
J Syst Sci Complex 20XX, XX(): 1–29

Quantum Algorithm for Optimization and Polynomial System

Solving over Finite Field and Application to Cryptanalysis∗

CHEN Yu-Ao · GAO Xiao-Shan · YUAN Chun-Ming

DOI:

Received: x x 20xx / Revised: x x 20xx

©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024

Abstract In this paper, we give quantum algorithms for two fundamental computation problems: solving polynomial

systems over finite fields and optimization where the arguments of the objective function and constraints take values

from a finite field or a bounded interval of integers. The quantum algorithms can solve these problems with any given

success probability and have polynomial runtime complexities in the size of the input, the degree of the inequality

constraints, and the condition number of the associated matrices of the problem. So, we achieved exponential speedup

for these problems when their condition numbers are small. As applications, quantum algorithms are given to three

basic computational problems in cryptography: the short integer solution problem, the shortest vector problem, the

polynomial system with noise problem, and cryptanalysis for the lattice-based NTRU cryptosystem. It is shown that

these problems and NTRU can against quantum computer attacks only if their condition numbers are large, so the

condition number could be used as a new criterion for lattice-based post-quantum cryptosystems.

Keywords quantum algorithm, polynomial system solving, polynomial system with noise, finite field, integer

programming, cryptanalysis of NTRU.

1 Introduction

Solving polynomial systems and optimization over finite fields are fundamental computation problems in

mathematics and computer science, which are also typical NP hard problems. In this paper, we give quantum

algorithms to these problems, which could be exponentially faster than the traditional methods under certain

conditions.

CHEN Yu-Ao

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;

Thrust of Artificial Intelligence, Information Hub, The Hong Kong University of Science and Technology (Guangzhou),

Guangzhou 511453, China. Email: chenyuao@amss.ac.cn.

GAO Xiao-Shan · YUAN Chun-Ming

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;

University of Chinese Academy of Sciences, Beijing 100049, China.

Email: xgao@mmrc.iss.ac.cn; cmyuan@mmrc.iss.ac.cn.
∗This research was supported by NKRDP grant No.2018YFA0704705, NSFC grant Nos.12288201, 12271516, the Guangdong

Provincial Quantum Science Strategic Initiative grant Nos.GDZX2403008, GDZX2403001, the Guangdong Provincial Key Lab

of ICSCUIT grant No.2023B1212010007, the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, and

the Education Bureau of Guangzhou Municipality.
⋄This paper was recommended for publication by Editor.

2 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

1.1 Main results

Let Fq be a finite field, where q = pm for a prime number p andm ∈ N≥1. Let F = {f1, f2, . . . , fr} ⊂ Fq[X]
be a set of polynomials in variables X = {x1, x2, . . . , xn} and with total sparseness TF =

∑r
i=1 #fi, where

#f denotes the number of terms in f . For ε ∈ (0, 1), we prove that

Theorem 1.1 There exists a quantum algorithm which decides whether F = 0 has a solution in Fn
q

and computes one if F = 0 has solutions in Fn
q , with success probability at least 1 − ε and complexity

Õ(T 3.5
F D3.5m5.5 log4.5 pκ2 log 1/ε), where D = n+

∑n
i=1⌊log2 maxj degxi

fj⌋, TF is the total sparseness of F ,

and κ is the condition number of the associated matrix of F (see Theorem 3.13 for definition).

The complexity of a quantum algorithm is the number of quantum gates needed to solve the problem.

Since TF , D, log pm are smaller than the input size, the complexity of the algorithm is polynomial in the

input size and the condition number of the associated matrix of the problem (abbr. condition number of

the problem), which means that we can solve polynomial systems over finite fields using quantum computers

with any given success probability and in polynomial-time if the condition number κ of F is small, say when

κ is poly(n,D).

We also give a quantum algorithm to solve the following optimization problem.

min
X∈Fn

p ,Y∈Zm
o(X,Y) subject to

fj(X) = 0 mod p, j = 1, 2, . . . , r; (1)

0 ≤ gi(X,Y) ≤ bi, i = 1, 2, . . . , s; 0 ≤ yk ≤ uk, k = 1, 2, . . . ,m,

where F = {f1, f2, . . . , fr} ⊂ Fp[X], Y = {y1, y2, . . . , ym}, Go = {o, g1, g2, . . . , gs} ⊂ Z[X,Y], and b1, b2, . . . , bs,

u1, u2, . . . , um ∈ N. The complexity of the algorithm is polynomial in the size of the input, deg(gi), deg(o),

and the condition number of the problem (see Theorem 5.4 for definition). Since Problem (1) is NP-hard,

the algorithm gives an exponential speedup over traditional methods if the condition number is small, say

poly(n,m).

Note that for q = p, Problem (1) includes polynomial system solving over Fq as a special case. Problem

(1) is meaningless for Fq with q = pm and m > 1, since Fq cannot be embedded into Z.

We apply our quantum algorithms to three computational problems widely used in cryptography: the

short integer solution problem (SIS) [1], the shortest vector problem (SVP) [4, 6, 25], and the polynomial

systems with noise problem (PSWN) [2, 19, 22]. We also show how to recover the private keys for the latticed

based cryptosystem NTRU [21, 29] with our algorithm. The complexity for solving all of these problems is

polynomial in the input size and their condition numbers.

Ajtai started lattice-based cryptography in a seminal work [1], where a family of one-way functions is

given based on SIS. The SIS problem is to find a nonzero solution of a homogeneous linear system AX = 0

mod p for A ∈ Fr×n
p , such that ||X̂||2 is smaller than a given bound. Our quantum algorithm for SIS has

complexity Õ((n log p+ r)2.5(TA log p+n log2 p)κ2), where TA is the number of nonzero elements in A and κ

is the condition number of the problem.

The SVP and CVP are two basic NP-hard problems widely used in lattice-based cryptography. The

SVP is to find a nonzero vector with the smallest Euclidean norm in a lattice in Rm. The CVP is to find

a vector in a lattice which is closest to a given vector. Our quantum algorithm for SVP has complexity

Õ(m(n7.5 + m2.5)(n3 + log h) log4.5 hκ2), where n is the rank of the lattice, h is the maximal value in the

lattice generators, and κ is the condition number of the problem. Our quantum algorithm for CVP has a

A TEMPLATE FOR JOURNAL 3

similar complexity.

NTRU is a lattice-based public key cryptosystem proposed by Hoffstein, Pipher and Silverman [21], which

is one of the most promising candidates for post-quantum cryptosystems. Our quantum algorithm can be

used to recover the private key from the public key in time Õ(N4.5 log3.5 qκ2) for an NTRU with parameters

(N, p, q) with q > p. In particular, we show that the three versions of NTRU recommended in [21] have the

desired security against quantum computers only if their condition numbers are large.

The lattice-based computational problems SVP and LWE are the bases for 23 of the 69 submissions to

NIST’s effort to standardize the post-quantum public-key encryption systems [4]. LWE is another important

computational problem in cryptography, which is the randomized versions of CVP and can be reduced to

the SIS problem [32]. Lattice-based computational problems have many applications [30]. In theory, our

results imply that the 23 proposed cryptosystems can withstand the attack of quantum computers only if

their condition numbers are large. So, the condition number could be used as a new criterion for lattice-based

post-quantum cryptosystems.

Let p be a prime and F = {f1, f2, . . . , fr} ⊂ Fp[X] with r ≫ n. The PSWN is to find an X ∈ Fn
p which

satisfies the maximal number of equations in F . The problem is also called MAX-POSSO [2, 22]. Our

quantum algorithm for PSWN has complexity Õ(r3.5T 3.5
F log8 pκ2), where κ is the condition number of the

problem. The PSWN is very hard in the sense that, even for the linear system with noise (LSWN) over Fp,

finding an X satisfying more than 1/p of the equations is NP hard [19, 41].

1.2 Main ingredients of the algorithm

Let F ⊂ C[X] be a set of polynomials over C. A solution of F is called Boolean if its components are 0 or

1. Similarly, a variable x is called a Boolean variable if its values are either 0 or 1. In [13], we give a quantum

algorithm∗ to find Boolean solutions of a polynomial system over C, which is called B-POSSO in the rest of

this paper. The main idea of the quantum algorithms proposed in this paper is to reduce the problem to be

solved to B-POSSO, under the condition that the number of variables and the total sparseness of the new

polynomial system is polynomial in the size of the original polynomial system.

Our algorithm for problem (1) consists of three main steps: (1) The equational constraints fj(X) = 0

mod p, j = 1, 2, . . . , r are reduced into B-POSSO. (2) The inequality constraints 0 ≤ gi(X,Y) ≤ bi, i =

1, 2, . . . , s are reduced into B-POSSO. (3) The problem of finding the minimal value of the objective function

is reduced several B-POSSOs. We will give a brief introduction to each of these three steps below.

A key method used in our algorithm is to construct a polynomial in Boolean variables to represent

the integers 0, 1, . . . , b for b ∈ Z>1. Let θb(Gbit) =
∑⌊log2 b⌋−1

k=0 Gk2
k + (b + 1 − 2⌊log2 b⌋)G⌊log2 b⌋, where

Gbit = {G0, G1, . . . , G⌊log2 b⌋} is a set of Boolean variables. Then, the values of θb(Gbit) are exactly 0, 1, . . . , b.

For F ⊂ Fp[X] and Fp = {0, 1, . . . , p− 1}, we use three steps to reduce the problem of finding a solution

of F in Fp to a B-POSSO. (1) F is reduced to a quadratic polynomial system (MQ) F1 by introducing new

variables. (2) Each variable in F1 is expanded as xi = θp−1(Xi) and F1 is reduced to another MQ F2 in

Boolean variables Xi = {Xij , j = 0, 1, . . . , ⌊log2(p− 1)⌋}. Since F1 is quadratic, the total sparseness of F2 is

well controlled. (3) We obtain a polynomial over C from F2 as follows F3 = {g − θ#g(Ug)p | g ∈ F2}, where
#g is the number of terms in g and Ug is a set of #g Boolean variables. It is shown that solutions of F in Fp

can be recovered from Boolean solutions of F3, which can be found with the quantum algorithm from [13].

∗No detailed knowledge of quantum algorithms is needed to read this paper. What we do in this paper is to use traditional

methods to reduce the problems to be solved to this quantum algorithm.

4 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

We also reduce the inequality constraint 0 ≤ gk(X,Y) ≤ bk of Problem (1) into B-POSSO. There exist X
and Y such that 0 ≤ gk(X,Y) ≤ bk if and only if gk(X,Y) − θbk(Gbk) = 0 has a solution for X, Y, and Gbk ,

where Gbk is a set of Boolean variables. Since 0 ≤ xi ≤ p − 1 and 0 ≤ yi ≤ ui, we can reduce gk(X,Y) into
a polynomial in Boolean variables by first reducing g(X,Y) into an MQ and then expanding the variables

xi, yj into Boolean variables by using the θ function. As a consequence, the inequality constraint of Problem

(1) is reduced into B-POSSO. Let d be the maximal degree of all gk. Then the values of gk is exponential in

d and hence the number of Boolean variables needed is polynomial in d. This is why the complexity of the

algorithm depends on d.

Since all variables are bounded, the objective function o is also bounded, and we can assume that the

values of o are in a feasible interval [α, µ) for some α, µ ∈ N. We design a novel search scheme to reduce

the minimization of o(X,Y) ∈ [α, µ) into several B-POSSOs. We approximately bisect the feasible interval

[α, µ) into subintervals [α, 2β) and [2β , µ) and decide whether o ∈ [α, 2β) has a solution, which is equivalent

to solving equation o− (α+
∑β−1

j=0 Hj2
j) = 0 for Boolean variables Hj . If o ∈ [α, 2β) has a solution X̂ and Ŷ,

we repeat the procedure for [α, o(X̂, Ŷ)); otherwise, we repeat the procedure for [2β , µ). As a consequence,

we can find the minimal value of o by solving several B-POSSOs.

1.3 Relation with existing work

Problem (1) includes many important problems as special cases, such as solving polynomial systems in

finite fields [9, 15–17], SIS [1], SVP/CVP [4, 6, 25], PSWN [2, 19, 22, 41], the (0, 1)-programming [18], the

quadratic unconstrained binary optimization problem which is the mathematical problem that can be solved

by the D-Wave System [23], which are all important computation problems and were widely studied. The

main motivation of this study is that polynomial system solving is a key tool in cryptanalysis [27, 28, 38, 39].

Comparing to the existing work such as the symbolic computation approach [26, 36, 37, 40], our approach

is new and has two major advantages. First, we give a universal approach to a very general problem.

Second, the complexity of our algorithm is polynomial in the inputs size, the degree of the inequalities, and

the condition number of the problem. Since the problems under consideration are NP hard, the existing

algorithms are exponential in some of the parameters such as the number of variables. In this aspect, we

give a new way of looking at these NP hard problems by reducing the computational difficulty to the size of

the condition number.

Our algorithm is based on the quantum algorithm to solve B-POSSOs proposed in [13], which in turn is

based on the HHL quantum algorithm and its variants to solve linear systems [5, 14, 20, 33]. Comparing to

the HHL algorithm, we can give the exact solution, while the HHL algorithm can only give the quantum state.

The speedup of our algorithms comes from the HHL algorithm. The limitation on the condition number is

inherited from the HHL algorithm, and it is proved in [20] that the dependence on the condition number

cannot be substantially improved. Also note that, the best classic numerical method for solving an order N

linear equation Ax = b has complexity Õ(N
√
κ) [34], which also depends on the condition number κ of A.

The method of treating the inequality constraints with the function θb(Gbit) simplifies the computational

significantly. The binary representation ηb =
∑⌊log2(b)⌋

i=0 Bi2
i for b is often used in the literature to represent

the integers 0, 1, . . . , b. The values of ηb are 0, 1, . . . , 2
⌊log2(b)⌋+1−1, which may contain integers strictly larger

than b and cannot be used to represent inequality constraints of Problem (1). In [3, 7], the integer inequality

0 ≤ g ≤ b is reduced to
∏b

i=0(g − i) = 0. Our reduction g − θb(Gg) is better, which does not increase the

degree of the equation and the size of the equation is increased in the logarithm scale, while the method used

in [3, 7] increases the degree by a factor b and increases the size of the equation exponentially.

A TEMPLATE FOR JOURNAL 5

The remainder of this paper is organized as follows. In Section 2, we define the θb(Gbit) function and give

an explicit formula to reduce a polynomial system into an MQ. In Section 3, we present the algorithm for

solving polynomial systems over finite fields. In Section 4, we show how to reduce the inequality constraints

in problem (1) to a B-POSSO. In Section 5, we present the algorithm for solving problem (1). In Section

6, we present a quantum algorithm for PSWN. In Section 7, we present a quantum algorithm for SIS. In

Section 8, we present a quantum algorithm for SVP/CVP. In Section 9, we present a quantum algorithm to

recover the private key for NTRU. In Section 10, conclusions are given.

2 Two basic reductions

In this section, we give two basic reductions frequently used in the paper: to represent an integer interval

with a Boolean polynomial and to reduce a polynomial system to an MQ.

2.1 Represent an integer interval with a Boolean polynomial

A variable X is called a Boolean variable if it satisfies X2 − X = 0. In this paper, we use uppercase

symbols to represent Boolean variables. A polynomial is called a Boolean polynomial if it is in a set of

Boolean variables. In this section, we will construct a Boolean polynomial whose values are exactly 0, 1, . . . , b

for a given positive integer b > 0.

Set s = ⌊log2(b)⌋ and introduce s + 1 Boolean variables Bbit = {B0, B1, . . . , Bs}. Inspired by b =

(2s − 1) + (b+ 1− 2s), we introduce the function θb(Bbit): θ1(Bbit) = B0 and for b > 1

θb(Bbit) =

s−1∑
i=0

2iBi + (b+ 1− 2s)Bs. (2)

Lemma 2.1 When evaluated in C or Fp = {0, 1, . . . , p − 1} with p > b, θb(Bbit) is a surjective map

from {0, 1}s+1 to {0, 1, . . . , b}. Furthermore, |Bbit| = #θb(Bbit) = ⌊log2(b)⌋ + 1= s+ 1, where #θb(Bbit) is

the number of terms in the polynomial θb(Bbit).

Proof We first assume that θb(Bbit) is evaluated over C. It is easy to check this lemma when b = 1.

When b > 1, from the definition of s, we have b/2 < 2s ≤ b and hence 2s − 1 < b. Since the values of∑s−1
i=0 2iBi are 0, 1, . . . , 2

s−1, for any integer n ∈ [0, 2s−1], n has a preimage of map θb(Bbit), where Bs = 0.

Now consider an integer n ∈ [2s, b]. Set set Bs = 1 and it suffices to show that 0 ≤ n− (b+ 1− 2s) ≤ 2s − 1.

Since n ≥ 2s, we have n − (b + 1 − 2s) ≥ 2 · 2s − b − 1 > 2 · b/2 + 1 − b − 1 = 0. Since n ≤ b, we have

n− (b+ 1− 2s) ≤ 2s − 1. Thus, 0 ≤ n− (b+ 1− 2s) ≤ 2s − 1, and then n has a preimage of map θb(Bbit),

where Bs = 1. It is clear #Bbit = ⌊log2(b)⌋+ 1. Since b+ 1− 2s > 0, we have #θb(Bbit) = ⌊log2(b)⌋+1. The

lemma is also valid when θb(Bbit) is evaluated over Fp, since all values in the computation are ≤ p− 1.

For instance, θ6(Bbit) = B0 + 2B1 + 3B2, θ7(Bbit) = B0 + 2B1 + 4B2, θ8(Bbit) = B0 + 2B1 + 4B2 +B3.

Remark 2.2 It is easy to check that θb is injective if and only if b = 2k − 1 for some positive integer

k. For instance, θ6 is not injective: 3 has two preimages B0 = 1, B1 = 1, B2 = 0 and B0 = 0, B1 = 0, B2 = 1.

2.2 Reduce polynomial system to MQ

It is well known that a polynomial system can be reduced to an MQ by introducing some new inde-

terminates. In this section, we give an explicit reduction that is needed in the complexity analysis in this

paper.

6 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

For any field F , let F [X] be the polynomial ring over F in the indeterminates X = {x1, x2, . . . , xn}.
Denote the sparseness (number of terms) of f ∈ F [X] as #f . For F = {f1, f2, . . . , fr} ⊂ F [X], denote

TF =
∑r

i=1 #fi to be the total sparseness of F , NF = #X = n to be the number of indeterminates in F ,

di = maxj degxi
(fj) to be the degree of F in xi, M(F) to be the set of all monomials in F , and C(F) to be

the size of the coefficients of the polynomials in F , (F)F [X] to be the ideal generated by F in F [X].

We want to introduce some new indeterminates to rewrite F as an MQ.

Lemma 2.3 Let F = {f1, f2, . . . , fr} ⊂ F [X]. We can introduce a set of new indeterminates V and

an MQ Q(F) ⊂ F [X,V] such that (F)F [X] = (Q(F))F [X,V] ∩ F [X]. Furthermore, we have #V = (TF +

1)
∑n

i=1⌊log2 di⌋ + nTF = O(TFD), NQ(F) = n + #V = O(TFD), #Q(F) = r + #V = O(TFD), TQ(F) =

TF + 2#V = O(TFD), and C(Q(F)) = C(F), where D = n+
∑n

i=1⌊log2 di⌋ and di = maxj degxi
(fj).

Proof If F is already an MQ, setQ(F) = F and V = ∅. Otherwise, first, we introduce new indeterminates

uij for j = 1, 2, . . . , ⌊log2 di⌋ and new polynomials ui1 − x2
i and ui(j+1) − u2

ij for j = 2, 3, . . . , ⌊log2 di⌋ − 1. It

is clear that x2j

i = uij . Without loss of generality, we assume di ≥ 2 and if di ≤ 1, then we do not need these

uij . Let Xα =
∏n

i=1 x
αi
i be a monomial of F , and αi =

∑li
k=1 2

νik be the binary representation of αi ≤ di,

where li ≤ ⌊log2 αi⌋+ 1 ≤ ⌊log2 di⌋+ 1 and νi1 < νi2 < · · · < νili . Thus

Xα =

n∏
i=1

x
∑li

k=1 2νik

i =

n∏
i=1

li∏
k=1

x2νik
i ≡

n∏
i=1

li∏
k=1

uiνik
.

Flatten the subscripts i and j in {uij}, we could rearrange the set {uij} as {ui | i = 1, 2, . . . , Lα}, and we have

Xα =
∏Lα

i=1 ui, where Lα =
∑

k lk ≤
∑n

i=1(⌊log2 di⌋+ 1) ≤
∑n

i=1⌊log2 di⌋+ n. To rewrite this product as an

MQ, we introduce new indeterminates {v1, v2, . . . , vLα−2} and quadratic polynomials v1−u1u2, vi−vi−1ui+1

for i = 2, 3, . . . , Lα − 2. Then the monomial Xα is represented as Xα = V (Xα) = vLα−2uLα
. Denote

Q(Xα) = {v1 − u1u2} ∪ {vi − vi−1ui+1 | i = 2, 3, . . . , Lα − 2}. Finally, we obtain an MQ

Q(F) = {ui1 − x2
i , ui(ki+1) − u2

iki
| i = 1, 2, . . . , n, ki = 2, 3, . . . , ⌊log2 di⌋ − 1}

∪{f̂j | j = 1, 2, . . . , r} ∪ ∪Xα∈M(F)Q(Xα) ⊂ F [X,V], (3)

where V = {ui, vk} and f̂i is obtained from fi by replacing Xα ∈ M(fi) by V (Xα) = vLα−2uLα
according to

the above procedure. For convenience, we denote

Q̂(fj) = f̂j , j = 1, 2, . . . , r. (4)

Let V = {ui, vk} be the set of new indetermiantes. It is clear that the number of these uij is
∑n

i=1⌊log2 di⌋.
To represent Xα, we need

∑n
i=1 li − 2 ≤

∑n
i=1⌊log2 di⌋ + n new indeterminates vi. In total, we have #V ≤∑n

i=1⌊log2 di⌋ + TF (
∑n

i=1 li − 2) ≤ (TF + 1)
∑n

i=1⌊log2 di⌋ + nTF = O(TFD). Then, NQ(F) = #X +#V =

O(TFD), since n ≤ D. #Q(F) = r + #V = O(TFD), since r ≤ TF . Q(F) contains r polynomials

Q̂(fj), j = 1, 2, . . . , r and #V binomials. Then TQ(F) = TF + 2#V = O(TFD). Since we only introduce new

coefficients ±1, we have C(Q(F)) = C(F).

Example 2.4 Let F = {f1 = x3
1x

5
2 + 2x7

1x
5
2 + 3}. We have d1 = 7, d2 = 5, and Q1 = {u11 −

x2
1, u12 − u2

11, u21 − x2
2, u22 − u2

21}. Then x3
1x

5
2 = x1u11x2u22 = v2u22, x

7
1x

5
2 = x1u11u12x2u22 = v5u22, where

Q2 = {v1−x1u11, v2−x2v1, v3−x1u11, v4−v3u12, v5−v4x2}. Finally, Q(F) = Q1∪Q2∪{v2u22+2v5u22+3}.
Note that the above representation is not optimal and we can use less new variables to represent f1 =

x1v2 + 2x1v2x
4
1 + 3 = x1v2 + 2x1v

′
3 + 3, where v′3 = v2u12.

Remark 2.5 As mentioned in Example 2.4, the representation for Q(F) is not optimal. The binary

decision diagram (BDD) [12] can be used to give a better representation for Q(F) by using less variables vi.

A TEMPLATE FOR JOURNAL 7

3 Polynomial system solving over finite fields

Let F = {f1, f2, . . . , fr} ⊂ Fq[X] be a finite set of polynomials over the finite field Fq, ti = #fi, and

TF =
∑r

i=1 ti. In this section, we give a quantum algorithm to find a solution of F in Fn
q . Denote the solutions

of F in Fn
q by VFq

(F). For a prime number p, we use the standard representation Fp = {0, 1, . . . , p− 1}.

3.1 Reduce MQ over Fp to MQ in Boolean variables over C

Let F = {f1, f2, . . . , fr} ⊂ Fp[X] be an MQ, ti = #fi, and TF =
∑r

i=1 ti. In this section, we will construct

a set of Boolean polynomials over C, from which we can obtain VFp(F). The reduction procedure consists of

the following two steps.

Step 1. We reduce F to a set of polynomials in Boolean variables over Fp. If p = 2, then the xi are

already Boolean and we can skip this step. We thus assume p > 2 and set

xi = θp−1(Xi) =

⌊log2(p−1)⌋−1∑
j=0

Xi,j2
j + (p− 2⌊log2(p−1)⌋)Xi,⌊log2(p−1)⌋, (5)

Xi = {Xi,j | j = 0, 1, . . . , ⌊log2(p− 1)⌋ − 1},
Xbit = ∪n

i=1Xi = {Xi,j | i = 1, 2, . . . , n, j = 0, 1, . . . , ⌊log2(p− 1)⌋}.

where θp−1 is defined in (2) and Xi,j are Boolean variables. Let fi =
∑ti

j=1 ci,jXαij , where αij = (αij(1), αij(

2), . . . , αij(n)) ∈ Nn. Substituting (5) into F , we have

fibit =

ti∑
j=1

ci,j

n∏
k=1

(θp−1(Xi))
αij(k) ∈ Fp[Xi], (6)

B(F) = {f1bit, f2bit, . . . , frbit} ⊂ Fp[Xbit].

For any indeterminates set S, let

HS = {x2 − x |x ∈ S}.

We have

Lemma 3.1 There is a surjective morphism Π1 : VFp
(B(F), HXbit

) ⇒ VFp
(F), where Π1(Xbit) =

(θp−1(X1), θp−1(X2), . . . , θp−1(Xn)). Furthermore, #Xbit = O(n log p) and the total sparseness of B(F) is

O(TF log2 p).

Proof By Lemma 2.1, it is easy to check that Π1 is surjective. Also by Lemma 2.1, #θp−1(Xi) =

⌊log2(p − 1)⌋ + 1 and hence #Xbit = O(n log p). Since F is an MQ, for any monomial Xαij of fi, we have

|αij | ≤ 2 and
∏n

k=1(θp−1(Xi))
αij(k) in (6) has at most O(log2 p) terms. Therefore, the total sparseness of

fibit is O(#fi log
2 p) and the total sparseness of B(F) is O(TF log2 p).

Step 2. We introduce new Boolean indeterminates Ui,j and reduce each fibit into a Boolean polynomial

over Z. Let t′i = #fibit,

Ui = {Ui,j , j = 0, 1, . . . , ⌊log2 t′i⌋},
Ubit = ∪r

i=1Ui = {Ui,j | i = 1, 2, . . . , r, j = 0, 1, . . . , ⌊log2 t′i⌋}, (7)

θt′i(Ui) =

⌊log2 t′i⌋−1∑
j=0

Ui,j2
j + (t′i + 1− 2⌊log2 t′i⌋)Ui,⌊log2 t′i⌋ ∈ Fp[Ui], (8)

P (fibit) = fibit − pθt′i(Ui) ∈ Z[Xbit,Ui],

8 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

P (F) = {P (fibit) | i = 1, 2, . . . , r} ⊂ Z[Xbit,Ubit], (9)

and we have

Lemma 3.2 There is a surjective morphism Π2 : VC(P (F), HXbit
, HUbit

) ⇒ VFp
(F), where

Π2(Xbit,Ubit) = Π1(Xbit) = (θp−1(X1), θp−1(X2), . . . , θp−1(Xn)).

Proof Let (X̌bit, Ǔbit) ∈ VC(P (F), HXbit
, HUbit

). Then (X̌bit, Ǔbit) is a Boolean solution of P (F) ⊂
Z[Xbit,Ubit] and

0 = P (fi)(X̌bit, Ǔbit) = fibit(X̌bit)− pθ⌊Ci/p⌋(Ǔbit) ≡ fibit(X̌bit) ≡ fi(Π1(X̌bit)) (mod p),

where the last equivalence comes from (6), and Π1(X̌bit) = (θp−1(X̌1), θp−1(X̌2), . . . , θp−1(X̌n)) is defined in

Lemma 3.1. As a conclusion, fi(Π (X̌bit)) ≡ 0 (mod p), or (θp−1(X̌1), θp−1(X̌2), . . . , θp−1(X̌n)) ∈ VFp
(F).

We now prove that Π2 is surjective. By Lemma 3.1, VFp
(B(F), HXbit

) ⇒ VFp
(F), so it is enough to

prove VC(P (F), HXbit
, HUbit

) ⇒ VFp(B(F), HXbit
). Let X̌bit ∈ VFp(B(F), HXbit

) and fibit =
∑t′i

j=1 c
′
i,jX

βij

bit ∈
Fp[Xbit], where c

′
i,j ∈ {0, 1, . . . , p−1} ⊂ Z. Denote Ci =

∑t′i
j=1 c

′
i,j ≤ (p−1)t′i. Then, fibit(X̌bit) ≡ 0 (mod p)

if and only if fibit(X̌bit) = 0, p, 2p, . . . , or t′ip, since ⌊Ci/p⌋p ≤ t′i. By Lemma 2.1, there exist Boolean

variables Ǔi = {Ǔi,j , j = 0, 1, . . . , ⌊log2 t′i⌋} such that fibit(X̌bit) = pθt′i(Ǔi). Hence (X̌bit, Ǔi) is a preimage of

X̌bit for the map VC(P (F), HXbit
, HUbit

) ⇒ VFp
(B(F), HXbit

). Then, the map Π2 is surjective.

Since the map Π1 in (5) is not injective, this map Π2 is also not injective.

Lemma 3.3 The polynomial system P (F) defined in (9) is of total sparseness TP (F) = O(TF log2 p)

and has NP (F) = O(n log p +
∑r

i=1 log ti + r log log p) indeterminates. Furthermore, we can compute P (F)

from F in Õ(TF log2 p) binary operations.

Proof By Lemma 3.1, B(F) is of total sparseness O(TF log2 p) and has O(n log p) indeterminates. Since

F is an MQ, by the proof of Lemma 3.1, we have t′i = #fi,bit ≤ ti log
2 p. Then, the number of Ui,j introduces

in (7) is #Ubit =
∑r

i=1⌊log2 t′i⌋ = O(
∑r

i=1 log t
′
i) = O(

∑r
i=1(log ti+log(log p)2)) = O(

∑r
i=1 log ti+r log log p).

Therefore, the total number of indeterminates is #Xbit +#Ubit = O(n log p+
∑r

i=1 log ti + r log log p).

From (9), the total sparseness of P (F) is TP (F) = TB(F)+
∑r

i=1 #θt′i(Ui) = TB(F)+#Ubit = O(TF log2 p+∑r
i=1 log ti + r log log p) = O(TF log2 p), since r ≤ TF and

∑r
i=1 log ti ≤

∑r
i=1 ti = TF .

To compute each 2j mod p costs O(log p) binary operations. Using the fast polynomial arithmetics [36],

to expand all the polynomials in B(F) costs Õ(TF log2 p) binary operations. The cost of other steps to obtain

P (F) is negligible.

Corollary 3.4 If F is a linear system, then TP (F) = O(TF log p) and NP (F) = Õ(n log p+
∑r

i=1 log ti+

r log log p).

Proof Since each fi is linear, we have TB(F) = O(TF log p), and TP (F) = O(TF log p + #Ubit) =

Õ(TF log p).

Remark 3.5 In (8), we can use θ⌊Ci/p⌋ instead of θt′i to introduce less indeterminates. To compute

each Ci =
∑t′i

j=1 c
′
ij costs t′i log p = O(ti log

3 p), and to compute all Ci costs O(TF log3 p), which is more than

TP (F) = O(TF log2 p). But, this is negligible comparing to the final complexity of the algorithm in Corollary

3.9.

A TEMPLATE FOR JOURNAL 9

3.2 Solving polynomial systems over Fp

Let F = {f1, f2, . . . , fr} ⊂ Fp[X]. By Lemma 2.3, we can convert F into an MQ Q(F) ⊂ Fp[X,V]. By

Lemma 3.2, we can convert Q(F) to an MQ in Boolean variables over C: P (Q(F)) ⊂ C[Xbit,Vbit,Ubit]. To

solve P (Q(F)), we need the following result, where a quantum algorithm for B-POSSO is given. A solution

a of B ⊂ C[X] is called a Boolean solution if each coordinate of a is either 0 or 1.

Theorem 3.6 (see [13]) For a finite set B ⊂ C[X] and ε ∈ (0, 1), there exists a quantum algorithm

QBoolSol which decides whether B = 0 has a Boolean solution and computes one if B = 0 does have Boolean

solutions, with probability at least 1−ε and complexity Õ(n2.5(n+TB)κ
2 log 1/ε), where TB the total sparseness

of B and κ is the condition number of B.

Here is the main result of this section.

Theorem 3.7 For F = {f1, f2, . . . , fr} ⊂ Fp[X] and ε ∈ (0, 1), there exists a quantum algorithm to find

a solution of F in Fp with probability at least 1−ε and the complexity of the algorithm is Õ(T 3.5
F D3.5 log4.5 pκ2

log 1/ε), where TF =
∑r

i=1 #fi is the total sparseness of F , D = n+
∑n

i=1 maxj⌊log2(degxi
(fj))⌋, and κ is

the condition number of P (Q(F)), also called the condition number of F .

We first estimate the total sparseness of P (Q(F)).

Lemma 3.8 P (Q(F)) is of total sparseness O(TFD log2 p) = O(nTF log d log2 p) and has O(TF D

log p) = O(nTF log d log p) indeterminates, where D = n+
∑n

i=1 maxj⌊log2(degxi
(fj))⌋ and d = max{2, log2(

degxi
(fj)), i = 1, 2, . . . , n, j = 1, 2, . . . , r}.

Proof By Lemma 2.3, NQ(F) = O(TFD), TQ(F) = O(TFD), and #Q(F) = O(TFD). By Lemma 3.3,

P (Q(F)) is of total sparseness O(TFD log2 p), and P (Q(F)) has NP (Q(F)) = O(NQ(F) log p+
∑

f∈Q(F) log(

#f) + #Q(F) log log p) indeterminates. From the proof of Lemma 2.3, Q(F) contains f̂j , j = 1, 2, . . . , r

and #V binomials. Then,
∑

f∈Q(F) log(#f) =
∑r

j=1 log(#f̂j) + #V log 2 = O(
∑r

j=1 log tj + TFD) =

O(TFD). Then NP (Q(F)) = O(TFD log p + TFD + TFD log log p) = O(TFD log p). Since D = n +∑n
i=1 maxj⌊log2(degxi

(fj))⌋ = O(n log d), we obtain the bounds involving n and d.

Proof of Theorem 3.7. We can find a solution of F as follows. Construct P (Q(F)) ⊂ C[Xbit,Vbit,

Ubit] according to Lemma 2.3 and Lemma 3.2. Let b = QBoolSol(P (Q(F)), ε). If b = ∅ then the al-

gorithm fails to find a solutioon. Let b = (X̌bit, V̌bit, Ǔbit) and X̌bit = (X̌1,0, X̌1,1, . . . , X̌1,⌊log2(p−1)⌋, X̌2,0,

X̌2,1, . . . , X̌n,⌊log2(p−1)⌋). Let X̂ = (θp−1(X̌1), θp−1(X̌2), . . . , θp−1(X̌n)), where X̌i = (X̌i,0, X̌i,1, . . . , X̌i,⌊log2(p−1)⌋).

By Lemma 2.3, Lemma 3.2, and Theorem 3.6, X̂ is a solution of F in Fp with probability at least 1− ε.

We now give the complexity. By Lemma 3.8, P (Q(F)) is of sparseness O(TFD log2 p) and has O(TFD

log p) indeterminates. By Theorem 3.6, we can find a Boolean solution of P (Q(F)) in time Õ((TFD log p)2.5

(TFD log p + TFD log2 p)κ2 log 1/ε) = Õ(T 3.5
F D3.5 log4.5 pκ2 log 1/ε). The complexity for other steps can be

neglected.

Let d = max{2,maxni=1 maxj degxi
(fj)}. Then D = O(n log d). Since the solutions are in Fp, we can

assume d < p. By Theorem 3.7, we have

Corollary 3.9 The complexity to find a solution for F = 0 mod p is Õ(n3.5T 3.5
F log3.5 d log4.5 p κ2

log 1/ε) = Õ(n3.5T 3.5
F log8 pκ2 log 1/ε).

Corollary 3.10 If F is an MQ, then the complexity is Õ((n log p+ r)2.5(n log p+TF log2 p)κ2 log 1/ε).

Proof If F is an MQ, we have P (Q(F)) = P (F). By Lemma 3.3, NP (F) = O(n log p +
∑r

i=1 log ti +

10 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

r log log p) and TP (F) = O(TF log2 p). Considering
∑r

i=1 log ti = log(
∏r

i=1 ti) ≤ log((
∑r

i=1 ti/r)
r) = r log(

TF/r), NP (F) = O(n log p + r log TF). By Theorem 3.6, the complexity is Õ(N2.5
P (F)(NP (F) + TP (F))κ

2

log 1/ε) = Õ((n log p + r log TF)
2.5((n log p + r log TF) + TF log2 p)κ2 log 1/ε) = Õ((n log p + r)2.5(n log p +

TF log2 p)κ2 log 1/ε). In the last step, we here use the reduction (a+b log c)(c+d) ≤ (a+b) log(c+d)(c+d) =

Õ((a+ b)(c+ d)). Considering n < TF , the complexity is proved.

Corollary 3.11 If p = 2, then the complexity to find a solution of F = 0 mod 2 is Õ((n + r)2.5(n +

TF)κ
2 log 1/ε).

Proof If p = 2, then we do not need to convert G to MQ and TP (F) = O(TF +
∑r

i=1 log ti) = O(TF),

NP (F) = O(n+
∑r

i=1 log ti). Similar to the proof of Corollary 3.10, the complexity is Õ((n+
∑r

i=1 log ti)
2.5(n+

TF)κ
2 log 1/ε) = Õ((n+ r)2.5(n+ TF)κ

2 log 1/ε).

3.3 Polynomial equation solving over Fq

In this section, we consider polynomial equation solving in a general finite field Fq by reducing the problem

to equation solving over Fp.

If q = pm with p a prime number and m ∈ Z>1, then Fq = Fp(θ), where φ(θ) = 0 for a monic irreducible

polynomial φ with deg(φ) = m. Let g ∈ Fq[X] = Fp[θ,X]. By setting xi =
∑m−1

j=0 xijθ
j and write each

coefficient c =
∑m−1

j=0 cjθ
j in g, g can be written as g =

∑m−1
j=0 gjθ

j , where gj ∈ Fp[Xθ] and Xθ = {xij | i =
1, 2, . . . , n, j = 0, 1, . . . ,m − 1} are variables over Fp. We denote G(g) = {g0, g1, . . . , gm−1} ⊂ Fp[Xθ]. For a

polynomial set F ⊂ Fq[X], we denote

G(F) =
⋃
f∈F

G(f) ⊂ Fp[Xθ]. (10)

Lemma 3.12 There is an isomorphism Πq : VFp
(G(F)) → VFq

(F), where Πq(xij) = (
∑m−1

j=0 x1jθ
j ,∑m−1

j=0 x2jθ
j , . . . ,

∑m−1
j=0 xnjθ

j). Furthermore, for an MQ F = {f1, f2, . . . , fr} ⊂ Fq[X] with total sparseness

TF , G(F) ⊂ Fp[Xθ] is an MQ with total sparseness ≤ m3TF , #G(F) = mr, and #Xθ = mn.

Proof It is easy to show that #G(F) = m#F , #Xθ = m#X and G(F) is also an MQ. Then the

total sparseness of G(F) will be concerned. F has TF terms, where each term is of degree ≤ 2. For

x =
∑m−1

i=0 xiθ
i and y =

∑m−1
i=0 yiθ

i, let cθk =
∑m−1

j=0 cjkθ
j mod φ(θ) for any k ∈ N, then we have

cxy =
∑m−1

i=0

∑m−1
j=0 xiyj

∑m−1
k=0 ck (i+j)θ

k =
∑m−1

i=0 giθ
i, where gi ∈ Fp[x0, x1, . . . , xm−1, y0, y1, . . . , ym−1]

is a quadratic polynomial with TG(cxy) ≤
∑m−1

i=0

∑m−1
j=0

∑m−1
k=0 1 = m3. Thus an MQ F over Fq can be

represented as another MQ G(F) over Fp with TG(F) ≤ m3TF .

We have

Theorem 3.13 There is a quantum algorithm to find a solution of F ⊂ Fq[X] with probability at

least 1 − ε and in time Õ(m5.5T 3.5
F D3.5 log4.5 pκ2 log 1/ε), where TF is the total sparseness of F , D =

n +
∑n

i=1⌊log2 maxj degxi
fj⌋, and κ is the condition number of F , defined as the condition number of the

Macaulay matrix [13] of P (G(Q(F))).

Proof Using Lemma 3.12, we can solve F over Fq similar to the method given in the proof of Theorem

3.7. Rather than solving F1 = P (Q(F)) ⊂ C[Xbit,Vθbit,Uθbit] with Algorithm QBoolSol, we now solve

F1 = P (G(Q(F))) ⊂ C[Xθbit,Vθbit,Uθbit] with algorithm QBoolSol, where Q(F) is defined in (10) and

Xθbit is the bit representation for Xθ.

We now prove the complexity. By Lemma 2.3, Q(F) has O(TFD) indeterminates and total sparse-

A TEMPLATE FOR JOURNAL 11

ness O(TFD). G(Q(F)) has O(mTFD) indeterminates and total sparseness O(m3TFD). Since G(Q(F))

is an MQ, by Corollary 3.10, the complexity is Õ(((mTFD log p +m(TFD))2.5(m3TFD) log2 pκ2 log 1/ε) =

Õ(m5.5T 3.5
F D3.5 log4.5 pκ2 log 1/ε).

Corollary 3.14 If F is an MQ, the complexity is Õ(m3.5(n log p+r)2.5(n log p+m2TF log2 p)κ2 log 1/ε).

Corollary 3.15 If q = 2m, then the complexity is Õ(m5.5T 3.5
F D3.5κ2 log 1/ε). Moreover, if F ⊂ F2m [X]

is an MQ, then the complexity is Õ(m3.5(n+ r)2.5(n+m2TF)κ
2 log 1/ε).

4 Reduce inequalities to MQ in Boolean variables

In this section, we show how to reduce the inequality constraints I = {0 ≤ gi(X,Y) ≤ bi, i = 1, 2, . . . , s; 0 ≤
yk ≤ uk, k = 1, 2, . . . ,m;X ∈ Fn

p ;Y ∈ Zm} of problem (1) into a B-POSSO, where g1, g2, . . . , gs ∈ Z[X],
b1, b2, . . . , bs, u1, u2, . . . , um ∈ N. We emphasize that for g ∈ C[X,Y], X̌ ∈ Fn

p , and Y̌ ∈ Zm, g(X̌, Y̌) is

evaluated in C.

4.1 Reduce polynomial system over C to MQ in Boolean variables over C

Let G = {g1, g2, . . . , gs} ⊂ Z[X,Y]. We will reduce G into an equivalent MQ in Boolean variables over C
under the condition xi ∈ Fp = {0, 1, . . . , p− 1} and 0 ≤ yj ≤ uj . Let dg = maxsl=1 deg(gl).

Following Lemma 2.3, let Q(G) ⊂ Z[X,Y,V] be the MQ defined in (3), where V is the set of new

indeterminates introduced in Lemma 2.3. We will reduce X, Y, and V = {v1, v2, . . . , vl} to Boolean variables.

For X, we use (5) to rewrite them as Boolean variables Xbit. For Y, using Lemma 2.1, the integers yi satisfying

0 ≤ yi ≤ ui can be represented exactly as follows.

yi = θui(Yi) =

⌊log2 ui⌋−1∑
j=0

Yi,j2
j + (ui − 2⌊log2 ui)⌋ + 1)Yi,⌊log2 ui⌋,

Yi = {Yi,j | j = 0, 1, . . . , ⌊log2 ui⌋}, (11)

Ybit = ∪m
i=1Yi

where Yi,j are Boolean variables.

From Lemma 2.3, each vi ∈ Vk represents a monomial in X and Y of degree ≤ dg. So, 0 ≤ vi ≤ hdg for

h = max{p− 1, u1, u2, . . . , um}. By Lemma 2.1, we can write vi as

vi = θhdg (Vi,bit) =

⌊dg log2 h⌋−1∑
j=0

Vi,j2
j + (hdg − 2⌊dg log2 h⌋ + 1)Vi,⌊dg log2 h⌋, (12)

where Vi,bit = {Vi,j | j = 0, 1, . . . , ⌊dg log2 ui⌋}, Vbit = ∪t
i=1Vi,bit, and each Vi,j is a Boolean variable.

Let ĝk = Q̂(gk) ∈ Z[X,Y,V] be defined in (4), Q̂(G) = Q(G) \ {ĝ1, ĝ2, . . . , ĝs}. Substituting xi in (5), and

yi in (11), and vi in (12) into Q(G), ĝk, and Q̂(G), we obtain

B(G), gk, B(G) in Z[Xbit,Ybit,Vbit]. (13)

The following result shows that G and B(G) are equivalent.

Lemma 4.1 For X̌ ∈ Fn
p and Y̌ ∈ Zn such that 0 ≤ y̌j ≤ uj for each j, there exists a V̌bit such that

gk(X̌, Y̌) = gk(X̌bit, Y̌bit, V̌bit) for k = 1, 2, . . . , s and B(G)(X̌bit, Y̌bit, V̌bit) = 0.

Proof From (3), it is easy to see that starting from X̌ ∈ Fn
p and Y̌ ∈ Zm, one may obtain a unique V̌ such

that B̃(gk)(X̌, Y̌, V̌) = 0 and gk(X̌, Y̌) = ĝk(X̌, Y̌, V̌) for each k. It suffices to show that X̌, Y̌, V̌ can be written

12 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

in their Boolean forms, which is valid for X̌, Y̌ due to (5) and (11) and Lemma 2.1. From Lemma 2.3, each vi ∈
V is a monomial in X and Y of degree ≤ dg. So, 0 ≤ vi ≤ hdg for h = max{p− 1, u1, u2, . . . , um}. By Lemma

2.1, there exists a V̌bit such that gk(X̌, Y̌) = ĝk(X̌, Y̌, V̌) = gk(X̌bit, Y̌bit, V̌bit) and B(g)(X̌bit, Y̌bit, V̌bit) = 0.

Lemma 4.2 B(G) = {gk} ∪ B(G) defined in (13) has O((m + n)TGdg log dg log h) number of vari-

ables and total sparseness O((m + n)TGd
2
g log dg log

2 h), and C(B(G)) is O(C(G) + dg log h), where h =

max{p− 1, u1, u2, . . . , um} and dg = maxsl=1 deg(gl).

Proof By Lemma 2.3, NQ(G) = O((m+n)TG log dg), TQ(G) = O((m+n)TG log dg), and C(Q(G)) = C(G).
Note that |X| = n, |Y| = m, and |V| is bounded by NQ(G) = O((m+n)TG log dg). By (5), |Xbit| = O(n log p) =

O(n log h). By (11), |Ybit| = O(m log h). By (12) and Lemma 2.1, |Vbit| = O((m + n)TG log dg log h
dg)) =

O((m+n)dgTG log dg log h)). By (14) and Lemma 2.1, we have #Gbit = O(s log b). Since s ≤ TG , p−1, b ≤ h,

the number of Boolean variables are NB(G) = O((m+ n)dgTG log dg log h).

Note that monomials of Q(G) are of the form xixj , xiyj , xivj , yiyj , yivj , or vivj when we rewrite them

as Boolean variables, the sparseness of the new expressions are bounded by log2 p, log p log h, dg log p log h,

log2 h, dg log
2 h and d2g log

2 h, respectively. The total sparseness of B(G) is O((m+ n)TGd
2
g log dg log

2 h).

From (12) and the fact that B(G) is MQ, the bit size of the coefficients of B(G) is O(C(G) + dg log h).

Remark 4.3 For inequalities involving variables over finite fields, the solution of the inequalities de-

pends on the representation of Fp. For the general optimization problem 1, we just use standard representation

for Fp. For specific problems, such as the SIS problem in Section 7, we use different representations for Fp

to find the “correct” solution.

4.2 Reduce inequalities into MQ in Boolean variables

We now consider the inequality constraints of problem (1): I = {0 ≤ gi(X,Y) ≤ bi, i = 1, 2, . . . , s; 0 ≤
yk ≤ uk, k = 1, 2, . . . ,m;X ∈ Fn

p}, where g1, g2, . . . , gs ∈ Z[X,Y], b1, b2, . . . , bs, u1, u2, . . . , um ∈ N. We will

reduce I into an MQ in Boolean variables. Let

Gi = {Gi,k | k = 0, 1, . . . , ⌊log2 bi⌋},Gbit = ∪s
i=1Gi,

δ(gi) = θbi(Gi)− gi =

⌊log2 bi⌋−1∑
k=0

Gi,k2
k + (bi − 2⌊log2 bi⌋ + 1)Gi,⌊log2 bi⌋ − gi (14)

I(I) = {δ(g1), δ(g2), . . . , δ(gs)} ∪B(G) ⊂ Z[Xbit,Ybit,Vbit,Gbit]

where Gi,k are Boolean variables, gi and B(G) are defined in (13). We summarize the result of this section

as the following result.

Lemma 4.4 X̌ ∈ Fn
p and Y̌ ∈ Zm satisfy the constraint I if and only if there exist Boolean values

V̌bit, Ǧbit such that (X̌bit, Y̌bit, V̌bit, Ǧbit) is a solution of I(I).

Proof By Lemma 2.1, 0 ≤ gi(Xbit,Ybit,Vbit) ≤ bi if and only if ∃Gbit such that δ(gi)(Xbit,Ybit,Vbit,

Gbit) = 0. Then, the lemma is a consequence of Lemma 4.1.

We now estimate the parameters of I(I). Let b = maxsi=1 bi, dg = maxsi=1 deg(gi), h = max{p −
1, b, u1, u2, . . . , um}, G = {g1, g2, . . . , gs} and TG ≥ s the total sparseness of G. Then, we have

Lemma 4.5 I(I) has O((m+n)TGdg log dg log h) variables and total sparseness O((m+n)TGd
2
g log dg

log2 h). C(I(I)) is O(C(G) + dg log h) .

A TEMPLATE FOR JOURNAL 13

Proof Since B(G) = {gk} ∪ B(G), from (14), NI(G) = NB(G) + #Gbit, TI(G) = TB(G) +
∑

i #θbi(Gi) =

TB(G) + #Gbit, and C(I(G)) = C(B(G)). Note that #Gbit = O(s log b). Since TG ≥ s, #Gbit is negligible

comparing to the complexity of B(G) and the lemma follows directly from Lemma 4.2.

From Lemma 4.5, the total sparseness and the coefficients of I(G) are well controlled.

Corollary 4.6 If gi are linear, then I(G) ⊂ Z[Xbit,Ybit,Gbit], TB(G) = O(TG log h), and NB(G) =

(n+m) log h. Furthermore, TI(I) = O(TG log h+ s log b) and NI(I) = O((n+m) log h+ s log b).

Proof Since each gi is linear, we have Q̂(fi) = fi. Then the variable Vk,i,j are not needed and B(G) has
(n+m) log h indeterminates. Also, TB(G) = O(TG log h). The results for I(G) can be proved similarly.

4.3 Bounded integer solutions of polynomial inequalities and equations

As a direct application of the reduction method given in this section, we can give a quantum algorithm

to find a feasible solution to the inequality constraint I = {0 ≤ gi(X,Y) ≤ bi, i = 1, 2, . . . , s; 0 ≤ yk ≤ uk, k =

1, 2, . . . ,m;X ∈ Fn
p}, where g1, g2, . . . , gs ∈ Z[X,Y], b1, b2, . . . , bs, u1, u2, . . . , um ∈ N. Using the notation in

Lemma 4.5, we have

Proposition 4.7 For ε ∈ (0, 1), there is a quantum algorithm to compute a feasible solution to I with

probability > 1 − ε and in time Õ((m + n)3.5T 3.5
G d4.5g log4.5 hκ2 log 1/ε), where κ is the condition number of

I(I) defined in (14).

Proof By Lemma 4.4, to find a feasible solution to I, we only need to find a Boolean solution of

I(I). By Lemma 4.5, NI(I) = O((m + n)TGdg log dg log h), TI(I) = O((m + n)TGd
2
g log dg log

2 h). Since

NI(I) < TI(I), by Theorem 3.6, the complexity to find a Boolean solution of I(I) is Õ(N2.5
I(I)TI(I)κ

2 log 1/ε) =

Õ((m+ n)3.5T 3.5
G d4.5g log4.5 hκ2 log 1/ε).

A closely related problem is to find bounded integer solutions of a polynomial system over Z.

Proposition 4.8 Let G = {g1, g2, . . . , gs} ⊂ Z[Y] and ε ∈ (0, 1). There is a quantum algorithm to

compute an integer solution b = (b1, b2, . . . , bm) of G = 0 satisfying 0 ≤ bi ≤ ui for each i with probability

> 1− ε and in time Õ(m3.5T 3.5
G d4.5g log4.5 hκ2 log 1/ε), where κ is the condition number of B(G) to be defined

in the proof and h = maxi ui.

Proof By Lemma 4.1, to find an integer solution to G = 0, we need just to find a Boolean solution of B(G)
defined in (13). By Lemma 4.2, we have NB(G) = O(mTGdg log dg log h) and TB(G) = O(mTGd

2
g log dg log

2 h).

Since NB(G) < TB(G), by Theorem 3.6, the complexity to find a Boolean solution of B(G) is Õ(N2.5
B(G)TB(G)κ

2

log 1/ε) = Õ(m3.5T 3.5
G d4.5g log4.5 hκ2 log 1/ε).

For a general polynomial system in C[X], the bound for the coordinates of the solutions could be double-

exponential, as shown by the following example.

Example 4.9 For F = {x1 − 2, x2 − x2
1, x3 − x2

2, . . . , xn − x2
n−1} ⊂ C[X], VC(F) = {(2, 22, 24, . . . ,

22
n−1

)}.

On the other hand, the isolated solutions of a polynomial system is at most double-exponential [40, p. 341].

In a similar way, it is also possible to find bounded rational solutions of a polynomial system.

14 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

5 Optimization over finite fields

5.1 A quantum algorithm for the optimization problem

In this section, we give a quantum algorithm to solve the optimization problem (1). The idea is to search

for the minimal value of the objective function by solving several B-POSSOs, which will be done in four

steps.

Step 1. By Lemmas 2.3 and 3.2, we reduce the equational constraints fj(X) = 0 mod p, j = 1, 2, . . . , r

to an MQ in Boolean variables over C: F1 = P (Q(F)) ⊂ C[Xbit,V1bit,Ubit].

Step 2. By Lemma 4.4, we reduce the inequality constraints I = {0 ≤ gi(X,Y) ≤ bi, i = 1, 2, . . . , s} to

an MQ in Boolean variables over C: G1 = I(I) ⊂ C[Xbit,Ybit,V2bit,Gbit].

Step 3. Applying Lemma 4.1 to the objective function o(X,Y), we can reduce o to a quadratic polynomial

in Boolean variables o ∈ C[Xbit,Ybit,V3bit] and an MQ G2 = B({o}) ⊂ Z[Xbit,Ybit,V3bit] defined in (13).

For simplicity of presentation, we denote Vbit = V1bit ∪ V2bit ∪ V3bit. Let

C = F1 ∪ G1 ∪ G2 ⊂ C[Xbit,Ybit,Vbit,Ubit,Gbit]. (15)

A (0, 1)-programming is an optimization problem where all the arguments take values of 0 or 1. By

Lemmas 2.3, 3.2, 4.1, and 4.4, we have

Lemma 5.1 Problem (1) is equivalent to the following nonlinear (0, 1)-programming problem

min
Wbit

o(Wbit) subject to C(Wbit) = 0 (16)

where Wbit = (Xbit,Ybit,Vbit,Ubit,Gbit) and C is defined in (15).

Step 4. The basic idea to search for a minimal value of the objective function is as follows. Since all

variables are bounded, the objective function is also bounded, so we may assume α ≤ o(Žbit) < µ for some

α, µ ∈ N. We divide [α, µ) into two roughly equal parts: [α, α + 2β) and [α + 2β , µ) and solve the following

decision problem

∃Wbit(o(Wbit) ∈ [α, α+ 2β) and (C(Wbit) = 0)). (17)

Let

δαβ(o) = α+

β−1∑
j=0

Fj2
j − o(Wbit) ∈ Z[Zbit], (18)

Lαβ = C ∪ {δαβ(o)} ⊂ Z[Zbit], (19)

where Zbit = Wbit ∪ Fbit = {Xbit,Ybit,Vbit,Ubit,Gbit,Fbit} and Fbit = {f0, f1, . . . , Fβ−1} are Boolean vari-

ables. By Lemma 2.1, we have

Lemma 5.2 Problem (17) has a solution W̌bit if and only if Lαβ = 0 has a solution Žbit = (W̌bit, F̌bit).

If the answer to Problem (17) is yes, we repeat the procedure for the new feasible interval [α, o(Žbit)). If

the answer is no, we repeat the procedure for the new feasible interval [α+2β , µ). The procedure ends when

µ = α+ 1.

We now give Algorithm 5.3 to solve problem (1). For convenience in later usage, we add a new constraint

0 ≤ o < u for a given u ∈ N> 0.

Algorithm 5.3 (QFpOpt)

A TEMPLATE FOR JOURNAL 15

Input: Problem (1), ε ∈ (0, 1), and a u ∈ Z>0 such that 0 ≤ o < u.

Output: ô, X̌ ∈ Fn
p , and Y̌ ∈ Zm such that ô = o(X̌, Y̌) is the minimal value of o, or “fail”.

Step 1: Set α = 0, µ = u.

Step 2: Compute C in (15).

Step 3: Let β = ⌊log2(µ− α)⌋ − 1 and compute Lαβ ⊂ C[Zbit] defined in (19).

Step 4: Let Žbit = QBoolSol(Lαβ , ε/ log4/3 u), where QBoolSol is from Theorem 3.6.

Step 5: If Algorithm QBoolSol returns a solution: Žbit = {X̌bit, Y̌bit, V̌bit, Ǔbit, Ǧbit, F̌bit}, then

Step 5.1: Compute X̌ and Y̌ from X̌bit and Y̌bit according to (5) and (11), respectively.

Step 5.2: If F̌bit = 0, return α, X̌ and Y̌.

Step 5.3: If F̌bit ̸= 0, let µ = o(Žbit) and goto Step 3.

Step 6: If Žbit = ∅, then

Step 6.1: If µ− α > 1, let α = α+ 2β , and goto Step 3.

Step 6.2: If µ− α = 1 and µ ̸= u, return µ, X̌ and Y̌.

Step 6.3: If µ− α = 1 and µ = u, return “fail”.

Let b = maxsi=1 bi, df = maxi,j{2,deg(fi, xj)}, dg = maxi,j{2,deg(gi, xj)}, h = max{p − 1, u1, u2, . . . , um},
and Go = {o, g1, g2, . . . , gs}. Then, we have

Theorem 5.4 Algorithm 5.3 gives a solution to problem (1) with constraint 0 ≤ o < u with success

probability ≥ 1− ε and in complexity Õ(N2.5
Lαβ

TLαβ
κ2 log(1/ε) log u), where

NLαβ
= Õ(nTF log df log p+ (m+ n)TGo

dg log h+ log u),

TLαβ
= Õ(nTF log df log

2 p+ (m+ n)TGo
d2g log

2 h+ log u),

and κ is the maximal condition number of all Lαβ in the algorithm, called the condition number of the

problem.

Proof We first prove the termination of the algorithm by showing that the feasible interval [α, µ) will

decrease strictly after each loop starting from Step 3. In Step 3, we split [α, µ) = [α, α + 2β) ∪ [α + 2β , µ)

with (µ−α)/4 < 2β ≤ (µ−α)/2. In Step 5.3, we start a new loop for [α, µ1), where µ1 = o(Žbit) < 2β . Then

after this step, the feasible interval will decrease by at least 1
2 (µ−α) due to 2β ≤ (µ−α)/2. In Step 6.1, we

start a new loop for [α+2β , µ). After this step, the feasible interval will decrease by more than 1
4 (µ−α) due

to (µ − α)/4 < 2β . In summary, after each loop, the algorithm either terminates or has a smaller feasible

interval which is of at most 3/4 of the size of the feasible interval of the previous loop. So, the algorithm will

terminate after at most log4/3 u loops.

We now prove the correctness of the algorithm, which follows from the following claim:

The minimal value of o is in [α, µ] during the algorithm (20)

if the minimal value exists and Algorithm QBoolSol in Step 4 always returns a solution of Lαβ if such a

solution exists. The above claim is obviously true for the initial values given in Step 1.

16 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

In Step 5, by Lemma 5.2, we find a solution Žbit such that o(Žbit) ∈ [α, α+2β). In Step 5.2, the condition

F̌bit = 0 means that o(Žbit) = α and the minimal solution o is found by claim (20). In Step 5.3, the condition

F̌bit ̸= 0 means that o(Žbit) ̸= α and we have a new µ1 = o(Žbit). Since o ∈ [α, µ1] has a solution Žbit, by

claim (20), the minimal value of o is in [α, µ1], and the claim is proved in this case.

In Step 6, QBoolSol returns ∅, meaning that o(Žbit) ∈ [α, α+2β) has no solution and the minimal value

of o must be in [α + 2β , µ) if it exists. So, in Step 6.1, we will find the minimal value of o in [α + 2β , µ)

in the next loop, and claim (20) is proved in this case. In Step 6.2, we have µ − α = 1 and µ ̸= u. Since

o ∈ [α, α + 2β) has no solution, by claim (20), µ = α + 1 must be the minimal value of o. Note that in

Step 6, we only update the lower bound α. In Step 5, we only update the upper bound µ, and when µ is

updated we have µ = o(Žbit) = o(X̌, Y̌). Therefore, µ = o(X̌, Y̌) is always valid, once Step 5 is executed. The

condition µ ̸= u implies that Step 5 has been executed at least one time and hence µ = o(X̌, Y̌). In Step 6.3,

the conditions µ− α = 1 and µ = u means that Step 5 is never executed and the problem has no solution.

Finally, the solution obtained by Algorithm 5.3 is correct if and only if each Step 4 is correct, that is, if

Lαβ does have solutions, then QBoolSol will return a solution. Since Step 4 will execute at most log4/3 u

times, by Theorem 3.6, the probability for the algorithm to be correct is at least (1−ε/ log4/3 u)
log4/3 u > 1−ε.

We now analyse the complexity. Note that 2 is added to df to make sure log df ̸= 0. By Lemma 3.8, F1

is of total sparseness O(nTF log df log
2 p) and has O(nTF log df log p) indeterminates.

By Lemma 4.5, G1 = I(I) is of total sparseness O((m+n)TGd
2
g log dg log

2 h) and has O((m+n)dgTG log dg

log h) indeterminates. Also, G2 = B(o) is of total sparseness O((m + n)Tod
2
g log dg log

2 h) and has O((m +

n)dgTo log dg log h) indeterminates.

δαβ(o) is of total sparsenessO(log u+To) = O(log u+Tod
2
g log

2 h) and hasO(log u+(m+n)dgTo log dg log h)

indeterminates, since 2β − α < u.

Then, Lαβ = C∪{δαβ(o)} = F1∪G1∪G2∪{δαβ(o)} is of total sparseness TLαβ
= TF1+TG1+TG2+Tδαβ(o) =

Õ(nTF log df log
2 p+ (m+n)TGo

d2g log
2 h+ log u) and has NLαβ

= Õ(nTF log df log p+ (m+n)dgTGo
log h+

log u) indeterminates.

In Step 4, by Theorem 3.6, since NLαβ
< TLαβ

, we can find a Boolean solution of Lαβ in time Õ(N2.5
Lαβ

(NLαβ
+ TLαβ

)κ2 log(log u/ε)) = Õ(N2.5
Lαβ

TLαβ
κ2 log(log u/ε)). It is clear that in each loop, the complexity of

the algorithm is dominated by Step 4. Since we have at most log4/3 u loops, the complexity for Algorithm

5.3 is Õ(N2.5
Lαβ

TLαβ
κ2 log((log4/3 u)/ε) log4/3 u) = Õ(N2.5

Lαβ
TLαβ

κ2 log(1/ε) log u).

We now show how to solve the original problem (1).

Corollary 5.5 Algorithm 5.3 gives a solution to problem (1) with the same probability and complexity

for u = 2#(o)hoh
do + 1, where ho is the height of the coefficients of o, h = max{p − 1, u1, u2, . . . , um}, and

do = deg(o).

Proof It is easy to see that |o| ≤ #(o)hoh
do , so 0 ≤ õ < u for the new objective function õ = o +

#(o)hoh
do . Then Theorem 5.4 can be used to the new optimization problem.

Remark 5.6 Note that the upper bound u = 2#(o)hoh
do + 1 for the objective function is quite

large. An alternative way is to use Algorithm QBoolSol in Theorem 3.6 to find a solution X̌bit, Y̌bit for

F1 ∪ G1 ⊂ C[Xbit,Ybit,V1bit,V2bit,Ubit,Gbit] and set u = 2o(X̌, Y̌) + 1. Then for the new objective function

õ = o+ o(X̌, Y̌), we can use the constraint 0 ≤ õ < u to find a solution to problem (1). This does not change

the complexity of the algorithm.

A TEMPLATE FOR JOURNAL 17

5.2 Applications to linear (0, 1)-programming and QUBO

In this section, we use two (0, 1)-programming problems to illustrate Algorithm 5.3. QUBO means

quadratic unconstrained binary optimization, which is the mathematical problem that can be solved by the

D-Wave [23].

The linear (0, 1)-programming is one of Karp’s 21 NP-complete problems [24] which covers lots of fun-

damental computational problems, such as the subset sum problem, the assignment problem, the traveling

salesperson problem, the knapsack problem, etc. For more information about this problem, please refer

to [18]. The linear (0, 1)-programming can be stated as follows [8]

min
Ybit∈{0,1}m

o(Ybit) =

m∑
j=1

cjyj subject to

m∑
j=1

aijyj ≤ hi, i = 1, 2, . . . , s (21)

where Ybit = (y1, y2, . . . , ym) and aij , cj , hi ∈ Z for any i, j. We reduce problem (21) to the standard form

(1). Let ei =
∑m

j=1 |aij | ∈ Z≥0, 1 ≤ i ≤ s and gi =
∑m

j=1 aijyj + ei and bi = hi + ei, 1 ≤ i ≤ s. Let

u = 2
∑m

i=1 |cj |+ 1 ∈ N. Then, problem (21) is equivalent to

min
Ybit∈{0,1}m

2

oB(Ybit) =

m∑
j=1

cjyj + (u− 1)/2 subject to (22)

0 ≤ oB(Ybit) < u; 0 ≤ gi ≤ bi, i = 1, 2, . . . , s.

So we can use Algorithm 5.3 to solve problem (22). Let G = {g1, g2, . . . , gs}. Since gi are linear, we do

not need to compute Q(gi) and Vbit = ∅ (see (12) for definition) and B(G) = ∅ (see (13) for definition). Since

yj are Boolean variables, we do not need to use (11) to expand them and hence gi = gi. So, (14) becomes

δ(gi) = θbi(Gi) =

⌊log2 bi⌋−1∑
k=0

Gi,k2
k + (bi − 2⌊log2 bi⌋ + 1)Gi,⌊log2 bi⌋ − gi

I(I) = {δ(g1), δ(g2), . . . , δ(gs)} ⊂ Z[Ybit,Gbit],

where Gbit = {Gikl} are Boolean variables and θbi(Gi) is defined in (2). Equation (18) becomes

δαβ(o) = α+

β−1∑
j=0

Fj2
j − oB ∈ Z[Ybit,Fbit], (23)

Lαβ = I(I) ∪ {δαβ(o)} ⊂ Z[Ybit,Gbit,Fbit],

where Fbit = {F1, F2, . . . , Fβ−1} are Boolean variables.

Proposition 5.7 We can use Algorithm 5.3 to solve problem (22) with probability ≥ 1− ε and in time

Õ(s(m2.5+s2.5 log2.5 h)(m+log h)κ2 log(1/ε) log u) where u = 2
∑m

i=1 |cj |+1, b = maxsi=1 bi, h = max{u, b},
and κ is the maximal condition number of Lαβ.

Proof Since #Ybit = m, #Gbit = s log b, and #Fbit = log u, Lαβ has m + s log b + log u Boolean

variables and total sparseness s(m + log b) +m + 1 + log u. Since u, b ≤ h, Lαβ has NLαβ
= O(m + s log h)

Boolean variables and total sparseness TLαβ
= O(s(m+ log h)). By Theorem 3.6, the complexity is Õ((m+

s log h)2.5(s(m+ log h))κ2 log(1/ε) log u) = Õ(s(m2.5 + s2.5 log2.5 h)(m+ log h)κ2 log(1/ε) log u).

In the remainder of this section, we consider the QUBO problem. The QUBO problem is to find an

Ybit = (y1, y2, . . . , ym)T ∈ {0, 1}m that minimizes YT
bitQYbit for an upper-triangular matrix Q = (Qi,j) with

18 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

Qi,j ∈ Z, which can be written as the following (0, 1)-programming problem:

min
Y∈{0,1}m

oQ(Ybit) = YT
bitQYbit (24)

In order to solve this problem, we need to give the lower and upper bounds for the objective function. Let

Qmax = max
i,j

|Qi,j |. Since yi ∈ {0, 1}, 1 ≤ i ≤ m, we have |o(Y)| ≤ m2Qmax.

Problem (24) can be converted into standard form with the new objective function õQ = oQ +m2Qmax

and u = 2m2Qmax + 1. Then, we can use Algorithm 5.3 to solve problem (24). Let

δαβ(o) = α+

β−1∑
j=0

Fj2
j − õQ ∈ C[Ybit,Fbit],

where Fbit = (F0, F1, . . . , Fβ−1) ∈ Fβ
2 and Lαβ = {δαβ(o)}. We have

Proposition 5.8 We can use Algorithm 5.3 to solve problem (24) with probability ≥ 1− ε and in time

Õ(m2.5 + log2.5 Qmax)(m
2 + logQmax) logQmaxκ

2 log(1/ε)) where κ is the maximal condition number of Lαβ

and Qmax = max
i,j

|Qi,j |.

Proof Since oQ is quadratic and the variables are Boolean, we can solve Lαβ = {δαβ(o)} directly with

Theorem 3.6. Using the notations in Theorem 5.4, we have NLαβ
= m + log(m2Qmax) = Õ(m + logQmax),

TLαβ
= Õ(m2 + logQmax), u = 2m2Qmax +1. By Theorem 5.4, the complexity is Õ((m+ logQmax)

2.5(m2 +

logQmax)κ
2 log(1/ε)(logm+ logQmax)) = Õ(m2.5 + log2.5 Qmax)(m

2 + logQmax) logQmaxκ
2 log(1/ε)).

6 Polynomial system with noise

In this section, we consider the polynomial systems with noise problem (PSWN), which is an optimization

problem over finite fields and has important applications in cryptography [2, 22].

6.1 Polynomial system with noise

Definition 6.1 Let p be a prime. Given a polynomial system F = {f1, f2, . . . , fr} ⊂ Fp[X], the PSWN

is to find an X = (x1, x2, . . . , xn)
T ∈ Fn

p such that F = e for the “smallest” error-vector e = (e1, e2, . . . , er)
T ∈

Fr
p.

In most cases, the Hamming weight ∥e∥H of e is used to measure the “smallness” and it is assumed that

r ≫ n, that is, we minimize the number of non-zero components of e or satisfy the maximal number of

equations of F = 0. Therefore, PSWN is also called MAX-POSSO. We first give the following representation

for ∥e∥H .

Lemma 6.2 Let e = (e1, e2, . . . , er)
T ∈ Fn

p and Hj = ep−1
j in Fp. Then Hj is Boolean and ∥e∥H =∑m

j=1 Hj when the summation is over C.

Proof ej ∈ Fp implies Hj = ep−1
j is either 0 or 1 in Fp, and Hj = 1 if and only if ej ̸= 0. Then, Hj is a

Boolean variable. Thus, we have
∑m

j=1 Hj = ∥e∥H when the summation is over C.

Let

E(F) = (F − e) ∪ {Hj − ep−1
j | j = 1, 2, . . . , r} ⊂ Fp[X,E,Hbit] (25)

where Hbit = {H1, H2, . . . ,Hr} are Boolean variables and E = {e1, e2, . . . , er} are variables over Fp. By

A TEMPLATE FOR JOURNAL 19

Lemma 6.2, PSWN can be formulated as the following optimization problem over finite fields:

min
X∈Fn

p

o(X) =
r∑

j=1

Hj subject to 0 ≤ o(X) ≤ r;E(F) = 0 mod p (26)

which can be solved by Algorithm 5.3.

Due to the special structure of E(F), we can achieve better complexities than that given in Theorem 5.4.

Following (19), the equation set Lαβ for PSWN is

δαβ(o) = α+

β−1∑
j=0

Fj2
j −

r∑
j=1

Hj ∈ C[Hbit,Fbit],

Lαβ(F) = P (Q(E(F))) ∪ {δαβ(o)} ⊂ C[Xbit,Ebit,Hbit,Fbit,Vbit,Ubit], (27)

where Fbit = {F1, F2, . . . , Fβ−1} are Boolean variables. We have

Proposition 6.3 There is a quantum algorithm to solve PSWN in time Õ(r3.5T 3.5
F log8 pκ2 log 1/ε) and

with probability ≥ 1− ε, where TF is the total sparseness of F , and κ is the condition number of F .

Proof We first give the complexity of Step 4 of Algorithm 5.3, that is, the complexity to solve Lαβ(F).

Let F1 = {f1 − e1, f2 − e2, . . . , fr − er}, F2 = {H1 − ep−1
1 , H2 − ep−1

2 , . . . ,Hr − ep−1
r }, and F3 = F1 ∪ F2.

Then P (Q(F3)) = P (Q(F1)) ∪ P (Q(F2)). By Lemma 3.8, TP (Q(F1)) = O(TFD log2 p) and NP (Q(F1)) =

O(TFD log p). Since each monomial in F2 depends on one indeterminate, we have Q(F2) ⊂ Fp[Hbit, e,V],
where #V = O(r log p),#Q(F2) = O(r log p), and TQ(F2) = O(r log p) by the proof for Lemma 2.3. By

Lemma 3.3, TP (Q(F2)) = O(r log3 p) and NP (Q(F2)) = O(r log2 p). Since x ∈ Fp implies xp = x, we can

assume degxi
fj < p. Thus D = n +

∑r
i=1⌊log2 maxj degxi

fj⌋ ≤ n + r⌊log2(p − 1)⌋ = O(n + r log p),

and we have TLαβ
= O(TFD log2 p + r log3 p + r + log p) = O(TFr log

3 p) and NLαβ
= O(TFD log p +

r log2 p + log r) = O(TFr log
2 p) considering r ≫ n. By Theorem 3.6, the complexity to solve Lαβ is

Õ((TFr log
2 p)2.5(TFr log

2 p + TFr log
3 p)κ2 log 1/ε) = Õ(r3.5T 3.5

F log8 pκ2 log 1/ε). The number of loops is

at most log r, which is negligible since r ≤ TF , and the complexity of the algorithm is that of Step 4. The

theorem is proved.

Similar to Corollary 3.10, if F is an MQ then the complexity is lower.

Corollary 6.4 There is a quantum algorithm to solve the MQ with noise in time Õ(r2.5(TF + r log p)

log7 pκ2 log 1/ε) with probability 1− ε.

6.2 Linear system with noise

When F becomes a linear system, we obtain the linear system with noise (LSWN) [19]. Given a matrix

A = (Aij) ∈ Fr×n
p and a vector b = (b1, b2, . . . , br)

T ∈ Fr
p. The LSWN problem is to find an X such that

AX− b = e and the error-vector e ∈ Fr
p has minimal Hamming weight ∥e∥H .

The algorithm given in Section 6.1 can be used to solve the LSWN and Proposition 6.3 becomes the

following form.

Proposition 6.5 There exists a quantum algorithm to solve LSWN with probability ≥ 1−ε and in time

Õ((n+ r log p)2.5(TA + r log2 p) log3.5 pκ2 log 1/ε), where TA ≥ max{r, n} is the number of nonzero entries in

A, and κ is the condition number of AX.

Proof Similar to the proof of Proposition 6.3, we need only consider the complexity of solving Lαβ(AX−
b). Let fi =

∑n
j=1 Aijxj−bi−ei ∈ Fp[X, e], F1 = {f1, f2, . . . , fr}, F2 = {H1−ep−1

1 , H2−ep−1
2 , . . . ,Hr−ep−1

r } ,

20 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

and we have E(AX−b) = F1∪F2. Since F1 is a linear system, we have P (Q(E(AX−b))) = P (F1)∪P (Q(F2)).

By Corollary 3.4, TP (F1) = O(TA log p) and NP (F1) = n log p +
∑r

i=1 log ti + r log log p, where ti is the

sparseness for the i-th row of matrix A. By Lemma 3.3, TP (Q(F2)) = O(r log3 p) and NP (Q(F2)) = O(r log2 p).

Thus, TLαβ(AX−b) = O(TA log p+ r log3 p) and NLαβ(AX−b) = O(n log p+
∑r

i=1 log ti+ r log2 p). By Theorem

3.6, the complexity to solve Lαβ(AX− b) is

Õ((n log p+

r∑
i=1

log ti + r log2 p)2.5((n log p+

r∑
i=1

log ti + r log2 p) + (TA log p+ r log3 p))κ2 log 1/ε)

= Õ((n log p+ r log2 p)2.5(n log p+ TA log p+ r log3 p)κ2 log 1/ε).

Since TA ≥ r and we can assume TA ≥ n without loss of generality, the complexity is Õ((n log p +

r log2 p)2.5(TA log p+ r log3 p)κ2 log 1/ε) = Õ((n+ r log p)2.5(TA + r log2 p) log3.5 pκ2 log 1/ε).

7 Short integer solution problem

In this section, we consider the short integer solution problem (SIS), which is a basic problem in the

latticed based cryptosystems [1].

7.1 Short integer solution problem

Consider the SIS problem introduced in [1]:

Definition 7.1 Let A = (Aij) ∈ Fr×n
p . The SIS is to find an X ∈ Fn

p such that AX = 0 (mod p) and

the Euclidean norm of X satisfies 0 < ∥X∥2 ≤ b, where b is a given integer.

We first consider the more general SIS for F = {f1, f2, . . . , fr} ⊂ Fp[X]: find an X such that F(X) = 0

(mod p) and 0 < ∥X∥2 ≤ b. Note that SIS is a special case of the optimization problem (1), where the

objective function is a constant and the problem is to find a feasible solution for the constraints. Precisely,

the SIS can be formualted as the following standard form

min
X∈Fn

p

o = 1 subject to F = 0 mod p, 0 ≤ ∥X∥22 − 1 ≤ b2 − 1. (28)

From Remark 4.3, the representation for Fp affects inequality constraints. For the inequality 0 < ∥X∥22 ≤
b2, a better representation for Fp is {−p−1

2 ,−p−1
2 + 1, . . . , p−1

2 }, instead of {0, 1, . . . , p− 1}. In this section,

we still use {0, 1, . . . , p− 1} to represent elements in Fp, but use the following variable expansion instead of

(5):

xi = θp−1(Xi)−
p− 1

2
=

⌊log2(p−1)−1⌋∑
j=0

Xi,j2
j + (p− 2⌊log2(p−1)⌋)Xi,⌊log2(p−1)⌋ −

p− 1

2
(29)

where Xi are defined in (5). Then, xi takes values −p−1
2 ,−p−1

2 + 1, . . . , p−1
2 when evaluated over C. The

following easy result shows that this representation gives the “global” solution to problems involving the

Euclidean norm.

Lemma 7.2 For X̌ ∈ [−p−1
2 , p−1

2]n and any vector v ∈ (pZ)n\0, ∥X̌∥2 < ∥X̌+ v∥2.

Due to (14) and by Lemma 7.2, the constraint 0 ≤ ∥X∥22 − 1 ≤ b2 − 1 can be written as the following MQ

in Boolean variables

δb = θb2−1(Gbit)−
n∑

i=1

(θp−1(Xi)−
p− 1

2
)2 + 1 ∈ C[Gbit,Xbit] (30)

where Gbit = {Gk | k = 0, 1, . . . , ⌊log2(b2 − 1)⌋}. From the above discussion, we have

A TEMPLATE FOR JOURNAL 21

Lemma 7.3 To solve the SIS, we need only to find a solution of P (Q(F)) ∪ {δb} ⊂ C[Xbit,Vbit,Ubit,

Gbit], where P (Q(F)) is obtained similar to P (Q(F)), but using (29) to expand X, V, and U.

Proposition 7.4 There is a quantum algorithm to solve the SIS problem (28) with probability at

least 1 − ε and complexity Õ(n3.5T 3.5
F log3.5 d log4.5 pκ2 log 1/ε) where TF is the total sparseness of F , d =

max{2, log2(degxi
(fj)), i = 1, 2, . . . , n, j = 1, 2, . . . , r}, and κ is the condition number of P (Q(F)) ∪ {δb}.

Proof Since ∥X∥22 ≤ np2, by Lemma 2.1, #Gbit = Õ(log(b2 − 1)) ≤ Õ(log(np2)) = Õ(log(n) + log p)

and #δb = Õ(log(b2 − 1) + n log2 p) = Õ(log(b) + n log2 p) = Õ(n log2 p), since b ≤ np2. By Lemma 3.8,

P (Q(F)) is of sparseness O(nTF log d log2 p) and with O(nTF log d log p) indeterminates. By Lemma 7.3, we

need to solve P (Q(F))∪ {δb} with Theorem 3.6. Comparing to the total sparseness and number of variables

of P (Q(F)), #δb and #Gbit are negligible. Then, the complexity of solving the SIS is the same as that of

solving P (Q(F)). Then, the theorem follows from Corollary 3.9.

For the original SIS, we have

Proposition 7.5 There is a quantum algorithm to find an non-trivial X ∈ Zn for AX = 0 (mod p)

with ∥X∥2 ≤ b with probability 1− ε and in time Õ((n log p+ r)2.5(TA log p+n log2 p)κ2 log 1/ε), where TA is

the number of nonzero elements of A, assuming TA ≥ n.

Proof By Corollary 3.4, P (Q(AX)) = P (AX) is of total sparseness O(TA log p) and has O(n log p +∑r
i=1 log ti + r log log p) indeterminates, where ti is the sparseness for the i-th line of matrix A.. From

the proof of Proposition 7.4, #Gbit = Õ(log n + log p) and #δb = Õ(n log2 p). Since TA ≥ n, we have

TLαβ
= O(TA log p + n log2 p) and NLαβ

= O(n log p +
∑r

i=1 log ti + r log log p). Comparing to the total

sparseness and number of variables of P (Q(F)), #δb is negligible. By Theorem 3.6, the complexity to solve

P (Q(F)) ∪ {δb} is Õ((n log p +
∑r

i=1 log ti + r log log p)2.5((n log p +
∑r

i=1 log ti + r log log p) + (TA log p +

n log2 p))κ2 log 1/ε) = Õ((n log p+ r)2.5(TA log p+ n log2 p)κ2 log 1/ε).

7.2 Smallest integer solution problem

We consider the smallest integer solution problem, which is to find a solution of F = 0 (mod p), which

has the minimal Euclidean norm. The problem can be formulated as the following standard form

min
X∈Fn

p

o = ∥X∥22 − 1 subject to F = 0 mod p and 0 ≤ o < u (31)

where u = n(p− 1)2. We can use Algorithm 5.3 to solve problem (31). The parameterized objective function

and Lαβ(F) are

δαβ(o) = α+

β−1∑
j=0

Fj2
j −

n∑
i=1

(θ(Xi)−
p− 1

2
)2 + 1 ∈ C[Fbit,Xbit]. (32)

Lαβ = P (Q(F)) ∪ {δαβ} ⊂ C[Xbit,Vbit,Ubit,Fbit]

where P (Q(F)) is defined in Lemma 7.3. We have

Proposition 7.6 There is a quantum algorithm to solve problem (31) with probability ≥ 1 − ε and in

time Õ(n3.5T 3.5
F log3.5 d log4.5 pκ2 log 1/ε).

Proof From the proof of Proposition 7.4, NLαβ
= O(nTF log d log p) and TLαβ

= O(nTF log d log2 p).

Also, log u = O(np2) = O(log n + log p). By Theorem 5.4, the complexity is Õ(N2.5
Lαβ

TLαβ
κ2 log 1/ε log u)

= Õ(n3.5T 3.5
F log3.5 d log4.5 pκ2 log 1/ε).

22 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

If F is a linear system AX = 0 with TA ≥ n, then we can prove the following result similar to Propositions

7.6 and 7.5.

Proposition 7.7 There is a quantum algorithm to find a non-trivial X ∈ Zn for AX = 0 (mod p) with

minimal ∥X∥2 with probability ≥ 1− ε and in time Õ((n log p+ r)2.5(TA log p+ n log2 p)κ2 log 1/ε).

8 Quantum algorithm for SVP and CVP

In this section, Algorithm 5.3 is used to solve the SVP and CVP problems [6, 25].

A lattice generated by B = {b1,b2, . . . ,bn} ⊂ Rm is the set of Z-linear combinations of bi. B is called

a basis of the lattice, if b1,b2, . . . ,bn are linear independent over R. The SVP problem can be described

as follows: given a lattice L generated by a basis b1,b2, . . . ,bn in Rm, find a nonzero v ∈ L such that v

has the minimal Euclidean norm. The CVP problem can be described as follows: given a vector b0 ∈ Zm

and a lattice L generated by a basis b1,b2, . . . ,bn in Rm, find a v ∈ L such that v − b0 has the minimal

Euclidean norm. In this paper, we assume that b1,b2, . . . ,bn are in Zm. The SVP problem can be written

as the following optimization problem.

min
v∈Zm,a∈Zn,

o = ∥v∥22 subject to v ̸= 0 and v =

n∑
i=1

aibi, (33)

where v = (v1, v2, . . . , vm) and a = (a1, a2, . . . , an). Note that the SVP problem is similar to the SIS problem

considered in Proposition 7.7, but the solutions are over the integers instead of finite fields.

Let

B = [b1,b2, . . . ,bn] ∈ Zm×n

be the matrix with columns b1,b2, . . . ,bn. In order to reduce problem (33) into the standard form (1), we

need to find upper bounds for ai, vi, and ∥v∥2. For a matrix or a vector A, let ∥A∥∞ to be the maximum

absolute value of the elements in A. It is easy to find bounds for vi and ∥v∥2.
Lemma 8.1 Let v = (v1, v2, . . . , vm) be the shortest vector in L. Then we have ∥v∥2 ≤

√
m||B||∞ and

|vi| ≤
√
m||B||∞.

Proof It is clear that ∥v∥2 ≤
√
m||B||∞ and |vi| ≤ ∥v∥∞ ≤ ∥v∥2 ≤

√
m||B||∞.

In order to bound ai in (33), we need the concept of Hermite normal form (HNF). A matrix H = (hi,j) ∈
Zm×n of rank n is called an (column) HNF if there exists a strictly increasing map f from [1, n] to [1,m]

satisfying: for j ∈ [1, n], hf(j),j ≥ 1, hi,j = 0 if i > f(j) and hf(j),j > hf(j),k ≥ 0 if k > j. It is known that

any lattice generated by a basis b1,b2, . . . ,bn is also generated by h1,h2, . . . ,hn if H = [h1,h2, . . . ,hn] is

an HNF of B = [b1,b2, . . . ,bn]. We need the following obvious property of HNF.

Lemma 8.2 Let H = [h1,h2, . . . ,hn] = [hij] be an HNF, v = (v1, v2, . . . , vm)T an element in the

lattice generated by h1,h2, . . . ,hn, and v = c1h1 + c2h2 + · · ·+ cnhn for ci ∈ Z. Then vf(n) = cnhf(n),n and

hence |cn| ≤ ||v||∞.

We also need the following result about HNF.

Theorem 8.3 (see [35]) Let B ∈ Zm×n with rank n and H be the HNF of B. Then, there exists an

E ∈ Zm×m such that EB = H, ||H||∞ ≤ (
√
n||B||∞)n and ||E||∞ ≤ (

√
n||B||∞)n. Furthermore, the bit

complexity to compute H from B is Õ(mnθ||B||∞), where θ is the matrix multiplication constant.

We now give a bound for ai in (33).

A TEMPLATE FOR JOURNAL 23

Lemma 8.4 Let v be the shortest vector in L. Then there exist a1, a2, . . . , an ∈ Z such that v =∑n
i=1 aibi and |ai| ≤ bB, where bB = n

√
m||B||∞((

√
n||B||∞)n + 1)n+1.

Proof Let H = EB be the HNF of B and hi the i-th column of H, 1 ≤ i ≤ n. Then there exist

ci, 1 ≤ i ≤ n, such that v =
∑n

i=1 cihi. Denote e1 =
√
m||B||∞ and e2 = (

√
n||B||∞)n + 1. We claim

that |ci| ≤ e1(e2 + 1)n. Let vi = c1h1 + c2h2 + · · · + cihi for i = 1, 2, . . . , n. We prove the claim by

proving ||vi||∞ ≤ e1(e2 + 1)n−i and |ci| ≤ e1(e2 + 1)n−i by induction for i = n, n − 1, . . . , i. By Lemma

8.2, the second inequality comes from the first one: |ci| ≤ ||vi||∞ ≤ e1(e2 + 1)n−i, since [h1,h2, . . . ,hi]

is also an HNF. By Lemma 8.2, |cn| ≤ e1 and the case of i = n is true. Suppose the claim is true for

i = n, n − 1, . . . , j + 1. By Lemma 8.1, we have ||hj+1||∞ ≤ e2. Since vj = vj+1 − cj+1hj+1, we have

∥vj∥∞ ≤ ||vj+1||∞ + |cj+1|||hj+1||∞ ≤ e1(e2 + 1)n−j−1 + e1(e2 + 1)n−j−1e2 = e1(e2 + 1)n−j . The claim is

proved.

We have v =
∑n

i=1 cihi = (c1, c2, . . . , cn)H = (c1, c2, . . . , cn)EB = a1b1 + a2b2 + · · · + anbn. Then

(a1, a2, . . . , an) = (c1, c2, . . . , cn)E, and hence |ai| ≤ nmaxi |ci| · ||E||∞ ≤ ne1(e2 + 1)ne2 ≤ ne1(e2 + 1)n+1

by Theorem 8.3.

By the above lemma, we can rewrite the SVP as the standard form (1):

min
v∈Zm,a∈Zn

o = ∥v∥22 − 1 subject to 0 ≤ o < m||B||2∞
v = a1b1 + a2b2 + · · ·+ anbn,

0 ≤ ai + bB ≤ 2bB , 1 ≤ i ≤ n,

0 ≤ vi +
√
m||B||∞ ≤ 2

√
m||B||∞, 1 ≤ i ≤ m

where bB is given in Lemma 8.4, and the arguments are v = (v1, v2, . . . , vm) and a = (a1, a2, . . . , an).

Note that, the above problem is already an MQ, so we just need to change the variables to Boolean

variables as follows by using Lemma 2.1.

ai = θ2bB (Ai,0, Ai,1, . . . , Ai,⌊log2(2bB)⌋)− bB , 1 ≤ i ≤ n,

vi = θ2
√
m||B||∞(Vi,0, Vi,1, . . . , Vi,⌊log2(2

√
m||B||∞)⌋)−

√
m||B||∞, 1 ≤ i ≤ m (34)

where and Ai,j , Vi,j are Boolean variables.

Then we can use Algorithm 5.3 to solve the problem for u = m||B||2∞ in the input. For the objective

function o, we denote by o the Boolean function obtain from o by replacing the vi by the above equation (34).

Let

δαβ(o) = α+

β−1∑
j=0

Cj2
j − o+ 1, (35)

Lαβ = C ∪ {δαβ(o)},

where C is obtained from v =
∑n

i=1 aibi by replacing the ai, vi by the equation (34).

Proposition 8.5 There exists a quantum algorithm to solve the SVP with probability ≥ 1 − ε and in

time Õ(m(n7.5+m2.5)(n3+log h) log4.5 hκ2 log 1
ε), where h = ||B||∞ and κ is the maximal condition number

of Lαβ.

Proof The numbers of {Ai,j}, {Vi,j}, and {Cj} in (34) and (35) are n log2(2bB), m log2(
√
m||B||∞) and

log2(m||B||2∞), respectively. So, NLαβ
= n log2(2bB) + m log2(

√
m||B||∞) + log2(m||B||2∞) = Õ(n3 log h +

m log h). The total sparseness of C is O(m(log(
√
m∥B∥∞)+n log(2bB))) and the total sparseness of δαβ(o) is

24 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

log2(m||B||2∞)+m log2(
√
m||B||∞). So the total sparseness of Lαβ is TLαβ

= m(n log(2bB)+log(
√
m∥B∥∞))+

m log2(
√
m||B||∞) + log2(m||B||2∞) = Õ(mn3 log h +m log2 h). By Theorem 3.6, the SVP can be solved in

time Õ(N2.5
Lαβ

TLαβ
κ2 log 1

ε log(m||B||2∞)) = Õ(m(n7.5 +m2.5)(n3 + log h) log4.5 hκ2 log 1
ε).

The CVP can be solved similar to SVP, where the only difference is that the objective function is o =

∥v − b0∥22 − 1 < m(||B||∞ + ||b0||∞)2. Similar to Proposition 8.5, we have

Proposition 8.6 There exists a quantum algorithm to solve the CVP with probability ≥ 1 − ε and in

time Õ(m(n3 log h + m log h + log h0)
2.5(n3 log h + log2(h + h0))κ

2 log 1
ε), where h = ||B||∞, h0 = ||b0||∞,

and κ is the condition number of the problem.

9 Quantum algorithm to recover the private key for NTRU

In this section, we will give a quantum algorithm to recover the private key of NTRU from its known

public key.

The NTRU cryptosystem depends on three integer parameters (N, p, q) and two sets Lf ,Lg of polynomials

in Z[X] with degree N−1. Note that p and q need not to be prime, but we will assume that gcd(p, q) = 1, and

q is always considerably larger than p. Denote Zk to be the ring Z/(k) = {0, 1, . . . , k − 1} for any k ∈ Z>0.

We work in the ring R = Z[X]/(XN − 1). An element F ∈ R will be written as a polynomial or a vector,

F =

N−1∑
i=0

Fix
i = (F0, F1, . . . , FN−1)

T. (36)

Given two positive integers df and dg, we set

Lf = {f ∈ R | f has df coefficients 1, df − 1 coefficients − 1, and the rest 0}, (37)

Lg = {g ∈ R | g has dg coefficients 1, dg coefficients − 1, and the rest 0}. (38)

Let f ∈ Lf be invertible both (mod p) and (mod q). The private key for NTRU is f and the public key

is h = gf−1 (mod q) for some g ∈ Lg. A set of parameters could be (N, p, q) = (107, 3, 64), df = 15, and

dg = 12 [21].

We need to find f from h. We will reduce this problem to an equation solving problem over the finite rings

Zp and Zq. Set f = (f0, f1, . . . , fN−1)
T, g = (G0, G1, . . . , gN−1)

T, f−1 (mod p) = p = (p0, p1, . . . , pN−1)
T,

f−1 (mod q) = q = (q0, q1, . . . , qN−1)
T, and h = (h0, h1, . . . , hN−1)

T. Thus, we have the following equations:

f ∈ Lf ⇐⇒ 2df =

N−1∑
i=0

f2
i + 1,

N−1∑
i=0

fi = 1 and each f3
i − fi = 0; (39)

g ∈ Lg ⇐⇒ 2dg =

N−1∑
i=0

g2i ,

N−1∑
i=0

gi = 0 and each g3i − gi = 0; (40)

h = gf−1 (mod q) ⇐⇒
∑

j+k=i,i+N

hjfk ≡ gi (mod q) for i = 0, 1, . . . , N − 1; (41)

f−1 (mod q) exists ⇐⇒
∑

j+k=i,i+N

qjfk ≡ δ0i (mod q) for i = 0, 1, . . . , N − 1; (42)

f−1 (mod p) exists ⇐⇒
∑

j+k=i,i+N

pjfk ≡ δ0i (mod p) for i = 0, 1, . . . , N − 1, (43)

A TEMPLATE FOR JOURNAL 25

where δ0i = 1 for i = 0 and δ0i = 0 for i ̸= 0. Let X = {fi, gi, hi, pi, qi | i = 0, 1, . . . , N − 1}, and

F1 = {2df =

N−1∑
i=0

f2
i + 1, 2dg =

N−1∑
i=0

g2i ,

N−1∑
i=0

fi − 1,

N−1∑
i=0

gi, f
3
i − fi, g

3
i − gi, i = 0, 1, . . . , N − 1} ⊂ C[f, g], (44)

F2 = {
∑

j+k=i,i+N

hjfk − gi,
∑

j+k=i,i+N

qjfk − δ0i | i = 0, 1, . . . , N − 1} ⊂ Zq[f, g, h,q], (45)

F3 = {
∑

j+k=i,i+N

pjfk − δ0i | i = 0, 1, . . . , N − 1} ⊂ Zp[f, g, h,p]. (46)

Note that F1,F2,F3 are over C, Zq, Zp, respectively. We can modify the method given in Section 3.1 to

solve the equation system F1 = F2 = F3 = 0.

We first give a simpler treatment for F1. Let Zbit = {Fi1, Fi2, Gi1, Gi2, i = 0, 1, . . . , N − 1} be Boolean

variables, fi = Fi1+Fi2−1 and gi = Gi1+Gi2−1. Then, the constraints f3
i = fi and g3i = gi are automatically

satisfied. When Fi1 = 0, Fi2 = 1 and Fi1 = 1, Fi2 = 0, we both have fi = 0. To avoid this redundancy,

we add an additional equation Fi1Fi2 − Fi2. We have 2df =
∑N−1

i=0 f2
i + 1 =

∑N−1
i=0 (Fi1 + Fi2 − 1)2 + 1 =∑N−1

i=0 (Fi1 − Fi2) +N + 1 (mod (F 2
i1 − Fi1, F

2
i2 − fi2, Fi1Fi2 − Fi2)). Similarly, dg =

∑N−1
i=0 (Gi1 −Gi2) +N

(mod (G2
i1 −Gi1, G

2
i2 −Gi2, Gi1Gi2 −Gi2)). Then, F1 is equivalent to

F11 = {
N−1∑
i=0

(Fi1 − Fi2) +N + 1− 2df ,

N−1∑
i=0

(Gi1 −Gi2) +N − 2dg,

N−1∑
i=0

(Fi1 + Fi2 − 1)− 1,

N−1∑
i=0

(Gi1 +Gi2 − 1),

Fi1Fi2 − Fi2, Gi1Gi2 −Gi2, i = 0, 1, . . . , N − 1,⊂ C[Fbit]}, (47)

where Fbit = {Fij , Gij | i = 0, 1, . . . , N − 1; j = 1, 2}.

We can compute B(F2) ⊂ Zp[Xbit] and B(F3) ⊂ Zp[Xbit] defined in (6) by setting qi = θq−1(Qi0, Qi1, . . . ,

Qi⌊log2(q−1)⌋) and pi = θp−1(Pi0, Pi1, . . . , Pi⌊log2(p−1)⌋), where

Xbit = {Fi1, Fi2, Gi1, Gi2 | i = 0, 1, . . . , N − 1}∪
{Pij | i = 0, 1, . . . , N − 1, j = 0, 1, . . . , ⌊log2(p− 1)⌋}∪
{Qij | i = 0, 1, . . . , N − 1, j = 0, 1, . . . , ⌊log2(q − 1)⌋}

Note that F2 and F3 are already MQ, we can compute P (F2) and P (F3) as in (9). Therefore, we can use

Algorithm QBoolSol to find a Boolean solution X̌ for

FNTRU = F11 ∪ P (F2) ∪ P (F3) ⊂ C[Xbit].

Finally set f̌i = F̌i1 + F̌i2 − 1, and we have a possible private key f̌ = (f̌0, f̌1, . . . , f̌N−1).

Proposition 9.1 There is a quantum algorithm to obtain a private key f from the public key h in time

Õ(N4.5 log3.5 qκ2 log 1/ε) with probability ≥ 1− ε, where κ is the condition number for FNTRU.

Proof Only the complexity need to be considered. TF2 = 2N2+N+1 = O(N2), TF3 = N2+1 = O(N2),

TF11 = O(N). Note that F11 are already Boolean polynomials over C, we need do nothing to it. For F2,

since qi = θq−1(Qi0, Qi1, . . . , Qi⌊log2(q−1)⌋) has O(log q) terms, fk = F1k + F2k − 1, gj = G1j +G2j − 1, and

26 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

F1k, F2k, G1j , G2j are Boolean variables, we have TP (F2) = TB(F2) + O(N log q) = O(N2 log q). Similarly,

TP (F3) = O(N2 log p). Therefore, we have TFNTRU
= O(N2(log q + log p)) = O(N2 log q) and NFNTRU

=

O(N log q+N logN +N log log q) = Õ(N log q) by Lemma 3.3, where we can ignore p considering p ≪ q. By

Theorem 3.6, we can obtain a possible private key f in time Õ(N4.5 log3.5 qκ2 log 1/ε).

In the design of NTRU, it is assumed that the size of f and g are small. We can use the methods given

in Section 6.1 to find f and g that have the smallest df + dg.

Proposition 9.2 There is a quantum algorithm to obtain a private key f from the public key h such

that df + dg is minimal in time Õ(N4.5 log3.5 qκ2 log 1/ε) with probability ≥ 1 − ε, where κ is the condition

number for FNTRU.

Proof Remove
∑N−1

i=0 (Fi1−Fi2)+N +1−2df and
∑N−1

i=0 (Gi1−Gi2)+N −2dg from F1 and still denote

FNTRU = F1 ∪F2 ∪F3. We can use the objective function o = (2df − 1−N) + 2dg −N − 1 =
∑N−1

i=0 (Fi1 −
Fi2 + Gi1 − Fi2) − 1 which satisfies 0 ≤ o < 4N . Following (18), we have δαβ = α +

∑β−1
j=0 Ej2

j − o and

Lαβ = FNTRU∪{δαβ} ⊂ C[Xbit,Ebit]. Then we can use Algorithm 5.3 to find a private key f which minimizes

o. By the proof of Proposition 9.1, we have TFNTRU
= O(N2 log q) and NFNTRU

= O(N log q). Then, TLαβ
=

Õ(N2 log q) and NLαβ
= O(N log q). By Theorem 5.4, the complexity is Õ(N4.5 log3.5 qκ2 log 1/ε logN)

= Õ(N4.5 log3.5 qκ2 log 1/ε).

For the parameters recommended in [21], (N, p, q) = (107, 3, 64), (N, p, q) = (167, 3, 128), (N, p, q) =

(503, 3, 256), and ε = 1%, the complexities of Proposition 9.2 are given in the following table.

Table 1 Complexities of the quantum algebraic attack on NTRU

N q p Complexity Desired Complexity

107 64 3 242κ2 3N

167 128 3 246κ2 3N

503 256 3 254κ2 3N

In Table 1, κ is the condition number of the corresponding equation systems. From the table, this main

part of the complexity is relatively low comparing to its desired security 3N if κ is small, which implies that

the NTRU is safe only if its condition number is large.

10 Conclusion

In this paper, we give quantum algorithms for two basic computational problems: polynomial system

solving over a finite field and the optimization problem where the arguments either take values from a finite

field or are bounded integers. The complexities of these quantum algorithms are polynomial in the input

size, the maximal degree of the inequality constraints, and κ which is the condition number of the associated

matrix of the problem. So, we achieve exponential speedup for these problems when the condition number

is small.

The optimization problem considered in this paper covers many NP-hard problems as special cases. In

particular, the proposed algorithms are used to give quantum algorithms for several fundamental computa-

tional problems in cryptography, including the polynomial system with noise, the short solution problem, the

shortest vector problem, and the NTRU cryptosystem. The complexity for all of these problems is polynomial

in the input size and their condition numbers, which means that these problems are difficult to solve by a

quantum computer if and only if their condition numbers are large. As a consequence, the NTRU cryptosys-

A TEMPLATE FOR JOURNAL 27

tem as well as the candidates recently proposed for post-quantum standard of public key cryptosystems [4]

are safe against quantum computer attacks only if the condition number of its equation system is large.

The main idea of the algorithm is to convert the equality and inequality constraints of the optimization

problem into polynomial equations in Boolean variables and then convert the finding of the minimal value

of the objective function into several problems of finding the Boolean solutions for polynomial systems over

C, that is B-POSSO. Then the quantum algorithm from [13] is used to find Boolean solutions for these

polynomial systems.

As we just mentioned that the optimization problem is reduced into the B-POSSO problem. It is in-

teresting to give a description for all the problems that can be efficiently reduced to B-POSSO. It is also

interesting to see whether it is possible to combine the reduction methods introduced in this paper with tra-

ditional algorithms for polynomial system solving such as the Gröbenr basis method [3] and the characteristic

set method [17] to obtain better traditional algorithms for polynomial system solving and optimization over

finite fields. Finally, in order to know the exact complexity of the algorithm proposed in this paper, we need

to know the condition number, which is a main future problem for study.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Ajtai, M., Generating hard instances of lattice problems, STOC’96, 99-108, ACM Press, 1996.

[2] Albrecht, M.R. and Cid, C., Cold boot key recovery by solving polynomial systems with noise, ACNS, 57-72,

2011.

[3] Albrecht, M.R., Cid, C., Faugére, J.C., Fitzpatrick, R., Perret, L., Algebraic algorithms for LWE problems.

Inria hal-01072721, 2014.

[4] Albrecht M.R., Curtis B.R., Deo A., Davidson, A., Player R., Postlethwaite E.W., Virdia F. and Wunderer T.,

Estimate all the {LWE, NTRU} schemes!. In: Catalano D., De Prisco R. (eds) Security and Cryptography for

Networks. SCN 2018. LNCS, vol 11035. Springer, Cham.

[5] Ambainis, A., Variable time amplitude amplification and a faster quantum algorithm for solving systems of

linear equations, Proc. STACS, 636-647, 2012.

[6] Aono Y., Nguyen P.Q., Shen Y., Quantum lattice enumeration and tweaking discrete pruning,

https://eprint.iacr.org/2018/546, 2018.

[7] Arora, S. and Ge, R., New algorithms for learning in presence of errors, ICALP, LNCS 6755, L. Aceto, M.

Henzinger, and J. Sgall, editors, 403-415, Springer Verlag, 2011.

[8] Balas E., An additive algorithm for solving linear programs with zero-one cariables. INFORMS, 1965.

[9] Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J., On the complexity of solving quadratic Boolean

systems, Journal of Complexity, 29(1), 53-75, 2013.

[10] Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A., On the inherent intractability of certain coding problems,

IEEE Trans. on Information Theory, 24(3), 384-386, 1978.

[11] Blum, A., Kalai, A., Wasserman, H., Noise-tolerant learning, the parity problem, and the statistical query

model, Journal of the ACM, 50(4), 506-519, 2003.

28 CHEN YU-AO · GAO XIAO-SHAN · YUAN CHUN-MING

[12] Bryant, R., Graph-based algorithm for Boolean function manipulation, IEEE Transactions on Computing, C-35,

677-691, 1986.

[13] Y.A. Chen and X.S. Gao. Quantum Algorithms for Boolean Equation Solving and Quantum Algebraic Attack

on Cryptosystems. Journal of Systems Science and Complexity, 35(1), 373-412, 2022.

[14] Childs, A.M., Kothari, R., Somma, R.D., Quantum algorithm for systems of linear equations with exponentially

improved dependence on precision, SIAM J. Comput., 46(6), 1920-1950, 2017.

[15] Courtois, N., Klimov, A., Patarin, J., Shamir, A., Efficient algorithms for solving overdefined systems of multi-

variate polynomial equations, Eurocrypt’00, LNCS, vol. 1807, 392-407, Springer, 2000.

[16] Ding, J., Gower, J.E., Schmidt, D.S., Multivariate Public Key Cryptosystems, Springer, 2006.

[17] Gao, X.S. and Huang, Z., Characteristic set algorithms for equation solving in finite fields, Journal of Symbolic

Computation, 47, 655-679, 2012.

[18] Genova K. and Guliashki V., Linear integer programming methods and approaches - a survey, Cybernetics and

Information Technologies, 11(1) , 2011

[19] H̊astad, J., Some optimal inapproximability results, Journal of the ACM, 48, 798-859, 2009.

[20] Harrow, A.W., Hassidim, A., Lloyd, S., Quantum algorithm for linear systems of equations. Physical Review

Letters, 103(15), 150502, 2009.

[21] Hoffstein, J., Pipher, J., Silverman, J.H., NTRU: A ring-based public key cryptosystem, Algorithmic Number

Theory, ANTS’98, LNCS 1423, 267-288, Springer, Berlin, Heidelberg, 1998.

[22] Huang, Z. and Lin, D., Solving polynomial systems with noise over F2: revisited, Theoretical Computer Science,

676, 52-68, 2017.

[23] Kadowaki, T. and Nishimori, H., Quantum annealing in the transverse Ising model, Phys. Rev. E, 58, 5355-5363,

1998.

[24] Karp, R.M., Reducibility among combinatorial problems. Complexity of Computer Computations, 85-103, 1972.

[25] Laarhoven, T., Sieving for shortest vectors in lattices using angular locality-sensitive hashing, Proc. CRYPTO

2015 -Part I, Vol. 9215, LNCS, Springer, 2015.

[26] Li, H., Xia, B., Zhao, T., Square-Free Pure Triangular Decomposition of Zero-Dimensional Polynomial Systems

Journal of Systems Science and Complexity, 36(6): 2661-2680, 2023.

[27] Li, Z., Wu, B., Lin, D., Algebraic-Differential Attacks on a Family of Arithmetization-Oriented Symmetric

Ciphers, Journal of Systems Science and Complexity, 36(6): 2681-2702, 2023.

[28] Liu, C., Tian, T., Qi, W., A New Method for Searching Cubes and Its Application to 815-Round Trivium,

Journal of Systems Science and Complexity, 25 April 2023 Pages: 2234 - 2254, 2024.

[29] Liu, Z., Pan, Y., Zheng, J., Polynomial-Time Key-Recovery Attacks Against NTRUReEncrypt from ASI-

ACCS’15, Journal of Systems Science and Complexity, 37(3): 1308-1325, 2024.

[30] Ma, G. and Li, H., On the Security of Homomorphic Encryption Schemes with Restricted Decryption Oracles,

Journal of Systems Science and Complexity, 37(5), 2240-2261, 2024.

[31] Peikert, C., Public-key cryptosystems from the worst-case shortest vector problem, STOC2009), 333-342, 2009.

[32] Regev, O., On lattices, learning with errors, random linear codes, and cryptography. In ACM STOC, 84-93,

2005.

[33] Shao, C., Li, Y., Li, H., Quantum Algorithm Design: Techniques and Applications Journal of Systems Science

and Complexity, 32(1): 375-452, 2019.

[34] Shewchuk, J.R., An introduction to the conjugate gradient method without the agonizingpain, Tech. Rep.

CMU-CS-94-125, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1994.

[35] Storjohann, A., Algorithms for matrix canonical forms, PhD Thesis, Swiss Federal Institute of Technology, 2000.

[36] von zur Gathen, J. and Gerhard, J., “Modern Computer Algebra,” Cambridge University Press, 1999.

[37] Xiao, S. and Zeng, G., Decomposing the Radicals of Polynomial Ideals by Rational Univariate Representations,

Journal of Systems Science and Complexity, 36(6): 2703-2724, 2023.

[38] Xie, X. and Tian, T., A Low-Complexity Key-Recovery Attack on 6-Round Midori64, Journal of Systems Science

and Complexity, 36(4): 1738-1756, 2023.

A TEMPLATE FOR JOURNAL 29

[39] Yan, X, L. Tan, Qi, W., Non-Existence of One-Byte Active Impossible Differentials for 5-Round AES in the

Master-Key Setting, Journal of Systems Science and Complexity, 36(3): 1336-1350, 2023.

[40] Yap, C.K., Fundamental Problems of Algorithmic Algebra, Oxford Press, 2000.

[41] Zhao, S.W. and Gao, X.S., Minimal achievable approximation ratio for MAX-MQ in finite fields, Theoretical

Computer Science, 410, 2285-2290, 2009.

