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Abstract. Invariance to spatial transformations such as translations is
a desirable property and a basic design principle for classification neu-
ral networks. However, the commonly used convolutional neural networks
(CNNs) are actually very sensitive to even small translations. There exist
vast works to achieve exact or approximate transformation invariance by
designing transformation-invariant models or assessing the transforma-
tions. These works usually make changes to the standard CNNs and
harm the performance on standard datasets. In this paper, rather than
modifying the classifier, we propose a pre-classifier restorer to recover
translated inputs to the original ones which will be fed into any classifier
for the same dataset. The restorer is based on a theoretical result which
gives a sufficient and necessary condition for an affine operator to be
translational equivariant on a tensor space.
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1 Introduction

Deep convolutional neural networks (CNNs) had outperformed humans in many
computer vision tasks [9,12]. One of the key ideas in designing the CNNs is
that the convolution layer is equivariant with respect to translations, which was
emphasized both in the earlier work [5] and the modern CNN [12]. However,
the commonly used components, such as pooling [7] and dropout [19,20], which
help the network to extract features and generalize, actually make CNNs not
equivariant to even small translations, as pointed out in [1,3]. As a comprehen-
sive evaluation, Fig.1 shows that two classification CNNs suffer the accuracy
reductions of more than 11% and 59% respectively on CIFAR-10 and MNIST,
when the inputs are horizontally and vertically translated at most 3 pixels.
Invariance to spatial transformations, including translations, rotations and
scaling, is a desirable property for classification neural networks and the past
few decades have witnessed thriving explorations on this topic. In general, there
exist three ways to achieve exact or approximate invariance. The first is to design
transformation-invariant neural network structures [2,6,8,10,15,16,18,21].
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Fig. 1. The accuracy reduction after vertical and horizontal translations. The transla-
tion scope is [—3, 3] pixels. Left: LeNet-5 on MNIST; Right: VGG-16 on CIFAR-10.

The second is to assess and approximate transformations via a learnable
module [4,11] and then use the approximation to reduce the transformed inputs
to “standard” ones. The third is data augmentation [1,3,17] by adding various
transformations of the samples in the original dataset.

Those ad-hoc architectures to achieve invariance often bring extra parame-
ters but harm the network performance on standard datasets. Moreover, the
various designs with different purposes are not compatible with each other.
Data augmentation is not a scalable method since the invariance that benefits
from a certain augmentation protocol does not generalize to other transforma-
tions [1]. Including learnable modules such as the Spatial Transformer, all the
three approaches require training the classifier from scratch and fail to endow
existing trained networks with some invariance. It was indicated in [1] that
“the problem of insuring invariance to small image transformations in neural
networks while preserving high accuracy remains unsolved.”

In this paper, rather than designing any in-classifier component to make the
classifier invariant to some transformation, we propose a pre-classifier restorer
to restore translated inputs to the original ones. The invariance is achieved by
feeding the restored inputs into any following classifier. Our restorer depends
only on the dataset instead of the classifier. Namely, the training processes of
the restore and classifier are separate and a restore is universal to any classifier
trained on the same dataset.

We split the whole restoration into two stages, transformation estimation and
inverse transformation, see Fig.2. In the first stage, we expect that standard
inputs lead to standard outputs and the outputs of translated inputs reflect
the translations. Naturally, what we need is a strictly translation-equivariant
neural network. In Sect. 3, we investigate at the theoretical aspect the sufficient
and necessary condition to construct a strictly equivariant affine operator on
a tensor space. The condition results in the circular filters, see Definition 4, as
the fundamental module to a strictly translation-equivariant neural network. We
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give the canonical architecture of translation-equivariant networks, see Eq. (2). In
Sect. 4, details of the restorer are presented. We define a translation estimator,
the core component of a restorer, as a strictly translation-equivariant neural
network that guarantees the first component of every output on a dataset to
be the largest component, see Definition 5. For a translated input, due to the
strict equivariance, the largest component of the output reflects the translation.
Thus we can translate it inversely in the second stage and obtain the original
image. Though the restorer is independent of the following classifier, it indeed
depends on the dataset. Given a dataset satisfying some reasonable conditions,
i.e. an aperiodic finite dataset, see Definition 6, we prove the existence of a
translation estimator, i.e. a restorer, with the canonical architecture for this
dataset. Moreover, rotations can be viewed as translations by converting the
Cartesian coordinates to polar coordinates and the rotation restorer arises in a
similar way.

In Sect. 5, the experiments on MNIST, 3D-MNIST and CIFAR-10 show that
our restorers not only visually restore the translated inputs but also largely
eliminate the accuracy reduction phenomenon.

2 Related Works

As a generalization of convolutional neural networks, group-equivariant con-
volutional neural networks [2,6] exploited symmetries to endow networks with
invariance to some group actions, such as the combination of translations and
rotations by certain angles. The warped convolutions [10] converted some other
spatial transformations into translations and thus obtain equivariance to these
spatial transformations. Scale-invariance [8,15,21] was injected into networks by
some ad-hoc components. Random transformations [16] of feature maps were
introduced in order to prevent the dependencies of network outputs on specific
poses of inputs. Similarly, probabilistic max pooling [18] of the hidden units over
the set of transformations improved the invariance of networks in unsupervised
learning. Moreover, local covariant feature detecting methods [14,22] were pro-
posed to address the problem of extracting viewpoint invariant features from
images.

Another approach to achieving invariance is “shiftable” down-sampling [13],
in which any original pixel can be linearly interpolated from the pixels on the
sampling grid. This “shiftable” down-sampling exists if and only if the sampling
frequency is at least twice the highest frequency of the unsampled signal.

The Spatial Transformer [4,11], as a learnable module, produces a predictive
transformation for each input image and then spatially transforms the input to
a canonical pose to simplify the inference in the subsequent layers. Our restorers
give input-specific transformations as well and adjust the input to alleviate the
poor invariance of the following classifiers. Although the Spatial Transformers
and our restorer are both learnable modules, the training of the former depends
not only on data but also on the subsequent layers, while the latter are indepen-
dent of the subsequent classifiers.
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3 Equivariant Neural Networks

Though objects in nature have continuous properties, once captured and con-
verted to digital signals, these properties are represented by real tensors. In this
section, we study the equivariance of operators on a tensor space.

3.1 Equivariance in Tensor Space

Assume that a map & : R? — D stands for a property of some d-dimensional
object where D C R. Sampling & over a (ni,ng, - ,ng)-grid results in a tensor
x in a tensor space

H:=D"@D". @D, (1)
We denote [n] = [0,1,...,n—1] for n € Z; and assume kmodn € [n] for k € Z.
For an index I = (i1,%2, - ,i4) € H?Zl[ni] and © € H, denote x[I] to be the
element of x with subscript (i1, 19, - ,i4). For convenience, we extend the index

of Hto I = (i1?i27' o aid) S Zd by deﬁning
z[I] = x[iy mod ny, - -+ ,ig mod ng).

Definition 1 (Translation). A translation TM : H — H with M € Z% is an
invertible linear operator such that for all I € Z¢ and x € H,

TM (2)[1] = 2[I — M].
The inverse of TM is clearly T—™.

Definition 2 (Equivariance). A map w : H — H is called equivariant with
respect to translations if for all x € H and M € 72,

T (w()) = w(T™ (z)).

—
Definition 3 (Vectorization). A tensor x can be vectorized to X € H = DV
with N = ning -+ -ng such that

X(6(1)) := 1],

where 6(I) := (iy mod ny)nans - - - ng + (ig mod na)ngng - - - ng+- - -+ (igmod ng),
and we denote X = T . Moreover, the translation T is vectorized as TM (X) :=

T™ (z).

3.2 Equivariant Operators

When D = R, the tensor space H is a Hilbert space by defining the inner product
as ¢ -z := « - z which is the inner product in vector space ﬁ In the rest of
this section, we assume D = R.

According to Reize’s representation theorem, there is a bijection between
continuous linear operator space and tensor space. That is, a continuous linear
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operator v : H — R can be viewed as a tensor v € H satisfying v(z) = v-x. Now
we can translate v by T and obtain 7™ (v) : H — R such that 7™ (v)(z) =
T (v) - .

We consider a continuous linear operator w : H — H. For I € Z% and = € H,
denote wy(x) = w(z)[I]. Then wr : H — R is a continuous linear operator. An
affine operator a : H — H differs from a continuous linear operator w by a bias
tensor ¢ such that a(z) = w(x) + ¢ for all x € H.

Theorem 1. Let a(z) = w(z) + ¢ : H — H be an affine operator. Then, « is
equivariant with respect to translations if and only if for all M € 7.2,

wyr = T (we) and ¢ x 1,

where 0 is the zero vector in Z% and ¢ < 1 means that ¢ is a constant tensor,
that is, all of its entries are the same.

Proof of Theorem 1 is given in Appendix A. Recall that ﬁ = RV is the
vectorization of H and TM also translates vectors in H. Each continuous linear
operator on H corresponds to a matrix in RN*Y and each bias operator corre-
sponds to a vector in RY. Now we consider the translation equivariance in vector
space.

Definition 4 (Circular filter). Let W = (Wy, Wy, -, Wx_1)T be a matriz
in RVN W s called a circular filter if Wy(ny = TM (Wy) for all M € Z°.

As the vector version of Theorem 1, we have

Corollary 1. Let A: RN — RN be an affine transformation such that

in which W € RNXN € € RN. Then, A is equivariant with respect to transla-
tions in the sense that for all M € 74

AT (X)) = TY(A(X))
if and only if W is a circular filter and C' x 1.

This affine transformation is very similar to the commonly used convolutional
layers [5,12] in terms of shared parameters and similar convolutional operations.
But the strict equivariance calls for the same in-size and out-size, and circular
convolutions, which are usually violated by CNNs.

3.3 Equivariant Neural Networks

To compose a strictly translation-equivariant network, the spatial sizes of the
input and output in each layer must be the same and thus down-samplings
are not allowed. Though Corollary 1 provides the fundamental component of a



588 Y. Wang et al.

strictly translation-equivariant network, different compositions of this compo-
nent lead to various equivariant networks. Here we give the canonical architec-
ture. We construct the strictly translation-equivariant network F with L layers
as

F(X):FLOFL_10~--OF1(X). (2)

The I-the layer F} has n; channels and for an input X € R™-1*" we have

F(X)=c(W[l]- X +C[l]) € R™*N, (3)
where
W[l] = (Wl[lL ce WM [l]) c anxnl_lxNxN,
ol = (@Y -1,---,C™1] - 1),
Wk[l] = (Wk’l[l]’ .. ’Wk1nl—1 M) e an,lxNxN’
Ck[l] = (Ck’l[lL. . 7Ck7nl—1[l]) c Rn"_17

o is the activation, W*"[l] € RV*N are circular filters, C*"[l] € R are constant
biases for k =1,--- ,nyand r =1,--- ,n;_1, the - denotes the inner product and
1 is the vector whose all components are 1.

4 Translation Restorer

4.1 Method

In Sect. 3.3, we propose a strictly equivariant neural network architecture (2)
such that any translation on the input will be reflected in the output. Generally
speaking, once the outputs of an equivariant network on a dataset have some
spatial structure, this structure shifts consistently as the input shifts. Thus, the
translation parameter of a shifted input can be solved from its output. Finally,
we can restore the input via the inverse translation. Figure 2 shows how a restorer
works.

The whole restoration process splits into two stages, translation estimation
and inverse translation. We first define the translation estimator which outputs
a consistent and special structure on a dataset.

Definition 5. Let D € DFP*N be a dataset with P channels. Then a translation-
equivariant network

F RPN S RY
1s said to be a translation estimator for D if
F(X)[0] = max; ' F(X)]i],

where F(X)[i] is the i-th component of F(X).
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Fig. 2. The pre-classifier translation restorer. For a shifted data T (z) as the input,
the translation estimator obtains the translation M and restore the original data
T~M(T™(2)) = x, which is feed into a pre-trained classifier.

Given such a translation estimator for dataset D and a shifted input X’ =
TM(X) for some X € D, we propagate X’ through F and get the output F(X') €
R Since the first component of F(X) is the largest, the location of the largest
component of F(X') is exactly the translation parameter:

§(M) = argmaxi ;' F;(X').

Then we can restore X = T~ (X’) by inverse translation. The restored inputs
can be fed to any classifier trained on the dataset D.

4.2 Existence of the Restorer

In this section, we show the existence of restorers, that is, the translation estima-
tor. Note that our restorer is independent of the following classifier but depen-
dent on the dataset. For translation, if a dataset contains both an image and a
translated version of it, the estimator must be confused. We introduce aperiodic
datasets to clarify such cases.

Definition 6 (Aperiodic dataset). Let D C DP*YN be a finite dataset with
P channels. We call D an aperiodic dataset if 0 ¢ D and

T™(X)=X" <= M =0and X = X/,

for M € 74 and X, X' € D. Here d is the spatial dimension and M decides
the translation in the channel dimension in addition.

Let D be an aperiodic dataset. Given that D = [2911] which is the case
in image classification, we prove the existence of the translation estimator for
such an aperiodic dataset. The proof consists of two steps. The data are first
mapped to their binary decompositions through a translation-equivariant net-
work as Eq. (2) and then the existence of the translation-restorer in the form of
Eq. (2) is proved for binary data.
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Let D = [29%!] and B = {0,1}. We denote 1 : D — B to be the binary
decomposition, such as n(2) = (0,1,0) and 7n(3) = (1,0,1). We perform the
binary decomposition on X € D>V element-wisely and obtain n(X) € B>V,
where G = P(Q) is the number of channels in binary representation. A dataset
D C DPXN can be decomposed into B C BE*N . Note that the dataset D is
aperiodic if and only if its binary decomposition B is aperiodic.

The following Lemma 1 demonstrates the existence of a translation-
equivariant network which coincides with the binary decomposition 7 on
[2@F1PXN  Proof details are placed in Appendix B.

Lemma 1. Let n : 297 — B be the binary decomposition. There exists a
(2Q + 2)-layer network F in the form of Fq. (2) with ReLU activations and
width at most (Q + 1)N such that for X € [29+1]P*N

F(X) = n(X).

The following Lemma 2 demonstrate the existence of a 2-layer translation
restorer for an aperiodic binary dataset. Proof details are placed in Appendix C.

Lemma 2. Let B = {Z,s = 1,2,---,8} C BN be an aperiodic binary
dataset. Then there exists a 2-layer network F in the form of Eq. (2) with ReLU
activations and width at most SN such that for all s =1,2,--- .5,

F(Z,)[0] = max ;' F(Z)[d].

Given a (2Q + 2)-layer network F’ obtained from Lemma 1 and a 2-layer
network F” obtained from Lemma 2, we stack them and have F = F" o " which
is exactly a translation restorer. We thus have proved the following theorem.

Theorem 2. Let D = {X|s = 1,2,---,8} C [29F1)7*N be an aperiodic
dataset. Then there exists a network F : RP*N — RN in the form of Eq. (2)
with ReL U activations such that for s =1,2,--- 5,

F(X,)[0] = max(Z" F (X[,

of which the depth is at most 2Q+4 and the width is at most max(SN, (Q+1)N).
Namely, this network is a translation restorer for D.

5 Experiments

The core component of the restorer is the translation estimator which outputs
the translation parameter of the shifted inputs.

We use the architecture described in Eq. (2) with L = 6, n; = 1 for | =
1,---, L and ReLU activations. The training procedure aims at maximizing the
first component of the outputs. Thus the max component of the output indicates
the input shift. The experimental settings are given in Appendix D. We report
four sets of experiments below.
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Fig. 3. The restorers for MNIST and CIFAR-10.

2D Images. We train translation restorers for MNIST and CIFAR-10. MNIST
images are resized to 32 x 32 and CIFAR-10 images are padded 4 blank pixels
at the edges.

In Fig.3, the left column is the original images, the middle column is the
randomly shifted images and the right column is the restored images. On both
datasets, images are randomly shifted vertically and horizontally at most }1 of
its size. The shift is a circular shift where pixels shifted out of the figure appear
on the other end. We can see that the shifted images are disorganized but the
restored images are very alike the original images.

To evaluate the restoration performance of pretrained restorers, we train
classifiers and test them on randomly shifted images and restored ones and the
results are given in Table 1. When images are not shifted, the restorers lead to
only 0.3% and 0.03% accuracy reduction on two datasets. Nevertheless, even if
the translation scope is 1, restorers improve the accuracy. Moreover, no matter
how the images are shifted, the restorer can repair them to the same status and
result in the same classification accuracy, namely 98.59% and 88.18%, while the
accuracies drop significantly without the restorer, and the larger the range of
translation, the more obvious the restoration effect

Different Architectures. Our proposed restorer is an independent module
that can be placed before any classifier. It is scalable to different architectures
the subsequent classifier uses.
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Table 1. Restoration performance on MNIST and CIFAR-10. Images are randomly
shifted within the translation scope ranging from 0 to 8 in both vertical and horizon-
tal directions. We use LeNet-5 on MNIST and ResNet-18 on CIFAR-10. “Res.” and
“Trans.” stand for restorer and translation respectively.

Res.\Trans. | 0 1 2 3 4 5 6 7 8
MNIST w/o 98.89 1 98.21 195.41 |87.07 |76.61 |62.9 51.33 |41.1 35.7
w/ 98.59 | 98.59 198.59 |98.59 |98.59 |98.59 |98.59 | 98.59 |98.59
Effect -0.3 | +0.38 | +3.18 | +11.52  4+21.98 | +35.69 | +47.26 | +57.49 | +62.89
CIFAR-10 | w/o 88.21 | 86.58 |85.9 83.65 |82.16 |80.46 |79.37 |77.71 |76.01
w/ 88.18 | 88.18 |88.18 |88.18 |88.18 |88.18 |88.18 |88.18 |88.18
Effect —0.03|+1.6 | +2.28 +4.53 ' +6.02 |+7.72  +8.81 |+10.47 +12.17

In Table 2, we evaluate the restoration performance on popular architectures
including VGG-16, ResNet-18, DenseNet-121, and MobileNet v2. Translated
mages (w/Trans.) are randomly shifted within scope 4 in both vertical and hor-
izontal directions. The reduction of accuracy on original images is no more than
0.04% and the restorer improves the accuracy on shifted images by 1.66%-6.02%.

Table 2. Restoration performance on different architectures and CIFAR-10.

Res.\ Trans. | VGG-16 ResNet-18 DenseNet-121 | MobileNet v2
w/o |w/ w/o |w/ w/o |w/ w/o |w/
w/o 89.27 | 83.40 |88.21 82.16 1 92.14 90.46 |88.10  83.36
w/ 89.23 | 89.23 | 88.18 | 88.18 192.12 | 92.12 | 88.09 |88.09
Effect —0.04 | +5.83|V0.03 | +6.02 | —0.02  +1.66 | —0.01 | +-4.73

Translation Augmentation. Training with translation augmentation is
another approach to improving the translational invariance of a model. How-
ever, translation augmentation is limited in a certain scope and thus cannot
ensure the effectiveness for test images shifted out of the scope.

In Fig.4, we compare the restoration performance on models not trained
with translation augmentation (dash lines) and models trained with translation
augmentation (solid lines). The augmentation scope is 10% of the image size,
that is, 3 pixels for MNIST and 4 pixels for CIFAR-10. Translation augmentation
indeed improves the translational invariance of the classifier on images shifted
in the augmentation scope. However, when the shift is beyond the augmentation
scope, the accuracy begins to degrade. In such a case, the pre-classifier restorer is
still able to calibrate the shift and improve the accuracy of the classifier trained
with augmentation.
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Fig. 4. Restoration performance on classifiers trained with or without translation aug-
mentations. The models are LeNet-5 for MNIST and VGG-16 for CIFAR-10. “res. and
“aug” stand for restorer and augmentation, respectively.

3D Voxelization Images. 3D-MNIST contains 3D point clouds generated
from images of MNIST. The voxelization of the point clouds contains grayscale

3D tensors.

Figure 5 visualizes the restoration on 3D-MNIST. In the middle of each sub-
figure, the 3-dimensional digit is shifted in a fixed direction. This fixed direction
is detected by the translation estimator and the restored digit is shown on the

right.
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Fig. 5. The restorer on 3D-MNIST. In each sub-figure, the left is the original digit, the
middle is the shifted digit, and the right is the restored digit.



594 Y. Wang et al.

6 Conclusion

This paper contributes to the equivalent neural networks in two aspects. The-
oretically, we give the sufficient and necessary conditions for an affine operator
W x+b to be translational equivariant, that is, Wx+b is translational equivariant
on a tensor space if and only if ¥ has the high dimensional convolution structure
and b is a constant tensor. It is well known that if W has the convolution struc-
ture, then Wz is equivariant to translations [5,9], and this is one of the basic
principles behind the design of CNNs. Our work gives new insights into the con-
volutional structure used in CNNs in that, the convolution structure is also the
necessary condition and hence the most general structure for translational equiv-
ariance. Practically, we propose the translational restorer to recover the original
images from the translated ones. The restorer can be combined with any clas-
sifier to alleviate the performance reduction problem for translated images. As
a limitation, training a restorer on a large dataset such as the ImageNet is still
computationally difficult.

A Proof of Theorem 1

We first prove a lemma.
Lemma 3. Let v: H — R be a continuous linear operator. We have
u(TM (@) = T~ (v)(2),
for all x € H and all M € 72,
Proof. A continuous linear operator v can be viewed as a tensor in H. We have
o(TM(z)) =v- T (x)
= Y T
T€TT{ [ni]
= > oll]-z[l - M]
TEIT{, [na]
= > o[[+M]- ]
T€TT{ [ni]
>, M) -2l
T€TT{[ns]
=T M) .z
=T "M@)(z).

Theorem 1. Let a(z) = w(z) + ¢ : H — H be an affine operator. Then, « is
equivariant with respect to translations if and only if for all M € 7.2,

Wy = TM(wO) and ¢ o< 1,
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where 0 is the zero vector in Z% and ¢ < 1 means that ¢ is a constant tensor,
that is, all of its entries are the same.

Proof. Here we denote the index by I = (iy,i2," - ,i4). On the one hand,

Ma())[1]

= M (w(@)T] + TM (1]
=w(z)[I — M|+ ¢[I — M|
=wy_p(x) + [I — M].

On the other hand,
a(TY (x))[1]
= w(T™ (2))[1] + (1]
= wr(TY (2)) + ¢[I]
= T () (=) + 1],

in which the last equation is from Lemma 3.
Sufficiency. Assume for all M € Z<,

wy = TM(wo) and ¢ o 1.

We have
T~ (wy) =T~ (T"(wo))
= T1=M (1)
= Wr—M,
c[I — M] = ¢[0]
= ],
T (a(2))[1] = a(TY (2)[1].
Thus,

T (a(x)) = (T (2)).

Necessity. Assume « is equivariant with respect to translations in the sense
that

T (a(2)) = (T (2)).
We have
wy_p(x) — T~ M(wp)(x) = c[I] — e[ — M].
Fix indices I = 0 and obtain that for all M € Z<,

wiy(z) — TM (wo) () = ¢(0) — ¢(M).



596 Y. Wang et al.

Recall that a continuous linear operator can be viewed as a tensor where the
operation is the inner product in tensor space. We have

c(0) — (M) = (wpr — TM(wo)) - & = wpr — T (wo) - .

For each fixed M, the left side is a constant scalar and the right side is a linear

it
transformation on all vector © € H. Thus, both sides are equal to zero tensor
and we have

c(0) =c(M),
— M
wpyr =T (wo)
That is, for all M € Z<,
cx 1,

wy = TM(wO).

B Proof of Lemma 1

We first prove a lemma.

Lemma 4. Let n : 2971 — B be the binary decomposition. There exists a
(2Q + 2)-layer network f : R — RQ with ReLU activations and width at most
Q + 1 such that for x € [2971]

Proof. We decompose = € [29F1] as = x¢ + 221 + -+ + 292¢. Then for
q=20,---,0Q, we have

2y =0(1— (29 + 2w ) + - 2% — x)).

Thus, for ¢ =0,---,Q — 1, we construct

T 0 1 ---0 0 T
rQ : Do : rQ
Jaqra( : J=o(| = |+ : ) € RTH2,
! : 0 0--1 0 :
TQ_gi1 2Q—q —12Q ...9Q—q+1 TQ_g+1
T 0 1---0 0 x
rQ : A rQ
fogr2(| . =l [+ o) ere2
: 0 0---10 :
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The last 2 layers

T 1 -129...2 T

PAeTd R ] ol I I I Bl P
2y 0 00-1) \u
o 1 —-10---0 o

PAPed B ] el I Il Bl PSS
7 0 00-1) \m

Let f = fog420---0 f1. Forz € [29F1] and 2 = xg + 214 —|—-~-—|—2QxQ we have

Z1

Lemma 1. Let n : 2971 — B be the binary decomposition. There exists a
(2Q + 2)-layer network F in the form of Eq. (2) with ReLU activations and
width at most (Q + 1)N such that for X € [2@+1]P*N

Proof. From Lemma 4, there exists a network f such that for x € [29+1],
f(x) = n(z). We denote the I-the layer of f by f; for Il =1,---,2Q + 2. Without
loss of generality, we assume for z € Rt

f1(z) =0o(w; -z + by),

where ¢ is ReLU activation and w; € RE>*Ki—1 p, ¢ RE:,
Now we construct a (2Q + 2)-layer network F' in the form of Eq. (2). For
I=1,---,2Q 4+ 2, let n; = K; x P. We construct F; in the form of Eq. (3) as

Wklxp,kl_l Xr[l] _ { dlag(wl [kla kflfl]) if p=r

0 otherwise ’

M ifp=r
Cklxp,kFlXT[” = K4 b= 3

0 otherwise

fOI‘k‘lZL'-- ,Kl,k'l_1:1,--- aKl—l andp,rzl,--- 7P.
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We can verify that for X € RE--1xPxN o — 1 ... K; p=1,---,P and
i=0,--,N—1

F(X)[ky,p,i] = o(WFP[I] - X + CRPlI] - 1)i]
K1
= o Z Whixp.ki—ixp Xki_1,p,:] + CFixp.ki-1 xP)[j]
k?l_lzl
K1
=o( Z diag(wy[ki, ki—1]) - X[ki—1,p,:] +
ki—1=1

by[k1)
Il(l_ll )]

K1
=o(blk]+ Y wilky ki) X ki1, p,))

ki_1=1
= o(wilki, ] - X[, p.i] + bilka])
= fi(XT, py i) [kl
That is,
F(X)[p, il = ful X5 s d]).
Thus, for X € RP*N andp=1---P,i=0,--- ,N—1

F(X)[:;p,i] =fagra(Fagr1 0o F1(X)[:, p, ])

:f2Q+20~-~0f1(X[pai])
=f(X[p, ).

For Z € [2Q+1]PxN,

C Proof of Lemma 2

Assume a network F' = Fy o Fy in the form of Eq. (2) with ReLU activations
and ng = G, ny = 5, ny = 1 satisfies that for X € G x N

S
F(X) = éZU(WS[l] X+ C0[1]-1). (4)

Here, the weights and biases in F5 degenerate as
W[2] = Wlm] = (*I’ T *I)?
C[2] =0.

For convenience, in the rest of this section we simplify W*[1], C*[1] to W*, C*.
The following result is well known.
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Lemma 5. Let B = {Z,|s = 1,2,---,S} C BN be a G-channel aperiodic
binary dataset. Let || Z|| be the La-norm of Z.

1) TO(ZS) Ls = HZS||2-

2) TM(Z,) - Z, < || Zs||* < (GN)? for any M € Z4.

3) For any M € Z% that M mod (n1,ng, -+ ,ng) #0, TM(Z,)- Zs < || Z||> — 1.
4) N Zsl| =1 Ze|l, TY(Z:) - 2o < || Ze])* = 1 for any M € Z°.

5) I NZsll > 12ell. 1 Z6ll = VI ZelP + 1 2 N1 Ze]l + 5

The i-th component of F(Z) in Eq. (4) is

1

S
F(Z)i] =5 Y oWF-Z+C"-1),

©nl

where WF = (W' ... ,Wik’G) € RGN and W)"" is the i-th row of W*". Recall

that each circular filter W™ € RV*N in Eq. (4) is determined by its first row

Wy e RN and Wf(’;[) = TM(WE™). And the biases C*" are actually scalars.

Lemma 6. Let B = {Z s = 1,2,---,S} € BN be a G-channel aperiodic
binary dataset. Endow B with an order that

s>t <= ||Zs|| > |1 Z).

Construct the filters and biases in Eq. (1) as

s, v Z:
0 1Z|”
1 Z,_
o5 o= [ Zs—l

G2GN +1) G

fors=1,---S;r=1---,G and set || Zy|| =
Then,

1
2GN+1°

a) ift <s, theno(Wg-Z;+C*-1)=0,i=0,1,--- ,GN — 1;

b) ift = s, then o(W§-Zy+C* 1) —(WF-Z,+C%) > sgh—,i=1,2,--- ,GN—
1;

c) ift>s, theno(WS-Z,+C*-1) <GN.

Proof. This proof uses Lemma 5.

a) Assuming ¢ < s, we have

1
s S _ M
Wian 2o+ C* 1 =TY(Z,) 2| 2|l + 5557 = 1261,
1
<TY(Z) Z,/||Zs | + —[1Z]!.

2GN +1
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I (| Zs]| = 1| Ze|s
o 1
TY(Zs) - Ze )| Zs|l < N Zell = s
1 Z: |l
Wi - Ze +C° -1 < ! _ 1! <0
s(ar) "t “2GN+1 |z
I (| Zs|| > | Zells
Z|1?
(2 7)) 7)) < A2
’ T2 + saw
1Z:]? 1
W Ze+C% 1< + =1z
s(M) "4t 1Z:) + o0 T 2GN 11 1]l
- 1 _ 1
 2GN +1  2GN +1/|Z4||

<0.
Thus, for all M € Z¢,

b) We have
Wi - Zo+C* 1 = | Zu]| = | Zocrll + 5
0 o TGN + 1
1
s s _ M
Wiy Zs +C* -1 =T%(Z,) - Zs /|| Zs || + GNT+1 | Zs—1]|
2] =1 1
— || Z4_
Sar Taanga 14l
1 1
=\ Zdll = 12, _ .
Since
1Zel| = 1 Zs 1] > 0and —— — L~
: o= 2GN +1 ||z
we have

1

1
O-(HZS”_HZ€—1H+ m—m)z QGTH

—) — Zs|| — |1 Zs=
o) — o2l = 1 Zemal +
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¢) Assuming t > s, we have
1

Wiy - Ze+C° -1 =TY(Z,) - Ze /| Zs| + 5 — 1261l
2GN +1
1 1
<zl - 12,
<||Z||
< GN,

Lemma 2. Let B = {Z s = 1,2,---,8} C BN be an aperiodic binary
dataset. Then there exists a 2-layer network F in the form of Eq. (2) with ReLU
activations and width at most SN such that for all s =1,2,--- .5,

F(Z,)[0] = maxY ;' F(Z)[i.
Proof. Without loss of generality, we assign an order to the dataset that
s>t |22 |1Z.

We set @ > 1+ GN + 2G?N? and construct F as Eq. (4) such that

s as~ 1Z7‘

R VA
o5 = ot ! - OéSil”ZS—l”
G(2GN +1) G '

fors=1,---S,r=1---,G and set HZ0||:2G7&,+1.
From Lemma 6, we have for i =1,2,--- ,GN — 1,

5( (Z0)[0] = F(Z)[i])

:Za 0 Zt+C%) =W Zi + C%)]

Za [0(WS - Z + C%) — a(W; - Zy + C*)]

at—1 -1 .
> S— S, S\ __ é . s
2 eN 1 +S§_1a [c(W§ - Zi + C°) — (WS - Zy + C?)]

2GN+1 GNZO‘

ottt GN(l—at b

T2GN+1 l-a

(@ —2G?N? —GN —1)a" ' +2G?N? + GN
(2GN 4+ 1)(a—1)

>0.
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D Experimental Settings

For CIFAR-10, we constantly pad 4 pixels with values 0 around images. For
MNIST, we resize images to 32 x 32. For 3D-MNIST, we voxelize this dataset
and constantly pad 8 pixels with value 0 around images.

We leverage restorers with 6 layers. In each layer, we use a sparse circular
filter, for example, its kernel size is 9. Each layer outputs only one channel and
has no bias parameter.
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