebraic saturation ideal and is denoted by asat(A).

For a polynomial P and a triangular set A = A1, A2, . . . , Ap in K[u, y] with u as the
parameter set, let

Pp = P, Pi−1 = Resl(Pi, Ai, yi), i = p, . . . , 1

and define Resl(P,A) = P0, where Resl(P, Q, y) is the resultant of P and Q w.r.t. y. We
assume that if y does not appear in P , Resl(P, Q, y) = P . It is clear that Resl(P,A) ∈ K[u].

A polynomial P is said to be invertible w.r.t. a chain A if Resl(P,A) 6= 0. A = A1, . . . , Ap

is called regular if the initials of Ai are invertible w.r.t. A. A is called satured if the initials
and separants of Ai are invertible w.r.t. A.

Lemma 4.3 [1] Let A be a triangular set. Then A is a characteristic set of asat(A) = (A) :
IA if and only if A is regular.

Lemma 4.4 [3] A polynomial g is not invertible w.r.t. a regular triangular set A if and only
if there is a nonzero f in K[u, y] such that fg ∈ (A) and g is reduced w.r.t. A.

Lemma 4.5 [1, 3] Let A be a regular triangular set. Then a polynomial P is invertible
w.r.t. A if and only if (P,A) ∩K[u] 6= {0}.

Lemma 4.6 [3] Let A be a satured triangular set. Then (A) : IA = (A) : HA is a radical
ideal.

Let A be a chain and P a DD-polynomial. P is said to be invertible w.r.t. A if it is
invertible w.r.t. AP when P and AP are treated as algebraic polynomials.

A chain A is said to be regular if any DD-polynomial in HA is invertible w.r.t. A.

Lemma 4.7 If a chain A is a characteristic set of sat(A), then for any DD-polynomial P ,
AP is a regular algebraic triangular set.

Proof: By Lemma 4.3, we need only to prove that B = AP is the characteristic set of
(B) : IB. Let W be the set of all the θyj such that θyj is of lower or equal ordering than a
θ̄yj occurring in B. Then B ⊆ K[W ]. If B is not a characteristic set of (B) : IB, then there
is a Q ∈ (B) : IB ∩ K[W ] which is reduced w.r.t. B and is not zero. Q does not contain θyi

which is of higher ordering than those in W . As a consequence, Q is also reduced w.r.t. A.
Since Q ∈ (B) : IB ⊆ sat(A) and A is the characteristic set of sat(A), by Lemma 3.4, Q must
be zero, a contradiction. ¤
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Lemma 4.8 Let A be a coherent and regular chain, and R a DD-polynomial reduced w.r.t.
A. If R ∈ sat(A), then R = 0, or equivalently, A is the characteristic set of sat(A).

Proof: Let A = A1, A2, . . . , Al. Since R ∈ sat(A), there is a J1 ∈ HA such that J1 · R ≡
0mod [A]. Since A is regular, J1 is difference invertible w.r.t. A, that is, there exists a
DD-polynomial J̄1 and a nonzero N ∈ K[V ] such that

J̄1 · J1 = N +
∑

vB≤vJ1
,B∈AJ1

QBB

where V is the set of parameters of AJ1 as an algebraic triangular set. Hence,

NR ≡ J̄1 · J1 ·R ≡ 0mod [A].

Or equivalently,
N ·R =

∑
gi,jθi,jAj . (6)

Since A is a coherent chain, by Lemma 4.2, there is a J2 ∈ HA such that J2 · N · R has a
canonical representation, where vJ2 < max{vθi,jAj

} in equation (6). That is

J2 ·N ·R =
∑

ij

ḡi,jρi,jAj , (7)

where, vρi,jAj are pairwisely different. If max{vρi,jAj} in (7) is lower than max{vθi,jAj
}

in (6), we have already reduced the highest ordering of vθi,jAj
in (6). Otherwise, assume

vρaAb
= max{vρi,jAj} and ρaAb = Ib·vdb

ρaAb
+Rb. Substituting vdb

ρaAb
by−Rb

Ib
in (7), the left side

keeps unchanged since vJ2 < vρaAb
, N is free of vρaAb

and deg(R, vρaAb
) < deg(ρaAb, vρaAb

).
In the right side, ρaAb becomes zero, i.e. the max{vρi,jAj} decreases. Clearing denominators
of the substituted formula of (7), we obtain a new equation:

It
b · J2 ·N ·R =

∑
fijτi,jAj . (8)

Note that in the right side of (8), the highest ordering of τi,jAj and It
b ·J2 are less than vρaAb

and It
b · J2 is invertible w.r.t. A. Then after multiplying a DD-polynomial, the right side

of (8) can be represented as a linear combination of τi,jAj all of which is strictly lower than
vρaAb

. Repeating the above process, we can obtain a nonzero N̄ ∈ K[V ], such that

N̄ ·R = 0.

Then R = 0. By Lemma 3.4, A is the characteristic set of sat(A). ¤
The above lemma is a modified difference-differential version of Rosenfeld’s Lemma [14].

The condition in this lemma is stronger than the one used in the differential version of
Rosenfeld’s Lemma. The conclusion is also stronger. The following example shows that
the Rosenfeld’s Lemma [14] cannot be extended to difference-differential case directly. As
a consequence, the approach proposed in [2] cannot be extended to the DD-polynomials
directly.
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Example 4.9 Let us consider chain A = {y2
1,1,0 − 1, (y1,0,0 − 1)y2

2,0,0 + 1} in K{y1, y2}. A is
coherent and y1,1,0+1 is reduced w.r.t. A. y1,1,0+1 ∈ sat(A), because J = I(y1,0,0−1)y2

2,0,0+1 =

y1,0,0 − 1 and δ(J)(y1,1,0 + 1) = y2
1,1,0 − 1 ∈ [A]. On the other hand, y1,1,0 + 1 /∈ asat(A).

The following is one of the main result in this paper.

Theorem 4.10 A chain A is the characteristic set of sat(A) iff A is coherent and regular.

Proof: If A is coherent and regular, then by Lemma 4.8, A is a characteristic set of sat(A).
Conversely, let A = A1, A2, . . . , Al be a characteristic set of the saturation ideal sat(A) and
Ii = IAi , Si = SAi . For any 1 ≤ i < j ≤ l, let R = rprem(∆i,j ,A), then R is in sat(A) and is
reduced w.r.t. A. Since A is the characteristic set of sat(A), R = 0. Then A is coherent. To
prove that A is regular, we need to prove that any P ∈ HA is invertible w.r.t. A. Assume
this is not true. By definition, P is not invertible w.r.t. AP when it is treated as algebraic
equations. By Lemma 4.7, AP is a regular algebraic triangular set. By Lemma 4.4, there is
an F 6= 0 which is reduced w.r.t. AP (and hence A) such that P · F ∈ (AP ) ⊆ [A]. Since
P ∈ HA, F ∈ sat(A) and F is reduced w.r.t. A, A is the characteristic set of sat(A), we
have F = 0, a contradiction. Hence, P is invertible w.r.t. A and A is regular. ¤

As a Corollary, we have

Corollary 4.11 Let A be a coherent and regular chain. Then sat(A) = {P |rprem(P,A) =
0}.
Theorem 4.10 is significant because it provides an easy way to check whether a DD-polynomial
is in sat(A). Unlike the algebraic and differential cases, if the initials and separants of A are
invertible w.r.t. A, we could have sat(A) = [1]. The main reason is the difference operator.
See the following example.

Example 4.12 Let A = {δy1, y1y2 + 1}. The initial of y1y2 + 1, I = y1, is invertible w.r.t.
A, but δI · 1 ∈ [A] which implies 1 ∈ sat(A).

Theorem 4.13 If A is a coherent and regular chain, then

sat(A) =
⋃

P∈K{Y}
(AP ) : HAP

=
⋃

P∈K{Y}
(AP ) : IAP

.

Proof: It is easy to see that sat(A) = [A] : HA ⊃
⋃

P∈K{Y}
(AP ) : HAP

. Let f ∈ sat(A). Since

A is coherent and regular, A is the characteristic set of sat(A). Then rprem(P,A) = 0, or
prem(f,AP ) = 0. We have P ∈ (AP ) : HAP

. Hence sat(A) ⊆ ⋃
P∈K{Y}

(AP ) : HAP
. Since

A is regular, AP is saturated, by Lemma 4.6, (AP ) : IAP
= (AP ) : HAP

, so we proved the
theorem. ¤
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5. Irreducible chains

There exist no direct methods to check whether a given chain is regular since we need to
check that all possible transforms of the initials and separants are invertible. In this section,
we will give a constructive criterion for a chain to be regular by introducing the concept of
proper irreducible chains.

5.1. Index Set of a Chain
In this Section, we will use the ordering ≤l defined in Section 2.2. That is, yi,d1,s1 ≤l

yj,d2,s2 iff (i, d1, s1) is less than (j, d2, s2) according to the lexicographical ordering.
Now we consider the structure of an auto-reduced set. For any chain A, after a proper

renaming of the variables, we could write it as the following form.

A =





A1,1(U, y1), . . . , A1,k1(U, y1)
. . .
Ap,1(U, y1, . . . , yp), . . . , Ap,kp(U, y1, . . . , yp)

(9)

where U = {u1, . . . , uq} and p+q = n. For any i, we have cls(Ai,j) = cls(Ai,k). If vAi,j = yc,d,s,
let d(d,s) be the leading degree of Ai,j . We have

Lemma 5.1 The set of all indices for a fixed class i will be denoted by INDi. If we arrange
INDi = {(a1, b1), . . . , (as, bs)} such that a1 ≤ a2 ≤ · · · ≤ as. Then we have

• a1 < a2 < · · · < as and b1 ≥ b2 ≥ · · · ≥ bs.

• If bj = bj+1, then d(aj ,bj) < d(aj+1,bj+1).

Proof: Let A1 and A2 be the corresponding DD-polynomials of (a1, b1) and (a2, b2). We
show that a1 = a2 cannot happen. Otherwise, consider b1 and b2. If b1 = b2, A1 and A2

will have the same leader which is impossible. If b1 < b2, A2 is not reduced w.r.t. A1, which
is also impossible. Similarly, b1 > b2 cannot happen. This proves that a1 < a2. Similarly,
we can prove that ai < ai+1. If bj = bj+1, since the corresponding DD-polynomials of
(aj , bj), (aj+1, bj+1) are auto-reduced, we have d(aj ,bj) < d(aj+1,bj+1). ¤

Please refer to Figure 1 for an illustration of the above lemma.

Corollary 5.2 Let A be a chain of form (9). Let mi = maxj{ordδ(Ai,j)}. Then ki ≤ mi

and |A| ≤ ∑p
i=1 mi.

For any DD-polynomial set P, the index set of the DD-polynomials in AP with class i is
of the following form:

(a, s1) (a, s1 + 1) . . . (a, s1 + l1)
(a + 1, s2) (a + 1, s2 + 1) . . . (a + 1, s2 + l2)
. . . . . . . . . . . .
(a + r, sr) (a + r, sr + 1) . . . (a + r, sr + lr)

(10)

where si, a, r, lj ∈ N, and s1 ≥ s2 ≥ · · · ≥ sr. Each row of (10) corresponds to a column in
the index figure of AP (Figures 2 or 3).
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To define the concept of proper irreducible chains, we need several properties of algebraic
irreducible triangular sets. An algebraic triangular set B is called irreducible if B is regular
and there exists no polynomials P and Q which are reduced w.r.t. B and PQ ∈ asat(B)
[11, 16].

Lemma 5.3 [17] Let A be an irreducible algebraic triangular set. Then asat(A) is a prime
ideal and for any polynomial P , the following facts are equivalent.

• P is invertible w.r.t. A.

• P 6∈ asat(A).

• aprem(P,A) 6= 0, where aprem is the algebraic pseudo-remainder.

The above lemma was extended to the case of ordinary differential polynomials. Let A
be a differential triangular set A [12, 17]. The differential saturation ideal of A is defined to
be dsat(A) = [A]∂ : HA where [A]∂ is the differential ideal generated by A.

Lemma 5.4 [12, 16] Let A be a triangular set consisting of ordinary differential polynomials.
If A is irreducible when considered as an algebraic triangular set, then dsat(A) is a prime
differential ideal and for any differential polynomial P , P ∈ dsat(A) iff dprem(P,A) = 0,
where dprem is the differential pseudo-remainder.

5.2. Proper Irreducible Chain
We denote A∗ = AA. Let A be the chain in (4), then the index set of A∗ is given in

Figure 3.
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Fig. 3. The indices of chain A∗

A chain A is said to be proper irreducible if

• A∗ is an algebraic irreducible triangular set, and

• δP ∈ dsat(A∗) implies P ∈ dsat(A∗), where dsat(A∗) is the differential saturation ideal
of A∗.

Lemma 5.5 Let A be a coherent and proper irreducible chain of the form (9). If P is a
nonzero DD-polynomial in K[PA], then δP is invertible w.r.t. A.
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Proof: Note that the indices of δP can be obtained by adding one to the δ-order of the indices
of P , or equivalently by moving the indices of P to the right side by one in the index figure
of A. For an illustration, please consult Figure 3. As a consequence, the DD-polynomials
A ∈ AδP such that vA appearing in δP must corresponds to the left most index on each row
in the index figure of AδP . Let us denote these DD-polynomials by H.

To test whether δP is invertible w.r.t. AδP , we need only consider those DD-polynomials
in AδP which will be needed when eliminating the leading variables of H with resultant
computations. More precisely, these DD-polynomials C can be found recursively as follows:

• C = H, and

• if there exists an A ∈ AδP such that vA ∈ VC \ LC , then add A to C.
From the definition of the invertibility, it is clear that δP is invertible w.r.t. AδP iff δP is
invertible w.r.t. C. If A ∈ H, there are two cases: A ∈ A∗ or A = ∂sA0, A0 ∈ A∗. If A ∈ A∗,
then by Proposition 3.5, starting from A, all the DD-polynomials constructed in the above
procedure are in A∗. Let A = ∂sA0, A0 ∈ A∗. Due to the selection of the ordering ≤l, for
any class c, dc

{∂sA0} ≤ d
(c)
A∗ . Therefore, starting from A, all the DD-polynomials constructed

in the above procedure are in A∗ ∪ H1 where H1 consists of DD-polynomials of the form
∂sA0 for A0 ∈ A∗. Since all DD-polynomials in H1 are linear in their leaders with their
initials in HA∗ and A∗ is irreducible, we know that C is an irreducible triangular set and
asat(C) ⊆ dsat(A∗).

Suppose that δP is not invertible w.r.t. AδP . Then, δP is not invertible w.r.t. C. Since
C is irreducible, by Lemma 5.3, we have δP ∈ asat(C) ⊆ dsat(A∗). By the definition of the
proper irreducible chain, P ∈ dsat(A∗). By Lemma 5.4, dprem(P,A∗) = 0. On the other
hand, since P ∈ K[PA], we have dprem(P,A∗) = P = 0, a contradiction. ¤

The following example shows that if we replace dsat by asat in the definition of the proper
irreducible chain, the above lemma will be false.

Let A1 = y1,2,0 − y0,0,0, A2 = y2,2,0 − y0,0,2, and A = A1, A2. It is easy to see that
A∗ = A1, A2 is an algebraic irreducible triangular set. Let Q = y2,0,0 − y1,0,2 ∈ K[PA]. We
have δ2Q = A2 − ∂2A1 ∈ sat(A), but Q 6∈ sat(A).

The following is a key property for proper irreducible chains.

Lemma 5.6 Let A be a coherent and proper irreducible chain of form (9). If P is invertible
w.r.t. A, then δP is invertible w.r.t. A.

Proof: We prove the lemma by induction on the order of P . By Lemma 5.5, if P ∈ K[PA]
then we are done. Assuming that the conclusion holds for any DD-polynomial Q such that
vQ <l vP , we will prove the lemma for P .

We first prove the following result.

If J ∈ HA and vJ <l vδP , then J is invertible w.r.t. A. (11)

Let I be the set of the initials and separants of the DD-polynomials in A∗. By Lemma 5.3,
any element in I is invertible w.r.t. A∗ and hence invertible w.r.t. A. Let Ii = δiI for i ≥ 0.
If J ∈ I1 and vJ <l vδP , then J = δL, L ∈ I, and vL <l vP . By the induction hypothesis,
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J is invertible w.r.t. A. Repeating the above procedure, we can prove that if J ∈ Ii and
vJ <l vδP , then J is invertible A. Since HA is the set of products of elements in all Ii, each
J ∈ HA satisfying vJ <l vδP is invertible w.r.t. A.

Let B = {A ∈ AδP | vA ≤ vδP }. By (11), B is a regular triangular set.
Since P is invertible w.r.t. A, there exist a DD-polynomial Q and a non-zero DD-

polynomial G ∈ K[PA] such that Q · P ≡ G mod (AP ), which can be represented by the
following equation

Q · P = G +
∑

A∈AP ,vA≤vP

BAA. (12)

Since G is obtained from P by eliminating some variables using DD-polynomials in AP , we
have vG ≤ vP and for each class c, s

(c)
{G} ≤ s

(c)
AP

, d
(c)
{G} ≤ d

(c)
AP

. Then VδG ⊆ LAP
⊆ LAδP

. By
Lemma 5.5, δG is invertible w.r.t. AδG. From vG ≤ vP and VδG ⊆ LAδP

, δG is invertible
w.r.t. B.

Performing the transforming operator on (12), we have

δQ · δP = δG +
∑

δA∈δAP ,vδA≤vδP

δBAδA. (13)

For any δA in the above equation, there are two cases. (1) δA ∈ AδP . (2) δA 6∈ AδP . Since
A is coherent, by Lemma 4.1, there exists a J ∈ HA, vJ <l vδA ≤ vδP such that JδA has a
canonical representation. Then, there exists a J ∈ HA, vJ <l vδP and a DD-polynomial R
such that

JδQ · δP = JδG +
∑

A∈AR,vA≤vδP

CAA.

Since vJ <l vδP , by (11), J is invertible w.r.t. A. Since δG is invertible w.r.t. B and
vδG ≤ vδP , there exist DD-polynomials P1 ∈ K[PA], Q1, T such that P1 6= 0 and

Q1JδG = P1 +
∑

A∈AT ,vA≤vδP

DAA.

So there exists a DD-polynomial R1 such that

Q1JδQ · δP = P1 +
∑

A∈AR1
,vA≤vδP

EAA. (14)

We write the summation of equation (14) as two parts:

Q1JδQ · δP = P1 +
∑

A∈AδP ,vA≤vδP

EAA +
∑

B 6∈AδP ,B∈AR1
,vB≤vδP

EBB. (15)

Let B1 = IB1v
k1
B1
− U1 be the largest under the ordering ≤l in the third part of equa-

tion (15), where IB1 ∈ HA is the initial of B1. Since all the B in the third part of equation (15)
are in AR1 , B1 is determined uniquely. Replacing vk1

B1
by U1/IB1 , we have

Q′
1δP = It1

B1
P1 +

∑

A∈AδP ,vA≤vδP

E′
AA +

∑

A6∈AδP ,A∈AR1
,vB<lvB1

E′
BB. (16)
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where vIB1
<l vB1 ≤l vδP , t1 ∈ N, and IB1 is invertible w.r.t. A. Since VδP ⊆ LAδP

, P1 ∈
K[PA] and for A ∈ AδP , VA ⊆ LAδP

, for any B 6= B1 in the third part of equation (14),
vB <l vB1 , they do not change under the above substitution.

Since IB1 is invertible w.r.t.A, similar to the above procedure, there exist DD-polynomials
Q2, P2 ∈ K[PA], R2, such that P2 6= 0 and

Q2δP = P2 +
∑

A∈AδP ,vA≤vδP

FAA +
∑

B 6∈AδP ,B∈AR2
,vB<lvB1

≤vδP

FBB. (17)

The leaders of B in the above equation is less than that of vB1 . Repeating the procedure
for (17), by Lemma 3.2, after a finite number of steps, the third part of equation (17) will
be eliminated. As a consequence, there is an H and a nonzero R ∈ K[PA] such that

HδP = R +
∑

A∈AδP ,vA≤vδP

QAA = R +
∑

A∈AB
QAA.

Since B is a regular triangular set, by Lemma 4.5, δP is invertible w.r.t. B ⊆ AδP . That is
δP is invertible w.r.t. A. ¤

The following result gives a constructive criterion to check whether a chain is regular.

Theorem 5.7 A coherent and proper irreducible chain is regular.

Proof: Let A∗ = A1, . . . , Am, Ij = I(Aj), and Sj = SAj . Since A∗ is an irreducible triangular
set, by Lemma 5.3, Ij and Sj are invertible w.r.t. A∗ and hence invertible w.r.t. A. By
Lemma 5.6, all δiIj , δ

iSj are invertible w.r.t. A. As a consequence, the products of δiIj , δ
iSj

are invertible w.r.t. A and A is regular. ¤

Theorem 5.8 Let A be a coherent and proper irreducible chain. Then sat(A) is reflexive.

Proof: For any δP ∈ sat(A), if P 6∈ sat(A). Let R = rprem(P,A) 6= 0. Then δR ∈ sat(A).
So we can assume that δP ∈ sat(A) and P is reduced w.r.t. A. By Theorem 5.7, A is
regular, by Theorem 4.10, A is the characteristic set of sat(A). Since δP ∈ sat(A) we have
rprem(δP,A) = 0. So there exists a J ∈ IAδP

such that JδP ∈ (AδP ) and J is invertible
w.r.t. AδP . So there exists a nonzero G ∈ K[PA], such that

GδP =
∑

A∈AδP

BAA. (18)

Let C = AδP ∩ {δd∂sA | δdA ∈ A∗}. We have [C] ⊆ dsat(A∗). Since each DD-polynomial
A ∈ AδP \ C must be the transforms for a DD-polynomial B which corresponds to the last
index of a row in the index diagram for C, the leading degree of A is the same as that of
B. As a consequence, δP is reduced w.r.t. AδP \ C. We can write the right hand side of the
equation (18) as two parts:

GδP =
∑

A∈C
DAA +

∑

B∈AδP \C
DBB.
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Let B = IBvk
B − U , where IB ∈ HA is the initial of B. Replacing vk

B by U/IB, we have

JGδP =
∑

A∈C
CAA ∈ [C] ⊆ dsat(A∗),

where J ∈ HA and is invertible w.r.t. A. Since G ∈ K[PA] and δP is reduced w.r.t. AδP \ C,
GδP does not change under the above substitution. Let B ∈ AδP \ C with class c. For
any A ∈ C, by the construction of A∗, d

(c)
{A} <l d

(c)
{B} and hence A will not change under

the above substitution. Since A∗ is irreducible, G ∈ K[PA], J is invertible w.r.t. A, and
JGδP ∈ dsat(A∗), by Lemma 5.4, we have JG 6∈ dsat(A∗) and δP ∈ dsat(A∗). Since A is
proper irreducible, we have P ∈ dsat(A∗) ⊆ sat(A), a contradiction. ¤

Example 5.9 Consider A = {A1 = y2
1,0,0+t, A2 = x2

2,0,0+t+k } from [5] in K{y1, y2} where
K is Q(t) with the difference operator ∂t = t + 1 and k is a positive integer. A∗ = {A1, A2}.
If k > 1, A is proper irreducible. But sat(A) is not prime, because A2 − δk(A1) = (y2,0,0 −
y1,k,0)(y2,0,0 + y1,k,0).

A proper irreducible chain A is said to be strong irreducible if for any DD-polynomial P
AP is an algebraic irreducible triangular set. In this section, we will prove that any reflexive
prime ideal can be described with strong irreducible chains.

The following theorem gives a description for prime ideals with strong irreducible chains.

Theorem 5.10 Let A be a coherent and strong irreducible chain. Then sat(A) is a reflexive
prime ideal. On the other side, if I is a reflexive prime ideal and A the characteristic set for
I, then I = sat(A) and A is a coherent and strong irreducible chain.

Proof: “=⇒” Since A is a coherent and proper irreducible chain, by Theorem 4.10, A is
regular and A is the characteristic set of sat(A). For two DD-polynomials P and Q such
that PQ ∈ sat(A), by Theorem 4.13, there exists a DD-polynomial R, such that PQ ∈
asat(AR). Since AR is an irreducible triangular set, by Lemma 5.3, we have P ∈ asat(AR)
or Q ∈ asat(AR). Therefore, sat(A) is a prime ideal. By Theorem 5.8, sat(A) is reflexive.
Then sat(A) is a reflexive prime ideal.

“⇐=” Since A is the characteristic set of I, by Theorem 4.10, A is coherent, regular,
and I ⊆ sat(A). On the other hand, for P ∈ sat(A), there exists a J ∈ HA, such that
JP ∈ [A]. Since I is a reflexive prime ideal, the initials and separants of A are not in I, so
are their transforms. Then, we have P ∈ I, and hence I = sat(A). For any DD-polynomial
P , AP is an irreducible triangular set. Otherwise there exist DD-polynomials G,H, such
that GH ∈ asat(AP ) ⊆ sat(A), G,H are reduced w.r.t. AP . Hence G,H are reduced w.r.t.
A. As a consequence, G,H 6∈ I = sat(A) but GH ∈ I, which contradicts to the fact that I
is a prime ideal. If δP ∈ dsat(A∗), we have δP ∈ sat(A) = I, and then P ∈ sat(A). Since A
is coherent and regular, we have P ∈ asat(AP ). Since A∗ is irreducible, dsat(A∗) is a prime
differential ideal. Without loss of generality, we may assume that d

(c)
{δP} ≤ d

(c)
A∗ for all c. As

a consequence AP ⊆ dsat(A∗) and P ∈ asat(AP ) ⊆ dsat(A∗). ¤
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6. Zero Decomposition Algorithms

In this section, we will present two algorithms which can be used to decompose the zero
set of a finite DD-polynomial system into the union of the zero sets of proper irreducible
chains. Such algorithms are called zero decomposition algorithms.

A chain A is called a Wu characteristic set of a set P of DD-polynomials if A ⊆ [P] and
for all P ∈ P, rprem(P,A) = 0.

Lemma 6.1 Let P be a finite set of DD-polynomials, A = A1, . . . , Am a Wu characteristic
set of P, Ii = I(Ai), Si = SAi, and J =

∏m
i=1 IiSi. Then

Zero(P) = Zero(A/J)
⋃
∪m

i=1Zero(P ∪ A ∪ {Ii})
⋃
∪m

i=1Zero(P ∪ A ∪ {Si})
Zero(P) = Zero(sat(A))

⋃
∪m

i=1Zero(P ∪ A ∪ {Ii})
⋃
∪m

i=1Zero(P ∪ A ∪ {Si}).
Proof: Since for any P ∈ P, rprem(P,A) = 0, Zero(P) ⊃ Zero(sat(A)). Therefore Zero(P) ⊃
Zero(sat(A))

⋃∪m
i=1Zero(P∪A∪ {Ii})

⋃∪m
i=1Zero(P∪A∪ {Si}). Conversely, since A ⊆ [P],

Zero(P) ⊆ Zero(A). Let η be a solution of P in some extension field of K. If η annuls some
Ii, Si, it is a solution of P ∪ {Ii} or P ∪ {Si}. If η annuls no Ii, Si, then by Lemma 3.8 η is a
solution of sat(A). Hence, Zero(P) ⊆ Zero(sat(A))

⋃∪m
i=1Zero(P∪A∪ {Ii})

⋃∪m
i=1Zero(P∪

A∪{Si}). Thus, Zero(P) = Zero(sat(A))
⋃∪m

i=1Zero(P∪A∪{Ii}
⋃∪m

i=1Zero(P∪A∪{Si}).
Since A is the Wu characteristic set of P, we have Zero(P ∪ A) = Zero(P). The second
equation is proved. The first equation can be proved similarly. ¤

Lemma 6.2 Let A be a Wu characteristic set of a finite set P. If A is not a proper irreducible
chain, then we can find P1, P2, . . . , Ph which are reduced w.r.t. A such that

Zero(P) = ∪h
i=1Zero(P ∪ A ∪ {Pi})

⋃
∪iZero(P ∪ A ∪ {Ii})

⋃
∪iZero(P ∪ A ∪ {Si})

where Ii, Si are the initials and separants of the DD-polynomials in A.

Proof: Denote B = A∗ = B1, . . . , Bp. Then the initials of B are the initials and separants of
A and their transforms. First, if A∗ is not algebraic irreducible, by Lemma 3 in Section 4.5
of [17], there are P1, . . . , Ph which are reduced w.r.t. A∗ such that

P =
p∏

i=1

Ivi
i P t1

1 . . . P th
h =

k+1∑

i=1

giBi, (19)

where Ii is the initial of Bi. Since A is a Wu characteristic set of P, f ∈ [P]. Then
Zero(P) = Zero(P ∪ {P}) = ∪h

i=1Zero(P, Pi)
⋃∪iZero(P, Ii). If Ii is the initial of δdA for

some A ∈ A, then Zero(P, Ii) = Zero(P, IA). If Ii is the initial of δd∂tA for some A ∈ A, then
Zero(P, Ii) = Zero(P, SA). In other words, we need only to include the initials and separants
of the DD-polynomials in A.

If A∗ is algebraic irreducible. Let f = δg ∈ dsat(A∗) which satisfying dprem(g,A∗) 6= 0.
P1 = dprem(g,A∗), we have P1 6= 0, P1 is reduced w.r.t. A, and

P1 =
p∏

i=1

Ivi
i Sui

i g −
∑

i,j

gi,j∂jBi.
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Algorithm 3 — ZDT(P)

Input: A finite set P of DD-polynomials.
Output: W = {A1, . . . ,Ak} such that Ai is a coherent and proper irreducible chain and

Zero(P) =
⋃k

i=1 Zero(sat(Ai)).

Let B := C.S(P), B := B1, . . . , Bp. /*/
If B = 1 then return {}.
Else

Let R := {rprem(f,B) 6= 0 | f ∈ (P \ B) ∪∆(B)}.
If R = ∅ then

Let (test, P̄) :=ProIrr(B).
If test then W = {B}∪ZDT(P ∪ B ∪ {Ii})∪ZDT(P ∪ B ∪ {Si}).
Else W:= ∪k

i=1ZDT(P,B, Pi)∪ ZDT (P,B, Ii)∪ ZDT (P,B, Si),
where Ii, Si are the initials and separants of the DD-polynomials in B
and P̄ = {Pi | i = 1, . . . , k}.

Else W :=ZDT(P ∪ R).

/*/ C.S(P) gives the characteristic set of P. Since P is finite, it is easy to find C.S(P).

Then Zero(P/HA) = Zero(P ∪ {f}/HA) = Zero(P ∪ {g}/HA) = Zero(P ∪ {P1}/HA).
Combining these two conditions, we have that if A is not a proper irreducible chain, then

we can find P1, P2, . . . , Ph which are reduced w.r.t. A such that

Zero(P) = ∪h
i=1Zero(P ∪ A ∪ {Pi})

⋃
∪iZero(P ∪ A ∪ {Ii})

⋃
∪iZero(P ∪ A ∪ {Si})

where Ii, Si are the initials and separants of A. ¤
Now, we can give the zero decomposition theorem for finite DD-polynomial sets.

Theorem 6.3 Let P be a finite set of DD-polynomials in K{y1, . . . , yn}. Then there exist a
sequence of coherent and proper irreducible chains Ai, i = 1, . . . , k such that

Zero(P) =
k⋃

i=1

Zero(Ai/Ji)

Zero(P) =
k⋃

i=1

Zero(sat(Ai)) (20)

where Ji is a product of the initials and separants of Ai.

The correctness of the above theorem follows from the correctness of the algorithm ZDT.
This is a quite straight forward extension of the algebraic and differential zero decomposition
algorithms in [12, 17], except for the algorithm ProIrr to find a proper irreducible chain. The
correctness of the algorithm is guaranteed by Lemma 6.1 and Lemma 6.2. The termination
of it is guaranteed by Lemmas 3.2 and 3.3.

Indeed, in ZDT, we need to check whether a coherent chain is proper irreducible. The
procedure ProIrr, when it applied to a coherence chain B, returns two argument: test, P̄.
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Algorithm 4 — ProIrr(A)

Input: A coherent chain A of the form (9).
Output: (true,∅), if A is proper irreducible.

(false,P̄), otherwise, where P̄ is the set of DD-polynomials mentioned in
Lemma 6.2.

If A∗ is algebraic irreducible then
G := DCS(A∗) /*/

G1 := G ∩K[U1, Y1] where U1, Y1 are the
variables in G, except for those ui,0,j , yi,0,k with zero ordδ.
G1 := δ−rG1, where r is the largest s, such that δ−s is a DD-polynomial.

If rprem(g,A∗) = 0 for all g ∈ G1, then return (true,∅).
Else return (false,{rprem(g,A∗) 6= 0 | g ∈ G1}).

Else
Let P̄ be the set of DD-polynomials in (19).
Return (false,P̄)

/*/ G := DCS(A∗) computes a differential characteristic set of dsat(A∗) w.r.t. the elimi-
nation ordering yc,0,i > yc,0,i−1 > · · · yc−1,0,t > · · · > y1,0,s > ud,0,l > · · · > u1,0,k > · · · . So
this is an algorithm for differential ideals. We treat yc,i,0, ut,i,0 as differential indeterminates
and yc,i,k, ut,i,k as differentiations of yc,i,0, ut,i,0.

If B∗ is proper irreducible, then test is true and P̄ = ∅; else test is false, P̄ consists of the
DD-polynomials P1, . . . Pk mentioned in Lemma 6.2.

Lemma 6.4 Algorithm DCS is correct.

Proof: By the definition of dsat, we have

Zero(dsat(A)/J) = Zero(A/J) = ∪iZero(dsat(Ai)/J). (21)

Since A is irreducible, by Lemma 5.4, dsat(A) is a prime ideal. Then dsat(A) ⊆ dsat(Ai)
for any i. Due to (21), a generic zero of dsat(A) must be in some Zero(dsat(Ak)). For this
k, we have dprem(P,A) = 0 for all P ∈ Ak. We will show that dsat(A) = dsat(Ak). For any

Algorithm 5 — DCS(A)

Input: A an irreducible differential triangular set in K{u, y}.
Output: A differential characteristic set B of dsat(A) under the variable ordering yc1,0,i >

yc2,k,j for any k 6= 0.

Let J be the product of the initials and separants of A.
Compute a zero decomposition Zero(A/J) = ∪iZero(dsat(Ai)/J) with method from [16],

where Ai are irreducible differential chains.
Find a k such that dprem(P,A) = 0 for all P ∈ Ak.
Return Ak.
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P ∈ dsat(Ak), there exists a J1 ∈ HAk
such that J1P ∈ [Ak]. We say that J1 6∈ dsat(A).

Otherwise, J1 ∈ dsat(A) ⊆ dsat(Ak), a contradiction. Since dprem(P,A) = 0 for all P ∈ Ak,
there exists a J2 ∈ HA such that J1J2P ∈ [A]. Since J1J2 6∈ dsat(A), we have P ∈ dsat(A).
So dsat(A) = dsat(Ak). ¤

Lemma 6.5 Algorithm ProIrr is valid.

Proof: If ProIrr(A) returns (true, ∅), we will show that for any δP ∈ dsat(A∗), P ∈
dsat(A∗). Since dsat(A∗) = dsat(Ak), where Ak is obtained form DCS(A∗), we have
δP ∈ dsat(Ak). Since Ak is an irreducible differential chain, dprem(δP,Ak) = 0. We
denote G1 = Ak ∩K[U1, Y1], G0 = δ−1G1, where K[U1, Y1] is described in algorithm ProIrr.
Then dprem(δP,Ak) = dprem(δP, G1) = 0. So there exists a J ∈ HG1 , such that JδP =∑
i∈N,B∈G1

Qi,B∂iB, where J,B, Qi,B ∈ K[U1, Y1]. Perform δ−1 on this equation, we have

(δ−1J)P ∈ [G0]∂. Since for any G ∈ G0, d
(c)
{G} ≤ d

(c)
{A∗} for all c, we have AG ⊆ [A∗]∂ and

rprem(G,A) = aprem(G,AG) = dprem(G,A∗) = 0. Then we have (δ−1J)P ∈ dsat(A∗).
Since Ak is an irreducible differential chain, J is invertible w.r.t. Ak, then it is invertible
w.r.t. AJ ⊂ [A∗]∂. Hence δ−1J must be invertible w.r.t. Aδ−1J ⊂ [A∗]∂. Otherwise, we have
δ−1J ∈ asat(Aδ−1J). Since A is coherent and regular, by Theorem 4.10, it is the character-
istic set of sat(A) and J ∈ sat(A). Then rprem(J,A) = aprem(J,AJ) = dprem(J,A∗) = 0,
a contradiction. Then we have P ∈ dsat(A∗). ¤

Example 6.6 Let A1 = y1,2,0 − y0,0,0, A2 = y2,2,0 − y0,0,2, and A = A1, A2. Then A is
already a coherent chain and algorithm ZDT will call ProIrr(A) directly. In the algorithm
ProIrr, since A∗ = A1, A2 is an algebraic irreducible triangular set, algorithm DCS(A∗)
will be called. In the algorithm DCS, we have J = 1 and under the new variable order
y0,0,0 > y0,0,2 > y1,2,0 > y2,2,0, we have

Zero(A∗) = Zero(dsat(A1, A3)) = Zero(A1, A3)

where A3 = y2,2,0− y1,2,2. Algorithm DCS returns A1, A3. Now we back to algorithm ProIrr
and G1 = δ−2{A3} = {A4 = y2,0,0−y1,0,2}. Algorithm ProIrr returns (false, , {A4}). Now we
back to algorithm ZDT with input {A1, A2, A4}. Since B = A1, A4 is a coherent and proper
irreducible chain, the algorithm returns B and we have Zero(A) = Zero(sat(B)) = Zero(B).
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