
Published as a conference paper at ICLR 2025

GENERALIZABILITY OF NEURAL NETWORKS MINIMIZ-
ING EMPIRICAL RISK BASED ON EXPRESSIVE ABILITY

Lijia Yu1, Yibo Miao2, 3, Yifan Zhu2, 3, Xiao-Shan Gao2, 3, 4∗ , Lijun Zhang1, 3, 5

1 Key Laboratory of System Software of Chinese Academy of Sciences
Institute of Software, Chinese Academy of Sciences

2 State Key Laboratory of Mathematical Sciences
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

3 University of Chinese Academy of Sciences
4 Kaiyuan International Mathematical Sciences Institute
5 Institute of AI for Industries, Chinese Academy of Sciences

ABSTRACT

The primary objective of learning methods is generalization. Classic uniform gen-
eralization bounds, which rely on VC-dimension or Rademacher complexity, fail
to explain the significant attribute that over-parameterized models in deep learning
exhibit nice generalizability. On the other hand, algorithm-dependent generaliza-
tion bounds, like stability bounds, often rely on strict assumptions. To establish
generalizability under less stringent assumptions, this paper investigates the gener-
alizability of neural networks that minimize or approximately minimize empirical
risk. We establish a lower bound for population accuracy based on the expressive-
ness of these networks, which indicates that with an adequate large number of
training samples and network sizes, these networks, including over-parameterized
ones, can generalize effectively. Additionally, we provide a necessary condition
for generalization, demonstrating that, for certain data distributions, the quantity
of training data required to ensure generalization exceeds the network size needed
to represent the corresponding data distribution. Finally, we provide theoretical
insights into several phenomena in deep learning, including robust generalization,
importance of over-parameterization, and effect of loss function on generalization.

1 INTRODUCTION

Understanding the mechanisms behind the nice generalization ability of deep neural networks remains
a fundamental challenge problem in deep learning theory. By generalization, it means that neural
networks trained on finite dataset give high predict accuracy on the whole data distribution. The
generalization bound serves as a critical theoretical framework for evaluating the generalizability of
learning algorithms. Let F be a neural network, D the data distribution, and L(F(x), y) = I(F̂(x) =

y) where F̂(x) is the classification result of F(x). For a hypothesis space H and any F ∈ H, with
probability 1− δ of dataset Dtr sampled i.i.d. from D, we have the classic uniform generalization
bound (Mohri et al., 2018)

|E(x,y)∼D[L(F(x), y)]− E(x,y)∈Dtr
[L(F(x), y)]| <

√
(8d ln

2eN

d
+ 8 ln

4

δ
)/N (1)

where d is the VC-dimension of H and N = |Dtr|. There exist similar generalization bounds using
Radermacher Complexity (Mohri et al., 2018).

In practice, the generalizability of the networks trained by SGD is desirable. For that purpose,
algorithmic-dependent generalization bounds are derived. It is shown that if the data satisfy the NTK
condition, two-layer networks have a small population risk after training (Jacot et al., 2018; Ji &
Telgarsky, 2020). Stability generalization bounds are also obtained by assuming the convexity and
Lipschitz properties of the total loss (Hardt et al., 2016; Kuzborskij & Lampert, 2018).
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Unfortunately, uniform generalization bounds fail to explain the important phenomenon that over-
parameterized models exhibit nice generalizability (Belkin et al., 2019), as pointed out by Nagarajan
& Kolter (2019). For example, the VC-dimension is equal to the product of the number of parameters
and the depth for ReLU networks (Bartlett et al., 2021), which renders the bound in equation 1
useless for over-parameterized models. Most of the algorithmic-dependent generalization bounds
make strong and unrealistic assumptions. For example, the NTK condition is used to reduce the
training to a convex optimization (Ji & Telgarsky, 2020) and the strong smoothness and convexity of
the empirical loss are used to measure the effect in each training epoch (Hardt et al., 2016).

In order to give generalization conditions under more relaxed assumptions, we will study the general-
ization of networks that minimize or approximately minimize the empirical risk, that is, the networks
F ∈ M = argminG∈H

∑
(x,y)∈Dtr

L(G(x), y). The approach is reasonable because most practical
training will lead to a very small empirical risk.

In this paper, we consider two-layer networks, like many previous theoretical works (Ba et al., 2020;
Ji & Telgarsky, 2020; Zeng & Lam, 2022). From the perspective of expressive ability, we obtain a
new type of sample complexity bound: when the number of training data and the size of the network
are independently large enough, the network has generalizability. The sample complexity bound
depends only on the cost required for the network to express the data distribution, as shown below.
Theorem 1.1 (Informal, Corollary 4.5). Let data distribution D satisfy the condition that a two-layer
network with width W0 can reach accuracy 1 over D. Then with high probability of Dtr ∼ DN , if
N ≥ Ω(W 2

0 ) and width(F) ≥ Ω(W0) for F ∈ M, then F has high population accuracy.

From this result, we can determine the amount of training data and the size of the network that can
ensure generalizability. Because the requirements for N and width(F) are independent, our bounds
can be used to explain the nice generalizability of over-parameterized models (Belkin et al., 2019).
The above result is extended to networks that approximately minimize the empirical risk.

We also give a lower bound for the sample complexity. For some data distribution, to ensure the
generalizability of network which minimizes the empirical risk, the required number of data must be
greater than the size of neural networks required to express such a distribution, as shown below.
Theorem 1.2 (Informal, Section 5). For some data distribution D, if the width required for a two-
layer network with ReLU activation function to express D is at least W0, then with high probability
for a dataset with fewer than O(W0) elements, any network that minimizes the empirical risk over D
has poor generalization.

Finally, while deep neural networks exhibit good generalization, numerous classical experimental
results indicate that these networks encounter problems such as robustness and generalization. We
provide some interpretability for these problems based on our theoretical results. Let Dtr be a dataset
and F ∈ M. Then, three phenomena of deep learning are discussed with our theoretical results.

Robustness Generalization. (Section 6.1) It is known that robust memorization for a dataset Dtr is
more difficult than memorization for Dtr (Park et al., 2021; Li et al., 2022; Yu et al., 2024a). We
further show that when robust memorization of Dtr is much more difficult than memorization of
Dtr, then the robustness accuracy of F over D has an upper bound which may be low, or F has no
robustness generalization over D.

Importance of over-parameterization. (Section 6.2) It is recognized that over-parameterized
networks have nice generalizaility (Belkin et al., 2019; Bartlett et al., 2021). In this regard, we show
that when the network is large enough, a small empirical loss leads to high test accuracy. In contrast,
when the network F is not large enough, there exist networks that achieve good generalization but
cannot be found by minimizing the empirical risk.

Loss function. (Section 6.3) We show that for some loss function, generalization may not be achieved.
If the loss function has reached its minimum value or is a strictly decreasing concave function, then
the network may have poor generalization.

2 RELATED WORK

Generalization bound. Generalization bound is the central issue of learning theory and has been
studied extensively (Valle-Pérez & A. Louis, 2022). The algorithm-independent generalization
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bounds usually depend on the VC-dimension or the Rademacher complexity (Mohri et al., 2018). In
(Harvey et al., 2017; Bartlett et al., 2019; Yang et al., 2023), the VC-dimension has been accurately
calculated in terms of width, depth, and number of parameters. In (Wei & Ma, 2019; Arora et al.,
2018; Li et al., 2018), tighter generalization bounds were given based on Radermacher complexity.
Generalization bounds were also studied for netwoks with special structures: Long & Sedghi (2019);
Ledent et al. (2021); Li et al. (2018) gave the generalization bound of CNN, Vardi et al. (2022) gave
the sample complexity of small networks, Brutzkus & Globerson (2021) studied the generalization
bound of maxpooling networks, Trauger & Tewari (2024); Li et al. (2023) gave the generalization
bound of transformers, and Ma et al. (2018); Luo & Yang (2020); Ba et al. (2020) studied two-layer
networks. Under some assumptions for the networks, Neyshabur et al. (2017); Barron & Klusowski
(2018); Dziugaite & Roy (2017); Bartlett et al. (2017); Valle-Pérez & A. Louis (2022) gave the upper
bounds of the generalization error. Generalization bounds based on information theory and Bayesian
theory were also given (Alquier, 2024; Hellström et al., 2023; Tolstikhin & Seldin, 2013). Bayesian
generalization bounds do not use VC-dimension or Radermacher complexity, but they hold only for
most of the networks. Unfortunately, Nagarajan & Kolter (2019) show that the uniform generalization
bound cannot explain the generalizability for deep learning.

Algorithm-dependent generalization bounds were established in the algorithmic stability setting
(Bousquet & Elisseeff, 2002; Elisseeff et al., 2005; Shalev-Shwartz et al., 2010). Under some
assumptions, Hardt et al. (2016); Wang & Ma (2022); Kuzborskij & Lampert (2018); Lei (2023);
Bassily et al. (2020) gave the stability bounds under SGD. For small networks, Ji & Telgarsky (2020);
Taheri & Thrampoulidis (2024); Li et al. (2020) proved the generalization of networks under some
assumptions. Farnia & Ozdaglar (2021); Xing et al. (2021); Xiao et al. (2022); Wang et al. (2025);
Allen-Zhu & Li (2022) gave stability generalization bounds for adversarial training under SGD.
Regatti et al. (2019); Sun et al. (2023) gave stability generalization bounds under asynchronous SGD.
However, these algorithmic-dependent generalization bounds always impose strong assumptions on
the training process or dataset. Generalization bounds for memorization networks were given in Yu
et al. (2024b). However, minimizing empirical risk for cross-entropy loss does not necessarily lead to
memorization, so our assumption is weaker than memorization.

Interpretability for Deep Learning. Interpretability is dedicated to providing reasonable expla-
nations for phenomena that occur in deep learning. In (Zhang et al., 2021) it was pointed out that
interpretability is not always needed, but it is important for some prediction systems that are required
to be highly reliable. For adversarial samples, it was shown that for certain data distributions and
networks, there must be a trade-off between accuracy and adversarial accuracy (Shafahi et al., 2019;
Bastounis et al., 2021). In (Yu et al., 2023), it was proven that a small perturbation of the network
parameters will lead to low robustness. In (Allen-Zhu & Li, 2022), it was shown that the generation of
adversarial samples after training is due to dense mixtures in the hidden weights. In (Yu et al., 2024a;
Li et al., 2022), it was shown that ensuring generalization requires more parameters. For overfitting,
long-term training has been shown to lead to a decrease in generalization (Xiao et al., 2022; Xing
et al., 2021). In (Roelofs et al., 2019), comprehensive analysis of overfitting was given. In (Belkin
et al., 2019; Bartlett et al., 2021), the importance of over-parameterized interpolation networks is
mentioned, and in Arora et al. (2019); Cao & Gu (2019); Ji & Telgarsky (2020), the training and
generalization of DNNs in the over-parameterized regime were studied. In this paper, we explain
these phenomena from the perspective of the expressive ability of networks.

3 NOTATION

In this paper, for any A ∈ R, O(A) means a real number no more than cA for some c > 0 and Ω(A)
means a real number not less than cA for some c > 0. By saying that for all (x, y) ∼ D there is an
event A, we mention P(x,y)∼D(A) = 1.

3.1 NEURAL NETWORK

In this paper, we consider two-layer neural networks F : Rn → R that can be written as:

F (x) =
∑W

i=1 aiσ(Wix+ bi) + c,

where σ is the activation function, Wi ∈ R1×n is the transition matrix, bi ∈ R is the bias part, W is
the width of the network, and ai, c ∈ R. Denote Hσ

W (n) as the set of all two-layer neural networks
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with input dimension n, width W , activation function σ, and all parameters are in [−1, 1]. To simplify
the notation, we denote HReLU

W (n) by HW (n) when using the ReLU activation function.

3.2 DATA DISTRIBUTION

In this paper, we consider binary classification problems. To avoid extreme cases, we focus primarily
on the data distribution defined below.

Definition 3.1. For n ∈ Z+, D(n) is the set of distributions D over [0, 1]n × {−1, 1} that have a
positive separation bound: inf(x1,y1),(x2,y2)∼D and y1 ̸=y2

||x1 − x2||2 > 0.

Remark 3.2. Equivalently, a distribution that has positive separation bound means that there exists a
c > 0, such that ||x1 − x2||2 > c for all (x1, y1), (x2, y2) ∼ D where y1 ̸= y2.

The accuracy of a network F on a distribution D is defined as AD(F) = P(x,y)∼D(Sgn(F(x)) = y),
where Sgn is the sign function. We use Dtr ∼ DN to mean that Dtr is a dataset of N samples drawn
i.i.d. according to D.

3.3 MINIMUM EMPIRICAL RISK

Consider the loss function L(F(x), y) = ln(1 + e−F(x)y), which is the cross-entropy loss for binary
classification problems. For a dataset Dtr ⊂ [0, 1]n × {−1, 1} and a hypothesis space Hσ

W (n). To
learn the features of the data in Dtr, the general method is empirical risk minimization (ERM), which
minimizes empirical risk on the training dataset

∑
(x,y)∈Dtr

L(F(x), y) of the network F .

In this paper, we mainly consider networks F ∈ Hσ
W (n) that can minimize empirical risk, that is,

networks in
Mσ

W (Dtr, n) = argminG∈Hσ
W (n)

∑
(x,y)∈Dtr

L(G(x), y). (2)

It should be noted that such networks exist in most cases, as shown below.

Proposition 3.3. Let Dtr ⊂ [0, 1]n×{−1, 1} and σ be a continuous function. Then for any W ∈ Z+,
there exists an F ∈ Hσ

W (n) such that F ∈ Mσ
W (Dtr, n).

Proof. Since σ is a continuous function, the empirical risk
∑

(x,y)∈Dtr
L(F(x), y) =∑

(x,y)∈Dtr
ln e−y(

∑W
i=1 aiσ(Wix+bi)+c) is a continuous function of the network parameters ai, bi, c

and Wi. The proposition now comes from the fact that continuous functions have reachable upper
and lower bounds on a closed domain [−1, 1]Wg of the parameters, where Wg = W (n+ 2) + 1 is
the number of parameters of F .

4 GENERALIZATION BASED ON NEURAL NETWORK EXPRESSIVE ABILITY

In this section, we demonstrate that, based on the expressive ability of neural networks, the generaliz-
ability of the network that minimizes the empirical risk can be established. Specifically, in Section
4.1, we establish the relationship between expressive ability and generalizability. In Section 4.2, we
extend our conclusion to networks that approximately minimize empirical risk. In Section 4.3, we
compare our generalization bounds with existing generalization bounds, showcasing the superiority
of our bound.

4.1 A LOWER BOUND FOR ACCURACY BASED ON THE EXPRESSIVE ABILITY

We first define the expressive ability of neural networks to classify the data distribution.

Definition 4.1. We say that a distribution D over [0, 1]n × {−1, 1} can be expressed by Hσ
W with

confidence c, if there exists an F ∈ Hσ
W such that

P(x,y)∼D(yF(x) ≥ c) = 1.
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Remark 4.2. The smallest W that D can be expressed by Hδ
W with confidence c can be considered

as a complexity measure of distribution D under confidence c and activation function δ.

For any distribution D ∈ D(n), we can always find some activation function σ, such that D can be
expressed by Hσ

W (n) with confidence c for some W and c. Therefore, this definition is reasonable.
For example, if σ = ReLU, according to the universal approximation theorem of neural networks
(Cybenko, 1989), any D ∈ D(n) can be represented by a network with ReLU as activation function,
as shown by the following proposition. The proof is given in Appendix A.
Proposition 4.3. For any distribution D ∈ D(n), there exist W ∈ N+ and c > 0 such that D can be
expressed by HW (n) with confidence c.

We have the following relationship between expressive ability and generalization ability. The proof is
given in Appendix B.
Theorem 4.4. Let σ be a continuous function with Lipschitz constant Lp and D ∈ D(n) be expressed
by Hσ

W0
with confidence c. Then for any W ≥ W0 +1, N ∈ N+, δ ∈ (0, 1), with probability at least

1− δ of Dtr ∼ DN , the following bound stands for any F ∈ Mσ
W (Dtr, n):

AD(F) ≥ 1−O(
W0

cW
+

nLp(W0 + c)
√
log(4n)

c
√
N

+

√
ln(2/δ)

N
). (3)

Proof Idea. There are two main steps in the proof. The first step tries to estimate the minimum value
of the empirical risk, which mainly uses the assumption: D can be expressed by Hσ

W0
with confidence

c. The minimum value is based on W0, c,W . Then, we use the minimum value to estimate the
performance of the network on Dtr. In the second step, we can use the result in the first step and the
classic generalization bound to estimate the performance of the network across the entire distribution
and get the result. The core idea of this step is that the minimum value of empirical risk does not
depend on N , but the Radermacher complexity becomes smaller when increasing N . Then, when N
is large enough, the performance of networks in D and Dtr is similar.

Some experimental results used to verify Theorem 4.4 are included in Appendix L. Formula (3)
differs from the classical generalization limits in that both the number of samples N and the size of
the network W are in the denominator, and therefore increasing N and W independently leads to
better test accuracy. As a consequence, the generalization ability of over-parameterized networks can
be explained. Since the values of N and W to ensure generalization are only influenced by the size
required for the network to express the data distribution, we can infer the following corollary.
Corollary 4.5. With probability 1 − δ of Dtr ∼ DN , it holds AD(F) ≥ 1 − ϵ for any F ∈
Mσ

W (Dtr, n), when W ≥ Ω(W0/(cϵ)) and N ≥ Ω(
Lp(W0+c)n

√
log(4n)

cϵ )2 +Ω( ln(2/δ)ϵ2 ).

The above condition for generalization is different from traditional sample complexity in that be-
sides the requirements on the number of samples, a new requirement on the size of networks is
given independently, which is the reason to explain the generalization ability of over-parameterized
networks.
Remark 4.6. For networks with depth larger than two, we can show that if the depth and width of the
network and the number of data exceed a distribution-dependent threshold, then with high probability,
the network minimizing the empirical risk can ensure generalization, as demonstrated in Appendix K.
However, due to the complexity of deep networks, accurately determining the required depth, width,
and data volume remains a challenge.

4.2 GENERALIZATION OF NETWORKS APPROXIMATELY MINIMIZING EMPIRICAL RISK

In practice, it is often challenging to find the networks that accurately minimize empirical risk. In
this section, we show that for networks that approximately minimize empirical risk, its generalization
can also be guaranteed if the value of the empirical risk is small. We define such a set of networks.
Definition 4.7. For any q ≥ 1 and dataset Dtr, we say F ∈ Hσ

W (n) is a q-approximation of
minimizing empirical risk if∑

(x,y)∈Dtr

L(F(x), y) ≤ q min
f∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).
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For all q-approximation networks, we have the following result. The proof is given in Appendix C.

Theorem 4.8. Let σ be a continuous function with Lipschitz constant Lp and D ∈ D(n) be expressed
by Hσ

W0
with confidence c. Then for any W ≥ W0 + 1, N ∈ N+, q ≥ 1 and δ ∈ (0, 1), with

probability at least 1− δ of Dtr ∼ DN , we have

AD(F) ≥ 1−O(
qW0

cW
+

nLp(W0 + c)
√
log(4n)

c
√
N

+

√
ln(2/δ)

N
),

for any q-approximation F ∈ Hσ
W (n) to minimize the empirical risk.

The conditions of the above theorem can be achieved much easier than those of Theorem 4.4, because
we do not need F to achieve any local or global minimum point, but only need to have a small
empirical risk.

4.3 COMPARISON WITH CLASSICAL CONCLUSIONS

In this section, we compare our generalization bounds with previous ones. Compared to algorithm-
independent generalization bounds, our bound performs better when the data size is not significantly
larger than the network size. Compared to algorithm-dependent generalization bounds, our bound
does not require overly strong assumptions as prerequisites.

Compare with the algorithm-independent generalization bound. When the scale of the network
is bounded, a general generalization bound can be calculated by the VC-dimension.

Theorem 4.9 (P.217 of (Mohri et al., 2018), Informal). Let Dtr ∼ DN be the training set. For the
hypothesis space H = {Sgn(F(x)) ∥F(x) : Rn → R} and δ ∈ R+, with probability at least 1− δ,
for any Sgn(F(x)) ∈ H, we have

|AD(Sgn(F))− E(x,y)∈Dtr
[I(Sgn(F(x)) = y)]| ≤ O(

√
VC(H) + ln(1/δ)

N
). (4)

When considering the local VC-dimension, we have the following result (Zhivotovskiy & Hanneke,
2018). Under Massart’s bounded noise condition, let FDtr be the network that has the highest
accuracy over Dtr. Then with probability 1− δ of Dtr ∼ DN , it holds

AD(FDtr
) ≥ 1− Ω(

VC(H) log(N/VC(H)) + log(1/δ)

N
).

Theorem 4.9 points out that when the number of data is much more than the VC-dimension of the
network hypothesis space, generalization can be ensured. Since the VC-dimension is generally larger
than the number of parameters of the network (Bartlett et al., 2019), Theorem 4.9 means that to
ensure generalization, the number of data must be greater than the number of parameters of the
network, which is contradictory to the fact that over-parameterized models have nice generalizability
(Belkin et al., 2019; Bartlett et al., 2021). Similar results hold for the generalization bound based on
Radermacher complexity, due to the observation that the Radermacher complexity for deep networks
is close to 1 (Zhang et al., 2017). On the other hand, our generalization bounds in Theorem 4.4 can
be used to explain the fact that over-parameterized models have nice generalizability.

Compare with the algorithm-dependent generalization bound. In the study of algorithm-
dependent generalization bound, some works derive generalization bounds based on gradient descent
under strong assumptions not met by neural networks.

Theorem 4.10 (Ji & Telgarsky (2020)). Let ϵ ∈ (0, 1), δ ∈ (0, 1/4) and distribution D over [0, 1]n

satisfy the NTK conditions with constant γ. Let λ =

√
2 ln(4n/δ)+ln(4/ϵ)

γ/4 and M = 4096λ2

γ6 . If the
two-layer network with width W > M and training step η ≤ 1, with probability 1−4δ of Dtr ∼ DN

and training initiation point, after at most 2λ2

ηϵ times gradient descent on Dtr, it holds for the trained
network F

AD(F) ≥ 1− 2ϵ− 16

√
2 ln(4N/δ) + ln(4/ϵ)

γ2
√
N

− 6

√
ln(2/δ)

N
.
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Theorem 4.10 requires NTK conditions for distribution. These conditions can lead the training
approach to convex optimization, which is an overly strong condition. Theorem 4.4 only requires that
a network interpolates the positive separation distribution, and it stands for any distribution D ∈ D(n)
as mentioned in Proposition 4.3. Stability bounds represent another algorithm-dependent approach to
generalization bound, as shown below:
Theorem 4.11 (Theorem 3.7 in Hardt et al. (2016)). Assume that for every sample (x, y), L(Fθ(x), y)
as a function based on θ is β-smooth, convex and L-Lipschitz. Let F ∗ be the network obtained by
training on dataset Dtr by using SGD T times and each step size αt < 2/β. Then we have

EDtr∼DN ,SGD| 1
N

∑
(x,y)∈Dtr

L(F∗(x), y)− E(x,y)∼D[L(F
∗(x), y)]| ≤

2L2
∑T

i=1 αi

N
.

Theorem 4.11 requires convex and smooth conditions for the loss function which are not satisfied by
neural networks. Also, the Lipschitz constant is directly related to the network size, which cannot
explain the over-parameterization phenomenon. In Theorem 4.4, there is no such problem because
the network size W is in the denominator.

Compare with the PAC-Bayes-KL Bound. Consider the following Bayesian generalization bound:
Theorem 4.12 (Tolstikhin & Seldin (2013)). For any fixed distribution π over hypothesis space H
and a distribution ρ over H, with probability at least 1− δ of Dtr ∼ DN , we have

EF∼ρ[E(x,y)∼D[L(F(x), y)]]− EF∼ρ[E(x,y)∈Dtr
[L(F(x), y)]] ≤ KL(ρ∥π) +O(ln(N/δ))

N
where KL is the Kullback-Leibler divergence.

The result estimates the overall generalization bound of networks in the hypothesis space based on a
distribution. In contrast, we attempt to provide estimates for networks minimizing the empirical risk.

5 LOWER BOUND FOR SAMPLE COMPLEXITY BASED ON EXPRESSIVE ABILITY

In this section, we consider the lower bound of data complexity necessary for generalization, similar
to Section 4, the lower bound of data complexity which we are looking for should only rely on the
distribution itself but not rely on the hypothesis space, such as the result in (Wainwright, 2019).

5.1 UPPER BOUND FOR ACCURACY WITHOUT ENOUGH DATA

This section illustrates that in the worst-case scenario, the minimum number of data needed to
guarantee accuracy is constrained by the VC-dimension of the smallest hypothesis space necessary to
represent a distribution. We give a definition first.
Definition 5.1. For a hypothesis space H ⊂ Rn → R, VC(H) is the maximum number of data in
[0, 1]n that H can shatter. Precisely, there exist VC(H) samples {xi}VC(H)

i=1 ⊂ [0, 1]n, such that for

any {yi}VC(H)
i=1 ∈ {−1, 1}, there is an F ∈ H such that Sgn(F(xi)) = yi for all i ∈ [VC(H)]. But

there do not exist VC(H) + 1 such samples.

We have the following theorem. The proof is given in Appendix D.
Theorem 5.2. For any n,W,W0 ∈ N+ and activation function σ, there is a D ∈ D(n) that satisfies
the following properties.

(1) There is an F ∈ Hσ
W0

(n) such that AD(F) = 1.

(2) For any given ϵ, δ ∈ (0, 1), if N ≤ VC(Hσ
W0

(n))(1 − 4ϵ − δ), then with probability 1 − δ of
Dtr ∼ DN , we have AD(F) < 1− ϵ for some F ∈ Mσ

W (Dtr, n).

The theorem indicates that for distributions that require networks with width W0 to express, some of
them require at least Ω(VC(Hσ

W0
(n))) training data to ensure generalization. It is worth mentioning

that this conclusion is true for any given W in the theorem. It is easy to see that a larger W0 makes
VC(Hσ

W0
(n)) larger, so as the cost of expression increases, generalization becomes difficult. However,

it is difficult to accurately calculate VC(Hσ
W0

(n)) for general σ. If we focus on ReLU networks, by
the result in (Bartlett et al., 2019), we have
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Corollary 5.3. For any given n,W,W0 ∈ N+, there is a D ∈ D(n) that satisfies the following
properties.

(1) There is an F ∈ HW0(n) such that AD(F) = 1.

(2) For any given ϵ, δ ∈ (0, 1), if N ≤ O(nW0(1 − 4ϵ − δ)), then for all Dtr ∼ DN , it holds
AD(F) < 1− ϵ for some F ∈ Mσ

W (Dtr, n).

Besides, for any distribution, we can show that if the parameters required to express a distribution
tend to infinity, the required number of data to ensure generalization for such a distribution must also
tend to infinity. As shown in the following theorem. The proof is given in Appendix E.

Theorem 5.4. Suppose D ∈ D(n), W0 ≥ 2n+1, and AD(F) ≤ 1− ϵ for any ϵ and F ∈ HW0
(n).

If N ≤ W
1

n+1

0 (n+ 1)/e, then for any Dtr ∼ DN and W ∈ N+, there is an F ∈ MW (Dtr, n) such
that AD(F) ≤ 1− ϵ.

However, since Theorem 5.4 is correct for all distributions and datasets, it can only provide a relatively
loose bound. If the distribution is given, we can calculate the relationship between the minimum
number of data required and the minimum number of parameters required to fit it, as shown in the
following section.

5.2 APPROPRIATE NETWORK MODEL HELPS WITH GENERALIZATION

As mentioned in the previous sections, expressive ability and generalization ability are closely related.
Section 4.1 demonstrates that simpler expressions facilitate generalization; Section 5.1 reveals that,
in the worst-case scenario, the amount of data required to guarantee generalization is at least the
VC-dimension of the hypothesis space that can express the distribution.

Therefore, for a given distribution, selecting an appropriate network model that can fit the distribution
easily may help facilitate better expression with fewer data and network size, ultimately leading to
improved generalization. In this section, we illustrate that selecting an appropriate activation function
for the neural network according to the target distribution enhances generalization.

To better explain this conclusion, let us examine the following distribution.

Definition 5.5. Let Dn be a distribution defined over {( i
n1, I(i))}

n
i=1, where 1 is the vector with all

one entries in Rn, I(x) = 1 if x is odd and I(x) = −1 if x is even, and the probability of each point
is the same.

As shown below, ReLU networks need Ω(n) width to express this distribution and require Ω(n) data
to ensure generalization. The proof is given in Appendix F.

Proposition 5.6. (1) For any n, ADn(F) < 1 for any F ∈ HW (n) when W < n/2;

(2) If N ≤ δn where δ ∈ (0, 1), then for all Dtr ∼ DN
n and W ∈ N+, it holds AD(F) ≤ 0.5 + 2δ

for some F ∈ MW (Dtr, n).

But if we use the activation function σ(x) = sin(πx), the networks only need O(1) width to express
such a distribution and require fewer data to ensure generalization. The proof is given in Appendix G.

Proposition 5.7. (1) For any n, Dn can be expressed by Hσ
1 (n) with confidence 1;

(2) For any W ≥ 2, n > 2, δ ∈ (0, 1) and N ≥ 4 ln(δ/2)
ln(0.5+1/n) , with probability 1− δ of Dtr ∼ DN

n , it
holds AD(F) = 1 for all F ∈ Mσ

W (Dtr, n).

As shown in the above example, using σ(x) = sin(πx) as the activation function, it only requires
O(ln(δ)) samples and O(1) width to ensure generalization, but ReLU networks require at least
Ω(n) samples and width to ensure generalization. This demonstrates the crucial role of selecting the
appropriate network models.
Remark 5.8. It is worth mentioning that for some very simple distributions like the Bernoulli
distribution, the performance of various activation functions is similar, so we cannot provide a general
conclusion for any distribution.
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6 INTERPRETABILITY OF SOME PHENOMENA IN DEEP NEURAL NETWORK

Although networks minimizing empirical risk are good for generalization, many classic experimental
results have shown that networks still have problems. In this section, we will provide interpretability
for some classic experimental results based on our theoretical results.

6.1 WHY DO GENERAL NETWORKS LACK ROBUSTNESS?

Experiments show that deep neural networks can easily lead to low robustness accuracy (Szegedy
et al., 2013). In this section, we provide some explanations for this fact.

The robustness accuracy of network F under distribution D and robust radius ϵ is defined as

RobD,ϵ(F) = P(x,y)∼D(I(F̂(x′) = y),∀x′ ∈ B(x, ϵ) ∩ [0, 1]n).

The robustness accuracy requires not only correctness on the samples but also correctness within a
neighborhood of the sample. We introduce a notation.

Definition 6.1. For a dataset Dtr = {(xi, yi)}Ni=1 and an ϵ > 0, define

R(Dtr, ϵ) = {Dr ∥Dr = Dtr ∪ {(xi + ϵi, yi)}Ni=1, for some ||ϵi|| ≤ ϵ}}.

It is easy to see that R(Dtr, ϵ) contains all the data formed by adding a perturbation with budget
ϵ to Dtr. In the above section, we mainly discussed the network expression ability in distribution.
On the other hand, there are also some studies on the network expression ability on dataset such as
memorization. Moreover, previous studies (Park et al., 2021; Li et al., 2022; Yu et al., 2024a) have
shown that robustly memorizing a dataset may be much more difficult than memorizing a dataset. So,
for a given hypothesis space H that can express a normal dataset well, it may not be able to express
the dataset after disturbance. In this case, in order to minimize the empirical risk, the network will
prioritize simple features that are easy to fit, but will ignore the complex robust features, which leads
to low robustness, as shown in the following theorem. The proof is given in Appendix H.

Theorem 6.2. Let D ∈ D(n) and Lp be the Lipschitz constant of activation function σ. If N0,W0 ∈
N+ and ϵ, δ, c0, c1 > 0 satisfy that with probability 1− δ of Dtr ∼ DN0 , it holds

(1) there exists an F ∈ Hσ
W0

(n) such that yF(x) ≥ c0 for all (x, y) ∈ Dtr;

(2) there exists a Dr ∈ R(Dtr, ϵ), such that
∑

(x,y)∈Dr

yF(x)
|Dr| ≤ c1 for any F ∈ Hσ

W0
(n).

Then, for any W ≥ W0 + 1, with probability 1 − O(δ) of Dtr ∼ DN0 and F ∈ Mσ
W (Dtr, n), we

have RobD,ϵ(F) ≤ 1− Ω( c0−2c1
nLpW0

− c1
nLpW0

(W0

W + 1
W0

)−
√

ln(n/δ)
N0

).

This theorem implies that if the dataset after adding perturbations becomes more difficult to fit, the
network may have a low robustness generalization. Please note that ϵ affects the conclusion implicitly,
because c1 is related to ϵ.
Remark 6.3. Conditions (1) and (2) required in the theorem are reasonable. It is obvious that as
ϵ increases, c1 will decrease and when ϵ is large enough, we have c0 ≫ c1 ≈ 0. Hence, in some
situation, a small ϵ is also enough to make c0 ≫ c1, such as the example given in the proof of
Theorem 4.3 in (Li et al., 2022).

6.2 IMPORTANCE OF OVER-PARAMETERIZED NETWORKS

In the above section, we mainly consider F ∈ MW (Dtr, n). But what we really need is
F ∈ argmaxG∈HW (n)AD(G). By Theorem 4.4, it is easy to show that when the number of
data and the size of the network are large enough, the generalization of F ∈ MW (Dtr, n) and
F ∈ argmaxG∈HW (n)AD(G) are close, as shown below. Following Theorem 4.4, we have

Corollary 6.4. For all F1 ∈ MW (Dtr, n) and F2 ∈ argmaxG∈HW (n)AD(G), it holds |AD(F2)−

AD(F1)| ≤ O(W0

cW +
nLp(W0+c)

√
log(4n)

c
√
N

+
√

ln(2/δ)
N ).
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Proof. Since 1 ≥ AD(F2) ≥ AD(F1), we have |AD(F2) − AD(F1)| ≤ 1 − AD(F1), and by
Theorem 4.4, we obtain the result.

The above corollary shows that if the size of the network is large enough, the gap will be small. In
the following, we point out that for some distribution D, if the size of network is too small, even with
enough data, it may lead to a large gap of AD(F2)−AD(F1). This emphasizes the importance of
over-parameterization, as shown below. The proof is given in the Appendix I.
Proposition 6.5. For some distribution D ∈ D(n), there is a W0 > 0, such that

(1) There exists an F ∈ HW0(n) such that AD(F) ≥ 0.99.

(2) For any δ > 0, if N ≥ Ω(n2 ln(n/δ)), with probability 1 − O(δ) of Dtr ∼ DN , we have
AD(F) ≤ 0.6 for all F ∈ MW0

(Dtr, n).
Remark 6.6. In Proposition 6.5, 0.99 can be changed to any real number in (0, 1) and 0.6 can be
changed to any real number in (0.5, 1), and the result is still correct.

By Corollary 6.4, a large width does not make (2) in Proposition 6.5 true. So, the above conclusion
indicates that for some distributions, when the network is not large enough, even if there exist
networks with high accuracy, they cannot be found by minimizing the empirical risk. The distribution
considered here contains some outliers. In order to fit these outliers, the small network must reduce
generalization.

6.3 THE IMPACT OF LOSS FUNCTION

In order to ensure generalizability of the network after empirical risk minimization, it is necessary to
choose an appropriate loss function because minimizing some types of loss function is not good for
generalization. In the previous sections, we mainly discussed the crossentropy loss function. In this
section, we point out that not all loss functions can reach conclusions similar to Theorem 4.4.
Definition 6.7. We say that the loss function Lb : R2 → R is bad if (1) or (2) is valid.

(1) There exist x−1, x1 ∈ R such that Lb(x−1,−1) = minx∈R Lb(x,−1) and Lb(x1, 1) =
minx∈R Lb(x, 1).

(2) Lb(F(x), y) = ϕ(yF(x)), where ϕ is a strictly decreasing concave function.

Condition (1) in the definition means that the loss function can reach its minimum value and condition
(2) means that the loss function is a concave function. Some commonly used loss functions, such as
the MSE loss LMSE(F(x), y) = ||F(x)−y||2, or Lq(F(x), y) = −yF(x), are all bad loss functions.

For such bad loss functions, we have
Theorem 6.8. For any n and bad loss function Lb, there is a distribution D ∈ D(n) satisfying the
following property. For any N ≥ 0, there is a W0 ≥ 0, such that if W ≥ W0, then with probability
0.99 of Dtr ∼ DN , we have AD(F) ≤ 0.5 for some F ∈ argminG∈HW (n)

∑
(x,y)∈Dtr

Lb(G(x), y).

This theorem means that to ensure generalizability, it is important to choose the appropriate loss
function. The proof is given in the Appendix J.

7 CONCLUSION

In this paper, we give a lower bound for the population accuracy of the neural networks that minimize
the empirical risk, which implies that as long as there exist enough training data and the network
is large enough, generalization can be achieved. The data and network sizes required only depend
on the size required for the network to represent the target data distribution. Furthermore, we show
that if the scale required for the network to represent a data distribution increases, the amount of
data required to achieve generalization on that distribution will also inevitably increase. Finally, the
results are used to explain some phenomena in deep learning.

Limitation and future work. Although considering 2 layer networks is quite common in theoretical
analysis of deep learning, it is still desirable to extend the result to deep neural networks. Preliminary
results for deep neural networks are given in Appendix K, which need to be further studied. A more
accurate estimate of the cost required to represent a given data distribution is needed.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported by CAS Project for Young Scientists in Basic Research, Grant No.YSBR-
040, ISCAS New Cultivation Project ISCAS-PYFX-202201, and ISCAS Basic Research ISCAS-
JCZD-202302. This work is also supported by NSFC grant No.12288201, NKRDP grant
No.2018YFA0704705, and grant GJ0090202. The authors thank anonymous referees for their
valuable comments.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp.
977–988. IEEE, 2022.

Pierre Alquier. User-friendly introduction to pac-bayes bounds. Foundations and Trends® in Machine
Learning, 17(2):174–303, 2024.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In International Conference on Machine Learning, pp. 254–263.
PMLR, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
two-layer neural networks: An asymptotic viewpoint. In International conference on learning
representations, 2020.

Andrew R Barron and Jason M Klusowski. Approximation and estimation for high-dimensional deep
learning networks. arXiv preprint arXiv:1809.03090, 2018.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87–201, 2021.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Alexander Bastounis, Anders C Hansen, and Verner Vlačić. The mathematics of adversarial attacks
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A PROOF OF PROPOSITION 4.3

A function σ is sigmoidal if limitx→−∞σ(x) = 0 and limitx→∞σ(x) = 1. Then, we have
Theorem A.1 (Theorem 1 in Cybenko (1989)). For any continuous sigmoidal activation function σ,
ϵ ∈ (0, 1) and continuous function f : [0, 1]n → R, there exist W ≥ 0 and F ∈ Hσ

W (n) such that
|f(x)− F (x)| ≤ ϵ.

We prove Proposition 4.3 by using the above Theorem.

Proof. It is easy to see that σ(x) = ReLU(x+ 1)− ReLU(x) is a continuous sigmoidal activation
function.

Denote Zσ
W (n) as the set of all two-layer neural networks with input dimension n, width W , and

activation function σ. For simplicity, ZW (n) means ZReLU
W (n).

Firstly, it is easy to see that Zσ
W (n) ⊂ Z2W (n) for any W ∈ N+.

Then, because D has a positive separation distance with a different label, there is a continuous
function f such that: f(x) = 1 if x has label 1 in distribution D; f(x) = −1 if x has label -1 in
distribution D.

Finally, by Theorem A.1, there exist a W and a F ∈ Zσ
W (n) such that |F(x)− f(x)| ≤ 0.1 for all

x ∈ [0, 1]n. Thus, F ∈ Zσ
W (n) ⊂ Z2W (n) and P(x,y)∼D(yF(x) ≥ 0.9) = 1.

Let the maximum of the absolute value of the parameters of F be A. If A ≤ 1, then F is what we want.
If A > 1, then we write F = aReLU(Wx+ b)+ c, let FA = (a/A)ReLU((W/A)x+ b/A)+ c/A2,
then there are FA = aReLU(Wx+ b)/A2 + c/A2 = F/A2, so FA is a network whose parameter is
in [−1, 1] and FA = F/A2. Hence, there are FA ∈ H2W (n) and P(x,y)∼D(yF(x) ≥ 0.9/A2) = 1.
The proposition is proved.

B PROOF OF THEOREM 4.4

B.1 PREPARATORY RESULTS

We give some definitions of the hypothesis space.
Definition B.1. For a network F : Rn → R and an a > 0, let F−a,a(x) = min{max{−a,F(x)}, a},
that is, clamp F in [−a, a]. Then for any hypothesis space H, let H−a,a = {F−a,a∥F ∈ H}.

We define the Radermacher complexity.
Definition B.2. For a hypothesis space H and dataset D, the Radermacher complexity of H under
dataset D is:

RadH(D) = E
(qi)

|D|
i=1

[
sup
F∈H

∑
xi∈D qiF(xi)

|D|

]
where qi satisfies that P (qi = 1) = P (qi = −1) = 0.5 and qi are i.i.d.

Here are some results about the Radermacher complexity:
Lemma B.3. For any hypothesis space H, let H+a = {F + a∥F ∈ H}, where a ∈ R. Then for any
hypothesis space H, a ∈ R and dataset D, there are RadH(D) = RadH+a

(D).

Let the L1,∞ norm of a matrix W be the maximum value of the L1 norm for each row of the matrix
W .
Lemma B.4. Let Fn,d,(Li),(ci) : Rn → R be a network with d hidden layers, Li Lipschitz-continuous
activation function for i-th activation function, and the output layer does not contain an activation
function. Let wi be the i-th transition matrix and bi be the i-th bias vector. Let the L1,∞ norm of wi

plus the L1,∞ norm of bi be not more than ci. Let Hn,d,Li,ci = {Fn,d,Li,ci}. Then when Li ≥ 1,
ci ≥ 1, for any {xi}Ni=1 ⊂ [0, 1]n, there are:

RadHn,d,Li,ci
({xi}Ni=1) ≤

Πd
i=1LiΠ

d+1
i=1 ci√

N
(
√

(d+ 3) log(4) +
√

2 log(2n)).
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The above lemma is an obvious corollary of Theorem 1 in (Wen et al., 2021). By the above two
lemmas we can calculate the Radermacher complexity of Hσ

W (n)−a,a.
Lemma B.5. Let σ be a Lp Lipschitz-continuous activation function and Lp ≥ 1, and let H =
{F (x, y) : F (x, y) = yF(x),F(x) ∈ Hσ

W (n)−a,a} where a > 0 is given in Definition B.1. Then
for any S = {(xi, yi)}Ni=1 ⊂ [0, 1]n × {−1, 1}, there are

RadH(S) ≤ 2Lp(n+ 1)(W + 1 + a)√
N

(
√
5 log(4) +

√
2 log(2n)).

Proof. First, we have

RadH(S) = RadH({(xi, yi)}Ni=1) = E(qi)Ni=1
[ sup
f∈Hσ

W (n)−a,a

∑N
i=1 qiyif(xi)

|D|
].

Taking into account the definition of qi in definition B.2, there are RadH({(xi, yi)}Ni=1) =

E(qi)Ni=1
[supf∈Hσ

W (n)−a,a

∑N
i=1 qif(xi)

|D| ] = RadHσ
W (n)−a,a

({xi}Ni=1).

So, we just need to calculate RadHσ
W (n)−a,a

({xi}Ni=1).

First, for any function f and a > 0, k ∈ N+, we have

f−a,a(x)
= ReLU(f(x) + a)− ReLU(f(x)− a)− a

=
∑k

i=1(ReLU(f(x)/k + a/k)− ReLU(f(x)/k − a/k))− a

On the other hand, let H+a = {f + a∥f ∈ Hσ
W (n)−a,a}. Then for any F ∈ H+a, there are

F = f−a,a(x) + a for some f ∈ Hσ
W (n). Then by the above form of expression, take k = [W/2],

F and write it as a network with:

(1): Depth 3. Because f has depth 2, after adding a ReLU activation function, it was depth 3.

(2): The first layer has an Lp Lipschitz-continuous activation function; the second layer has a 1
Lipschitz-continuous activation function, that is, ReLU.

(3): The L1,∞ norm of the three transition matrices plus bias vectors are n+ 1, W+1+a
[W/2] and 2[W/2],

as shown in the below.

The first transition matrices: this layer is the same as the first layer of f . Consider the bound of values
of parameters of f is not more than 1, and the first transition matrix of has n weights in each row, and
with the bias added, there are a total of n+ 1 weights, so its norm is n+ 1.

The second transition matrices: Let the second transition matrices of f be Wf and bias be c. Then
the second transition matrices of F is Wf/k, bias is c/k + a/k or c/k − a/k. Using the bound of
value of parameters of f , the width of Wf is W + 1, and the value of k, so we get the result.

The third transition matrix: It is (1, 1, 1, . . . , 1, 1,−1,−1,−1, . . . ,−1,−1), where there are k num-
ber of 1 and k number of -1 in it, and we get the result.

So, by Lemmas B.4 and B.3, there are RadH+a
({xi}Ni=1) = RadHσ

W (n)−a,a
({xi}Ni=1) =

2Lp(n+1)(W+1+a)√
N

(
√
5 log(4) +

√
2 log(2n)). The theorem is proved.

Another important Theorem is required.
Theorem B.6 (Theorem in Mohri et al. (2018)). Let H = {F : Rn → [−a, a]}, and D be a
distribution, then with probability 1− δ of Dtr ∼ DN , there are:

|Ex∼D[F (x)]−
∑

x∈Dtr

F (x)

N
| ≤ 2RadH(Dtr) + 6a

√
ln(2/δ)

2N
,

for any F ∈ H .

We give a simple lemma below.
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Lemma B.7. (1): When 0 < x ≤ e, there are ln(1 + x) ≥ x/(e+ 1).

(2): When x > 0, there are xe−x ≤ 1/e.

Proof. For (1): Consider f(x) = ln(1+x)−x/(e+1), there are f ′(x) = 1/(1+x)−1/(1+e) ≥ 0,
so f(x) ≥ f(0) = 0, which means that ln(1 + x)− x/(e+ 1) ≥ 0.

For (2): Consider f(x) = xe−x, there are f ′(x) = e−x(1− x), it is easy to see that f ′(x) become
positive then negative when x from 0 to ∞, and f ′(1) = 0, so f(x) ≤ f(1) = 1/e.

B.2 PROOF OF THEOREM 4.4

Proof. Let Dtr ∼ DN and F be a network in Mσ
W (Dtr, n). We prove Theorem 4.4 in four parts:

Part one: We have
∑

(x,y)∈Dtr
L(F(x), y) ≤ N ln(1 + e−c[ W

W0+1 ]).

Because D can be expressed by Hσ
W0

(n) with confidence c, so there is a network F0 =∑W0

i=1 aiσ(Wix + bi) + c1 such that yF(x) ≥ c for all (x, y) ∼ D. Moreover, we can write such
network as F0 =

∑W0+1
i=1 aiσ(Wix+ bi), where aW0+1 = Sgn(c1), WW0+1 = 0, bW0+1 = |c1|.

Now, we consider the following network in Hσ
W (n):

FW =

(W0+1)[ W
W0+1 ]∑

i=1

ai%(W0+1)σ(Wi%(W0+1)x+ bi%(W0+1)),

Here, we stipulate that i%(W0 + 1) = W0 + 1 when W0 + 1|i. Then we have FW (x) =
[ W
W0+1 ]F0(x) and FW (x) ∈ Hσ

W (n). Moreover, there are yFW (x) = y[ W
W0+1 ]F0(x) ≥

[ W
W0+1 ]c for all (x, y) ∼ D, so

∑
(x,y)∈Dtr

L(FW (x), y) ≤ N ln(1 + e−c[ W
W0+1 ]). So

for any F ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y), there are
∑

(x,y)∈Dtr
L(F(x), y) ≤∑

(x,y)∈Dtr
L(FW (x), y) ≤ N ln(1 + e−c[ W

W0+1 ]).

Part Two: Let k = [ W
W0+1 ], by the assumption in Theorem, there is k ≥ 1. We will show that

|{(x, y) : (x, y) ∈ Dtr, yF(x) ≤ kc/2}| ≤ Ne−kc/2+2.

Let S = {(x, y) : (x, y) ∈ Dtr, yF(x) ≤ kc/2}, then according to part one, there are: |S| ln(1 +
e−kc/2) ≤

∑
(x,y)∈S L(F(x), y) ≤

∑
(x,y)∈Dtr

L(F(x), y) ≤ N ln 1 + e−kc ≤ Ne−kc. So, there
are |S| ln 1 + e−kc/2 ≤ Ne−kc.

By Lemma B.7, there are |S|e−kc/2/(e+ 1) ≤ |S| ln 1 + e−kc/2 ≤ Ne−kc, so |S| ≤ Ne−kc/2(e+
1) < Ne−kc/2+2.

Part Three: By Definition B.1, let network g = F−kc/2,kc/2, we show that, with high probability,
E(x,y)∼Dyg(x) has a lower bound.

Firstly, by part two, there are
∑

(x,y)∈Dtr
yg(x) ≥ N(kc(1 − e−kc/2+2)/2 − kce−kc/2+2/2) =

Nkc(1− 2e−kc/2+2)/2.

Then, let H = {yF(x) : F(x) ∈ Hσ
W (n)−kc/2,kc/2}, by Lemma B.5, there are RadH(Dtr) ≤

2(n+1)(W+1+kc/2)Lp√
N

(
√

5 log(4) +
√
2 log(2n)), RadH(Dtr) is defined in definition B.2.

So, considering that yg(x) ∈ H and by Theorem B.6, with probability 1− δ of Dtr, there are

E(x,y)∼Dyg(x)

≥ 1
N

∑
(x,y)∈Dtr

yg(x)− 2Rad([Hσ
W (n)]−kc/2,kc)− 3kc

√
ln(2/δ)
2N

≥ kc(1− 2e−kc/2+2)/2− 2(n+1)Lp(W+1+kc/2)√
N

(
√
5 log(4) +

√
2 log(2n))− 3kc

√
ln(2/δ)
2N .

Part Four: Now, we prove Theorem 4.4.
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Firstly, there are AD(g) = P(x,y)∼D(yg(x) > 0) ≥ E(x,y)∼D[yg(x)]/(kc/2), we use |g(x)| ≤ kc/2
in here. So, by part three, with probability of Dtr, there are

AD(g) ≥ 1−2e−kc/2+2− 4(n+ 1)Lp(W + 1 + kc/2)√
Nkc

(
√
5 log(4)+

√
2 log(2n))−6

√
ln(2/δ)

2N
.

By Lemma B.7 and k = [W/(W0+1)] ≥ W
2W0

which is because [W/(W0+1)] = k ≥ 1 and W0 ≥ 2,

there are 2e−kc/2+2 ≤ 4e
kc = 4e

c[ W
W0+1 ]

≤ 8eW0

Wc ; and it is easy to see that 4(n+1)Lp(W+1+kc/2)√
Nkc

≤
4(n+1)WLp(2+kc/2W )√

Nkc
≤ 8nWLp(2+c/2W0)√

N [W/(W0+1)]c
≤ 8nLp(4W0+c)√

Nc
, the last inequality uses [W/(W0+1)] ≥

W
2W0

.

The last step uses k = [W/(W0+1)] ≥ W
2W0

. And
√

5 log(4)+
√

2 log(2n) ≤ (
√
5+

√
2)
√
log(4n).

So there are:

AD(g) ≥ 1− 8eW0

Wc
−

8nLp(1 + 4W0

c )
√
N

(
√
5 +

√
2)
√

log(4n)− 6

√
ln(2/δ)

2N
.

Lastly, because AD(g) = AD(F), we have AD(F) ≥ 1−O(W0

Wc +
nLp(W0+c)

√
log(4n)√

Nc
+
√

ln(2/δ)
N ).

The theorem is proved.

C PROOF OF THEOREM 4.8

The proof is similar to the proof of Theorem 4.4, so we just follow the proof of Theorem 4.4.

Proof. Let Dtr ∼ DN , F be a network in Mσ
W (Dtr, n), and Fq be a network that is a q approxima-

tion of the empirical risk minimization.

We prove Theorem 4.8 in four parts below.

Part one: It holds
∑

(x,y)∈Dtr
L(F(x), y) ≤ N ln(1 + e−c[ W

W0+1 ]). This is the same as in Part one
in the proof of Theorem 4.4

Part Two: Let k = [ W
W0+1 ] ≥ 1. Then, |{(x, y) : (x, y) ∈ Dtr, yFq(x) ≤ kc/2}| ≤ qNe−kc/2+2.

Let S = {(x, y) : (x, y) ∈ Dtr, yFq(x) ≤ kc/2}, then according to part one, there are: |S| ln(1 +
e−kc/2) ≤

∑
(x,y)∈S L(Fq(x), y) ≤ q

∑
(x,y)∈Dtr

L(F(x), y) ≤ qN ln 1 + e−kc ≤ qNe−kc. So,
there are |S| ln 1 + e−kc/2 ≤ qNe−kc.

By Lemma B.7, there are |S|e−kc/2/(e+1) ≤ |S| ln 1+e−kc/2 ≤ qNe−kc, so |S| ≤ qNe−kc/2(e+
1) < qNe−kc/2+2.

Part Three: By Definition B.1, let network g = (Fq)−kc/2,kc/2. We will show that, with high
probability, E(x,y)∼Dyg(x) has a lower bound.

Firstly, by part two, we have
∑

(x,y)∈Dtr
yg(x) ≥ N(kc(1 − qe−kc/2+2)/2 − qkce−kc/2+2/2) =

Nkc(1− 2qe−kc/2+2)/2.

So, with probability 1− δ of Dtr, it holds that

E(x,y)∼Dyg(x)

≥ 1
N

∑
(x,y)∈Dtr

yg(x)− 2Rad([Hσ
W (n)]−kc/2,kc)− 3kc

√
ln(2/δ)
2N

≥ kc(1− 2qe−kc/2+2)/2− 2(n+1)Lp(W+1+kc/2)√
N

(
√
5 log(4) +

√
2 log(2n))− 3kc

√
ln(2/δ)
2N .

Part Four: Now, we prove Proposition 4.8.
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Firstly, there are AD(g) = P(x,y)∼D(yg(x) > 0) ≥ E(x,y)∼D[yg(x)]/(kc/2). So, by part three,
with 1− δ probability of Dtr, there are

AD(g) ≥ 1−2qe−kc/2+2− 4(n+ 1)Lp(W + 1 + kc/2)√
Nkc

(
√

5 log(4)+
√

2 log(2n))−6

√
ln(2/δ)

2N
.

Then, similar as part four in proof of Theorem 4.4, there are

AD(g) ≥ 1− 8qeW0

Wc
−

8nLp(1 + 4W0

c )
√
N

(
√
5 +

√
2)
√
log(4n)− 6

√
ln(2/δ)

2N
,

which is what we want.

D PROOF OF THEOREM 5.2

Proof. Assume that Theorem 5.2 is wrong, then there exist n, W and W0 such that for given
ϵ, δ ∈ (0, 1), if D ∈ D(n) and N ≥ VC(Hσ

W0
(n))(1 − 4ϵ − δ), with probability 1 − δ of Dtr, we

have AD(F) ≥ 1− ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y).

We will derive contradictions on the basis of this conclusion.

Part 1: Find some points and values.

For a simple expression, let k = VC(Hσ
W0

(n)), and {ui}ki=1 be k points that can be shattered by
VC(Hσ

W0
(n)). Let q = VC(Hσ

W0
(n))(1− 4ϵ− δ).

Now, we consider the following types of distribution D:

(c1): D is a distribution in D(n) and P(x,y)∼D(x ∈ {ui}ki=1) = 1.

(c2): P(x,y)∼D(x = ui) = P(x,y)∼D(x = uj) = 1/k for any i, j ∈ [k].

Let S be the set that contains all such distributions, and it is easy to see that for any D ∈ S, it can be
expressed by Hσ

W0
(n).

Part 2: Some definition.

Moreover, for D ∈ S, we define S(D) as the following set:

Z ∈ S(D) if and only if Z ∈ [k]q is a vector satisfying: Define D(Z) as D(Z) = {(uzi , yzi)}
q
i=1,

then AD(F) ≥ 1−ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈DZ

L(f(x), y), where zi is the i-th weight
of Z and yzi is the label of uzi in distribution D.

It is easy to see that if we i.i.d. select q samples in distribution D to form a dataset Dtr, then by c2,
with probability 1, Dtr only contain the samples (uj , yj) where j ∈ [k].

Now for any Dtr selected from D, we construct a vector in [k]q as follows: the index of i-th selected
samples as the i-th component of the vector. Then each selection situation corresponds to a vector in
[k]q which is constructed as before. Then by the definition of S(D), we have AD(F) ≥ 1 − ϵ for
all F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y) if and only if the corresponding vector of Dtr is in
S(D).

By the above result and by the assumption at the beginning of the proof, for any D ∈ S we have
|S(D)|

qk
≥ 1− δ.

Part 3: Prove the theorem.

Let Ss be a subset of S, and Ss = {Di1,i2,...,ik}ij∈{−1,1},j∈[k] ⊂ S, where the distribution Di1,i2,...,ik

satisfies the label of uj is ij , where j ∈ [k].

We will show that there exists at least one D ⊂ Ss, such that |S(D)| < (1− δ)qk, which is contrary
to the inequality |S(D)|

qk
≥ 1 − δ as shown in the above. To prove that, we only need to prove that∑

D∈Ss
|S(D)| < (1− δ)2kqk, use |Ss| = 2k here.

To prove that, for any vector Z ∈ [k]q , we estimate how many D ∈ Ss make Z included in S(D).
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Part 3.1, situation of a given vector Z and a given distribution D.

For a Z = (zi)
q
i=1 and D such that Z ∈ S(D), let len(Z) = {c ∈ [k] : ∃i, c = zi}. We consider the

distributions in Ss that satisfy the following condition: for i ∈ len(Z), the label of ui is equal to the
label of ui in D. Obviously, we have 2k−|len(Z)| distributions that can satisfy the above condition in
Ss. Let such distributions make up a set Sss(D, Z). Now, we estimate how many distributions Ds in
Sss(D, Z) satisfy Z ∈ S(Ds).

It is easy to see that if Ds ∈ Sss(D, Z) such that there are more than [2kϵ] of i ∈ [k], Ds and
D have different labels of ui, then min{AD(F), ADs(F)} < 1 − ϵ for any F . So considering
AD(F) ≥ 1− ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈DZ

L(f(x), y), by the above result, such kind

of Ds is at most
∑[2kϵ]

i=0 Ci
k−|len(Z)|. So, we have that: There are at most

∑[2kϵ]
i=0 Ci

k−|len(Z)| numbers
of distributions Ds in Sss(D, Z) satisfy Z ∈ S(Ds).

Part 3.2, for any vector Z and distribution D.

For any distribution D ∈ Ss, let y(D)i be the label of ui in distribution D.

Firstly, for a given Z, we have at most 2|len(Z)| different Sss(D, Z) for D ∈ DS . Because when
D1 and D2 satisfy y(D1)i = y(D2)i for any i ∈ len(Z), we have Dss(D1, Z) = Dss(D2, Z),
and 2|len(Z)| situations of label of ui where i ∈ len(Z), so there exist at most 2|len(Z)| different
Sss(D, Z).

Then, by part 3.1, for an Sss(D, Z), at most
∑[2kϵ]

i=0 Ci
k−|len(Z)| of Ds ∈ Sss(D, Z) satisfies

Z ∈ S(Ds). So by the above result and consider that Ds = ∪D∈DsSss(D, Z), at most
2|len(Z)| ∑[2kϵ]

i=0 Ci
k−|len(Z)| number of Ds ∈ Ss such that Z ∈ S(Ds).

And there exist qk different Z, so
∑

D∈Ss
|S(D)| =

∑
Z

∑
D∈Ss

I(Z ∈ S(D)) ≤∑
Z 2|len(Z)| ∑[2kϵ]

i=0 Ci
k−|len(Z)| ≤

∑
Z 2k(1 − δ) = qk2k(1 − δ). For the last inequality, we

use
∑[2kϵ]

i=0 Ci
k−|len(Z)| < 2k−|len(Z)|(1− δ), which can be shown by |len(Z)| ≤ q ≤ k(1− 4ϵ− δ)

and Lemma D.1.

This is what we want. We proved the theorem.

A required lemma is given.

Lemma D.1. If ϵ, δ ∈ (0, 1) and k, x ∈ Z+ satisfy that: x ≤ k(1−2ϵ− δ), then 2x(
∑[kϵ]

j=0 C
j
k−x) <

2k(1− δ).

Proof. We have

2x(
∑[kϵ]

j=0 C
j
k−x) ≤ 2x2k−x [kϵ]

k−x ≤ 2k kϵ
k−x < 2k(1− δ).

The first inequality sign uses
∑m

j=0 C
m
n ≤ m2n/n where m ≤ n/2, and by x ≤ k(1− 2ϵ− δ), so

[kϵ] ≤ (k − x)/2. The third inequality sign uses the fact x ≤ k(1− 2ϵ− δ).

E PROOF OF THEOREM 5.4

We give the proof of Theorem 5.4.

Proof. Let Dtr ∼ DN and Dtr = {(xi, yi)}Ni=1. For any given W , let F be a network in
Mσ

W (Dtr, n) and F =
∑W

i=1 aiReLU(Wix+ bi) + c.

Then, we consider another network Ff that is constructed in the following way:

(1): For a v ∈ {−1, 1}N , we say i ∈ Sv if: ReLU(Wixj + bi) ≥ 0 for all j such that vj = 1;
ReLU(Wixj + bi) < 0 for all j such that vj = −1.

(2): For any v ∈ {−1, 1}N , if Sv ̸= ϕ, let Pv =
∑

i∈Sv
aiWi/|Sv| and Qv =

∑
i∈Sv

aibi/|Sv|.
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(3): Define Ff as: Ff (x) =
∑

v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx+Qv) + c.

Then we have the following result:

(r1): Ff ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y).

Firstly, it is easy to see that each parameter of Ff is in [−1, 1], because for any v, ||Pv||∞ =

||
∑

i∈Sv

aiWi

|Sv| ||∞ ≤
∑

i∈Sv

||aiWi||∞
|Sv| ≤ |Sv| 1

|Sv| = 1, and ||Qv||∞ = ||
∑

i∈Sv

aibi
|Sv| ||∞ ≤∑

i∈Sv

||aibi||∞
|Sv| ≤ |Sv| 1

|Sv| = 1.

Then, Ff has width W , because for each i, there is only one v such that i ∈ Sv, so∑
v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 1 = W , which implies that Ff has width W .

Finally, there are Ff (xi) = F(xi) for all (xi, yi) ∈ Dtr. We just need to show that for x1, others are
similar.

There are F(x1) =
∑W

i=1 aiReLU(Wix1 + bi) + c =
∑

i∈[W ],Wix1+bi≥0 ai(Wix1 + bi) +

c. Hence, letting V 1 = {v : v ∈ {−1, 1}N , v1 = 1}, then there is Ff (x1) =∑
v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx1 +Qv) + c =

∑
v∈V 1,Sv ̸=ϕ

∑|Sv|
i=1 (Pvx1 +Qv) + c.

Consider that {i ∈ [W ],Wix1 + bi ≥ 0} = {i : i ∈ Sv, v ∈ V 1}, so:

F(x1)
=

∑
i∈[W ],Wix1+bi>0 ai(Wix1 + bi) + c

=
∑

i:i∈Sv,v∈V 1 ai(Wix1 + bi) + c
=

∑
v∈V 1,Sv ̸=ϕ

∑
i∈Sv

ai(Wix1 + bi) + c
=

∑
v∈V 1,Sv ̸=ϕ |Sv|(Pvx1 + bv) + c

= Ff (x1).

By such three points and considering F ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y), so there are
Ff ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).

(r2): AD(Ff ) ≤ 1− δ when N ≤ W
1

n+1

0 (n+ 1)/e, where W0 is defined in Theorem. This is what
we want.

Firstly, we show that |{v : Sv ̸= ϕ}| ≤ max{2n+1, eN
n+1

n+1}, just by Lemma E.1.

Secondly, consider the network Ff1 =
∑

v∈{−1,1}N ,Sv ̸=ϕ ReLU(|Sv|Pvx1 + |Sv|Qv) + c. By

the assumption of D and |{v : Sv ̸= ϕ}| ≤ max{2n+1, eN
n+1

n+1}, then we know that, when

N ≤ W
1

n+1

0 (n+ 1)/e, there are AD(Ff1) ≤ 1− δ.

Moreover, there are Ff1(x) =
∑

v∈{−1,1}N ,Sv ̸=ϕ ReLU(|Sv|Pvx + |Sv|Qv) + c =∑
v∈{1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx + Qv) + c = Ff (x), so AD(Ff ) = AD(Ff1) ≤ 1 − δ, this is

what we want.

A required lemma is given:

Lemma E.1. For any S = {xi}Ni=1 ⊂ Rn, let Π(S) = {(Sgn(Wxi + b))ni=1 : W ∈ Rn, b ∈ R}.
Then |Π(S)| ≤ max{2n+1, eN

n+1

n+1}.

Proof. It is easy to see that |Π(S)| ≤ 2N because Sgn(Wxi + b) ∈ {−1, 1}. So, when N ≤ n+ 1,
it is obviously correct.

When N > n+1. Consider that the VC-dim of the linear space is n+1, and Π(S) = {(Sgn(Wxi +
b))ni=1 : W ∈ Rn, b ∈ R} is the growth function of linear space under dataset S. So by Theorem 1
of (Sauer, 1972), we have |Π(S)| ≤

∑n+1
i=0 Ci

N .

Moreover, there are
∑n+1

i=0 Ci
N ≤ eN

n+1

n+1
as shown in (Sauer, 1972), this is what we want.
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F PROOF OF PROPOSITION 5.6

We give the proof of Proposition 5.6.

Proof. Firstly, it is easy to show that Dn cannot be expressed by HW (n) when W < n/2 by Lemma
F.1, so we have proved (1) of Proposition 5.6.

Let Dtr ∼ DN
n and N ≤ nδ, for any given W , let F be a network in Mσ

W (Dtr, n), and F =∑W
i=1 aiReLU(Wix+ bi) + c.

Now we prove (2) of Proposition 5.6. Let Dtr = {(xi

n 1, I(xi))}Ni=1 where xi ∈ [n] be selected from
the distribution, without loss of generality, let xi < xi+1 for any i ∈ [N ].

We will divide [W ] into several subsets based on the intersection of the plane Wjx+ b and the line
−∞1 → ∞1, let [W ] = ∪2N

i=1si, and:

1. For any i ∈ [N − 1]: if j ∈ [W ] such that xi

n Wj1+ bi < 0 and xi+1

n Wj1+ bj ≥ 0, then j ∈ si;

2. If j ∈ [W ] such that xi

n Wj1+ bi < 0 for any i ∈ [N ], then j ∈ sN ;

3. For any i ∈ {N + 1, N + 2, . . . , 2N − 1}: if j ∈ [W ] such that xi−N

n Wj1 + bi ≥ 0 and
xi−N+1

n Wj1+ bj < 0, then j ∈ si;

4. If j ∈ [W ] such that xi

n Wj1+ bi ≥ 0 for any i ∈ [N ], then j ∈ s2N .

Now, by such 2N subset, we consider another network Ff that is defined as:

For any i ∈ [2N ], if Si ̸= ϕ, define Pi =
∑

j∈Si
aiWi/|Si| and Qi =

∑
j∈Si

aibi/|Si|. Then

Ff =
∑

i∈[2N ],Si ̸=ϕ

∑|Si|
j=1 ReLU(Pix+Qi) + c =

∑
i∈[2N ],Si ̸=ϕ |Si|ReLU(Pix+Qi) + c.

Because there is only one intersection point between a straight line and a plane, each j ∈ [W ] is only
in one subset si. So, Ff ∈ Hσ

W (n). Moreover, we show that Ff (x) = F(x) for any (x, y) ∈ Dtr,
which implies Ff ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).

For any j ∈ [N ], by the definition of si, we know that xj

n Wi1 + bi ≥ 0 if and only if i ∈
{1, 2, . . . , j − 1} ∪ {N + j,N + j + 1, . . . , 2N}, so:

Ff (xj)

=
∑

i∈[2N ],Si ̸=ϕ

∑|Si|
j=1 ReLU(Pixj +Qi) + c

=
∑

i∈{1,2,...,j−1}∪{N+j,N+j+1,...,2N},Si ̸=ϕ

∑|Si|
j=1(Pixj +Qi) + c

=
∑

k∈ ∪si
i∈{1,2,...,j−1,N+j,N+j+1,...,2N}

(Wkxj + bk) + c

=
∑

k∈[W ] ReLU(Wkxj + bk) + c
= F(xj)

This is what we want. At last, by Ff =
∑

i∈[2N ],Si ̸=ϕ |Si|ReLU(Pix+Qi) + c has width at most
2N and Lemma F.1, and consider that N ≤ nδ, we have that: AD(Ff ) ≤ 0.5 + 2δ, this is what we
want.

A required lemma is given below.

Lemma F.1. If x1 < x2 < x3 < · · · < xN , and xi has label yi = 1 when i is odd, or xi has label
yi = −1. We consider dataset S = {(xi1(n), yi)}, where 1 is all-one vector in Rn. Then: For any
two-layer network width M , this network can correctly classify at most to M + N

2 samples in S.

Proof. Let F =
∑M

i=1 aiReLU(Wix + bi) + c. Let Wix + bi and the line −∞1(n) → ∞1(n)
intersect at one point Pi1(n). Let Pi ≤ Pj if i ≤ j. Let PM+1 = ∞.
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Then it is easy to see that in the line segment Pi1(n) → Pi+11(n), F(x) is a linear function. So,
there is Pi+0.5 ∈ (Pi,Pi+1) such that F maintains the positive and negative polarity unchanged in
Pi1(n) → Pi+0.51(n) and Pi+0.51(n) → Pi+11(n).

So if Pi ≤ xu < xu+1 < · · · < xu+k < Pi+0.5, F gives the same label to
xu1(n), xu+11(n), . . . , xu+k1(n), which means that F can classify at most [ (k+1)+1

2 ] samples
in them. Similar to when Pi+0.5 ≤ xu < xu+1 < · · · < xu+k < Pi+1.

Let qi = |{j : Pi/2 ≤ xj < Pi/2+0.5}| where i ∈ [2M ]. Consider that each sample in S is appeared
in a Pi1(n) → Pi+0.51(n) or Pi+0.51(n) → Pi+11(n), so

∑2M
i=1 qi = N .

So, the whole network can classify at most
∑2M

i=1[
1+qi
2 ] ≤

∑2M
i=1

1+qi
2 = M + N

2 .

G PROOF OF PROPOSITION 5.7

Proof. Proof of (1): Let 1 be the all one vector,
∑

x =
∑n

i=1 xi where xi is the i-th weight of
x. We show that F = σ(1x − 0.5) ∈ Hσ

1 (n) is what we want. Because if
∑

x is odd, then
σ(1x − 0.5) = σ(

∑
x − 0.5) = sin(π(

∑
x − 0.5)) = 1; if

∑
x is even, then σ(1x − 0.5) =

σ(
∑

x− 0.5) = sin(π(
∑

x− 0.5)) = −1.

Proof of (2): we will prove it into three parts:

Part one: For any W and Dtr ∼ DN
n , let F ∈ Mσ

W (Dtr, n) and F =
∑W

i=1 σ(Wix+ bi) + c. Then
there are: for any (x, y) ∈ Dtr, there are yσ(Wix+ bi) = 1 for any i ∈ [W ].

If not, without loss of generality, assume that yσ(W1x+ b1) < 1 for some (x, y) ∈ Dtr. According
to the proof of (1), there are W0 and b0 such that yσ(W0x+ b0) = 1 for any (x, y) ∈ Dtr. Now we
consider the network Fc(x) =

∑W
i=2 σ(Wix+ bi) + σ(W0x+ b0) + c, then we have that:

Firstly, it is easy to see that Fc ∈ Hσ
W (n).

Secondly, we show that yF(x) ≤ yFc(x) for any (x, y) ∈ Dtr and yF(x) < yFc(x) for some
(x, y) ∈ Dtr.

By the definition of F and Fc, for any (x, y) ∈ Dtr, there are yFc(x)− yF(x) = y(σ(W0x+ b0)−
σ(W1x+ b1)) = 1− yσ(W1x+ b1) ≥ 0, and by the assumption, there is a (x, y) ∈ Dtr such that
1 > yσ(W1x+ b1)), then yFc(x)− yF(x) > 0 for such (x, y) ∈ Dtr, this is what we want.

By the above two results, and considering that L(F(x), y) is a strictly decreasing function about
yF(x), there are

∑
(x,y)∈Dtr

L(F(x), y) >
∑

(x,y)∈Dtr
L(Fc(x), y), which is contradictory to

F ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y). So we prove part one.

Part Two. For any j ∈ Z, let xj = j
n1 and yj = I(j), where I(x) is defined in the definition of

distribution Dn. If ij ∈ Z where j ∈ [4] such that i1 − i2 and i3 − i4 are co-prime, then there
are: if W0 ∈ [−1, 1]n and b0 ∈ [−1, 1] such that yijσ(W0xij + b0) = 1 for any j ∈ [4], then
ypσ(W0xp + b0) = 1 for all p ∈ Z.

When there is yijσ(W0xij +b0) = yijsin(π(W0xij +b0)) = yijsin(π(< W0,1 > ij/n+b0)) = 1,
consider that yij ∈ {−1, 1}, then there is < W0,1 > ij/n+ b0 = mij − 0.5 for mij ∈ Z, moreover,
mij and ij are same parity.

Now consider (W0xi1 + b0)− (W0xi2 + b0) and (W0xi3 + b0)− (W0xi4 + b0), there are < W0,1 >

(i1− i2)/n = mi1 −mi2 and < W0,1 > (i3− i4)/n = mi3 −mi4 . So, there are i1−i2
i3−i4

=
mi1

−mi2

mi3−mi4
.

By i1 − i2 and i3 − i4 are co-prime, and |mi1 − mi2 | = | < W0,1 > (i1 − i2)/n| ≤ |i1 − i2|,
|mi3 −mi5 | = | < W0,1 > (i3 − i4)/n| ≤ |i3 − i4|, there are < W0,1 > /n = 1 or < W0,1 >
/n = −1.

Hence, by mij−ij =< W0,1 > ij/n+b0+0.5−ij and < W0,1 > /n = 1 or < W0,1 > /n = −1,
consider that mij and ij are the same parity, so b = −0.5.

So for any p ∈ Z, there are ypσ(W0xp + b0) = ypsin(π(< W0,1 > p/n + b0)) = ypsin(π(p −
0.5)) = 1, this is what we want.

23



Published as a conference paper at ICLR 2025

Part Three, if Dtr ∼ DN
n and N ≥ 4 ln(δ/2)

ln(0.5+1/n) , with probability 1 − δ, there are four samples
(xi, yi) where i ∈ [4] in Dtr, such that xi =

mi

n 1, m1 −m2 and m3 −m4 are co-prime.

By the definition of Dn, it is equivalent to: repeatable randomly select N ≥ 4 ln(δ/2)
ln(0.5+1/n) points from

[n], with probability 1− δ, there are four samples mi such that m1 −m2 and m3 −m4 are co-prime.

By Lemma G.1, when N ≥ 4 ln(δ/2)
ln(0.5+1/n) , with probability at least 1− (0.5 + 1/n)

ln(δ/2)
ln(0.5+1/n) /(0.5 +

1/n) = 1− δ/(1 + 2/n) ≥ 1− δ. This is what we want.

Part Four, we prove the result.

Let Dtr ∼ DN
n . For any W , let F ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y) and F =∑W
i=1 σ(Wix+ bi) + c.

Firstly, with probability 1− δ, there are four samples in Dtr satisfying part three. Then, according
to part one, there are yσ(Wix + bi) = 1 for such four samples. Finally, in part two, there are
yσ(Wix+ bi) = yσ(

∑
x) = 1 for any (x, y) ∼ Dn. So, yF(x) ≥ W − 1 > 0 for any (x, y) ∼ Dn,

we prove the result.

A required lemma is given.
Lemma G.1. Randomly select N points from [n], where n ≥ 3 and N ≥ 4. With probability
1− (0.5 + 1/n)N/4−1, there are four samples mi such that m1 −m2 and m3 −m4 are co-prime.

Proof. Firstly, we consider the situation that N = 4, let {mi}4i=1 are the selected number. Then we
have

P ((m1 −m2,m3 −m4) = 1)
= P (m1 −m2 ̸= 0,m3 −m4 ̸= 0)− P ((m1 −m2,m3 −m4) ̸= 1,m1 −m2 ̸= 0,m3 −m4 ̸= 0)
= (1− 1/n)2(1− P ((|m1 −m2|, |m3 −m4|) ̸= 1|m1 −m2 ̸= 0,m3 −m4 ̸= 0))
≥ (1− 1/n)2(1−

∑
q∈Prime P (q|(|m1 −m2|, |m3 −m4|)|m1 −m2 ̸= 0,m3 −m4 ̸= 0))

≥ (1− 1/n)2(1−
∑

q∈Prime
1
q2 )

≥ 0.5(1− 1/n)2 ≥ 0.5− 1/n

where Prime is the set of all primes. For the second inequality sign, we use

P (q|m1 −m2 |m1 −m2 ̸= 0)

=
∑n−1

i=1 P (q|i, i = |m1 −m2| |m1 −m2 ̸= 0)
= [(n− 1)/q] ∗ 1

n−1
≤ 1/q.

Similar for m3 −m4. For the last inequality sign, we use P (2) =
∑

i∈Prime
1
i2 < 0.5, where P is

Riemann function.

So, when we select N samples, it contains [N/4] > N/4 − 1 pairs of four independent samples
randomly selected. So, with probability 1− (0.5 + 1/n)N/4−1, there are four samples mi such that
m1 −m2 and m3 −m4 are co-prime.

H PROOF OF THEOREM 6.2

Now, we prove Theorem 6.2.

Proof. we prove the proposition into three parts.

Part One, with probability 1 − 2δ of Dtr ∼ DN0 , there are Ex∼D[yF(x)] ≥ c0N0[
W

W0+1 ] −

2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0
− 6Fmax

√
ln(2/δ)
2N0

for all F ∈ Mσ
W (Dtr, n), where Fmax =

maxx+δ∈[0,1]n |F(x+ δ)|.

Firstly, we show that there are
∑

(x,y)∈Dtr
yF(x) ≥ N0[

W
W0+1 ]c0 for all F ∈ Mσ

W (Dtr, n) when
Dtr ∼ DN0 satisfies the conditions of the proposition.
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Because Dtr can be expressed in the network space Hσ
W0

(n) with confidence c0, there is a network
F0 =

∑W0

i=1 aiσ(Wix + bi) + c such that yF(x) ≥ c0 for all (x, y) ∈ Dtr. Moreover, we can
write such networks as: F0 =

∑W0+1
i=1 aiσ(Wix + bi), where aW0+1 = Sgn(c), WW0+1 = 0,

bW0+1 = |c|.
Now, we consider the following network in Hσ

W (n):

FW =

(W0+1)[ W
W0+1 ]∑

i=1

ai%(W0+1)σ(Wi%(W0+1)x+ bi%(W0+1)),

Here, we stipulate that i%(W0+1) = W0+1 when W0+1|i. Then we have FW (x) = [ W
W0+1 ]F0(x)

and FW (x) ∈ Hσ
W (n). Moreover, there are yFW (x) = y[ W

W0+1 ]F0(x) ≥ [ W
W0+1 ]c0 for all (x, y) ∈

Dtr, so
∑

(x,y)∈Dtr
L(FW (x), y) ≤ N0 ln(1 + e−c0[

W
W0+1 ]).

Then, because ln 1 + ex is a convex function, so that:

N0 ln 1 + e−
∑

(x,y)∈Dtr
yF(x)

N

≤
∑

(x,y)∈Dtr
ln 1 + e−yF(x)

=
∑

(x,y)∈Dtr
L(F(x), y)

≤
∑

(x,y)∈Dtr
L(FW (x), y)

≤ N0 ln(1 + e−c0[
W

W0+1 ])

So
∑

(x,y)∈Dtr
yF(x) ≥ c0N [ W

W0+1 ].

Hence, by Lemma B.4 and Theorem B.6, with probability 1− δ of Dtr, there are:

|Ex∼D[F(x)]−
∑

x∈Dtr

F(x)

N0
| ≤ 2

Lp(W + 1)(n+ 1)(
√
4 log(4) +

√
2 log(2n))√

N0

+6Fmax

√
ln(2/δ)

2N0
,

for all F ∈ HW (n).

Finally, combining the above two results, with probability 1 − 2δ, there is Ex∼D[F(x)] ≥
c0N0[

W
W0+1 ]− 2

Lp(W+1)(n+1)(
√

4 log(4)+
√

2 log(2n))√
N0

− 6Fmax

√
ln(2/δ)
2N0

.

Part Two, there is an upper bound of E(x,y)∼D[min||δ||≤ϵ yF(x+ δ)], if Dtr satisfies Part One.

For any F ∈ HW (n), we can write F =
∑⌈ W

W0
⌉−1

i=0

∑W0

j=1 ReLU(WiW0+jx+ biW0+j) + c, which
is a representation of the sum of ⌈ W

W0
⌉ small networks with width of W0. So by part one and by

the assumption in the theorem, with probability 1 − δ of Dtr ∼ DN , there is a Dr ∈ R(Dtr, ϵ)
such that

∑
(x,y)∈Dr

yF1(x) ≤ 2N0c1 for all F1 ∈ HW0
(n). Then we have

∑
(x,y)∈Dr

yF(x) ≤
2N0c1⌈ W

W0
⌉, by the definition of Dr, which implies that

∑
(x,y)∈Dtr

min||δ||≤ϵ yF(x+δ)+yF(x) ≤
2N0c1⌈ W

W0
⌉.

And then, by McDiarmid inequality, with probability 1 − δ of Dtr ∼ DN0 , there are
|E(x,y)∼D[min||δ||≤ϵ yF(x + δ) + yF(x)] − 1

N0

∑
(x,y)∈Dtr

min||δ||≤ϵ yF(x + δ) + yF(x)| ≤

2Fmax

√
ln 1/δ
2N0

. So if there are E(x,y)∼D[min||δ||≤ϵ yF(x + δ) + yF(x)] > 2c1⌈ W
W0

⌉ +

2Fmax

√
ln 1/δ
2N0

, according to McDiarmid inequality, with probability 1 − δ of Dtr ∼ DN0 ,∑
(x,y)∈Dtr

min||δ||≤ϵ yF(x + δ) + yF(x) > 2N0c1⌈ W
W0

⌉ stand, which is a contradiction with
the above result.

So there must be E(x,y)∼D[min||δ||≤ϵ yF(x+ δ) + yF(x)] ≤ 2c1⌈ W
W0

⌉+ 2Fmax

√
ln 1/δ
2N0

. Finally,
considering the result in Part one, we have that:

E(x,y)∼D[min||δ||≤ϵ yF(x+ δ)]

≤ 2c1⌈ W
W0

⌉ − c0[
W

W0+1 ] + 2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0
+ 8Fmax

√
ln(2/δ)
2N0
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Part Three, Now we can get the result.

By Lemma H.1 and part two, there are RobD,ϵ(F) ≤ 1 −
c0[

W
W0+1 ]−2c1⌈ W

W0
⌉

Fmax
+ 8

√
ln 2/δ
2N0

+

2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0Fmax
, and we consider that each parameter of F is not greater

than 1 and Lipschitz constant of σ is not more than Lp, so Fmax = maxx+δ∈[0,1]n |F(x + δ)| =
maxx∈[0,1]n |F(x)| ≤ LpW (n+ 1) + 1.

Let T = [ W
W0+1 ], by Lp, n,W0 ≥ 1 and W ≥ W0 + 1, there are:

c0[
W

W0+1 ]−2c1⌈ W
W0

⌉
LpW (n+1)+1

≥
c0T−2c1(

(T+1)(W0+1)
W0

+1)

Lp(T+1)(W0+1)(n+1)+1

= c0T−2c1T
Lp(T+1)(W0+1)(n+1)+1 − 4c1

Lp(T+1)(W0+1)(n+1)+1 − 2c1
LpW0(W0+1)(n+1)+1

≥ c0−2c1
8LpW0n

− 4c1
LpW0n

( 1
W/W0

+ 1
W0

)

and
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0Fmax

≥ Lp(W+1)(n+1)(
√

4 log(4)+
√

2 log(2n))

2
√
N0Lp(W+1)(n+1)

= 2

√
4 log(4)+

√
2 log(2n)√

N0

So, there are RobD,ϵ(F) ≤ 1− c0−2c1
8LpW0n

+ 4c1
LpW0n

( 1
W/W0

+ 1
W0

)+2
√

ln 2/δ
2N0

+4

√
4 log(4)+

√
2 log(2n)√

N0
.

Merge some items and ignore constants, this is what we want.

A required lemma is given below.

Lemma H.1. If F : Rn → R and the distribution D ∈ [0, 1]n ×{−1, 1} satisfy E(x,y)∼D[yF(x)] ≤
A and maxx∈[0,1]n |F(x)| ≤ B, then AD(F) ≤ 1 + A

B .

Proof. There are E(x,y)∼D[yF(x)] ≥ −(maxx∈[0,1]n |F(x)|)P(x,y)∼D(y ̸= Sgn(F(x))) =

−B(1−AD(F)), so A ≥ −B +BAD(F), that is, AD(F) ≤ 1− A
B .

I PROOF OF PROPOSITION 6.5

Proof. We take a c > 0 such that ln(1 + e−c) ≥ ln 2 − ln 2/800, 1 − (1/e)4c < 0.1. Then

take an n such that ln(1 + e−n/2+2c) < ln 2/2. Let N satisfy (
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
+ 6(n+

2)
√

ln(2/δ)
2N ) < ln 2/800.

We consider the following distribution D:

(c1): Let s1 = {(x, 1) : x ∈ [0, 1],
∑

x = n/2+c, ||x||−∞ ≥ 2c/n}, ||x||−∞ mean the minimum of
the weight of |x|; s2 = {(x,−1) : x ∈ [0, 1],

∑
x = n/2− c, ||x||∞ ≤ 1− 2c/n}; s3 = {(x,−1) :

x ∈ [0, 1],
∑

x = n− c};

(c2): P(x,y)∼D(
∑

x = n− c) = 1/100, and D is a uniform distribution in s3;

(c3): P(x,y)∼D(
∑

x = n/2 + c) = P(x,y)∼D(
∑

x = n/2 − c) = 99/200, and D is a uniform
distribution in s1 ∪ s2.

Let W0 = 1, then we show this distribution and W0 are what we want.

(1) in Theorem: Let F1 = Relu(1x)− c/2 ∈ H1(n). Then F1(x) > 0 for all x such that
∑

x = c,
and F1(x) < 0 for all x such that

∑
x = −c, so AD(F1) ≥ 0.99.

(2) in Theorem: We use the following parts to show the (2) in the Theorem.
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Part One. With probability at least 1− 3e−2N/2002 of Dtr ∼ DN , there are at least N/200 points in
Dtr ∩ s3, and at least 98/200N points with label 1 in Dtr, at least 98/200N points with label -1 in
Dtr.

Using the Hoeffding inequality and P(x,y)∼D(
∑

x = n− c) = 1/100, we know that with probability
at least 1−e−2N/2002 of Dtr, there are at least N/200 points in s3. Using also the Hoeffding inequality
and P(x,y)∼D(y = 1) = 99/200, we know that with probability at least 1 − e−2N(99/200−98/200)2

of Dtr, there are at least 98/200N points with label 1 in Dtr; similar, with probability at least
1− e−2N(101/200−98/200)2 of Dtr, there are at least 98/200N points with label -1 in Dtr. Adding
them, we get the result.

Part Two. For a Dtr that satisfies Part One, if F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), then

there is
∑

(x,y)∈Dtr
L(F(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)

200 N .

We just consider the following network F1 ∈ H1(n): F1 = −ReLU(1x − (n/2 +
c)), then

∑
(x,y)∈Dtr

L(F1(x), y) = ln 2|Dtr/s3| + ln 1 + e−n/2+2c|Dtr ∩ s3| ≤
199 ln 2+ln(1+e−n/2+2c)

200 . Hence, for any F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), there must be∑
(x,y)∈Dtr

L(F(x), y) ≤
∑

(x,y)∈Dtr
L(F1(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)

200 N , which is what we
want.

Part Three. If F ∈ H1(n) such that F(x) ≥ 0 for all (x,−1) ∈ s3. Then E(x,y)∼D[L(F(x), y)] ≥
99/100 ln 1 + e−c + 1/100 ln 2.

Consider that for any (x1, 1) ∈ s1, there must be (x1 − 2c1/n,−1) ∈ s2; on the other hand, if
(x2,−1) ∈ s2, there must be (x2 + 2c1/n, 1) ∈ s1. So we can match the points in s1 and s2 one by
one by adding or subtracting a vector 2c1/n.

Moreover, for any x ∈ [0, 1] and x ∈ H1(n), there are |F(x)−F(x− 2c1/n)| ≤ 2c, which implies
L(F(x), 1) + L(F(x − 2c1/n),−1) = ln(1 + e−F(x)) + ln(1 + eF(x−2c1/n)) ≥ 2 ln 1 + e−c.
So for a (x1, 1) ∈ s1 and (x2,−1) ∈ s2 where x2 = x1 − 2c1/n, there must be L(F(x1), 1) +
L(F(x2),−1) ≥ 2 ln 1 + e−c.

Hence, by F(x) > 0 for all (x,−1) ∈ s3, E(x,y)∼D[L(F(x), y)] ≥ 99/200 ln(1 + e−c) + ln 2/100.

Part Four. For any network F ∈ H1(n) such that F(x) < 0 for a x ∈ s3, then AD(F) < 60%.

Firstly, we show that if z1, z2, z3 are collinear, without loss of generality, assuming z2 is between
z1 and z3, then F(z1) ≥ F(z2) ≥ F(z3) or F(z1) ≤ F(z2) ≤ F(z3). Consider that z1, z2, z3
are collinear, so z2 = λz1 + (1 − λ)z3 for some λ ∈ (0, 1). So let f(k) = ReLU(k(Wz1 +
b) + (1 − k)(Wz3 + b)), there are f(0) = ReLU(Wz3 + b), f(1) = ReLU(Wz1 + b) and
f(λ) = ReLU(λ(Wz1 + b) + (1− λ)(Wz3 + b)) = ReLU(Wz2 + b). Consider that ReLU(·) is a
monotonic function, so that f(k) is also an monotonic function about k ∈ R, so we get the result.

Secondly, for any (z,−1) ∈ s2, let xz satisfy: (xz, 1) ∈ s1 and x, xz, z are collinear. Then we have
that:

(1): For any (z,−1) ∈ s2, F must give the wrong label to xz or z. If not, there are F(x) < 0,
F(xz) > 0 and F(z) < 0. By the above result, it is not possible.

(2): Let S = {xz : (z, 1) ∈ s2} ⊂ s1, then P(x,y)∼D(x ∈ S|x ∈ s1) ≥ (1− 4c/n)n−1. Because for
any (z, 1) ∈ s2, ||x−xz||2

||x−z||2 =
∑

(x−xz)∑
(x−z) = n/2−2c

n/2 , which is a constant value, where
∑

x means the
sum of the weights of x, so S is a proportional scaling of s1 with the ratio n−4c

n , we get the result.

So, there are: AD(F) ≤ max{P(x,y)∼D((x, y) ∈ s2),P(x,y)∼D((x, y) ∈ S)}+ P(x,y)∼D((x, y) ∈
s3) + P(x,y)∼D(s1/S) ≤ 101+99(1−(1−4c/n)n−1)

200 ≤ 101/200 + 99/200 ∗ (1− (1/e)4c) ≤ 0.6, use
the definition of c.

Part Five. Prove the Theorem.

27



Published as a conference paper at ICLR 2025

We show that with probability 1 − 3e−2N/2002 − δ of Dtr, for any F ∈
argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), F must give the correct label to some points in s3.
Then by part four, we can get the result.

By part one, with probability at least 1 − 3e−2N/2002 of Dtr, there are at least N/200 points
in Dtr ∩ s3, and at least 98N/200(98N/200) points has label 1(-1). Hence, by Lemma I.1 and
Theorem 4.9, we know that, with probability 1− δ of Dtr, there are |

∑
(x,y)∈Dtr

L(F(x), y)/N −

E(x,y)∼D[L(F(x), y)]| ≥ 4(n+1)(
√

5 log(4)+
√
2log2n)√

98N/200
+ 6(n + 2)

√
ln(2/δ)
2N ). So, with probability

1− 3e−2N/2002 − δ, Dtr satisfies the above two conditions.

For such a Dtr, assume that F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), and F must give the
correct label to some points in s3.

If not, by part two, we know that
∑

(x,y)∈Dtr
L(F(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)

200 N .

Then, by part three, E(x,y)∼DL(F(x), y) ≥ 99/100 ln 1 + e−c + 1/100 ln 2. Hence, by the
definition of Dtr, there are

∑
(x,y)∈Dtr

L(F(x), y) ≥ N(99/100 ln 1 + e−c + 1/100 ln 2) −

N(
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
− 6(n+ 2)

√
ln(2/δ)
2N ).

By the definition of c, n and N , there are
∑

(x,y)∈Dtr
L(F(x), y)/N ≥ (99/100 ln 1 +

e−c + 1/100 ln 2) − (
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
+ 6(n + 2)

√
ln(2/δ)
2N ) ≥ 199.5 ln 2

200 >

199 ln 2+ln(1+e−n/2+2c)
200 ≥

∑
(x,y)∈Dtr

L(F(x), y)/N , which leads to contradiction. And we prove
the result.

A required lemma is given below.

Lemma I.1. For any given D = {(xi, yi)}Ni=1, if there are at least K samples have label 1 in it and
there are at least K samples have label -1 in it, then there are:

Eσi
[ max
F∈H1(n)

1

N

N∑
i=1

σiL(F(xi), yi)] ≤
4(n+ 1)(

√
5 log(4) +

√
2 log(2n))√

K
,

where σi are i.i.d and P (σi = 1) = P (σi = −1) = 0.5.

Proof. We have

Eσi
[maxF∈H1(n)

1
N

∑N
i=1 σiL(F(xi), yi)]

= Eσi
[maxF∈H1(n)

1
N

∑N
i=1 σi ln 1 + eyiF(xi)]

≤ Eσi
[maxF∈H1(n)

1
|D1|

∑
x∈D1

σi ln 1 + eF(x)] + Eσi
[maxF∈H1(n)

1
|D2|

∑
x∈D2

σi ln 1 + eF(x)]

Hence, see 2 ln(1+ ex) as an activation of the second layer, and the output layer is F2(x) = x/2. By

Lemma B.4, we have Eσi [maxF∈H1(n)
1

|D1|
∑

x∈D1
σi ln 1+eF(x)] ≤ 2(n+1)(

√
5 log(4)+

√
2 log(2n))√

|D1|
.

Similar for an other part, so we get the result.

J PROOF OF THEOREM 6.8

At first, we give the proof when the loss function Lb satisfies condition (1) in Definition 6.7.

Proof. We first define some symbols.

Let the loss function Lb be a bad loss function that satisfies (1) in Definition 6.7. Let Lb(z1, 1) =
minx∈R Lb(x, 1) and Lb(z−1,−1) = minx∈R Lb(x,−1), assume |z1| + |z−1| = z. For any
given x ∈ Rn, let xt = (x2, x3, . . . , xn) ∈ Rn−1, where xi is the i-the weight of x; let
xt = (0, x1, x2, x3, . . . , xn) ∈ Rn+1.
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Then we prove the Theorem in three parts:

Part One: We construct the following distribution Db ∈ [0, 1]n × {−1, 1}:

(1): Db is defined on {x : x ∈ [0, 1]n, 0.6 ≤ x1 or x1 ≤ 0.4}× {−1, 1}, where x1 is the first weight
of x.

(2): x has label 1 if and only if x1 ≥ 0.6, or x has label -1.

(3): The marginal distribution about x of Db is an uniform distribution.

Part Two: For any Dtr ∼ DN
b , we consider the following network FDtr .

Let Dtr−t = {(xt, y)∥(x, y) ∈ Dtr}. By Lemma J.2, with probability 0.99, there is a Ft with
width W not greater than O(zN5n2) such that: if (xt, 1) ∈ Dtr−t, there are Ft(xt) = z1; if
(xt,−1) ∈ Dtr−t, there are Ft(xt) = z−1. Let Ft(x) =

∑W
i=1 aiReLU(Wix+ bi) + c.

Then, we construct FDtr
: Rn → R as F =

∑W
i=1 aiReLU(W t

i x+ bi) + c.

Part Three: We prove the Theorem.

For any Dtr ∼ DN
b , we consider the network FDtr mentioned in part two. Firstly, we show that

FDtr (x) ∈ argminF∈HW (n)

∑
(x,y)∈Dtr

L(F(x), y). Because FDtr (x) = Ft(xt) = z1 when
(x, 1) ∈ Dtr and FDtr

(x) = Ft(xt) = z−1 when (x,−1) ∈ Dtr. So L(FDtr
(x), y) reaches the

minimum value for any (x, y) ∈ Dtr, which implies FDtr
∈ argminF∈HW (n).

Secondly, there are AD(FDtr
(x)) = 0.5. If AD(FDtr

(x)) > 0.5, then there must be a pair of
(x1, 1) and (x2,−1) in distribution Db such that (x1)t = (x2)t and FDtr

(x) give the correct label
to x1 and x2. But it is easy to see that FDtr

(x) = Ft(xt) where Ft is mentioned in part two, so,
FDtr

(x1) = Ft(x)((x1)t) = Ft(x)((x2)t) = FDtr
(x2), which is in contradiction to FDtr

(x) gives
the correct label to x1 and x2. This is what we want.

Some required lemmas are given.
Lemma J.1. For any v ∈ Rn and T ≥ 1, let u ∈ Rn be uniformly randomly sampled from the

hypersphere Sn−1. Then we have P(|⟨u, v⟩| < ||v||2
T

√
8
nπ ) <

2
T .

This is Lemma 13 in (Park et al., 2021).
Lemma J.2. For any N points {xi}Ni=1 randomly selected in [0, 1]n, and any N given point {yi}Ni=1

in [−a, a]. With probability 0.99 of {xi}Ni=1, there is a network F with width not more than O(aN5n2)
and F(xi) = yi.

Proof. Part One: First, we show that with probability 0.99, there is ||xi − xj ||2 ≥ 0.01
2N2

√
n

for all
pairs i, j.

For any i, j ∈ N and ϵ > 0, there are:

P (||xi − xj ||2 ≥ ϵ)
= P (

∑n
k=1((xi)k − (xj)k)

2 ≥ ϵ2)
≥ Πn

k=1P (((xi)k − (xj)k)
2 ≥ ϵ2/n)

≥ Πn
k=1(1− 2ϵ√

n
)

≥ 1− 2ϵ
√
n

So P(||xi − xj ||2 ≥ ϵ,∀(i, j)) ≥ 1−
∑

i̸=j P (||xi − xj ||2 < ϵ) ≥ 1− 2ϵ
√
nN2. Take ϵ = 0.01

2
√
nN2 ,

we get the result.

Part Two: There is a w ∈ Rn such that ||w||2 = 1 and |w(xi − xj)| ≥ 0.01
4N4n

√
8
π

By Lemma J.1, for any pair i, j, Pu(|u(xi − xj)| < ||xi−xj ||2
2N2

√
8
nπ ) <

1
N2 . So, Pu(|u(xi − xj)| ≥

||xi−xj ||2
2N2

√
8
nπ ,∀(i, j)) ≥ 1 −

∑
i ̸=j Pu(|u(xi − xj)| < ||xi−xj ||2

2N2

√
8
nπ ) > 1 − 1 = 0, which
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implies that there is a w such that ||w||2 = 1 and for any pair (i, j), there are |w(xi − xj)| ≥
||xi−xj ||2

2N2

√
8
nπ ≥ 0.01

4N4n

√
8
π , use the result of part one.

Part Three: Prove the result.

Let w be the vector mentioned in part two, and wxi < wxj when i ̸= j. Let δ = 0.01
4N4n

√
8
π . Now,

we consider the following network:

F(x) =

N∑
i=1

yi
δ
(ReLU(wx− (wxi + δ)) + ReLU(wx− (wxi − δ))− 2ReLU(wx− wxi)).

Easy to verify F(xi) = yi. Consider |wxi| ≤ n and |yi

δ | < 400aN4n, so F ∈ HO(aN5n2)(n). This
is what we want.

We now give the proof of when the loss function Lb satisfies (2) in definition 6.7.

Proof. In this proof, we only consider a very simple distribution D: P(x,y)∼D((x, y) = (0,−1)) =
P(x,y)∼D((x, y) = (1, 1)) = 0.5, where 1 is a all one vector.

We show that for any Dtr and W , let F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

Lb(f(x), y), there are
AD(F) = 0.5.

Part one: When Dtr contains only (0,−1), then there must be F =
∑W

i=1 −ReLU(wix+ 1)− 1
for some xi, which implies F(1) < 0, so AD(F) = 0.5.

Part two: When Dtr contains only (1, 1), then there must be F =
∑W

i=1 ReLU(1x+ 1) + 1, which
implies F(0) > 0, so AD(F) = 0.5.

Part Three: When Dtr contains (1, 1) and (0,−1), we will show that F =
∑W

i=1 ReLU(1x+ 1) +
1 ∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1). Consider that AD(F) = 0.5 for such F , we can
prove the Theorem.

If F =
∑W

i=1 ReLU(1x + 1) + 1 /∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1). Let F0(x) =∑W
i=1 aiReLU(Wix+bi)+c ∈ argminf∈HW (n) Lb(f(0),−1)+Lb(f(1), 1). Then, let F0(0) = b

and F0(1) = a.

By ϕ(a)+ϕ(−b) = Lb(F0(0),−1)+Lb(F0(1), 1) < Lb(F(0),−1)+Lb(F(1), 1) = ϕ(W (n+1)+
1)+ϕ(−W−1), and ϕ is a decreasing concave function, there must be W (n+1)+1−a < −b+W+1,
which implies |a− b| > Wn.

Consider |a − b| = |
∑W

i=1 aiReLU(bi) −
∑W

i=1 aiReLU(Wi1 + bi)| ≤ |
∑W

i=1 ai1Wi| ≤ Wn.
This is a contradiction to |a − b| > Wn which was shown above. So, assumption is wrong, so
F =

∑W
i=1 ReLU(1x + 1) + 1 ∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1), this is what we

want.

K EXTEND THE RESULT TO GENERAL NEURAL NETWORK

For multi-layer neural networks, we can show that if there is enough data and the network is large
enough, then generalization can also be ensured for the network which can minimum the empirical
risk. Unfortunately, due to the complexity of depth networks, we are unable to provide a good
generalization bound of such network.

Denote HW,D(n) to be the set of all neural networks of layers D with input dimension n, width W
for each hidden layer, activation function ReLU, and all parameters of the transition matrix are in
[−1, 1]. Then, there are:
Theorem K.1. For any given n ∈ N+, if D ∈ D(n) satisfies: there is a network F ∈ HW0,D0

(n)
such that P(x,y)∼D(yF(x) > c) = 1 for a W0, D0 ∈ N+, c > 0. Then we have that for any
W ≥ Ω(W0), D ≥ Ω(D0) and δ > 0, with probability at least 1−δ of Dtr ∼ DN , it holds AD(F) ≥
1−O(e−WD/K +Kn

√
ln(K/δ)

N ) for all F ∈ MW,D(Dtr, n), where K = ( c

2D0+2W
D0−1
0 n

)−1.
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However, this bound is relatively loose, and how to obtain a bound that is polynomial in W0, D0, c is
an important question.

Proof. Part One. For any given Dtr ∼ DN , we show that there is a network F ∈ HW,D such that
yF(x) ≥ [ WW0

]D0−1 cWD−D0

2 for any (x, y) ∈ Dtr.

By the assumption of D in the theorem, let F1 ∈ HW0,D0(n) satisfy P(x,y)∼D(yF1(x) ≥ c) = 1.
And Wi is the i-th transition matrix of F1, bi is the i-th bias vector of F1.

We will construct F as F = Fp2 ◦Fp1, and we construct the two networks Fp1 and Fp2 as following:

Fp1 : Rn → RW which has width W and depth D0, and the output layer of Fp1 also uses the ReLU
activation function.

Let W be a matrix in Ra,b where a, b ∈ N+, and T (W,a1, b1) is a matrix in Ra1,b1 defined as: for
any i ∈ [a], j ∈ [b], k1, k2 ∈ Z, there are T (W,a1, b1)k1[

a1
a ]+i,k2[

b1
b ]+j

= Wi,j ; other weights of
T (W,a1, b1) are 0. Then Fp1 is defined as:

(1): The first transition matrix is T (W1,W, n), and the first bias vector is T (b1,W, 1);

(2): When i > 2, the i-th transition matrix is T (Wi,W,W ), and the i-th bias vector is
[ WW0

]i−1T (bi,W, 1).

Then, we have Fp1(x) = [ WW0
]D0−1ReLU(F1(x)).

For Fp2 : RW → R, which has width W and depth D −D0, we define it as:

(1): When i < D − D0, the i-th transition matrix is IW,W , and the i-th bias vector is 0, where I
means all one matrix;

(2): The last transition matrix is I(1,W ), and the last bias vector is −[ WW0
]D0−1 cWD−D0

2 .

Then, F = F2 ◦ F1 is what we want.

Part two. Similar to the proof of 4.4, there are at most Ne−[ W
W0

]D0−1 cWD−D0
4 +2 points in Dtr such

that yF(x) ≤ [ WW0
]D0−1 cWD−D0

4 .

Part three. If yF(x) ≥ [ WW0
]D0−1 cWD−D0

4 , then yF(x′) > 0 for all ||x′ − x||∞ ≤ c

2D0+1W
D0−1
0 n

.

As shown in Lemma K.2, there are yF(x′) ≥ [ WW0
]D0−1 cWD−D0

4 −WL−1n||x− x′||∞. So when

||x− x′||∞ ≤
c[ W

W0
]L0−1

4nWL0−1 ≤ c

2D0+1W
D0−1
0 n

, there are yF(x′) > 0.

Part four. Let r = c

2D0+1W
D0−1
0 n

. we can divide [0, 1]n into 1
(r/2)n disjoint cubes that have side

length r/2. Then by part three, we know that in a cube, F gives the same label to every point in such
a cube when |F(x)| ≥ [ WW0

]D0−1 cWD−D0

2 for at least one x in such cube.

Part Five. Prove the result.

By part four, name such m cubes as c1, c2, · · · , cm, and let Pi = P(x,y)∼D(x ∈ ci) and Pi ≥ Pj

when i ≥ j.

As shown in part four, let S = {i ∈ [N ],∃(x, y) ∈ Dtr ∩ ci, yF(x) ≥ [ WW0
]D0−1 cWD−D0

4 }, then we
have AD(F) ≥

∑
i∈S Pi.

For any i, by Hoeffding inequality, with probability 1− e−NP2
i /2, there are at least NPi/2 points in

cube ci. So for any given ϵ0 > 0, let Pk0
≥ ϵ0, then, with probability at least 1−

∑m
i=k0

e−Nϵ20/2 of
Dtr, there are at least NPi/2 points in Ci for any i ≥ k0.

As shown in part two, there are at most Ne−[ W
W0

]D0−1 cWD−D0
4 +2 points in Dtr such that yF(x) ≤

[ WW0
]D0−1 cWD−D0

4 . So, by the above result, let T = {k0, k0+1, . . . , N}/S and N(Ci) is the number
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of points in Ci, with probability at least 1 −
∑m

i=k0
e−Nϵ20/2 of Dtr, there are

∑
i∈T NPi/2 ≤∑

i∈T N(Ci) ≤ Ne−[ W
W0

]D0−1 cWD−D0
4 +2.

Hence,
PD(F)

≥
∑

i∈S Pi

≥ 1−
∑

i∈[k0]
Pi −

∑
i∈T Pi

≥ 1−mϵ0 − 2e−[ W
W0

]D0−1 cWD−D0
4 +2.

Now, we take ϵ0 =
√

2 ln(m/δ)
N . We get the result.

A required lemma is given below.

Lemma K.2. If a network with depth L and width W , the L∞ norm of each transition matrix does
not exceed 1. Then |F(x)−F(z)| ≤ nWL−1||x− z||∞.

Proof. It is easy to see that ||Relu(Wx+b)−ReLU(Wz+b)||∞ ≤ ||W (x−z)||∞ ≤ ||W ||1,∞||x−
z||∞. Let Fi is the output of i-th layer of F , then

|F(x)−F(z)|
≤ W ||FD−1(x)−FD−1(z)||∞
≤ W 2||FD−2(x)−FD−2(z)||∞
. . .
≤ WD−1||F1(x)−F1(z)||∞
≤ nWD−1||x− z||∞

which proves the lemma.

L EXPERIMENTS

In this section, we give some simple experiments to validate our theoretical conclusions. Our
experimental setup is as follows. We used MNIST data set and two-layer networks with ReLU
activation function. When training the network, we ensure that the absolute value of each parameter
is smaller than 1 by weight-clipping after each gradient descent. Two experiments are considered:

About size and accuracy: For networks with widths 100,200,. . . ,900,1000, we observe their
accuracy on the test set after training. The results are shown in Figure 1.

About data and precision: Using training sets with 10%, 20%, . . . , 90%, 100% of the original
training set to train a network with widths 200, 400 and 600. The results are shown in Figure 2.

Figure 1: The accuracy on the different width networks.

Based on the experimental results, we have the following conclusions which confirm the correctness
of Theorem 4.3.
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Figure 2: The accuracy on the 200,400,600 width networks with different number of data.

(1) Increasing the amount of data or enlarging the network leads to greater accuracy. Specifically,
when there are fewer data (smaller networks), increasing the number of data (width of the network)
leads to a greater improvement in accuracy, which is consistent with Theorem 4.3 where the number
of data (network size) is located on the denominator.

(2) When the number of data is fixed, increasing the network size has a limitation effect on improving
accuracy, as shown in Figure 1, which is consistent with Theorem 4.3, because the number of data
cannot affect the item in the generalization bound about network size.

(3) When the network is small, increasing the number of data can only have a limited effect on
improving accuracy, as shown in Figure 2. Accuracy on training 200-width network with the entire
dataset is almost equivalent to accuracy on training 400-width network with 40% data in the entire
dataset. This is consistent with Theorem 4.3, because the size of the network cannot affect the item in
the generalization bound about the number of data.
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