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ABSTRACT
In this paper, we give a necessary and sufficient condition
for an algebraic ODE to have an algebraic general solu-
tion. For a first order autonomous ODE, we give an optimal
bound for the degree of its algebraic general solutions and a
polynomial-time algorithm to compute an algebraic general
solution if it exists. Here an algebraic ODE means that an
ODE given by a differential polynomial.

Categories and Subject Descriptors
I.1.2 [SYMBOLIC AND ALGEBRAIC MANIPULA-
TION]: Algorithms—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Algebraic general solution, algebraic differential equation,
first order autonomous ODE, algebraic curve, Hermite-Padé
approximants

1. INTRODUCTION
Finding the close form solution of an ODE can be traced

back to the work of Liouville. For the algorithm consider-
ation, the pioneer work is due to Risch. In [17, 18], Risch
described a method to find the elementary integral of

R
udx

where u is an elementary function. In Trager’s Ph.D thesis
[22], he gave a method to compute the integral of algebraic
functions based on Risch’s ideas. In [1], Bronstein gener-
alized Trager’s results to elementary functions. For higher
order linear homogeneous ODEs, Kovacic presented an ef-
fective method to find the Liouvillian solutions for second
order ODEs [14]. In [20], Singer established a general frame-
work for finding the Liouvillian solutions for general linear
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homogeneous ODEs. Many other interesting results on find-
ing the Liouvillian solutions of linear ODEs were reported
in [2, 6, 23, 24].

Most of these results are limited to the linear case or some
special type nonlinear equations. Work on finding closed
form solutions for nonlinear differential equations is not as
systematic as that for linear equations. With respect to the
particular ODEs of the form y′ = R(x, y) where R(x, y) is
a rational function, Darboux and Poincaré made important
contributions [16]. More recently, Cerveau, Carnicer and
Corral et al also made important progresses [4, 3, 7]. In
particular, Carnicer gave the degree bound of algebraic so-
lutions in the nondicritical case. In [21], Singer studied the
Liouvillian first integrals of differential equations. In [12],
Hubert gave a method to compute a basis of the general so-
lutions of first order ODEs and applied it to study the local
behavior of the solutions. In [9, 10], Feng and Gao gave a
necessary and sufficient condition for an algebraic ODE to
have a rational type general solution and a polynomial-time
algorithm to compute a rational general solution if it exists.

In this paper, the idea proposed in [9] is generalized to
compute algebraic function solutions. In Section 2, we give
a sufficient and necessary condition for an algebraic ODE to
have an algebraic general solution, by constructing a class of
differential equations whose solutions are all algebraic func-
tions. In Section 3, by treating the variable and its derivative
as independent variables, a first order autonomous ODE de-
fines a plane algebraic curve. Using the Riemann-Hurwitz
formula, we give a degree bound of algebraic function so-
lutions of the equation. This degree bound is optimal in
the sense that there is a class of first order autonomous
ODEs, whose algebraic function solutions reach this bound.
In Section 4, based on the above results and the theory of
Hermite-Padé approximants, we give a polynomial-time al-
gorithm to find an algebraic general solution for a first order
autonomous ODE.

A first order autonomous ODE F (y, dy
dx

) = 0 can be re-

duced to the form G(y, dx
dy

) = 0, where G is also a polyno-

mial(see the section 3.2.1, (7)). Then to find the solution
of F = 0, we may first find x = φ(y) as a function in y by
computing the integral of an algebraic function, and then
compute the inversion y = φ−1(x). For an algebraic func-
tion φ(x) which satisfies G(x, φ(x)) = 0, let y =

R
φ(x)dx

be the integral of φ(x). Then we have G(x, dy
dx

) = 0. By the

same way, G(x, dy
dx

) = 0 can be converted into a first order

autonomous ODE F (x, dx
dy

) = 0. Then to find the integral y
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of φ(x), we may first find x = ϕ(y) by computing a solution
of F (x, dx

dy
) = 0 and then compute the inversion. Hence, our

algorithm is equivalent to a polynomial-time algorithm for
finding an algebraic integral for an algebraic function.

2. ALGEBRAIC GENERAL SOLUTIONS OF
ALGEBRAIC ODES

2.1 Definition of algebraic general solutions
In the following, let K = Q(x) be the differential field of

rational functions in x with differential operator d
dx

and y an
indeterminate over K. Let Q̄ be the algebraic closure of the
rational number field Q. We denote by yi the i-th derivative
of y. We use K{y} to denote the ring of differential poly-
nomials over the differential field K, which consists of the
polynomials in the yi with coefficients in K. All differential
polynomials in this paper are in K{y}. Let Σ be a system of
differential polynomials in K{y}. A zero of Σ is an element
in a universal extension field of K, which vanishes every dif-
ferential polynomial in Σ [19]. In this paper, we also assume
that the universal extension field of K contains an infinite
number of arbitrary constants. We will use C to denote the
constant field of the universal extension field of K.

Let P ∈ K{y} \ K. We denote by ord(P ) the highest
derivative of y in P , called the order of P . Let o = ord(P ) >
0. We may write P as follows

P = adyd
o + ad−1y

d−1
o + . . . + a0

where ai are polynomials in y, y1, . . . , yo−1 and ad 6= 0. ad

is called the initial of P and S = ∂P
∂yo

is called the separant

of P . The k-th derivative of P is denoted by P (k). Let S be
the separant of P , o = ord(P ) and an integer k > 0. Then
we have

P (k) = Syo+k + Rk (1)

where Rk is of lower order than o + k.
Let P be a differential polynomial of order o. A differen-

tial polynomial Q is said to be reduced with respect to P if
ord(Q) < o or ord(Q) = o and deg(Q, yo) < deg(P, yo). For
two differential polynomials P and Q, let R = prem(P, Q)
be the differential pseudo-remainder of P with respect to Q.
We have the following differential remainder formula for R
[13, 19]

JP =
X

i

BiQ
(i) + R

where J is a product of certain powers of the initial and sep-
arant of Q and Bi, R are differential polynomials. Moreover,
R is reduced with respect to Q. For a differential polynomial
P of order o, we say that P is irreducible if P is irreducible
when P is treated as a polynomial in K[y, y1, . . . , yo].

Let P ∈ K{y}\K be an irreducible differential polynomial
and

ΣP = {A ∈ K{y}|SA ≡ 0mod {P}}, (2)

where{P} is the perfect differential ideal generated by P [13,
19]. Ritt proved that [19]

Lemma 2.1. ΣP is a prime differential ideal and a differ-
ential polynomial Q belongs to ΣP iff prem(Q, P ) = 0.

Let Σ be a non-trivial prime ideal in K{y}. A zero η of Σ
is called a generic zero of Σ if for any differential polynomial

P , P (η) = 0 implies that P ∈ Σ. It is well known that an
ideal Σ is prime iff it has a generic zero [19].

As a consequence of Lemma 2.1, we have

Lemma 2.2. Let F ∈ K{y}\K be an irreducible differen-
tial polynomial with a generic solution η. Then for a differ-
ential polynomial P we have P (η) = 0 iff prem(P, F ) = 0.

The following definition of the general solution is due to
Ritt.

Definition 2.3. Let F ∈ K{y} \K be an irreducible dif-
ferential polynomial. A general solution of F = 0 is defined
as a generic zero of ΣF . An algebraic general solution of
F = 0 is defined as a general solution ŷ which satisfies the
following equation

G(x, y) =

nX
j=0

mjX
i=0

ai,jx
iyj = 0 (3)

where ai,j are in C and
Pn

j=0

Pmj

i=0 ai,jx
iyj is irreducible in

C[x, y]. When n = 1, ŷ is called a rational general solution
of F = 0.

For algebraic solutions of a differential equation F = 0, we
have the following lemma.

Lemma 2.4. Let G(y) ∈ C(x)[y] and irreducible in C̄(x)[y]
where C̄ is the algebraic closure of C. If one solution of
G(y) = 0 is a solution of F = 0, then every solution of
G(y) = 0 is the solution of F = 0.

Proof. Since G(y) is irreducible in C̄(x)[y], every so-
lution of G(y) = 0 is a generic zero of G(y) = 0. By
Lemma 2.2, prem(F, G) = 0. That is,

SkIlF = PG′ + QG (4)

where S = ∂G
∂y

, I is the initial of G and k, l ∈ Z. Since

every solution of G(y) = 0 is a generic zero, S or I do not
vanish at it. Hence every solution of G(y) = 0 is a solution
of F = 0.

A general solution of F = 0 is usually defined as a family
of solutions with o independent parameters in a loose sense
where o = ord(F ). The definition given by Ritt is more
precise. Theorem 6 in Section 12, Chapter 2 in [13] tells us
that Ritt’s definition of general solutions is equivalent to the
definition in the classical literature.

2.2 A criterion for existence of algebraic
general solutions

For non-negative integers h, α, k, let A(h,α;k)(y) be the
following (h + 1)× (α + 1) matrix:
0
BBBB@

�k+1
0

�
yk+1

�k+1
1

�
yk · · · �k+1

α

�
yk+1−α�k+2

0

�
yk+2

�k+2
1

�
yk+1 · · · �k+2

α

�
yk+2−α

.

.

.
.
.
. · · ·

.

.

.�k+h+1
0

�
yk+h+1

�k+h+1
1

�
yk+h · · · �k+h+1

α

�
yk+h+1−α

1
CCCCA

.

Let α = (α1, · · · , αn) ∈ Zn
≥0, α0 ∈ Z≥0 where Z≥0 means

the set of non-negative integers. Let A(α0;α)(y) be the (h +
1)× (h + 1) matrix

(A(h,α1;α0)(y)|A(h,α2;α0)(y
2)| · · · |A(h,αn;α0)(y

n))

where n+α1 + · · ·+αn = h+1. Let D(α0;α) be the determi-
nant of A(α0;α)(y). Note that if n = 1, D(α0,α) is just equal
to Dn,m in [9].
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Lemma 2.5. An element ȳ in the universal extension of
K is a solution of D(α0;α) = 0 iff it satisfies the equation (3)
with mj ≤ αj for j = 0, · · · , n.

Proof. Assume that ȳ satisfies the equation (3) with
mj ≤ αj where j = 0, · · · , n. Then we have

nX
j=1

αjX
i=0

ai,j(x
iȳj)(α0+1) = 0

where (xiȳj)(α0+1) means the (α0 + 1)-th derivative of xiȳj

with respect to x and if i > mj then ai,j = 0. Since ai,j

are constants, (xiȳj)(α0+1) (i = 0, · · · , αj , j = 1, · · · , n)
are linearly dependent over C. That is, the Wronskian de-
terminant W ((xiȳj)(α0+1)) for (xiȳj)(α0+1) vanishes where
j = 0, · · · , n, i = 0, · · · , αj [19]. Then ȳ satisfies the equa-

tion (3) with mj ≤ αj iff W ((xiȳj)(α0+1)) = 0. By the
computation process,

W ((xiȳj)(α0+1)) = D(α0;α)(ȳ) ∗ |diag(B0, · · · , Bn)|
where diag(B0, · · · , Bn) is the diagonal matrix of Bj and

Bj =

0
BB@

1 x · · · xαj

0 1 · · · αjxαj−1

.

..
.
.. · · ·

.

..
0 0 · · · αj !

1
CCA

for j = 0, · · · , n. Hence W ((xiȳj)(α0+1)) = 0 if and only if
D(α0;α)(ȳ) = 0.

By the above Lemma, we can prove the following criteria
theorem easily.

Theorem 2.6. Let F be an irreducible differential poly-
nomial. Then F = 0 has an algebraic general solution ŷ iff
there exist α = (α1, · · · , αn) ∈ Zn

≥0, α0 ∈ Z≥0 such that
prem(D(α0;α), F ) = 0.

Proof. (⇒) Let ŷ be an algebraic general solution of F =
0 which satisfies the equation (3). Let α = (m1, m2, · · · , mn)
and α0 = m0. Then from Lemmas 2.1, 2.2 and 2.5

D(α0,α)(ŷ) = 0 ⇒ D(α0,α) ∈ ΣF ⇒ prem(D(α0,α), F ) = 0.

(⇐) prem(D(α0,α), F ) = 0 implies that D(α0,α) ∈ ΣF by
Lemma 2.1. Then all the zeros of ΣF must satisfy the equa-
tion (3). In particular, the generic zero of ΣF satisfies the
equation (3).

Given an algebraic differential equation F = 0, if we know
the degree bound of the equation (3) with respect to x and y
which perhaps defines an algebraic general solution of F = 0,
then we can decide whether it has an algebraic general so-
lution by computing prem(D(α0,α), F ) step by step. How-
ever for ODEs of order greater than one or with variate
coefficients, we do not know this bound. Even for the case

y′ = P (x,y)
Q(x,y)

where P (x, y), Q(x, y) ∈ Q[x, y], we have no ef-

fective method to get the bound [3, 16]. In the following, for
the first order autonomous ODEs, we give a degree bound
for algebraic function solutions.

3. DEGREE BOUND FOR FIRST ORDER
AUTONOMOUS ODES

In the following, we will always assume that F = 0 is
a first order autonomous ODE in Q{y} and irreducible in

Q̄{y} and G(x, y) ∈ Q̄[x, y] which is irreducible. We say
G(x, y) is nontrivial if deg(G, x) > 0 and deg(G, y) > 0.
From now on, we always assume that G(x, y) is nontrivial.
When we say that G(x, y) = 0 is an algebraic solution of
F = 0, we mean that one of the algebraic functions ŷ(x)
defined by G(x, ŷ(x)) = 0 is a solution of F = 0.

3.1 Structure for algebraic general solutions
It is a trivial fact that for an autonomous ODE, the so-

lution set is invariant by a translation of the independent
variable x. Moreover, we have the following fact.

Lemma 3.1. Let G(x, y) = 0 be an algebraic solution of
F = 0. Then G(x+c, y) = 0 is an algebraic general solution
of F = 0, where c is an arbitrary constant.

Proof. Assume that ȳ(x) is a formal power series so-
lution of G(x, y) = 0. Then ȳ(x + c) will be a solution
of G(x + c, y) = 0. Because ȳ(x) is a solution of F = 0,
ȳ(x + c) is still a solution of F = 0. Hence G(x + c, y) = 0
is an algebraic solution of F = 0. For any T ∈ K{y}
satisfying T (ȳ(x + c)) = 0, let R = prem(T, F ). Then
R(ȳ(x + c)) = 0. Suppose that R 6= 0. Since F is irre-
ducible and deg(R, y1) < deg(F, y1), there are two differen-
tial polynomials P, Q ∈ K{y} such that PF + QR ∈ K[y]
and PF +QR 6= 0. Thus (PF +QR)(ȳ(x+c)) = 0. Because
ȳ(x + c) /∈ Q̄ and c is an arbitrary constant which is tran-
scendental over K, we have PF + QR = 0, a contradiction.
Hence R = 0 which means that T ∈ ΣF . So ȳ(x + c) is a
generic zero of ΣF . Hence G(x + c, y) = 0 is an algebraic
general solution.

Lemma 3.1 reduces the problem of finding an algebraic
general solution to the problem of finding a nontrivial alge-
braic solution. In what follows, we will show how to find
a nontrivial algebraic solution in Q̄[x, y]. First of all, we
decide the degree of an algebraic solution.

3.2 Degree bound of an algebraic solution
Assume that G(x, y) = 0 is an algebraic solution of the

differential equation F = 0. In this subsection, we will give
a bound for deg(G, x) and deg(G, y). First, we introduce
some concepts concerning the algebraic function fields in
one variable.

Definition 3.2. Q̄(x, α) is called an algebraic function
field in one variable, if x is transcendental over Q̄ and α is
algebraic over Q̄(x) [11].

An irreducible algebraic curve G(x, y) = 0 where G(x, y) ∈
Q̄[x, y] corresponds to an algebraic function field Q̄(α, β)
which is unique under an isomorphism where α, β satisfies
G(α, β) = 0 and α or β is transcendental over Q̄. It is well
known that two algebraic curves with isomorphic function
fields have the same genus.

3.2.1 Parametrization of a curve
Let Q̄((t)) be the quotient field of the ring of formal power

series Q̄[[t]]. Let G(x, y) be a nontrivial irreducible polyno-
mial in Q̄[x, y]. If x(t), y(t) ∈ Q̄((t)) satisfy G(x(t), y(t)) =
0, we say that they are the coordinates of a parametrization
provided x(t) or y(t) does not belong to Q̄. There exist
x0, y0 ∈ Q̄, nonzero integers q and p, and units u(t), v(t) in
Q̄[[t]], such that

�
x(t)− x0 = tq u(t),
y(t)− y0 = tp v(t).

(5)
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The center of the parametrization is the point P ∈ P1 × P1

defined accordingly the following cases: (a) If q > 0 and
p > 0, then P = (x0, y0); (b) If q > 0 and p < 0, then
P = (x0,∞); (c) If q < 0 and p > 0, then P = (∞, y0); (d)
If q < 0 and p < 0, then P = (∞,∞). If p < 0 (resp. q < 0)
we agree to take y0 = 0 (resp. x0 = 0).

If there exists an integer k ≥ 2 such that x(t), y(t) ∈
Q̄((tk)), the parametrization will be called reducible, other-
wise irreducible. If t̄ ∈ Q̄[[t]] with order with respect to t
greater than zero, then x(t̄), y(t̄) is another parametrization
with the same center. If the order of t̄ is equal to one, the
two parametrizations will be said to be equivalent. An equiv-
alence class of irreducible parametrizations will be called a
place B of the curve G = 0 with center the center of one of
its parametrizations. Two equivalent parametrizations have
the same integers q and p as defined above. Then given a
place B, we define nonzero integers νx(B) and νy(B) as the
integers q and p of any of its irreducible parametrizations.

Let g be the genus of G(x, y) = 0 and n = deg(G, y). By
the Riemann-Hurwitz formula [15] we have that

g = 1− n +
1

2

X
B

(|νx(B)| − 1)

where B runs over all places of the curve G = 0.
Each place B with center (α, β) corresponds to exactly qB

fractional power series y(x1/qB ) which are the solutions of
G(x, y(x)) = 0. Let α ∈ Q̄ ∪ {∞}. Hence, by the Puiseux
theorem we have thatX

B

|νx(B)| = deg(G, y), (6)

where the sum runs over all places B of the curve G = 0
with center (α, β).

Lemma 3.3. Let G(x, y) be a nontrivial irreducible poly-
nomial of Q̄[x, y]. Let (x(t), y(t)) be the coordinates of a
parametrization G = 0. Then, for any nonzero constant c ∈
Q̄, (x(t) + c, y(t)) are not the coordinates of a parametriza-
tion of G = 0.

Proof. By Gauss’s lemma, we know G(x, y) is irreducible
in Q̄(y)[x]. Since y(t) /∈ Q̄, Q̄(y(t)) is isomorphic to Q̄(y)
which implies that G(x, y(t)) ∈ Q̄(y(t))[x] is irreducible too.
Now assume that x(t) is a root of G(x + c, y(t)) = 0. Then
we have G(x, y(t)) divides G(x + c, y(t)). It is clear that
deg(G(x+c, y(t)), x) = deg(G(x, y(t)), x) and G(x, y(t)) and
G(x + c, y(t)) have the same leader coefficients. Hence,
G(x, y(t) = G(x + c, y(t)). Since c 6= 0, we have that
deg(G(x, y), x) = deg(G(x, y(t)), x) = 0, in contradiction
with the nontriviality of G(x, y).

Now we are ready to give the degree bound of the algebraic
solution of F = 0. First, we could determine the degree
deg(G, x) exactly from the degree of F .

Theorem 3.4. Let G(x, y) ∈ Q̄[x, y] be irreducible and
let G(x, y) = 0 be an algebraic solution of F = 0. Then we
have

deg(G, x) = deg(F, y1).

Proof. Assume that deg(G, x) = s and deg(F, y1) = d.
Let us write

G(x, y) = A0(y) + A1(y)x + · · ·+ As(y)xs,

F = F0(y) + F1(y)y1 + · · ·+ Fd(y)yd
1

where Ai(y), Fj(y) ∈ Q̄[y]. We use Res(A, B, z) to denote
the Sylvester-resultant of A and B with respect to z and Z
stands for “the zero set of”. Let S = Z(As(y))∪Z(Fd(y))∪
Z(Res(G, ∂G

∂x
, x)) ∪ Z(Res(G, ∂G

∂y
, x)) ∪ Z(Res(F, ∂F

∂y1
, y1)).

Then S is a finite set. Hence we can choose a c ∈ Q̄ such
that c /∈ S. Then we have the following results:

(a) the set {z ∈ Q̄|F (c, z) = 0} = {z1, z2, · · · , zd} has ex-
actly d elements;

(b) the set {x ∈ Q̄|G(x, c) = 0} = {x1, x2, · · · , xs} has
exactly s elements;

(c) since ∂G
∂y

(xi, c) 6= 0, there exists a unique formal power
series

ϕi(x) = c + gi,1(x− xi) + gi,2(x− xi)
2 + · · ·

such that G(x, ϕi(x)) = 0 for each i = 1, · · · , s.

From Lemma 2.4, ϕi(x) is a solution of F = 0. Then we have
F (ϕi(x), ϕ′i(x)) = 0 which implies that F (c, gi,1) = 0. Sup-
pose that s > d. Then there exist at least two of gi,1 which
are equal to each other. Without lost of generalization, as-
sume that g1,1 = g2,1 = c1. Since ∂F

∂y1
(c, c1) 6= 0, there exists

only one solution ϕ(x) of F (y, y1) = 0 such that ϕ(0) = c
and ϕ′(0) = c1. Hence ϕ1(x) = ϕ2(x+x2−x1) = ϕ(x−x1).
So (x, ϕ1(x)) and (x + x2 − x1, ϕ1(x)) are two coordinates
of a parametrizations of G = 0. This is a contradiction by
the above lemma. Hence s ≤ d. Let G′ = y1

∂G
∂y

+ ∂G
∂x

and

H(y, y1) = Res(G, G′, x). Then

H(y, y1) = ys
1Res(G,

∂G

∂y
, x) + terms of lower order in y1.

Since Res(G, ∂G
∂y

, x) 6= 0, we have deg(H, y1) = s. As-

sume that ȳ(x) is a solution of G(x, y) = 0. Then we have
H(ȳ(x), ȳ′(x)) = F (ȳ(x), ȳ′(x)) = 0. Because F is irre-
ducible, we have that deg(H, y1) ≥ deg(F, y1). In the other
words, s ≥ d.

Since F is first order and autonomous, we can regard F =
0 as an algebraic curve and we will use F (y, y1) to denote
F .

Lemma 3.5. Assume that G(x, y) = 0 is an algebraic so-
lution of F = 0. Then the genus of G(x, y) = 0 equals to
that of F (y, y1) = 0.

Proof. Let α satisfy G(x, α) = 0. It is clear that α is
transcendental over Q̄. Then Q̄(x, α) and Q̄(α, α′) are the
algebraic function fields of G(x, y) = 0 and F (y, y1) = 0
respectively. We only need to prove Q̄(x, α) = Q̄(α, α′).
From Theorem 3.4, we have [Q̄(x, α) : Q̄(α)] = [Q̄(α, α′) :
Q̄(α)]. Since G(x, α) = 0, α′ = − ∂G

∂x
(x, α)/ ∂G

∂y
(x, α). which

implies that α′ ∈ Q̄(x, α). Hence Q̄(x, α) = Q̄(α, α′).

For convenience, we consider a new differential equation

F̄ (x1, y) = x
deg(F,y1)
1 F (y,

1

x1
) = 0 (7)

where x1 = dx
dy

= 1
y1

. F̄ is irreducible in Q̄[x1, y] and

deg(F̄ , y) = deg(F, y), deg(F̄ , x1) = deg(F, y1). Then we
have the following lemma.

Lemma 3.6. Let F̄ be defined as in (7) and G(x, y) = 0 an
algebraic solution of F = 0. Then G(x, y) = 0 also defines
an algebraic function (in y) solution of F̄ (x1, y) = 0.
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Proof. From the proof of Theorem 3.4, we know that

Res(G, G′, x) = A(y)F (y, y1)

where G′ = y1
∂G
∂y

+ ∂G
∂x

. In the other words, there exist

two polynomials P, Q ∈ Q̄[x, y, y1] such that PG + QG′ =
A(y)F (y, y1). Replacing y1 by 1

x1
and multiplying some

power of x1, we have

P̄G + Q̄(
∂G

∂y
+ x1

∂G

∂x
) = xk

1A(y)F̄ (x1, y) (8)

where P̄ , Q̄ ∈ Q̄[x, y, x1] and k ∈ Z≥0. Suppose that β
satisfies G(β, y) = 0. Replacing x by β and x1 by β′ in (8)
where β′ = dβ

dy
, we have that F̄ (β′, y) = 0. Hence G(x, y) =

0 is an algebraic solution of F̄ = 0.

Lemma 3.7. Let (x(t), y(t)) be an irreducible parametriza-

tion of G = 0. Then (x′(t)
y′(t) , y(t)) is an irreducible parametriza-

tion of F̄ (x1, y) = 0.

Proof. Let us denote x1(t) = x′(t)
y′(t) where ′ means the

derivative with respect to t. Since x1(t) = dx
dy

(t), we have

F̄ (x1(t), y(t)) = 0. Assume that (x1(t), y(t)) is a reducible
parametrization. Let k ≥ 2, such that x1(t), y(t) ∈ Q̄((tk)).
Then x1(t)y

′(t) =
P

j≥j0
cjt

kj−1. Since x′(t) = x1(t)y
′(t),

then we have that c0 = 0 and x(t) = c +
P

j≥j0

cjtkj

kj
,

for some constant c. Hence we get a contradiction because
x(t), y(t) ∈ Q̄((tk)).

Theorem 3.8. Assume that G(x, y) = 0 is a nontrivial
algebraic solution of F = 0. Then we have that

deg(G, y) ≤ deg(F, y) + deg(F, y1).

Proof. Let F̄ be as in (7). Let gG and gF̄ be the genus
of G(x, y) = 0 and F̄ (x1, y) = 0 respectively. Let B be
a place of G = 0 with center P = (α, β). Let (x(t), y(t))
be an irreducible parametrization of B. Let us denote by
B̃ the place of the algebraic curve F̄ (x1, y) = 0 given by
the irreducible parametrization (x1(t), y(t)), where x1(t) =

x′(t)/y′(t). Let P̃ = (α̃, β̃) be the center of B̃. It is obvious

that νy(B) = νy(B̃) and β = β̃. If νx(B) 6= νy(B) then

we have that νx1(B̃) = νx(B) − νy(B). Hence, if νx(B) >
νy(B), then α̃ = 0; if νx(B) < νy(B), then α̃ = ∞; if
νx(B) = νy(B), then α̃ ∈ Q̄.

The map that sends each place B of G = 0 to the place
B̃ of F̄ = 0 is injective. Let B and B′ be two places of

G = 0 such that B̃ = fB′. Let (x(t), y(t)) and (z(t), v(t))
be the parametrizations of B and B′ respectively. We may

assume that y(t) = y0 + tp and v(t) = v0 + tp′ (see [26],

Chap. 4, Theorem 2.2). Since B̃ = fB′ we have that p = p′,
y(t) = v(t) and x′(t) = z′(t). Hence z(t) = x(t)+c, for some
constant c. By lemma 3.3 we have that c = 0, so B = B′.

By the Riemann-Hurwitz formula we have that

2(gG + deg(G, y)− 1) =
X
B

(|νx(B)| − 1), (9)

where B runs over all places of G = 0.
We will split the right hand side of the above equation in

four cases: We say that B ∈ (1) if νx(B) > 0 and νy(B) > 0;
that B ∈ (2) if νx(B) > 0 and νy(B) < 0; B ∈ (3) if
νx(B) < 0 and νy(B) > 0; and that B ∈ (4) if νx(B) < 0
and νy(B) < 0. Moreover, we say that B ∈ (1)′ if B ∈ (1)

and νx(B) > νy(B); and we say that B ∈ (4)′ if B ∈ (4)
and νx(B) < νy(B). In the following inequalities Bx, By

B̃x1 and B̃y will stand for νx(B), νy(B), νx1(B̃) and νy(B̃)
respectively.

For k = 1 and k = 4, we have that
X

B∈(k)

(|Bx| − 1) ≤
X

B∈(k)′
|B̃x1 |+

X

B∈(k)

(|By| − 1). (10)

For k = 2 and k = 3, we have that
X

B∈(k)

(|Bx| − 1) ≤
X

B∈(k)

|B̃x1 |. (11)

If B ∈ (1)′ ∪ (2), then the center of B̃ is over x1 = 0. If

B ∈ (3) ∪ (4)′, then the center of B̃ is over x1 = ∞. Hence,
using the formula (6), we have that

X

B∈(1)′,(2),(3),(4)′
|B̃x1 | ≤ 2 deg(F̄ , y). (12)

By the Riemann-Hurwitz formula, we have that
X

B∈(1),(4)

(|B̃y| − 1) ≤ 2(gF̄ + deg(F̄ , x1)− 1). (13)

We remark that in the inequalities (12,13) we have used the

fact that the map B 7→ B̃ between the places of G = 0 and
places of F̄ = 0 is injective. By the inequalities ((9)-(13)),
we have that

2(gG + deg(G, y)− 1) ≤ 2(gF̄ + deg(F̄ , x1) + deg(F̄ , y)− 1).

Using the above inequalities, and the facts that deg(F̄ , x1) =
deg(F, y1), deg(F̄ , y) = deg(F, y) and that gG = gF̄ , gives
the required inequality.

The following example shows that the degree bound given
in Theorem 3.8 is optimal.

Example 3.9. Assume that n > m > 0 and (n, m) = 1.
Let G(x, y) = yn − xm which is irreducible. We have that
G(x, y) = 0 is an algebraic solution of F = yn−mym

1 −
(m

n
)m = 0. In this case, we have that deg(G, y) = deg(F, y)+

deg(F, y1).

4. A POLYNOMIAL-TIME ALGORITHM
The simple degree bounds given in the preceding section

allow us to give a polynomial-time algorithm to compute al-
gebraic function solutions of a first order autonomous ODE.

4.1 Algebraic approximant
Algebraic approximant is a special type of Hermite-Padé

approximant. It uses an algebraic function to approximate
a given function.

Definition 4.1. Let G(x, y) be an irreducible polynomial
in Q̄[x, y]. An algebraic function ȳ(x) satisfying G(x, ȳ(x)) =
0 is called an algebraic approximant to a function f(x) if

G(x, f(x)) = O(x(m+1)(n+1)−1)

where m = deg(G, x) and n = deg(G, y).

More generally, we will find G(x, y) such that

G(x, f(x)) = O(xN+1) (14)
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where N is a positive integer. We can get the coefficients of
G(x, y) with respect to x and y by solving linear equations.
Let G(x, y) =

Pn
j=0

Pm
i=0 bi,jx

iyj and f(x) = a0 + a1x +

· · ·+ aNxN + O(xN+1). Let

M0 =

0
@

I(m+1)×(m+1)

0(N−m)×(m+1)

1
A (15)

where I(m+1)×(m+1) is an m + 1 unit square matrix and
0(N−m)×(m+1) is an (N − m) × (m + 1) zero matrix. Let

Mi = TM i ∗M0 for i = 1, · · · , n where

TM =

0
BBBBB@

a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

...
...

aN aN−1 aN−2 · · · a0

1
CCCCCA

(16)

and ai are the coefficients of f(x). Then by the computation
process, we can write (14) as the matrix form

(M0|M2| · · · |Mn)

0
BBB@

B0

B1

...
Bn

1
CCCA = 0 , Bi =

0
BBB@

b0,i

b1,i

...
bm,i

1
CCCA (17)

for i = 1, · · · , n.
Let ȳ(x) = a0 +a1x+ · · · be a formal power series. When

we say ϕ(x) is the first N + 1 terms of ȳ(x), we mean that
ϕ(x) = a0 + a1x+ · · ·+ aNxN . The following lemma will be
used in our algorithm.

Lemma 4.2. Let ȳ(x) be a formal power series such that
G(x, ȳ(x)) = 0. Assume that m = deg(G, x) and n =
deg(G, y). Let ϕ(x) be the first 2mn + 1 terms of ȳ(x). If
Q0(x), Q1(x), · · · , Qn(x) ∈ Q̄[x] such that

Q0(x) + Q1(x)ϕ(x) + · · ·+ Qn(x)ϕ(x)n = O(x2mn+1)

where deg(Qi(x), x) ≤ m and not all of them are zero. Then

G(x, y) = λ(Q0(x) + Q1(x)y + · · ·+ Qn(x)yn) (18)

where λ ∈ Q̄ does not equal to zero.

Proof. Let Q(x, y) = Q0(x) + Q1(x)y + · · · + Qn(x)yn.
There exist S, T ∈ Q̄[x, y] such that

SG(x, y) + TQ(x, y) = Res(G, Q, y) (19)

where deg(S, y) < n and deg(T, y) < n. If Q(x, ȳ(x)) =
0, then (18) is true. Assume that Q(x, ȳ(x)) 6= 0 and
Res(G, Q, y) 6= 0. Then it is not difficult to know that
deg(Res(G, Q, y), x) ≤ 2mn. However, substituting ȳ(x) to
the left side of (19), the left side will become a series with or-
der greater than 2mn, a contradiction. Hence Res(G, Q, y) =
0 which implies (18) is true, because G(x, y) is irreducible.

4.2 An algorithm to compute algebraic
solutions

First, we give an algorithm to compute the first N + 1
terms of a formal power series solution of F = 0 for a given
positive integer N . Regarding F = 0 as an algebraic curve,
find a point (z0, z1) on it such that the separant S(y, y1) of
F (y, y1) does not vanish at (z0, z1). Then we can compute
yi = zi step by step from (1). Then ȳ(x) = z0+z1x+ z2

2!
x2+

· · · is a formal power series solution of F = 0. Moreover, if
z1 6= 0, then ȳ(x) /∈ Q̄.

Algorithm 4.3. Input: F = 0 and a positive integer N .
Output: the first N + 1 terms of a formal power series solu-
tion of F = 0 which is not in Q̄.

1. Find a point (z0, z1) ∈ Q̄
2

on F (y, y1) = 0 such that
S(z0, z1) 6= 0 and z1 6= 0.

2. i := 2 and ϕ(x) := z0 + z1x.

3. while i ≤ N do

(a) Replace y by ϕ(x) and y1 by ϕ′(x) in F (y, y1).

(b) c := the coefficient of xi−1 in F (ϕ(x), ϕ′(x)).

(c) zi := − (i−1)!c
S(z0,z1)

and ϕ(x) := ϕ(x) + zixi

i!
.

(d) i := i + 1.

4. Return(ϕ(x)).

The correctness of the algorithm comes from the following
facts. Let ȳ(x) be a formal power series solution of F = 0.
Then by (1),

(F (ȳ(x), ȳ1(x)))(i−1) = Sȳi(x) + R(ȳ(x), · · · , ȳi−1(x)) = 0.

Since ȳk(x)|x=0 = zk for k = 1, 2, · · · , we have that

S(z0, z1)zi + R(z0, · · · , zi−1) = 0.

Now assume that ϕ(x) = z0 + z1x + · · ·+ zi−1
(i−1)!

xi−1. Then

(F (ϕ(x), ϕ′(x)))(i−1) = R(ϕ(x), · · · , ϕ(i−1)(x)).

Since ϕ(k)(x)|x=0 = zk for k = 1, · · · , i − 1 and ϕi(x) = 0,
we have that

R(z0, · · · , zi−1) = (F (ϕ(x), ϕ′(x)))(i−1)|x=0

which equals to (i − 1)! times the coefficient of xi−1 in
F (ϕ(x), ϕ′(x)). Let T = tdeg(F ), the total degree of F .
Theorem 9 given in [9] shows that the number of the points
on F (y, y1) = 0 which make S(y, y1) or y1 vanish is at most
T 2.

The complexity of Algorithm 4.3 is polynomial in terms
of the number of multiplications in Q needed in the algo-
rithm. In Step 1, we can find a point (z0, z1) as follows.

We may replace y by the integers z0 = 0,±1, · · · ± dT2

2
e

where T = tdeg(F ) and let L(y1) be a monic irreducible
factor of F (z0, y1) ∈ Q[y1]. We may take z1 to be a root
of L(y1) = 0. Since the number of the points which make
S(y, y1) or y1 vanish is at most T 2, there always exists an

integer z0 ∈ {0,±1, · · · ± dT2

2
e} such that the point (z0, z1)

satisfies the assumption in Step 1. Hence the complexity of
Step 1 is polynomial. Then all the procedures will be exe-
cuted over the number field Q(z1). Let D = deg(L(y1)) ≤
T = tdeg(F ). Then any element of Q(z1) can be represented
as a polynomial in z1 with degree ≤ T−1. Let β, γ ∈ Q(z1).
Then there exist P (z), Q(z) ∈ Q[z] such that β = P (z1), γ =
Q(z1) where deg(P ) ≤ T − 1, deg(Q) ≤ T − 1. To com-
pute φ = β ∗ γ, we need to compute R = prem(PQ, L).
Therefore, a multiplication of two elements in Q(z1) needs
O(T 2) multiplications of rational numbers. Since comput-
ing the inversion of β can also be done in O(T 2), the divi-
sion of two elements in Q(z1) needs O(T 2) multiplications
of rational numbers too. In Step 3, the computation of
(a0+a1x+· · ·+aNxN )T needs at most O(N2T 4) multiplica-
tions in Q(z1), and hence at most O(T 2 ·N2T 4) = O(N2T 6)
multiplications in Q.
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Now we can give the algorithm to compute an algebraic
solution of F = 0.

Algorithm 4.4. Input: F = 0. Output: an algebraic
solution of F = 0 if it exists.

1. d := deg(F, y1) and e := deg(F, y).

2. k := 1.
while k ≤ d + e do

(a) Compute the first 2dk + 1 terms ϕ(x) of a formal
power series solution of F = 0 by Algoritm 4.3.

(b) ai := the coefficient of xi in ϕ(x) for i = 0, · · · , 2dk.

(c) In (15) and (16), let m = d, n = k and N = 2dk.
We construct the linear equations (17).

(d) If (17) has no nonzero solution or the dimension
of the solution space of (17) is great than one,
then go to Step (i).

(e) Otherwise, choose one of nonzero solutions b̄i,j

where i = 0, · · · , d and j = 0, · · · , k.

(f) G(x, y) :=
Pk

j=0

Pd
i=0 b̄i,jx

iyj , S := ∂G
∂y

and

I := the initial of G(x, y).

(g) If GCD(G, S) 6= 1 or GCD(G, I) 6= 1, then go to
Step (i). Otherwise, go to next step.

(h) Let R = prem(F, G).
If R = 0, then return(G(x, y) = 0).

(i) k := k + 1.

3. If the algorithm does not return G(x, y) = 0 in Step
2, F = 0 has no algebraic solution and the algorithm
terminates.

From Theorem 2.6 and Lemma 2.5, we know that if F = 0
has a nontrivial algebraic solution, then every formal power
series solution is algebraic. From Lemma 4.2, we only need
to compute the first 2dk + 1 terms of a nontrivial formal
power series solution to construct the algebraic approxi-
mant. From Theorems 3.4, 3.8, if F = 0 has an alge-
braic solution G(x, y) = 0, then there is a k which satis-
fies that k ≥ 1 and k ≤ d + e such that deg(G, x) = d and
deg(G, y) = k. From Lemma 4.2 again, the dimension of the
solution space of (17) equals to one. If G(x, y) = 0 is an alge-
braic solution, then G(x, y) is irreducible. Then it is obvious
that GCD(G, S) = 1 and GCD(G, I) = 1. Now assume that
GCD(G, S) = 1, GCD(G, I) = 1 and prem(F, G) = 0. We
will prove that G(x, y) is irreducible. Suppose that k = h.
Then G(x, y) can not have a factor u(x) ∈ Q̄[x], because
GCD(G, I) = 1. If G(x, y) = g(y) ∈ Q̄[y], then by (14),
g(ϕ(0)) = 0 and g′(ϕ(0))ϕ′(0) = 0. Since ϕ′(0) = z1 6= 0
and g′(y) = S, we have GCD(G, S) 6= 1. Hence G(x, y) /∈
Q̄[y]. If G(x, y) is reducible, then G(x, y) has an irreducible

factor G̃(x, y) which is nontrivial and deg(G̃, y) < h. Since
GCD(G, S) = 1, GCD(G, I) = 1 and prem(F, G) = 0, by

(4), G̃(x, y) = 0 is an algebraic solution of F = 0. Hence, we

would have got G̃(x, y) when k was less than h and the algo-
rithm must terminate before k = h, a contradiction with the
assumption k = h. So G(x, y) is irreducible and G(x, y) = 0
is an algebraic solution.

The complexity of Algorithm 4.4 is polynomial in T where
T = tdeg(F ). In Step 2(a), the complexity is polynomial.
In Step 2(c), we need only to compute TM2T ∗ M0 which

needs O(T 8), because TM is an l × l matrix with l ≤
2T 2 + 1 and M0 is a p × q matrix with p ≤ 2T 2 + 1, q ≤
T + 1. (Note that in the worst case, we have to do the
operations over Q(z1). Hence the complexity has to in-
crease by O(T 2).) In Step 2(d), we need only to solve at
most 4T 2 + 1 linear equations with at most 2T 2 + 3T + 1
variables. Hence its complexity is polynomial. In Step
2(g), from ([25],p152), GCD(G, S) and GCD(G, I) can be
computed in O(T 6). In Step 2(h), for deciding whether
prem(F, G) = 0, we compute R1 = prem(F, G′) first. Since
R1 = ( ∂G

∂y
)kF (y,− ∂G

∂x
/ ∂G

∂y
) where k ≤ T , we can com-

pute it in O(T 12) and have that deg(R1, x) ≤ 2T 2 and
deg(R1, y) ≤ 4T 2 + T . Then we compute the GCD(R1, G)
which can be computed in O(T 10). If GCD(R1, G) = G,
then prem(F, G) = 0; otherwise prem(F, G) 6= 0. The num-
ber of the circulation in Step 2 is at most 2T . Hence the
complexity of Step 2 is also polynomial.

Example 4.5. Consider

F = (y6+2y+1)y3
1−(12y5+9y4−1)y2

1+27y8+54y7+27y6+4y3.

1. Let d = 3 and e = 8.

2. For the case k = 1, we get a G(x, y) = 0 which is not
the solution of F = 0. Here we only give the process
in the case k = 2.

3. The first 13 terms of the formal power series solution
of F = 0 is

ϕ(x) = 1− 2x +
5

2
x2 − 9

4
x3 +

1

2
x4 +

5

4
x5 − 41

32
x6 − 65

64
x7

+
363

128
x8 − 111

256
x9 − 2545

512
x10 +

5141

1024
x11 +

5891

1024
x12.

4. Let m = 3, n = 2 and N = 12. We construct the linear
equations (17). Solving it, we get a nonzero solution

(−1, 1, 0, 0, 0, 3,−3, 1, 1, 0, 0, 0).

5. Let G(x, y) = −1 + x + 3xy − 3x2y + x3y + y2 and
S = 2y + 3x− 3x2 + x3, I = 1.

6. We have GCD(G, S) = 1 and GCD(G, I) = 1.

7. prem(F, G) = 0. Hence G(x, y) = −1 + x + 3xy −
3x2y + x3y + y2 = 0 is an algebraic solution of F = 0.
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premier degré, Rend. Circ. Mat. Palermo, 11, 193-239,
1897.

[17] Risch, R.H., The problem of integration in finite
terms, Trans. Amer. Math. Soc., 139, 167-189, 1969.

[18] Risch, R.H., The Solution of the problem of
integration in finite terms, Bull. Amer. Math. Soc., 76,
605–608, 1970.

[19] Ritt, J.F., Differential Algebra, Amer. Math. Sco.
Colloquium, New York, 1950.

[20] Singer, M.F., Liouillian solutions of nth order
homogeneous linear differential equations, Amer. J.
Math., 103(4), 661-682, 1981.

[21] Singer, M.F., Liouillian first integrals of differential
equations, Trans. Amer. Math. Sco., 333(2), 673-688,
1992.

[22] Trager, B., Integration of Algebraic Functions, Ph.D
thesis, Dpt. of EECS, Massachusetts Institute of
Technology, 1984.

[23] Ulmer, F. and Calmet, J., On liouvillian solutions of
homogeneous linear differential equations, Proc.
ISSAC1990, 236-243, ACM Press, 1990.

[24] Van der Put, M. and Singer, M. Galois Theory of
Linear Differential Equations, Springer, Berlin, 2003.

[25] von Zur Gathen, J. and Gerhard, J. (1999). Modern
Computer Algebra, Cambridge University Press,
Cambridge.

[26] Walker, R. J., Algebraic Curves, Princeton Unv. Press,
1950.

36


