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ABSTRACT
We first present an intersection theory of irreducible partial differential
varieties with quasi-generic differential hypersurfaces. Then, we define par-
tial differential Chow forms for irreducible partial differential varieties

whose Kolchin polynomials are of the form x tð Þ ¼ dþ 1ð Þ t þm
m

� �
�

t þm� s
m

� �
: And we establish for partial differential Chow forms most of

the basic properties of their ordinary differential counterparts. Furthermore,
we prove that a certain type of partial differential Chow varieties exist.
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1. Introduction

In their paper on Chow forms [3], Chow and van der Waerden described the motivation in
these words:

It is principally important to represent geometric objects by coordinates. Once this has been done for a
specific kind of objects G, then it makes sense to speak of an algebraic manifold or an algebraic system of
objects G, and to apply the whole theory of algebraic manifolds. It is desirable to provide the set of objects
G with the structure of an algebraic variety (eventually, after a certain compactification), thus to
characterise G by algebraic equations in the coordinates.

Through the theory of Chow forms, they managed to represent projective algebraic varieties or
algebraic cycles by Chow coordinates; and Chow further proved that the set of all algebraic cycles
of fixed dimension and degree in the Chow coordinate space is a projective variety, called the
Chow variety.

Chow forms and Chow varieties are basic concepts of algebraic geometry [3, 13]. They play an
important role in both theoretical and computational aspects of algebraic geometry, and have
fruitful applications in elimination theory, transcendental number theory and algebraic computa-
tional complexity theory [4, 5, 10, 14, 23]. For instance, the Chow form was used by Brownawell
to achieve a major breakthrough in computational algebraic geometry by proving an effective
version of the Hilbert’s Nullstellensatz with optimal bounds [1].
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Differential algebra, founded by Ritt and Kolchin, is a branch of mathematics analogous to
algebraic geometry. Just as the aim of algebraic geometry is to study solution sets of polynomial
equations using algebraic varieties, the aim of differential algebra is to study solution sets of alge-
braic ordinary or partial differential equations using differential varieties [16, 25]. As algebraic
equations are special cases of algebraic differential equations, algebraic geometry may be viewed
as a special case of differential algebra [2], and most of the basic notions of differential algebra
are based on those of algebraic geometry. Given the importance of the Chow form in algebraic
geometry, it is worthwhile to develop a theory of differential Chow forms and differential Chow
varieties, and further to see whether they can play similar roles as the algebraic counterparts, for
example, whether the bound of the effective differential Nullstellensatz could be improved by
applying differential Chow forms.

A systematic development of such a theory was begun by Gao, Li, and Yuan [9, 20], which
established a theory of differential Chow forms for ordinary differential varieties in both affine
and projective spaces. In particular, differential Chow coordinates and two new invariants of
ordinary differential varieties (cycles) were introduced. Take an irreducible differential variety V
of differential dimension d for an example. Roughly speaking, the differential Chow form of V is
a single differential polynomial F whose general component gives a necessary and sufficient con-
dition when the given dþ 1 differential hyperplanes and V have a common point; and V is deter-
mined uniquely by its differential Chow form F. The coefficient vector of F is called the
differential Chow coordinates of V. If the set of all differential cycles of fixed index (dimension,
order, and the two new invariants) is a differentially constructible set in the differential Chow
coordinate space, then we say the differential Chow variety of this index exists. The existence of
ordinary differential Chow varieties was first proved in some special cases by a constructive
method in Gao et al. [9], and was finally proved in general cases by Freitag, Li and Scanlon with
a model-theoretical proof [8].

However, the theory of Chow forms has not yet been developed for partial differential vari-
eties. Unlike the ordinary differential case, an insuperable obstacle is encountered in the course of
defining partial differential Chow forms: due to the more complicated structure of partial differ-
ential characteristic sets, it is impossible to define differential Chow forms for most of irreducible
partial differential varieties (see Example 4.2). That is, we may fail to find a single differential
polynomial that can represent uniquely the corresponding partial differential variety as in the
algebraic and ordinary differential cases. This leads to the following natural questions: under
what conditions can we define partial differential Chow forms? The set of which kinds of partial
differential varieties could be provided with a structure of partial differential variety (perhaps
under Kolchin closure)? This is what we will deal with in this article. Specifically, we will give
conditions under which we can define partial differential Chow forms; under these conditions, we
will prove that partial differential Chow forms have properties similar to those of their ordinary
differential counterparts. Finally, we will show that partial differential Chow varieties of a certain
type exist.

To define partial differential Chow form, we need to establish a generic intersection theorem
for partial differential varieties. This is also an interesting result in its own right. The intersection
theorem in algebraic geometry says that every component of the intersection of two irreducible
varieties of dimension r and s in An has dimension at least r þ s� n: However, as pointed out by
Ritt, this proposition fails for differential algebraic varieties [25, p.133]. Recently, Gao, Li, and
Yuan proved a generic intersection theorem for ordinary differential varieties and generic ordin-
ary differential hypersurfaces [9]. Freitag then generalized this result to the partial differential
case using more geometric and model theoretical language [6]. In this article, we prove the inter-
section theorem of partial differential algebraic varieties with quasi-generic partial differential
hypersurfaces (to be defined in Definition 3.1) using purely differential algebraic arguments. In
particular, when the quasi-generic differential hypersurface is a generic one, the proof gives more
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elementary and simplified proofs for generic intersection theorems either in the ordinary differen-
tial case [9, Theorem 3.6] or in the partial differential case [6, Theorem 3.7].

This article is organized as follows. In Section 2, basic notions and preliminary results are pre-
sented. In Section 3, an intersection theory for quasi-generic partial differential polynomials is
given. In Section 4, the definition of the partial differential Chow form and a sufficient condition
for its existence are introduced. Basic properties of the partial differential Chow form are
explored in Section 5. In Section 6, we show partial differential Chow varieties of a certain
type exist.

2. Preliminaries

In this section, some basic notation and preliminary results in differential algebra will be given.
For more details about differential algebra, please refer to [2, 16, 26].

Let F be a differential field of characteristic 0 endowed with a finite set of derivations D ¼
fd1, :::, dmg, and let E be a fixed universal differential extension field of F : If m¼ 1, F and E are
called ordinary differential fields; and if m> 1, they are called partial differential fields.
Throughout this article, unless otherwise indicated, all the differential fields (rings) we consider
are partial differential fields (rings), and for simplicity, we shall use the prefix “D-” as a synonym
of “partial differential” or “partial differentially” when the set of derivation operators in problem
are exactly the set D ¼ fd1, :::, dmg:

Let H be the free commutative semigroup (written multiplicatively) generated by d1, :::, dm:
Every element h 2 H is called a derivative operator and can be expressed uniquely in the form of
a product

Qm
i¼1 d

ei
i with ei 2 N: The order of h is defined as ordðhÞ ¼Pm

i¼1 ei: The identity oper-
ator is of order 0. For ease of notation, we use Hs to denote the set of all derivative operators of
order equal to s, and H�s denotes the set of all derivative operators of order not greater than s.
For an element u 2 E, denote u½s� ¼ fhðuÞ : h 2 H�sg:

A subset R of a D-extension field G of F is said to be D-dependent over F if the set
ðhaÞh2H, a2R is algebraically dependent over F , and is said to be D-independent over F , or a fam-
ily of D-F -indeterminates in the contrary case. In the case R consists of only one element a, we
say that a is D-algebraic or D-transcendental over F respectively. The D-transcendence degree of
G over F , denoted by D-tr:deg G=F , is the cardinality of any maximal subset of G which are
D-independent over F : And the transcendence degree of G over F is denoted by tr:deg G=F :

Let FfYg ¼ F½HðYÞ� be the D-polynomial ring over F in the D-indeterminates Y ¼
fy1, :::, yng: Each element in hðyiÞ 2 HðYÞ is called a derivative, and the order of hðyiÞ is equal to
ordðhÞ: For a D-polynomial f in FfYg, the order of f is defined as the maximum of the orders
of all derivatives which appear effectively in f, denoted by ordðf Þ: A D-ideal in FfYg is an ideal
which is closed under D. A prime (resp. radical) D-ideal is a D-ideal which is prime (resp. rad-
ical) as an ordinary algebraic ideal. Given S � FfYg, we use ðSÞFfYg and ½S�FfYg to denote the

algebraic ideal and the D-ideal in FfYg generated by S respectively.
By a D-affine space An, we mean the set En: A D-variety over F is VðRÞ ¼ fg 2 En : f ðgÞ ¼

0,8f 2 Rg for some set R � FfYg: The D-varieties in An defined over F are the closed sets in a
topology called the Kolchin topology. Given a D-variety V defined over F , we denote IðVÞ to be
the set of all D-polynomials in FfYg that vanish at every point of V. And we have a one-to-one
correspondence between D-varieties (resp. irreducible D-varieties) and radical D-ideals (resp.
prime D-ideal), that is, for any D-variety V over F ,VðIðVÞÞ ¼ V and for any radical D-ideal P
in FfYg, IðVðPÞÞ ¼ P: For a prime D-ideal P, a point g 2 VðPÞ is called a generic point of P
(or VðPÞ) if for any f 2 FfYg, f ðgÞ ¼ 0 () f 2 P: A D-ideal has a generic point if and only if
it is prime. In this article, we sometimes use the algebraic version of ideal-variety correspondence,
to distinguish from the notation in the differential case, for an algebraic ideal P � F½Y�, we use
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VðPÞ to denote the algebraic variety in An defined by P; and for an algebraic variety V � An,
we use IðVÞ to denote the radical ideal in F½Y� corresponding to V.

A homomorphism u from a differential ring ðR,DÞ to a differential ring ðS,D0Þ with D0 ¼
fd01, :::, d0mg is a differential homomorphism if u � di ¼ d0i � u for each i. Suppose D0 ¼ D and R0

is a common D-subring of R and S,u is said to be a D-R0-homomorphism if u leaves every
element of R0 invariant. If, in addition R is a domain and S is a D-field, u is called a D-special-
ization of R into S: For D-specializations, we have the following lemma which generalizes the
similar results both in the ordinary differential case [9, Theorem 2.16] and in the algebraic case
[12, p. 168–169] and [9, Lemma 2.13].

Lemma 2.1. Let Pi 2 FfU,Yg ði ¼ 1, :::, ‘Þ be D-polynomials in the independent D-indeterminates
U ¼ ðu1, :::, urÞ and Y. Let g be an n-tuple taken from some extension field of F free from FhUi:1
If PiðU, gÞ ði ¼ 1, :::, ‘Þ are D-dependent over FhUi, then for any D-specialization U to �U 2 F r,
Pið�U, gÞ ði ¼ 1, :::, ‘Þ are D-dependent over F :

Proof. Assume k ¼ maxiordðPiÞ: Since PiðU, gÞ ði ¼ 1, :::, ‘Þ are D-dependent over FhUi, there

exists s 2 N such that the ðPiðU, gÞÞ½s� are algebraically dependent over FðU½sþk�Þ: When U

D-specializes to �U 2 F r,U½sþk� algebraically specializes to �U
½sþk�

: By [9, Lemma 2.13], ðPið�U , gÞÞ½s�
are algebraically dependent over F : Thus, Pið�U, gÞ ði ¼ 1, :::, ‘Þ are D-dependent over F : w

2.1. Differential characteristic sets

A ranking of FfYg is a total ordering of the set of derivatives HðYÞ ¼ fhyj : j ¼ 1, :::, n; h 2 Hg
that satisfies (for any u, v 2 HðYÞ and dk 2 D) the two conditions: 1) dku > u and 2) u> v )
dku > dkv: Two important kinds of rankings are often used:

1) Elimination ranking: yi > yj ) h1yi > h2yj for any h1, h2 2 H:
2) Orderly ranking: k > l ) for any h1 2 Hk, h2 2 Hl and i, j, h1yi > h2yj:

Let f be a D-polynomial in FfYgnF and R a ranking endowed on it. The greatest derivative
hyj w.r.t. R which appears effectively in f is called the leader of f, denoted by ldðf Þ: Let d be the

degree of f in ldðf Þ: The rank of f is ldðf Þd, denoted by rkðf Þ: The coefficient of rkðf Þ in f is
called the initial of f and denoted by If : The partial derivative of f w.r.t. ldðf Þ is called the sepa-
rant of f, denoted by Sf : For any two D-polynomials f, g in FfYgnF , f is said to be of lower
rank than g if either ldðf Þ < ldðgÞ or ldðf Þ ¼ ldðgÞ and degðf , ldðf ÞÞ < degðg, ldðf ÞÞ: It is useful to
extend the above notion of comparative rank to the whole FfYg by the following convention:
Every element of F has lower rank than every element of FfYgnF and two elements of F have
the same rank.

Let f and g be two D-polynomials and rkðf Þ ¼ ðhyjÞd: g is said to be partially reduced w.r.t. f if
no proper derivatives of uf appear in g. g is said to be reduced w.r.t. f if g is partially reduced
w.r.t. f and degðg, hyjÞ < d: A set of D-polynomials A � FfYg is said to be an autoreduced set if
each D-polynomial of A is reduced w.r.t. any other element of A: Every autoreduced set is finite.

Let A be an autoreduced set. We denote HA to be the set of all the initials and separants of A
and H1

A to be the minimal multiplicative set containing HA: The D-saturation ideal of A is
defined to be

1By saying g free from FhUi, we mean that U is a set of D-Fhgi-indeterminates.
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satðAÞ ¼ A½ � : H1
A ¼ fp 2 FfYgj9h 2 H1

A , s:t: hp 2 A½ �g:
The algebraic saturation ideal of A is denoted by asatðAÞ ¼ ðAÞ : H1

A :

Let A ¼< A1,A2, :::,As > and B ¼< B1,B2, :::,Bl > be two autoreduced sets with the Ai, Bj
arranged in increasing ordering. A is said to be of lower rank than B, if either 1) there is some k
(� minfs, lg) such that for each i< k, Ai has the same rank as Bi, and Ak � Bk or 2) s> l and for
each i 2 f1, 2, :::, lg, Ai has the same rank as Bi. If s¼ l and Ai has the same rank as Bi for each i,
we say A and B have the same rank. Any sequence of autoreduced sets steadily decreasing in
ordering A1 	 A2 	 
 
 
Ak 	 
 
 
 is necessarily finite.

Let A ¼< A1,A2, :::,At > be an autoreduced set with Si and Ii as the separant and the initial
of Ai. Given a D-polynomial F, there exists an algorithm, called Ritt’s algorithm of reduction,
which reduces F w.r.t. A to a D-polynomial R that is reduced w.r.t. A, satisfying the relation

Yt
i¼1

Sdii I
ei
i 
 F � R, mod A½ �,

for di, ei 2 N ði ¼ 1, 2, :::, tÞ: We call R the remainder of F w.r.t. A: We will need the following
result in Section 3.

Proposition 2.2. [16, p.80, Proposition 2] Let A be an autoreduced set of FfYg. If
F1, :::, Fl 2 FfYg, then there exist D-polynomials E1, :::, El 2 FfYg, reduced with respect to A and
of rank no higher than the highest of the ranks of F1, :::, Fl, and there exist jA, kA 2 N ðA 2 AÞ,
such that Y

A2A
SjAA I

kA
A 
 Fj � Ej, mod A½ � ð1 � j � lÞ:

Let J be a D-ideal in FfYg: An autoreduced set C � J is said to be a characteristic set of J ,
if J does not contain any nonzero element reduced w.r.t. C: All the characteristic sets of J have
the same and minimal rank among all autoreduced sets contained in J : If J is prime, C reduces
to zero only the elements of J and we have J ¼ satðCÞ: An autoreduced set C is called coherent
if whenever A,A0 2 C with ldðAÞ ¼ h1ðyjÞ and ldðA0Þ ¼ h2ðyjÞ for some yj, the remainder of

SA0 h
h1
ðAÞ � SA h

h2
ðA0Þ w.r.t. C is zero, where h ¼ lcmðh1, h2Þ: (Here, if hj ¼

Qm
i¼1 d

aji
i ðj ¼ 1, 2Þ and

maxða1i, a2iÞ ¼ ci, then h ¼ lcmðh1, h2Þ ¼
Qm

i¼1 d
ci
i :) The following result gives a criterion for an

autoreduced set to be a characteristic set of a prime D-ideal.

Proposition 2.3. [16, p.167, Lemma 2] If A is a characteristic set of a prime D-ideal P � FfYg,
then P ¼ satðAÞ,A is coherent, and asatðAÞ is a prime ideal not containing a nonzero element
reduced w.r.t. A. Conversely, if A is a coherent autoreduced set of FfYg such that asatðAÞ is a
prime ideal not containing a nonzero element reduced w.r.t. A, then A is a characteristic set of a
prime D-ideal in FfYg:

2.2. Kolchin polynomials of prime differential ideals

Let P be a prime D-ideal in FfYg with a generic point g 2 An: The D-dimension of P, denoted
by D-dimðPÞ, is defined as the D-transcendence degree of Fhgi over F : A parametric set of P is
a maximal subset U � Y such that P \ FfUg ¼ f0g: Equivalently, the D-dimension of P is
equal to the cardinality of a parametric set of P: Let A be a characteristic set of P w.r.t. some
ranking and denote ldðAÞ ¼ fldðFÞ : F 2 Ag: Call yj a leading variable of A if there exists
some h 2 H such that hðyjÞ 2 ldðAÞ; otherwise, yj is called a parametric variable of A: The
D-dimension of P is also equal to the cardinality of the set of all the parametric variables of A:
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For a prime D-ideal, its Kolchin polynomial contains more quantitative information than the
D-dimension. To recall the concept of Kolchin polynomial, we need an important numerical
polynomial associated to a subset E � Nm:

Lemma 2.4. [15, 17] For every set E ¼ fðei1, :::, eimÞ : i ¼ 1, :::, lg � Nm, let VEðtÞ denote the set of
all elements v 2 Nm such that v is not greater than or equal to any element in E relative to the
product order on Nm. Then there exists a univariate numerical polynomial xEðtÞ such that
xEðtÞ ¼ cardðVEðtÞÞ for all sufficiently large t. Moreover, xEðtÞ satisfies the following statements:

1) degðxEÞ � m, and degðxEÞ ¼ m if and only if E ¼ ;. And if E ¼ ;,xEðtÞ ¼ t þm
m

� �
;

2) xEðtÞ � 0 if and only if ð0, :::, 0Þ 2 E;
3) If minli¼1eik ¼ 0 for each k ¼ 1, :::,m, then degðxEðtÞÞ < m� 1:

Theorem 2.5. [15, Theorem 2] Let P be a prime D-ideal in Ffy1, :::, yng. There exists a numerical
polynomial xPðtÞ with the following properties:

1) For sufficiently large t 2 N,xPðtÞ equals the dimension of P \ F½ðy½t�j Þ1�j�n�:
2) degðxPÞ � m ¼ cardðDÞ:
3) If we write xPðtÞ ¼

Pm
i¼0 ai

t þ i
i

� �
with ai 2 Z, then am equals the D-dimension of P:

4) If A is a differential characteristic set of P with respect to an orderly ranking on Ffy1, :::, yng
and if Ej denotes for each yj the set of points ðl1, :::, lmÞ 2 Nm such that dl11 
 
 
 dlmmyj 2 ldðAÞ,
then xPðtÞ ¼

Pn
j¼1 xEjðtÞ:

The numerical polynomial xPðtÞ is defined to be the Kolchin polynomial of P: Prime D-ideals
whose characteristic sets consist of a single polynomial are of particular interest to us. The follow-
ing result is a partial differential analog of [9, Lemma 3.10] in the ordinary differential case.

Lemma 2.6. Let P be a prime D-ideal in Ffy1, :::, yng and A 2 Ffy1, :::, yng an irreducible D-poly-
nomial. Suppose A constitutes a characteristic set of P under some ranking R. Then {A} is also a
characteristic set of P under an arbitrary ranking. In this case, we call P the general component
of A.

Proof. Follow the proof of [9, Lemma 3.10]. Suppose SA is the separant of A under R: Since each
element of P that is partially reduced w.r.t. A is divisible by A, we have P ¼ ½A� : S1A : Let R0 be
an arbitrary ranking and hðykÞ be the leader of A under R0: It suffices to show that there is no
nonzero D-polynomial in P reduced with respect to A under R0: Suppose the contrary and let
f 2 Pnf0g be reduced with respect to A under R0: Then f is free from all proper derivatives of
hðykÞ: Since f 2 P ¼ ½A� : S1A , there exist l 2 N and finitely many nonzero polynomials Ts for
s 2 H such that SlAf ¼

P
s TssðAÞ: For each s 6¼ 1, sðAÞ ¼ S0A 
 shðykÞ þ Ls, where S0A is the sepa-

rant of A under R0: Substitute shðykÞ ¼ �Ls=S0A for each s 6¼ 1 into both sides of the above iden-

tity and remove the denominators, then we get SlA 
 ðS0AÞl
0
f ¼ T1A: Thus, A divides f which

implies that f¼ 0. This contradiction shows that A is also a characteristic set of P under any
ranking. w

Kolchin gave a criterion for a prime D-ideal to be the general component of
some D-polynomial.

Lemma 2.7. [16, p.160, Proposition 4] Let P � Ffy1, :::, yng be a prime D-ideal. Then a necessary
and sufficient condition in order that P be the general component of some polynomial A of order s
is
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xPðtÞ ¼ n
t þm
m

� �
� t þm� s

m

� �
:

The following results on prime (D-)ideals will be used later.

Lemma 2.8. Let P be a prime ideal in the polynomial ring F½x1, :::, xn� of dimension d> 0.
Assume P \ F½x1� ¼ f0g. Then J ¼ ðPÞFðx1Þ½x2, :::, xn� is a prime ideal of dimension d – 1.

Proof. Since P \ F½x1� ¼ f0g,J 6¼ Fðx1Þ½x2, :::, xn�: If f1, f2 2 Fðx1Þ½x2, :::, xn� and f1f2 2 J , then
there exist M1,M2 2 F½x1� such that Mifi 2 F½x1, :::, xn� and M1f1M2f2 2 P: So either M1f1 2 P
or M2f2 2 P, which implies that either f1 2 J or f2 2 J : Thus, J is a prime ideal.

Since dimðPÞ ¼ d and P \ F½x1� ¼ f0g, without loss of generality, we suppose fx1, x2, :::, xdg is a
parametric set of P: We claim that fx2, :::, xdg is a parametric set of J : First, note that J \
Fðx1Þ½x2, :::, xd� ¼ f0g: For any other variable xk2fxdþ1,:::,xng, P\F½x1,x2,:::,xd,xk� 6¼f0g, so J\
Fðx1Þ½x2,:::,xd,xk� 6¼f0g: Thus, fx2,:::,xdg is a parametric set ofJ , and dimðJ Þ¼d�1 follows. w

Lemma 2.9. Let P be a D-prime ideal in FfYg of D-dimension d. Suppose u is a set of D-indeter-
minates over F . Then ½P�FhuifYg is also a prime D-ideal of D-dimension d.

Proof. Let g be a generic point of P free from u. It suffices to show that g is a generic point of
½P�FhuifYg: Obviously, g is a zero of ½P�FhuifYg: Suppose f 2 FhuifYg satisfies f ðgÞ ¼ 0: By col-

lecting the denominators of f, there exists some DðuÞ 2 Ffug such that DðuÞ 
 f 2 Ffu,Yg:
Write DðuÞ 
 f in the form

DðuÞ 
 f ¼
X
M

fMðYÞMðuÞ

where fM 2 FfYg and MðuÞ’s are distinct D-monomials in u. Then f ðgÞ ¼ 0 implies that for
each M, fMðgÞ ¼ 0 and fM 2 P: So f 2 ½P�FhuifYg: Thus, g is a generic point of ½P�FhuifYg and

½P�FhuifYg is prime. w

3. Quasi-generic intersection theory for partial differential polynomials

In this section, we will prove the quasi-generic intersection theorem with an elementary proof in
purely differential algebraic language, which generalizes generic intersection theorems in both the
ordinary differential case [9] and the partial differential case [6].

We recall that a generic D-polynomial in Y ¼ fy1, :::, yng of order s and degree g is a D-polynomial
L of the form

L ¼
X

M2Ms, g

uMMðYÞ,

where Ms, gðYÞ is the set of all D-monomials in Y of order � s and degree � g, and all the coeffi-
cients uM 2 E are D-F -indeterminates. The D-variety VðLÞ � An is called a generic D-hypersurface.
If additionally s¼ 0 and g¼ 1, VðLÞ is called a generic D-hyperplane.

Given F 2 FfYg, the set of all D-monomials effectively appearing in F is denoted by suppðFÞ:
We now introduce the definition of quasi-generic D-polynomials.

Definition 3.1. A quasi-generic D-polynomial in Y of order s is a D-polynomial L of the form

L ¼ u0 þ
Xn
j¼1

ujMjðyjÞ þ
X

Ma2suppðLÞnf1,M1, :::,Mng
uaMaðYÞ, (1)

which satisfies the following conditions:
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1) for each j ¼ 1, :::, n,MjðyjÞ is a D-monomial in yj of order s;
2) f1,M1ðy1Þ, :::,MnðynÞg � suppðLÞ;
3) the coefficients u0, uj and the ua 2 E are D-F -indeterminates.

We give the following main quasi-generic differential intersection theorem, which generalizes
the generic intersection theorem in the ordinary differential case [9, Theorem 3.6 and Theorem
3.13]. The proof of [9, Theorem 3.13] could not be adapted here due to the more complicated
structure of partial differential characteristic sets. However, the proof here could definitely sim-
plify that of its ordinary differential analog.

Theorem 3.2. Let V � An be an irreducible D-variety over F . Let L be a quasi-generic D-polyno-
mial of order s with the set of its coefficients u. Then

1) V \ VðLÞ 6¼ ; (over Fhui) if and only if D-dimðVÞ > 0:
2) if D-dimðVÞ > 0, then V \ VðLÞ is an irreducible D-variety over Fhui and its Kolchin

dimension polynomial is

xV\VðLÞðtÞ ¼ xVðtÞ � t þm� s
m

� �
:

In particular, the D-dimension of V \ VðLÞ is equal to �-dimðVÞ � 1:

Proof. Let P ¼ IðVÞ � FfYg be the prime D-ideal corresponding to V and g ¼ ðg1, :::, gnÞ 2 En

be a generic point of P free from u (i.e., the u are D-Fhgi-indeterminates). Let L be a quasi-
generic D-polynomial of the form (1) and set

TðYÞ ¼ L� u0 ¼
Xn
j¼1

ujMjðyjÞ þ
X

Ma2MLnf1,M1, :::,Mng
uaMaðYÞ 2 F 1fYg,

where F 1 ¼ Fhunfu0gi: Set f0 ¼ �TðgÞ:
1) The proof is similar to that of [9, Theorem 3.6]. Let J 0 ¼ ½P ,L�F 1fY, u0g: We first prove

that J 0 is a prime D-ideal by showing that ðg, f0Þ is a generic point of J 0: Clearly, J 0 vanishes
at ðg, f0Þ: Given an arbitrary f 2 F 1fY, u0g with f ðg, f0Þ ¼ 0, we need to show f 2 J 0: Take the
elimination ranking R : y1 < 
 
 
 < yn < u0 of F 1fY, u0g and let f1 be the D-remainder of f w.r.t.
L: Then f1 2 F 1fYg and f � f1 mod ½L�, which implies that f1ðgÞ ¼ 0: By the proof of Lemma
2.9, g is also a generic point of the prime D-ideal ½P�F 1fYg, so f1 2 ½P�F 1fYg and f 2 J 0 follows.

Thus, J 0 is a prime D-ideal with a generic point ðg, f0Þ:
Let J ¼ ½P ,L�FhuifYg: We now show that J ¼ ½1� (i.e., V \ VðLÞ ¼ ;) if and only if

D-dimðVÞ ¼ 0: First suppose D-dimðVÞ ¼ 0: Then for each j ¼ 1, :::, n, gj is D-algebraic over F ,
and so F 1hgi is D-algebraic over F 1: Since f0 2 F 1hgi, f0 is D-algebraic over F 1: Thus, J 0 \
F 1fu0g 6¼ ½0� and J ¼ ½J 0�FhuifYg ¼ ½1� follows.

For the other direction, suppose J ¼ ½1�: Then 1 2 J ¼ ½P ,L�FhuifYg implies that J 0 \
F 1fu0g 6¼ ½0�: So f0 is D-algebraic over F 1: Consider �TðYÞ 2 Ffunfu0g,Yg and f0 ¼ �TðgÞ:
The quasi-genericness of L guarantees the existence of a D-monomial in yj for each j. For each j,
by differentially specializing uj to �1 and all the other elements in unfu0, ujg to 0, f0 will be spe-
cialized to MjðgjÞ: By Lemma 2.1, each MjðgjÞ, as well as gj, is D-algebraic over F : So
D-dimðVÞ ¼ 0: Thus, J 6¼ ½1� if and only if D-dimðVÞ > 0:

2) Assume D-dimðVÞ > 0: We will show that xJ ðtÞ ¼ xVðtÞ � t þm� s
m

� �
: For sufficiently

large t, let I t ¼ ðP \ F½Y½t��, L½t�s�ÞF 1½Y½t� , u½t�s�
0 �: We claim that
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i) I t \ F 1½u½t�s�
0 � ¼ f0g and dimðI tÞ ¼ xPðtÞ;

ii) J \ Fhui½Y½t�� ¼ ðI tÞFhui½Y½t��:

If i) and ii) are valid, then we have

xJ ðtÞ ¼ dimðJ \ Fhui Y t½ �½ �Þ ðby Definition 2:5Þ
¼ dimððI tÞF 1ðu t�s½ �

0 Þ Y t½ �½ �Þ ðby Claim iiÞÞ

¼ xPðtÞ �
t þm� s

m

 !
ðby Lemma 2:8 and Claim iÞÞ:

So it remains to show the validity of claims i) and ii).

We first show that ft ¼ ðg½t�, f½t�s�
0 Þ is a generic point of I t � F 1½Y½t�, u½t�s�

0 �: Note that P \
F½Y½t�� vanishes at g½t� and LðiÞðftÞ ¼ ðLðg, f0ÞÞðiÞ ¼ 0 ði � t � sÞ, so ft is a zero of I t: Suppose h

is an arbitrary polynomial in F 1½Y½t�, u½t�s�
0 � satisfying hðftÞ ¼ 0: Let h1 be the pseudo-remainder

of h w.r.t. L½t�s� under the ordering of Y½t�, u½t�s�
0 induced by the elimination ranking R: Then

h1 2 F 1½Y½t�� and h � h1 mod ðL½t�s�Þ: So h1ðg½t�Þ ¼ 0: Since g½t� is a generic point of the prime

ideal ðP \ F½Y½t��ÞF 1½Y½t� � (by the algebraic version of Lemma 2.9), h1 2 ðP \ F½Y½t��ÞF 1½Y½t� � and

h 2 I t follows. Thus, ft ¼ ðg½t�, f½t�s�
0 Þ is a generic point of I t:

Since D-dimðVÞ > 0, by 1), we have J 6¼ ½1� and thus J 0 \ F 1fu0g ¼ ½0�: Claim i) follows

from the fact that I t \ F 1½u½t�s�
0 � � J 0 \ F 1fu0g ¼ ½0� and dimðI tÞ ¼ tr:deg F 1ðftÞ=F 1 ¼

tr:deg F 1ðg½t�Þ=F 1 ¼ xPðtÞ: Also, note that for any h 2 J \ F 1fY, u0g, there exists Dðu0Þ 2
F 1fu0g such that D 
 h 2 J 0: Since J0 is prime and J 0 \ F 1fu0g ¼ ½0�, h 2 J 0 and thus we
obtain J \ F 1fY, u0g ¼ J 0:

For claim ii), it suffices to show that for each f 2 J \ Fhui½Y½t��, f can be written as a linear

combination of polynomials in P \ F½Y½t�� and L½t�s� with coefficients in Fhui½Y½t��: Let f 2
J \ Fhui½Y½t��: Multiplying f by some nonzero polynomial in F 1fu0g when necessary, we can

assume f 2 F 1½Y½t�, u½t�sþk�
0 � for some k 2 N: So, f 2 J \ F 1fY, u0g ¼ J 0 and f ðg½t�, f½t�sþk�

0 Þ ¼ 0
follows. Let Z ¼ [k

i¼1Ht�sþi: Rewrite f as a polynomial in ðhðu0ÞÞh2Z with coefficients in

F 1½Y½t�, u½t�s�
0 �, and suppose

f ¼
X
a

gaMa

where ga 2 F 1½Y½t�, u½t�s�
0 � and the Ma are finitely many distinct monomials in the variables

ðhðu0ÞÞh2Z: So f ðg½t�, f½t�sþk�
0 Þ ¼ 0 implies thatX

a

gaðg t½ �, f t�s½ �
0 ÞMaððhðf0ÞÞh2ZÞ ¼ 0:

If we can show that

ðhðf0ÞÞh2Z
are algebraically independent over F 1ðg½t�, f½t�s�

0 Þ ¼ F 1ðg½t�Þ, then for each a, we have

gaðg½t�, f½t�s�
0 Þ ¼ 0 and ga 2 I t , which implies that f 2 ðI tÞFhui½Y½t� �:

So it remains to show that

ðhðf0ÞÞh2Z
are algebraically independent over F 1ðg½t�Þ: Let A be a D-characteristic set of P with respect to
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some orderly ranking of FfYg: Since D-dimðVÞ > 0, there exists at least one j0 such that yj0 is a
parametric variable of A: The quasi-genericness of L guarantees that LðYÞ effectively involves a
D-monomial of order s only in yj0 , say, the term uj0Mj0ðyj0Þ: Now consider the polynomials

ðhð�TðYÞÞÞh2Z � F ðunfu0gÞ t�sþk½ �,Y tþk½ �
h i

,

and ðhð�TðgÞÞÞh2Z ¼ ðhðf0ÞÞh2Z: Note that by algebraically specializing uj0 to �1 and all the
other derivatives of unfu0g to 0, ðhðf0ÞÞh2Z are specialized to ðhðMj0ðgj0ÞÞÞh2Z: If ðhðf0ÞÞh2Z are

algebraically dependent over F 1ðg½t�Þ, then by the algebraic version of Lemma 2.1,
ðhðMj0ðgj0ÞÞÞh2Z are algebraically dependent over Fðg½t�Þ: So there exists a nonzero polynomial

gððXhÞh2ZÞ 2 Fðg½t�Þ½Xh : h 2 Z� such that gððhðMj0ðgj0ÞÞÞh2ZÞ ¼ 0: By clearing denominators of

the coefficients of g (i.e., multiplying some Dðg½t�Þ 2 F½g½t��) when necessary and replacing Xh by
hðMj0ðyj0ÞÞ, we get a nonzero polynomial

GðYÞ ¼
X
l

glðY t½ �ÞTlðMj0ðyj0ÞÞ 2 FfYg

vanishing at g. Here, the TlðMj0ðyj0ÞÞ are distinct monomials in ðhðMj0ðyj0ÞÞÞh2Z and for each l,

gl 2 F½Y½t�� does not vanish at g½t�: Perform Ritt’s algorithm of reduction for all the gl w.r.t. A
under the orderly ranking. By Proposition 2.2, there exist hl 2 F½Y½t��nf0g, reduced with respect
to A, and natural numbers jA, kA ðA 2 AÞ such thatY

A2A
IjAA S

kA
A 
 gl � hl mod A½ �, for all l0s:

Let HðYÞ ¼Pl hlðY½t�ÞTlðMj0ðyj0ÞÞ 2 FfYg: Since the order of Mj0ðyj0Þ is s, ðhðMj0ðyj0ÞÞÞh2Z are

algebraically independent over FðY½t�Þ: Thus, HðYÞ is a nonzero polynomial that is reduced with
respect to A and satisfies HðgÞ ¼ 0, a contradiction to the fact that A is a characteristic set of P:
Thus, ðhðf0ÞÞh2Z are algebraically independent over F 1ðg½t�Þ and claim 2) is valid. Consequently,

we have proved that xV\LðtÞ ¼ xJ ðtÞ ¼ xVðtÞ � t þm� s
m

� �
: w

Remark 3.3. Quasi-generic D-polynomials are important in that by linear change of coordinates,
“almost all” D-polynomials with a degree-zero term can be transformed to D-polynomials
with the same supports as quasi-generic D-polynomials. Precisely, let f ¼ a0 þP

Ma2suppðfÞnf1gaaMaðYÞ 2 FfYg be a D-polynomial of order s with a0 6¼ 0: Denote Maðy1Þ :¼
MaðYÞjyi¼y1, i¼1, :::, n and set Mf ðy1Þ ¼ maxafMaðy1Þg under the lexicographical ordering induced

by some orderly ranking R of FfYg: Clearly, ordðMf ðy1ÞÞ ¼ s: Let I ¼ faj Maðy1Þ ¼ Mf ðy1Þg:
We associate to f a polynomial pðx1, :::, xnÞ :¼

P
a2I aa

Qn
i¼1 x

da, i
i 2 F½x1, :::, xn�, where da, i ¼

degðMa,HðyiÞÞ for each i. Assume p is nonzero. Then under the linear change of coordinates / :

yi ¼
Pn

k¼1 bikzk ði ¼ 1, :::, nÞ with bik 2 F satisfying detðbikÞ 

Qn

i¼1 pðb1i, :::, bniÞ 6¼ 0, /ðf Þ 2
Ffz1, :::, zng is a D-polynomial of order s with f1,Mf ðz1Þ, :::,Mf ðznÞg � suppð/ðf ÞÞ
and ordðMf ðziÞÞ ¼ s:

By the proof of Theorem 3.2, once we know some yi0 which is a parametric variable of a char-
acteristic set of IðVÞ under some orderly ranking,2 for those L of order s whose support contains

2Here, the orderly ranking is assumed to guarantee that the order of hl is bounded by t and thus obtain H Yð Þ 6¼ 0, when
following the proof of Theorem 3.2 to prove the corollary.
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1 and a D-monomial in yi0 of order s with coefficients D-F -indeterminates, we can still obtain

xV\LðtÞ ¼ xVðtÞ � t þm� s
m

� �
: Precisely, we have

Corollary 3.4. Let V � An be an irreducible D-variety over F with D-dimðVÞ > 0: Suppose A is a
characteristic set of IðVÞ � FfYg under some orderly ranking with a parametric variable yi0 . Let
LðYÞ be a D-polynomial of order s in the form

L ¼ u0 þ u1M1ðyi0Þ þ
X

Ma2suppðLÞnf1,M1g
uaMaðYÞ,

where M1ðyi0Þ is a D-monomial in yi0 of order s and the coefficient set u ¼ fu0, u1, uag is a set of
D-F -indeterminates. Then V \ VðLÞ is an irreducible D-variety over Fhui and its Kolchin dimension
polynomial is

xV\VðLÞðtÞ ¼ xVðtÞ � t þm� s
m

� �
:

When L is a generic D-polynomial, Theorem 3.2 gives the partial differential analog of
[9, Theorem 1.1], which was proven by Freitag with a model-theoretical proof [6, Theorem 3.7].

Corollary 3.5. Let V be an irreducible D-variety over F with xVðtÞ > t þm
m

� �
. Let L be a gen-

eric D-polynomial of order s and degree g with coefficient set u. Then the intersection of V and

L ¼ 0 is a nonempty irreducible D-variety over Fhui and its Kolchin polynomial is

xV\LðtÞ ¼ xVðtÞ � t þm� s
m

� �
:

The following result gives the information of the intersection of several quasi-generic
D-polynomials, which generalizes [9, Theorem 3.15].

Corollary 3.6. Let Li ði ¼ 1, :::, r; r � nÞ be independent quasi-generic D-polynomials of order si
respectively. Suppose ui is the set of coefficients of Li. Then V ¼ VðL1, :::,LrÞ � An is an irreducible
D-variety over Fhu1, :::, uri with its Kolchin polynomial equal to

xVðtÞ ¼ ðn� rÞ t þm
m

� �
þ
Xr
i¼1

t þm
m

� �
� t þm� si

m

� �� �
:

In particular, if r¼ n, then its D-dimension is 0, the differential type is m � 1 and the typical
D-dimension is

Pn
i¼1 si:

4. Partial differential Chow forms

In this section, we introduce the definition of partial D-Chow forms and explore in which conditions
on D-varieties such that their D-Chow forms exist.

Let V � An be an irreducible D-variety over F with D-dimension d. Let

Li ¼ ui0 þ ui1y1 þ 
 
 
 þ uinyn ði ¼ 0, 1, :::, dÞ
be independent generic D-hyperplanes with coefficients ui ¼ ðui0, :::, uinÞ: Let

J ¼ IðVÞ,L0, :::,Ld½ �FfY, u0, :::, udg: (2)

Lemma 4.1. J \ Ffu0, :::, udg is a prime D-ideal of codimension 1 with a parametric
set [d

i¼0uinfu00g:
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Proof. Let g ¼ ðg1, :::, gnÞ be a generic point of V free from each ui: Let

fi ¼ �
Xn
k¼1

uikgk ði ¼ 0, :::, dÞ and f ¼ ðf0, u01, :::, u0n, :::, fd, ud1, :::, udnÞ:

We first show that ðg, fÞ is a generic point of J : Obviously, IðVÞ and L0, :::,Ld vanish at ðg, fÞ:
Suppose f 2 FfY, u0, :::,udg with f ðg, fÞ ¼ 0: Let f1 be the D-remainder of f w.r.t. L0, :::,Ld

under some elimination ranking with u < u00 < u10 < 
 
 
 < ud0, where u ¼ [d
i¼0uinfui0g: Then

f1 2 FfY,ug with f1ðg, fÞ ¼ 0: Write f1 ¼
P

M f1MðYÞMðuÞ as a D-polynomial in u with coeffi-
cients f1M 2 FfYg, then f1MðgÞ ¼ 0: So f1M 2 IðVÞ and f 2 J follows. Thus, ðg, fÞ is a generic
point of J and J \ Ffu0, :::, udg is a prime D-ideal with a generic point f.

Since the D-dimension of P is d, there exist d of the gi which are D-independent over F :

Consider Pi ¼ �Pn
k¼1 uikyk ði ¼ 1, :::, dÞ and the corresponding fi. Using Lemma 2.1 with a

contrapositive proof, we can prove that f1, :::, fd are D-independent over Fhui: So
D-tr.degFhfi=F � ðd þ 1Þnþ d: Note that Fhfi � Fhu, gi: Then D-tr.degFhfi=F ¼ ðd þ 1Þnþ
d: Thus, the codimension of J \ Ffu0, :::, udg is 1 and [d

i¼0uinfu00g is a parametric set of it. w

In the ordinary differential case, there always exists a unique irreducible d-polynomial F such
that J \ Ffu0, :::, udg is the general component of F. This unique polynomial F is the d-Chow
form of V. However, unlike the ordinary differential case, for a prime D-ideal of codimension 1,
it may not be the general component of any single D-polynomial, as Example 4.2 shows.

Example 4.2. Let m¼ 2 and V ¼ Vðd1ðyÞ, d2ðyÞÞ � A1: Let L0 ¼ u00 þ u01y and J ¼
½IðVÞ,L0� � Ffy, u00, u01g: Then

J \ Ffu00, u01g ¼ satðu01d1ðu00Þ � u00d1ðu01Þ, u01d2ðu00Þ � u00d2ðu01ÞÞ,
which is of codimension 1 but not the general component of a single D-polynomial.

The above fact makes it impossible to define D-Chow forms for all the irreducible D-varieties
as in the ordinary differential case [9, Definition 4.2]. Below, we define D-Chow forms for irredu-
cible D-varieties satisfying certain properties.

Definition 4.3. If J \ Ffu0, :::, udg is the general component of some irreducible D-polynomial
Fðu0, :::, udÞ, that is,

IðVÞ,L0, :::,Ld½ �FfY,u0, :::, udg \ Ffu0, :::, udg ¼ satðFÞ,
then we say the D-Chow form of V exists and we call F the D-Chow form of V or its correspond-
ing prime D-ideal IðVÞ:

Following this definition, a natural question is to explore in which conditions on D-varieties
such that their D-Chow forms exist. Now, we proceed to give a sufficient condition for the exist-
ence of D-Chow forms.

Lemma 4.4. Let P be a prime D-ideal in Ffy1, :::, yng and A a characteristic set of P with respect

to some orderly ranking R. Suppose the Kolchin polynomial of P is xP tð Þ ¼ d þ 1ð Þ t þm
m

� �
�

t þm� s
m

� �
for some d, s 2 N. Then

ld Að Þ ¼ fyi1 , :::, yin�d�1 , h yin�dð Þg
for some h 2 Hs and n – d distinct variables yi1 , :::, yin�d :
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Proof. For each j ¼ 1, :::, n, let Ej denote the matrix whose row vectors are a1, :::, amð Þ 2 Nm such
that da11 
 
 
 damm yj is the leader of an element of A: Here, if yj is not a leading variable, then set

Ej ¼ ;: Suppose the leading variables of A are yi1 , :::, yil : By Theorem 2.5, xP tð Þ ¼Pn
j¼1 xEj tð Þ ¼

n� lð Þ t þm
m

� �
þPl

j¼1 xEij
¼ d þ 1ð Þ t þm

m

� �
� t þm� s

m

� �
: Since Eij 6¼ ;, the degree of

xEij
is less than m. Comparing the coefficient of tm of the both sides of the above equality, we

get l ¼ n� d:
For j ¼ 1, :::, n� d, let eij ¼ eij1, :::, eijnð Þ 2 Nm be a vector constructed from Eij with each eijk

the minimal element of the k-th column of Eij , and let Hij be the matrix whose row vectors are
the corresponding row vectors of Eij minus eij , respectively. Denote sij ¼

Pn
k¼1 eijk: Then clearly,

xEij tð Þ ¼ xeij
tð Þ þ xHij

t � sijð Þ: By item 3) of Lemma 2.4, the degree of xHij
t � sijð Þ is strictly less

than m� 1. Thus, xP tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
¼ d

t þm
m

� �
þPn�d

j¼1 xeij
tð Þ þ

Pn�d
j¼1 xHij

t � sijð Þ: So
t þm
m

� �
� t þm� s

m

� �
¼Pn�d

j¼1
t þm
m

� �
� t þm� sij

m

� �� �
þPn�d

j¼1

xHij
t � sijð Þ: Comparing the coefficients of tm�1 and tm�2 on the both sides and use the fact

t þm
m

� �
� t þm� s

m

� �
¼ s

m�1ð Þ! t
m�1 þ s mþ1ð Þ�s2

2
 m�2ð Þ! t
m�2 þ o t3ð Þ, we get

s ¼
Xn�d

j¼1

sij ,

�s2=2 ¼ �
Xn�d

j¼1

s2ij=2þ m� 2ð Þ! 

Xn�d

j¼1

coeff xHij
, tm�2

� �
:

8>>>>><
>>>>>:

If two of the sij are nonzero, then obviously �s2=2 < �Pn�d
j¼1 s2ij=2, which implies that the above

system of equations is not valid. Thus, there exists only one ij such that sij ¼ s and all the other

n� d � 1 of the sij is equal to zero. Without loss of generality, suppose sin�d ¼ s: So
t þm
m

� �
�

t þm� s
m

� �
¼ t þm

m

� �
� t þm� s

m

� �
þPn�d

j¼1 xHij
t � sijð Þ: As a consequence, Hij ¼

f 0, :::, 0ð Þg: Thus, each Eij has only one row vector, and ld Að Þ ¼ fyi1 , :::, yin�d�1 , h yin�dð Þg for
some h 2 Hs:

The following result gives a sufficient condition on D-varieties for the existence of
D-Chow forms.

Theorem 4.5. Let V � An be an irreducible D-variety over F with

xV tð Þ ¼ dþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
for some s 2 N. Then the D-Chow form of V exists. And the order of the D-Chow form of V is s.

Proof. Let P ¼ I Vð Þ � FfYg: Let P? ¼ ½P ,L1, :::,Ld�Fhu1, :::, udifYg: Then by Corollary 3.5, P? is a

prime D-ideal of D-dimension 0 and xP? ¼ t þm
m

� �
� t þm� s

m

� �
: Let J 0 ¼

½P?
,L0�Fhu1, :::, udifY, u0g: Recall that J ¼ ½P ,L0, :::,Ld�FfY, u0, :::,udg as introduced in (2). Clearly,

J 0 ¼ ½J �Fhu1, :::,udifY, u0g: Let
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I0 ¼ J 0 \ Fhu1, :::, udifu0g and I ¼ J \ Ffu0, :::, udg:
By Lemma 4.1, both I 0 and I are prime D-ideals of codimension 1 with parametric sets
u0nfu00g and [d

i¼0uinfu00g respectively. For any f 2 I 0 \ Ffu0, :::,udg, there exists M 2
Ffu1, :::,udg such that Mf 2 I : Since M 62 I , f 2 I : Thus, I ¼ I0 \ Ffu0, :::,udg: We claim
that (
) I is the general component of some irreducible F 2 Ffu0, :::, udg if and only if I0 is the
general component of some irreducible G 2 Fhu1, :::, udifu0g:

To show the validity of claim (
), first suppose I is the general component of some irreducible
F 2 Ffu0, :::, udg: Fix two elimination rankings for Ffu0, :::,udg and Fhu1, :::,udifu0g with u00
higher than any other variable. Since [d

i¼0uinfu00g is a parametric set of I , ld Fð Þ ¼ h u00ð Þ for
some h. Given any g 2 I0, let g1 be the partial remainder of g w.r.t. F. Then g1 2 I0: If g1 6¼ 0,
there exists L 2 Ffu1, :::,udg such that Lg 2 I : Since F is a characteristic set of I and Lg is par-
tially reduced w.r.t. F, Lg is divisible by F over F , and thus g is divisible by F over Fhu1, :::, udi:
Thus, F constitutes a characteristic set of I 0 and I0 is the general component of F. For the other
direction, suppose I0 is the general component of some irreducible G 2 Fhu1, :::,udifu0g:
Clearly, ld Gð Þ ¼ h u00ð Þ for some h and there exists N 2 Ffu1, :::,udg such that NG 2
Ffu0,u1, :::, udg is irreducible. Since I 0 ¼ ½G� : @G

@h u00ð Þ
� �1

, we have I ¼ I0 \ Ffu0, :::,udg ¼

½NG� : N @G
@h u00ð Þ

� �1� �
Ffu0, :::, udg

¼ sat NGð Þ: So I is the general component of NG and (
)

is proved.
Thus, by (
), it suffices to consider for the case dim Vð Þ ¼ 0, that is, to show the D-Chow

form of V exists if xV tð Þ ¼ t þm
m

� �
� t þm� s

m

� �
for some s 2 N: Now suppose dim Vð Þ ¼

0 and let g ¼ g1, :::, gnð Þ be a generic point of V free from u0: Let f0 ¼ �Pn
j¼1 u0jgj: Then by the

proof of Lemma 4.1, f0, u01, :::, u0nð Þ is a generic point of I ¼ ½I Vð Þ,L0� \ Ffu0g:
On the one hand, since f½t�0 � F u½t�01, :::, u

½t�
0n, g

½t�
� �

, we have

x f0, u01, :::, u0nð Þ tð Þ � x u01, :::, u0n, gð Þ tð Þ ¼ nþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
:

On the other hand, by Lemma 4.4, xV tð Þ ¼ t þm
m

� �
� t þm� s

m

� �
implies that the leading

variables of a characteristic set of A with respect to an orderly ranking is fyi1 , :::, yin�1 , h yinð Þg
with h 2 Hs: So fs ginð Þ : s 2 H�t , h-sg is algebraically independent over F : By the contraposi-

tive of the algebraic version of Lemma 2.1, S :¼ fs f0ð Þ : s 2 H�t , h-sg is algebraically independ-

ent over F u½t�01, :::, u
½t�
0n

� �
: Note that card Sð Þ ¼ t þm

m

� �
� t þm� s

m

� �
: Thus, we have

x f0, u01, :::, u0nð Þ tð Þ ¼ tr:deg F u t½ �
01, :::, u

t½ �
0n, f

t½ �
0

� �
=F

¼ tr:deg F u t½ �
01, :::, u

t½ �
0n

� �
=F þ tr:deg F u t½ �

01, :::, u
t½ �
0n

� �
f t½ �
0

� �
=F u t½ �

01, :::, u
t½ �
0n

� �

� n
t þm
m

� �
þ t þm

m

� �
� t þm� s

m

� �
:

Thus, x f0, u01, :::, u0nð Þ tð Þ ¼ nþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
: By Lemma 2.7, there exists an irredu-

cible D-polynomial F of order s such that J ¼ sat Fð Þ, so the D-Chow form of V exists and it is
of order s. w
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We conjecture that for the existence of D-Chow form of V, the Kolchin polynomial xV tð Þ ¼

dþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
is also a necessary condition:

Conjecture 4.6. Let V � An be an irreducible D-variety over F of differential dimension d. Then
the D-Chow form of V exists if and only if

xV tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
for some s 2 N:

In the remaining sections of this article, we focus on irreducible D-varieties V � An of

Kolchin polynomial xV tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
for some s 2 N whose D-Chow

forms exist guaranteed by Theorem 4.5.

Given d þ 1 vectors ai ¼ ai0, ai1, :::, ainð Þ 2 Anþ1 Eð Þ for i ¼ 0, :::, d, let

Li aið Þ ¼ ai0 þ ai1y1 þ 
 
 
 þ ainyn

be the corresponding hyperplanes over Fhaii: A natural question in (differential) intersection
theory arises as follows: Under which conditions can we have V \ L0 a0ð Þ \ 
 
 
 \ Ld adð Þ 6¼ ;?
In the algebraic case, Chow and van der Waerden showed that the vanishing of the Chow
form gives a necessary and sufficient condition such that the projective variety V and dþ 1
projective hyperplanes have a common point [3]. Similarly, we also have a geometric interpret-
ation for partial differential Chow forms. The following result shows that the general compo-
nent of the differential Chow form of V gives a necessary and sufficient condition in the
Kolchin closure sense such that V and the given dþ 1 D-hyperplanes have a nonempty
intersection.

Proposition 4.7. Let V � An be an irreducible D-variety of Kolchin polynomial xV tð Þ ¼
dþ 1ð Þ t þm

m

� �
� t þm� s

m

� �
and F u0, :::,udð Þ be the D-Chow form of V. Let

S ¼ f a0, :::, adð Þ 2 Anþ1ð Þdþ1 j V \ L0 a0ð Þ \ 
 
 
 \ Ld adð Þ 6¼ ;g:

Then the Kolchin closure of S is the general component of F.

Proof. Let W be the Kolchin closure of S in Anþ1ð Þdþ1
: Recall that

J ¼ I Vð Þ,L0, :::,Ld½ �FfY, u0, :::,udg and J \ Ffu0, :::, udg ¼ sat Fð Þ:

For any a0, :::, adð Þ 2 S, there exists n 2 An such that n 2 V \ L0 a0ð Þ \ 
 
 
 \ Ld adð Þ: Then
n, a0, :::, adð Þ 2 V Jð Þ and so a0, :::, adð Þ 2 V sat Fð Þð Þ: Thus, S � V sat Fð Þð Þ and W � V sat Fð Þð Þ: On
the other hand, by the proof of Lemma 4.1, g, fð Þ is a generic point of J , so f is a generic point
of V sat Fð Þð Þ: Clearly, g 2 V \ L0 fu, 0ð Þ \ 
 
 
 \ Ld fu, dð Þ, where fu, i ¼ fi, ui1, :::, uinð Þ: So f 2 S �
W: Thus, V sat Fð Þð Þ � W: Hence, we have V sat Fð Þð Þ ¼ W: w

Below is an example of D-Chow forms.

Example 4.8. Let D ¼ fd1, d2g: Let P ¼ ½d1 y1ð Þ, y2 � y21� � Ffy1, y2g: Clearly, xP tð Þ ¼
t þ 2
2

� �
� t þ 1

2

� �
¼ t þ 1: The D-Chow form of P is
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F u0ð Þ ¼ d1 u00ð Þ2u202 � 2d1 u00ð Þu00d1 u02ð Þu02 � d1 u00ð Þd1 u01ð Þu01u02 þ u200 d1 u02ð Þ� 	2þ
d1 u00ð Þu201d1 u02ð Þ þ u00 d1 u01ð Þ� 	2u02 � u00d1 u01ð Þu01d1 u02ð Þ þ d1 u00ð Þd1 u01ð Þu01u02:

5. Properties of the partial differential Chow form

In this section, we will prove basic properties of D-Chow forms. In particular, we will show the
D-Chow form is D-homogenous and has a Poisson-type product formula similar to its ordinary
differential counterpart.

5.1. Partial differential Chow forms are differentially homogenous

In this section, we will show that the D-Chow form is D-homogenous. Recall that F is a D-field
with the set of derivations D ¼ fd1, :::, dmg and H is the set of all derivative operators. Given two

derivatives h1 ¼
Qm

i¼1 d
ai
i and h2 ¼

Qm
i¼1 d

bi
i 2 H, if ai � bi for each i, then we denote h1jh2: In

case h1jh2, we denote h2
h1
¼Qm

i¼1 d
bi�ai
i , and denote the product of binomial coefficientsQm

i¼1
bi
ai

� �
by

h2
h1

� �
: It is easy to verify that h fgð Þ ¼Psjh

h
s

� �

 hs fð Þ 
 s gð Þ for all f , g 2 F :

Definition 5.1. A D-polynomial f 2 Ffy0, y1, :::, yng is said to be D-homogenous of degree r if
f ky0, ky1, :::, kynð Þ ¼ krf y0, y1, :::, ynð Þ holds for a D-indeterminate k over Ffy0, y1, :::, yng:

The following lemma is a partial differential analog of the Euler’s criterion on homogenous
polynomials, which was listed as an exercise in [16, p.71].

Proposition 5.2. A necessary and sufficient condition that f 2 Ffy0, y1, :::, yng be D-homogenous of
degree r is that f satisfies the following system of equations:

X
s2H

Xn
j¼0

sh

h

 !
s yjð Þ 


@f
@sh yjð Þ

¼ rf , h ¼ 1

0, h 2 H, h 6¼ 1:



(3)

Proof. Denote Y ¼ y0, :::, ynð Þ temporarily for convenience. Let k be a D-indeterminate
over FfYg:

First, we show the necessity. Suppose f is D-homogenous of degree r. Then f kYð Þ ¼ krf Yð Þ:
Differentiating both sides of this equality w.r.t. h kð Þ, we get

X
s2H

Xn
j¼0

sh

h

 !
s yjð Þ 


@f
@sh yjð Þ

kYð Þ ¼
Xn
j¼0

X
s2H

@sh kyj
� 	

h kð Þ
@f

@sh yjð Þ
kYð Þ

¼ @f kYð Þ
@h kð Þ ¼ rf Yð Þkr�1, h ¼ 1

0, h 2 H, h 6¼ 1:

(

Setting k¼ 1, we obtain (3).
To show the sufficiency, suppose (3) holds. We will show f kYð Þ ¼ krf Yð Þ for some r. Let h 2

H satisfy (
) @
@sh kð Þ f kYð Þ ¼ 0 for all s 2 Hnf1g: Then we have
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k 
 @

@h kð Þ f kYð Þ ¼
X
s2H

sh

h

 !
s kð Þ @

@sh kð Þ f kYð Þ

¼
X
s2H

sh

h

 !
s kð ÞXn

j¼0

X
n2H

nsh

sh

 !
n yjð Þ

@

@nsh yjð Þ
f kYð Þ

¼
Xn
j¼0

X
s2H

X
n2H, njs

s
n
h

h

0
@

1
A s

n
kð Þ

sh
s
n
h

0
@

1
An yjð Þ

@

@sh yjð Þ
f kYð Þ

¼
Xn
j¼0

X
s2H

sh

h

 ! X
n2H, njs

s

n

 !
s
n

kð Þn yjð Þ
0
@

1
A @

@sh yjð Þ
f kYð Þ

¼
Xn
j¼0

X
s2H

sh

h

 !
s kyj
� 	 @

@sh yjð Þ
f kYð Þ

¼
X
s2H

Xn
j¼0

sh

h

 !
s yjð Þ 


@f
@sh yjð Þ

!
Y¼kY

:

0
@

(4)

For each h 6¼ 1 satisfying (
), by (3) and (4), we obtain @
@h kð Þ f kYð Þ ¼ 0: Since @

@s kð Þ f kYð Þ ¼ 0 for

all s 2 H>ord fð Þ, each h 2 Hord fð Þ satisfies (
). By backward induction on H kð Þ, we have
@

@h kð Þ f kYð Þ ¼ 0 for each h 2 Hnf1g: Thus, we can take h¼ 1 and get k 
 @
@k f kYð Þ ¼ rf kYð Þ from

(3) and (4). So

@k�rf kYð Þ
@k

¼ �rk�r�1f kYð Þ þ k�r @f kYð Þ
@k

¼ 0,

and f kYð Þ ¼ krf Yð Þ follows. Thus, f Yð Þ is D-homogenous of degree r. w

Now, we show that the D-Chow form F u0, :::,udð Þ is D-homogeneous of the same degree in
each ui, which is a partial differential analog of [9, Theorem 4.17].

Theorem 5.3. Let V � An be an irreducible D-variety of Kolchin polynomial

xV tð Þ ¼ dþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
. Let F u0, :::, udð Þ be the D-Chow form of V. Then

F u0, :::, udð Þ is D-homogenous of the same degree r in each ui:

Proof. By the definition of D-Chow form, F u0, :::, udð Þ has the symmetric property in the sense
that interchanging ui and uj in F, the resulting polynomial and F differ at most by a sign. In par-
ticular, F is of the same degree in each ui: So it suffices to show the D-homogeneity of F for u0:

Let g ¼ g1, :::, gnð Þ be a generic point of V. For i ¼ 0, :::, d, let

fi ¼ �
Xn
j¼1

uijgj and fu, i ¼ fi, ui1, :::, uinð Þ:

By the proof of Lemma 4.1, fu, 0, fu, 1, :::, fu, dð Þ is a generic point of

I Vð Þ,L0, :::,Ld½ �FfY,u0, :::, udg \ Ffu0, :::,udg ¼ sat Fð Þ:
Here, a ranking R of Ffu0, :::, udg is assumed. Let k be a D-indeterminate over Fhu0, :::, ud,Yi:
Similarly as in the proof of Lemma 4.1, we can also show that kfu, 0, fu, 1, :::, fu, dð Þ is also a generic
point of sat Fð Þ: So F kfu, 0, fu, 1, :::, fu, dð Þ ¼ 0: Let F ku0, u1, :::, udð Þ ¼PM FMM kð Þ where the
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M kð Þ’s are distinct D-monomial in k and FM 2 Ffu0, :::, udg: Since
F kfu, 0, fu, 1, :::, fu, dð Þ ¼

X
M

FM fu, 0, fu, 1, :::, fu, dð ÞM kð Þ ¼ 0,

we have FM fu, 0, fu, 1, :::, fu, dð Þ ¼ 0 for each M. So FM 2 sat Fð Þ: Since FM is partially reduced w.r.t.
F and deg FMð Þ � F, there exists aM 2 F such that FM ¼ aMF. Thus, F ku0, u1, :::,udð Þ ¼P

M aMM kð Þ� 	 
 F: Regard the two D-polynomials at both sides of this equality as polynomials
in Fhkifu0, :::,udg, by comparing their coefficients of the leading monomial under the
lexicographic ordering induced by R, we obtain

P
M aMM kð Þ ¼ kr for some r 2 N: Thus, F is

D-homogenous in u0 of degree r. w

Definition 5.4. The number r in Theorem 5.3 is defined to be the D-degree of the D-variety V or
its corresponding prime D-ideal.

5.2. Factorization of partial differential Chow forms

In this section, we follow the techniques in [9, Sect. 4.4] to derive Poisson-type product formulae
for partial differential Chow forms. For this purpose, fix an orderly ranking R on u0, :::, un with
u00 greater than any other uij. Suppose ld Fð Þ ¼ h u00ð Þ and h is reserved for this derivative oper-
ator temporarily in this section. Let

F u ¼ Fhu1, :::,ud, u01, :::, u0ni and F 0 ¼ F u s u00ð Þ : s 2 H, h-s
� 	

:

Regard F as a univariate polynomial f h u00ð Þ� 	
in h u00ð Þ with coefficients in F 0 and suppose g ¼

deg F, h u00ð Þ� 	
: Then f h u00ð Þ� 	

is irreducible over F 0 and in a suitable algebraic extension field
of F 0, f h u00ð Þ� 	 ¼ 0 has g roots c1, :::, cg : Thus

f h u00ð Þ� 	 ¼ A u0, u1, :::,udð Þ
Yg
l¼1

h u00ð Þ � cl
� 	

(5)

where A u0,u1, :::, udð Þ 2 Ffu0, :::,udg is free from h u00ð Þ:
For each l ¼ 1, :::, g, let

F l ¼ F 0 clð Þ (6)

be an algebraic extension of F 0 defined by f h u00ð Þ� 	 ¼ 0: We will define derivations dl, 1, :::, dl,m
on F l so that F l, fdl, 1, :::, dl,mgð Þ becomes a partial differential field. This can be done step by

step in a very natural way. For the ease of notation, for each s ¼Qm
k¼1 d

dk
k with d1, :::, dmð Þ 2 Nm,

we denote sl ¼
Qm

k¼1 d
dk
l, k: In step 1, for each a 2 F u, define sl að Þ ¼ s að Þ, in particular, dl, k að Þ ¼

dk að Þ for each k ¼ 1, :::,m: In step 2, we need to define the derivatives of u00. For all s 2 H with
h-s or s ¼ h, define sl u00ð Þ as follows:

sl u00ð Þ ¼ s u00ð Þ 2 F 0 � F lð Þ, h-s
cl 2 F l, s ¼ h:




And for all s 2 H with hjs and s 6¼ h, we define sl u00ð Þ inductively on the ordering of H u00ð Þ
induced by R: Since F, regarded as a univariate polynomial f in h u00ð Þ, is a minimal polynomial

of cl, Sf ¼ @f
@h u00ð Þ does not vanish at h u00ð Þ ¼ cl: First, for the minimal s ¼ dkh for some k 2

f1, :::,mg, define
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sl u00ð Þ ¼ dl, k clð Þ ¼def �T=Sf jh u00ð Þ¼cl
,

where dk fð Þ ¼ Sf 
 dkh u00ð Þ þ T: This is reasonable, since all the derivatives of u00 involved in Sf
and T have been defined in the former steps and we should have dl, k f clð Þ� 	 ¼ Sf jh u00ð Þ¼cl

dl, k clð Þ þ
Tjh u00ð Þ¼cl

¼ 0: Suppose all the derivatives of u00 less than s u00ð Þ ¼Qm
k¼1 d

dk
k h u00ð Þ have been

defined, we can proceed in the similar way to define sl u00ð Þ ¼Qm
k¼1 d

dk
l, k clð Þ: Namely, use the dif-

ferential polynomial s fð Þ ¼ Sf 
 s u00ð Þ þ Ts and define sl u00ð Þ ¼ �Ts=Sf jph u00ð Þ¼p clð Þ, ph<s: In this

way, F l, fdl, 1, :::, dl,mgð Þ is a partial differential field which can be considered as a finitely differ-
ential extension field of F u,Dð Þ:

Since F u is a finitely generated D-extension field of F contained in E: By the definition of
universal differential extension fields, there exists a D-extension field F
 � E of F u and a differ-
ential F u-isomorphism ul from F l, fdl, 1, :::, dl,mgð Þ to F
,Dð Þ: For a polynomial G 2 FfYg and
a point g 2 F n

l , G gð Þ ¼ 0 implies G ul gð Þð Þ ¼ 0: For convenience, by saying g is in a D-variety V
over F , we mean ul gð Þ 2 V: Summing up the above results, we have a partial differential analog
of [9, Lemma 4.24].

Lemma 5.5. F l, fdl, 1, :::, dl,mgð Þ is a finitely differential extension field of F u,Dð Þ, which is differ-
entially F u-isomorphic to a differential subfield of E:

Note that the above defining steps give a differential homomorphism /l from
Ffu0, :::,udg,Dð Þ to the differential field F l, fdl, 1, :::, dl,mgð Þ for each l by mapping s uijð Þ to
sl uijð Þ: That is, for a D-polynomial p 2 Ffu0, :::, udg, /l pð Þ is obtained from p by substituting
sh u00ð Þ ¼ sl clð Þ: Then we have the following result similar to [9, Lemma 4.25].

Lemma 5.6. Let P 2 Ffu0, :::, udg. Then P 2 sat Fð Þ if and only if /l Pð Þ ¼ 0:

Proof. If P 2 sat Fð Þ, then there exists m 2 N such that SmF P 2 ½F�: Since /l is a differential homo-
morphism and /l Fð Þ ¼ 0,/l S

m
F Pð Þ ¼ 0: Note from the above that /l SFð Þ 6¼ 0, so /l Pð Þ ¼ 0 fol-

lows. For the other side, suppose /l Pð Þ ¼ 0: Let R be the differential remainder of P w.r.t. F
under the ranking R: Since /l Pð Þ ¼ 0,/l Rð Þ ¼ 0: Note that R is free from all the proper deriva-
tives of h u00ð Þ and deg R, h u00ð Þ� 	

< g: So Rjh u00ð Þ¼cl
¼ 0, which implies from the irreducibility of

F that R is divisible by F. Thus, R¼ 0 and P 2 sat Fð Þ: w

Remark 5.7. Similar to the ordinary differential case, in order to make F l a partial differential
field, we need to introduce derivations dl, 1, :::, dl,m related to cl and there does not exist a unique
set of derivations to make all F l l ¼ 1, :::, gð Þ differential fields.

Below, we give the following Poisson-type product formula, which is a partial differential ana-
log of [9, Theorem 4.27].

Theorem 5.8. Let F u0, u1, :::, udð Þ be the D-Chow form of an irreducible D-variety over F of

Kolchin polynomial xV tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
. Fix an orderly ranking with u00 >

uij and suppose ld Fð Þ ¼ h u00ð Þ and g ¼ deg F, h u00ð Þ� 	
. Then, there exist nl1, :::, nln in a differential

extension field F l, fdl, 1, :::, dl,mgð Þ of F u,Dð Þ such that

F u0,u1, :::, udð Þ ¼ A u0, u1, :::,udð Þ
Yg
l¼1

h u00 þ
Xn
q¼1

u0qnlq

 !
(7)
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where A u0, u1, :::,udð Þ is in Ffu0, :::, udg. Note that Equation (7) is formal and should be under-

stood in the following precise meaning: h u00 þ
Pn

q¼1 u0qnlq
� �

¼� h u00ð Þ þ hl
Xn

q¼1
u0qnlq

� �
:

Proof. Follow the proof of [9, Theorem 4.27] and the notation above. By Lemma 5.6, /l SFð Þ 6¼ 0:

Let nlj ¼ /l
@F

@h u0jð Þ
� �

=/l SFð Þ for j ¼ 1, :::, n and nl ¼ nl1, :::, nlnð Þ 2 F n
l : We will prove

cl ¼ �hl
Xn
j¼1

u0jnlj

 !
:

Let n ¼ n1, :::, nnð Þ be a generic point of V and fi ¼ �Pn
j¼1 uijnj: Then

F f0, u01, :::, u0n; :::; fd, ud1, :::, udnð Þ ¼ 0: Differentiating the equailty w.r.t. h u0jð Þ on both sides, we
have

@F
@h u0jð Þ

þ @F
@h u00ð Þ 
 �nj

� 	 ¼ 0, (8)

where the @F
@h u0jð Þ are obtained by substituting fi to ui0 i ¼ 0, :::, dð Þ in @F

@h u0jð Þ : Multiplying u0j to

the above equation and for j from 1 to n, adding them together, we have

Xn
j¼1

u0j
@F

@h u0jð Þ
þ @F
@h u00ð Þ 
 �

Xn
j¼1

u0jnj

 !
¼
Xn
j¼1

u0j
@F

@h u0jð Þ
þ @F
@h u00ð Þ 
 f0 ¼ 0:

Thus,
Pn

j¼0 u0j
@F

@h u0jð Þ 2 sat Fð Þ: By Lemma 5.6,

Xn
j¼1

u0j/l
@F

@h u0jð Þ

 !
þ /l u00ð Þ/l

@F
@h u00ð Þ

 !
¼ 0,

so /l u00ð Þ ¼ �Pn
j¼1 u0jnlj: Thus, hl /l u00ð Þ� 	 ¼ /l h u00ð Þ� 	 ¼ cl ¼ �hl

Pn
j¼1 u0jnlj

� �
: Substituting

them into equation (5), (7) is proved. w

We have the following interesting result similar to [9, Theorem 4.34].

Theorem 5.9. The points nl1, :::, nlnð Þ l ¼ 1, :::, gð Þ in (7) are generic points of the D-variety V over
F . If d> 0, they also satisfy the equations

ur0 þ
Xn
q¼1

urqyq ¼ 0 r ¼ 1, :::, dð Þ:

Proof. Follow the proof of [9, Theorem 4.34]. Suppose P y1, :::, ynð Þ 2 FfYg is any D-polynomial

vanishing on V. Then P n1, :::, nnð Þ ¼ 0: From (8), nq ¼ @f
@h u0qð Þ=

@f
@h u00ð Þ, so we have

P
@F

@h u01ð Þ

,
@F

@h u00ð Þ, :::,
@F

@h u0nð Þ

,
@F

@h u00ð Þ

0
@

1
A ¼ 0,

where @F
@h u0qð Þ are obtained by substituting fi to ui0 i ¼ 0, 1, :::, dð Þ in @f

@h u0qð Þ : Thus, there exists an

t 2 N, such that
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@F
@h u00ð Þ

 !t


 P @F
@h u01ð Þ

,
@F

@h u00ð Þ , :::,
@F

@h u0nð Þ

,
@F

@h u00ð Þ

0
@

1
A 2 sat Fð Þ:

By Lemma 5.6, we have P nl1, :::, nlnð Þ ¼ 0, which means that nl1, :::, nlnð Þ 2 V:
Conversely, for any Q 2 FfYg such that Q nl1, :::, nlnð Þ ¼ 0, by Lemma 5.6, there exists t 2 N

s.t. ~Q ¼ @F
@h u00ð Þ
� �t

Q @F
@h u01ð Þ =

@F
@h u00ð Þ , :::,

@F
@h u0nð Þ =

@f
@h u00ð Þ

� �
2 sat Fð Þ: So Q n1, :::,ð nnÞ¼ 0: Thus,

nl1, :::, nlnð Þ is a generic point of V.

By Equation (8), @F
@h u0jð Þ þ @F

@h u00ð Þ 
 �nj
� 	 ¼ 0, so we have

Pn
j¼1 urj

@F
@h u0jð Þ þ fr

@F
@h u00ð Þ ¼ 0: Thus,Pn

j¼0 urj
@F

@h u0jð Þ 2 sat Fð Þ: If r 6¼ 0, then
Pn

j¼0 urj/l
@F

@h u0jð Þ
� �

¼ 0: Consequently, ur0þ
Pn

j¼1

urjnlj ¼ 0 r ¼ 1, :::, dð Þ: w

Remark 5.10. In [9], the number g in the Poission-type formula is defined as the leading differ-
ential degree of d-cycles, which has similar geometric meaning as the degree of algebraic varieties.
But in the partial differential case, the leading differential degree could not be defined, for the
number g in Theorem 5.8 depends on the orderly ranking we choose to get the Poisson-type
product formula. For example, let D ¼ fd1, d2g and V � A1 be the general component of A ¼
d1 y1ð Þ d2 y1ð Þ

� 	2 þ 1 2 Ffy1g: Then the differential Chow form of V is F u0ð Þ ¼ �u301d1 u00ð Þ
d2 u00ð Þ� 	2 þ 2u00u201d1 u00ð Þd2 u00ð Þd2 u01ð Þ � u200d1 u00ð Þu01 d2 u01ð Þ� 	2 þ u00u201d1 u01ð Þ d2 u00ð Þ� 	2�
2u200u01d1 u01ð Þd2 u00ð Þd2 u01ð Þ þ u300d1 u01ð Þ d2 u01ð Þ� 	2 þ u601: There are two orderly rankings of

Ffy1g, that is, R1 : d
i1
1 d

i2
2 > dj11 d

j2
2 () i1 þ i2, i1ð Þ>lex j1 þ j2, j1ð Þ and R2 : d

i1
1 d

i2
2 >

dj11 d
j2
2 () i1 þ i2, i2ð Þ>lex j1 þ j2, j2ð Þ: Under R1, ld Fð Þ ¼ d1 u00ð Þ and g¼ 1; while under

R2, ld Fð Þ ¼ d2 u00ð Þ and g¼ 2. Also, even under a fixed orderly ranking, the leaders of the
D-Chow forms of two irreducible D-varieties with the same Kolchin polynomial may be distinct,
so it is difficult to define partial differential algebraic cycles through D-Chow forms as we did in
the ordinary differential case.

We conclude this section by proposing the following properties of D-Chow forms, which are
similar to [9, Lemma 4.10] and [8, Lemma 3.9] in the ordinary differential case and will be used
in Section 6.

Theorem 5.11. Let V � An be an irreducible D-variety of Kolchin polynomial xV tð Þ ¼
dþ 1ð Þ t þm

m

� �
� t þm� s

m

� �
and F u0, :::,udð Þ the D-Chow form of V. The following asser-

tions hold.

1) Let R be some elimination ranking satisfying uij < u00 < y1 < 
 
 
 < yn. Let ld Fð Þ ¼ h u00ð Þ
and SF the separant of F. Then

F, SFy1 � @F
@h u01ð Þ , :::, SFyn �

@F
@h u0nð Þ


 �

is a characteristic set of ½I Vð Þ,L0, :::,Ld�FfY, u0, :::,udg w.r.t. R:
2) Given v0, :::, vdð Þ 2 Anþ1ð Þdþ1

, if F v0, :::, vdð Þ ¼ 0 and SF v0, :::, vdð Þ 6¼ 0, then V and vi0 þ
vi1y1 þ 
 
 
 þ vinyn ¼ 0 i ¼ 0, :::, dð Þ have at least one point in common.

3) I Vð Þ \ F½Y½s��,L½s�
0 , :::,L

½s�
d

� �
\ F½u½s�0 , :::, u½s�d � ¼ F u0, :::,udð Þ� 	

:
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Proof. The proof of item 1) is similar to [9, Lemma 4.10]. And item 2) is a direct consequence of
item 1).

3) By Theorem 4.5, ord Fð Þ ¼ s, so Fð Þ ¼ ½I Vð Þ,L0, :::,Ld� \ F½u½s�0 , :::, u½s�d �: By the proof of

Lemma 4.1, f½s� is a generic point of (F). Similarly, we can show g½s�, f½s�
� 	

is a generic point of

J s :¼ I Vð Þ \ F½Y½s��,L½s�
0 , :::,L

½s�
d

� �
in F½Y½s�, u½s�0 , :::, u

½s�
d �: Thus, f½s� is also a generic point of J s \

F½u½s�0 , :::, u½s�d � and 3) follows. w

6. Partial differential Chow varieties of a certain type exist

As mentioned in the introduction, to study a specific kind of geometric objects, it is important
and useful to represent them by coordinates and further show that the set of objects is actually
an algebraic system. For us, this specific kind of objects are irreducible D-varieties with Kolchin

polynomial d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
: As in the ordinary differential case, we could rep-

resent these D-varieties by coordinates.

Definition 6.1. Let V be an irreducible D-variety over F of Kolchin polynomial xV tð Þ ¼
dþ 1ð Þ t þm

m

� �
� t þm� s

m

� �
and of D-degree r. Let F u0, :::, udð Þ be the D-Chow form of V.

The coefficient vector of F, regarded as a point in a higher dimensional projective space deter-
mined by n and (d, s, r), is defined to be the D-Chow coordinate of V.

Fix n and an index (d, s, r). Let G n, d, s, rð Þ be a functor from the category of D-fields of charac-
teristic 0 to the category of sets, which associates each D-field F of characteristic 0 with the set

G n, d, s, rð Þ Fð Þ, consisting of all irreducible D-varieties V � An over F with xV tð Þ ¼

dþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
and D-degree r.

Definition 6.2. If G n, d, s, rð Þ is represented by some D-constructible set over Q, meaning that there
is a D-constructible set defined over Q and a natural isomorphism between the functor G n, d, s, rð Þ
and the functor given by this D-constructible set (regarded also as a functor from the category of
D-fields of characteristic 0 to the category of sets), then we call this D-constructible set the
D-Chow variety of index (d, s, r) of An, and denote it by D-Chow n, d, s, rð Þ: In this case, we also
say that the D-Chow variety of An of index (d, s, r) exists.

In this section, we will show that D-Chow varieties D-Chow n, d, s, rð Þ exist for all chosen
n, d, s, r: Similar to the ordinary differential case, the main idea is to first definably embed
G n, d, s, rð Þ into a finite disjoint union C of the chosen algebraic Chow varieties and then show the
image of G n, d, s, rð Þ is a definable subset of C: So the language from model theory of partial differ-
entially closed fields (see [18, 22, 24]) will be used. Assume E is a saturated D-closed field of
characteristic 0 (i.e., E�DCF0,m) and An ¼ En throughout this section.

6.1. Definable properties and prolongation admissible varieties

Here are some basic notions and results from model theory to be used in the proof of the main
theorem. For more details and explantations, see [8].

We say that a family of sets fXaga2B is a definable family if there are formulae w x; yð Þ and / yð Þ so
that B is the set of realizations of / and for each a 2 B, Xa is the set of realizations of w x; að Þ:
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Given a property P of definable sets, we say that P is definable in families if for any family of
definable sets fXaga2B given by the formulae w x; yð Þ and h yð Þ, there is a formula / yð Þ so that the

set fa 2 B : Xa has property Pg is defined by /:
Given an operation L which takes a set and returns another set, we say that L is definable in

families if for any family of definable sets fXaga2B given by the formulae w x; yð Þ and h yð Þ, there

is a formula / z; yð Þ so that for each a 2 B, the set L Xað Þ is defined by / z; að Þ:
We recall the following facts about definability in algebraically closed fields.

Fact 6.3. [8, Theorem A.7] Relative to the theory of algebraically closed fields (ACF), we have the
the following statements.

(1) The Zariski closure is definable in families.
(2) The dimension and degree of the Zariski closure of a set are definable in families.
(3) Irreducibility of the Zariski closure is a definable property.
(4) If the Zariski closure is an irreducible hypersurface given by the vanishing of some nonzero

polynomial, then the degree of that polynomial in any particular variable is definable
in families.

(5) [8, Lemma 3.5]The set of irreducible varieties in An of dimension d and degree g is a defin-
able family.

We also need to generalize results on prolongation admissible varieties [8] to the partial differ-
ential case. Notations sl,rl,Bl should be specified beforehand. For an algebraic variety X ¼
V f1, :::, foð Þ � An defined by polynomials fi 2 F½y1, :::, yn�, sl Xð Þ � A

n lþm
m

� �
denotes the algebraic

variety defined by h fið Þð Þh2H�l
considered as algebraic polynomials in F½H�l Yð Þ� with Y ¼

y1, :::, ynð Þ: Thus, slA
n ¼ A

n lþm
m

� �
with coordinates corresponding to variables

Y,H1 Yð Þ, :::,Hl Yð Þ� 	
: Given a point �a 2 An,rl �að Þ denotes the point �a,H1 �að Þ, :::,Hl �að Þð Þ 2

slA
n, and for a D-variety W � An, Bl Wð Þ is the Zariski closure of the set frl �að Þ : �a 2 Wg in

slA
n: In other words, Bl Wð Þ ¼ V I Wð Þ \ F½H�l Yð Þ�� 	 � slA

n:

Definition 6.4. Let V � ssA
n be an algebraic variety over F : We say V is prolongation admis-

sible if Bs V I Vð Þð Þð Þ ¼ V:

Irreducible prolongation admissible varieties are of special interest in this article. The fol-
lowing lemma shows that algebraic characteristic sets of irreducible prolongation admissible
varieties have a special form, which generalizes [8, Lemma 2.13] to the partial differen-
tial case.

Lemma 6.5. Let V � ssA
n be an irreducible prolongation admissible variety over F and A a char-

acteristic set of V w.r.t. an ordering induced by some orderly ranking R on H Yð Þ. For each
k ¼ 1, :::, n, let

Ek ¼ fhyk 2 ld Að Þ : 8 syk 2 ld Að Þ� sjhð Þ� 	) s ykð Þ ¼ h ykð Þg:
If Ek 6¼ ;, then for each syk 2 H�s ykð Þ which is a proper derivative of some element of Ek, there

exists As, k 2 A such that ld As, kð Þ ¼ syk and As, k is linear in syk:

Proof. Follow the proof of [8, Lemma 2.13]. Let W ¼ V I Vð Þð Þ � An and W ¼ [l
i¼1Wi be

the irreducible decomposition of W. Since V is prolongation admissible, Bs Wð Þ ¼ V: So
there exists some i0 such that Bs Wi0ð Þ ¼ V: Suppose B is a D-characteristic set of Wi0 w.r.t. R:

3364 W. LI



Let C ¼ H Bð Þ \ F½H�s Yð Þ�, C is a characteristic set of Bs Wi0ð Þ ¼ V: Since C and A have the
same rank, A should satisfy the desired property. w

Example 6.6. Letm¼ 2, n¼ 1 and s¼ 1. Let V1 ¼ V y, d1y, d2yð Þ � s1A
1 and V2 ¼ V y, d2yð Þ � s1A

1:

Then V I Við Þð Þ ¼ f0g � A1 for i¼ 1, 2. So V1 is prolongation admissible while V2 is not prolongation
admissible, for B1 V I V2ð Þð Þð Þ ¼ f 0, 0, 0ð ÞgˆV2 ¼ f 0, c, 0ð Þ : c 2 Eg: This fact can also be obtained by
Lemma 6.5 for E ¼ fyg and there does not exist such an Ad1 linear in d1y in a characteristic set of V2.

We now show that prolongation admissibility is a definable property similarly as in the ordin-
ary differential case [8, Lemma 2.28].

Lemma 6.7. Let Vbð Þb2B be a definable family of algebraic varieties in ssA
n. Then fb 2 B :

Vb is prolongation admissibleg is a definable set.

Proof. Follow the proof of [8, Lemma 2.28]. Suppose each Vb � ssA
n in the definable family

Vbð Þb2B is defined by fi b, hyj
� 	

h2H�s , 1�j�n

� �
¼ 0, i ¼ 1, :::,L: By abuse of notation, let Bs Vbð Þ be

the Zariski closure of frs �að Þ : rs �að Þ 2 Vbg in ssA
n: Then deg Bs Vbð Þð Þ has a uniform bound T in

terms of the degree bound D of the fi, m, n, L and s. Indeed, let zj, h j ¼ 1, :::, n; h 2 H�sð Þ be
new D-variables and replace h xjð Þ by zj, h in each fi to get a new differential polynomial gi.
Consider the new differential system S :¼ fg1, :::, gL, dk zj, hð Þ � zj, dkh : k ¼ 1, :::,m; h 2 H�s�1g:
Regard S as a pure algebraic polynomial system in zjh and dk zjhð Þ temporarily, and let U be the

Zariski closed set defined by S in s1 ssA
nð Þ: Let Z ¼ f�c 2 ssA

n : r �cð Þ 2 Ug: Clearly, Z ¼ frs �að Þ :
rs �að Þ 2 Vbg: By [7, Corollary 4.5], the degree of the Zariski closure of Z, namely Bs Vbð Þ, is
bounded by some number D1 which depend on D, m, n, L and s.

By [11, Proposition 3], an irreducible algebraic variety V � ssA
n can be defined by

n
sþm
m

� �
þ 1 polynomials of degree bounded by the degree of V. Since the degree of an alge-

braic variety is the sum of the degrees of its components, combined with Kronecker’s theorem

[25, p.146], Bs Vbð Þ could be defined by at most n
sþm
m

� �
þ 1 polynomials of degree bounded

by D1. Hence, Bs Vbð Þð Þb2B is a definable family. Since Vb is prolongation admissible if and only if
Vb ¼ Bs Vbð Þ, which implies that fb : Vb is prolongation admissibleg is a definable set.

Definition 6.8. Let V � slA
n be an irreducible prolongation admissible variety and W ¼ V I Vð Þð Þ

be the D-variety defined by defining equations of V. A component W1 of W is called a dominant
component if Bs W1ð Þ ¼ V:

The following result shows how to get the desired unique irreducible D-varieties from irredu-
cible prolongation admissible varieties, where additional conditions are required to generalizes [8,
Lemma 2.15] to the partial differential case.

Lemma 6.9. Let V � ss A
nð Þ be an irreducible prolongation admissible variety of dimension

dþ 1ð Þ sþm
m

� �
� 1 and in the case s> 0, suppose additionally ps, 0 Vð Þ is of dimension dþ 1.

Then W ¼ V I Vð Þð Þ has a unique dominant component W1 and xW1 tð Þ ¼
dþð 1Þ t þm

m

� �
� t þm� s

m

� �
:

Proof. Two cases should be considered according to whether s¼ 0 or not.
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Case 1) s¼ 0. In this case, P ¼ I Vð Þ is a prime ideal of F½y1, :::, yn� of dimension d. By [16,
p.200, Proposition 10], fPg is a prime D-ideal of Ffy1, :::, yng with Kolchin polynomial

xfPg tð Þ ¼ d
t þm
m

� �
: Thus, W ¼ V Pð Þ itself is its dominant component and satisfies the

desired property.
Case 2) s> 0. Fix an orderly ranking R on FfYg and denote Rl to be the ordering on

H�l Yð Þ induced by R: Since ps, 0 Vð Þ is of dimension dþ 1, a characteristic set of the Zariski clos-
ure of ps, 0 Vð Þ w.r.t. R0 is of the form B1, :::,Bn�d�1 where ld Bið Þ ¼ yri for each i. Since V is irre-
ducible and prolongation admissible, by Lemma 6.5,
S ¼ fh yrið Þ : ord hð Þ � s, i ¼ 1, :::, n� d � 1g is a subset of the leaders of a characteristic set A
of V w.r.t. Rs: Since the dimension of V is d þ 1ð Þ sþm

m

� �
� 1, ld Að Þ ¼ S [ fs yrn�dð Þg for some

s 2 Hs and rn�d 2 f1, :::, ngnfr1, :::, rn�d�1g: So there exists Bn�d 2 A s.t. ld Bn�dð Þ ¼ s yrn�dð Þ:
Let B ¼< B1, :::,Bn�d > : Clearly, B is an irreducible coherent autoreduced set of

Ffy1, :::, yng, by [16, Lemma 2, p.167], B is a D-characteristic set of a prime D-ideal P �
Ffy1, :::, yng w.r.t. R: Clearly, P ¼ sat Bð Þ and its Kolchin polynomial xP tð Þ ¼

dþ 1ð Þ t þm
m

� �
� t þm� s

m

� �
: We now show that V Pð Þ � W and Bs V Pð Þð Þ ¼ V: Since V is

an irreducible prolongation admissible variety, there exists a point �a 2 An such that rs �að Þ is a
generic point of V. So as D-polynomials, Bi vanishes at �a while HB does not. Thus, P vanishes at
�a, and consequently, rs �að Þ 2 Bs V Pð Þð Þ: So V � Bs V Pð Þð Þ: Since both V and Bs V Pð Þð Þ are irre-
ducible varieties of the same dimension, Bs V Pð Þð Þ ¼ V: So, I Vð Þ ¼ P \ F½H�s Yð Þ� � P, as a
consequence, V Pð Þ � V I Vð Þð Þ ¼ W:

Suppose W0 is a dominant component of W. Given a generic point n 2 W0,rs nð Þ is a generic
point of V. So, B vanishes at n and HB does not vanish at n. Thus, V Pð Þ vanishes at n, i.e.,
W0 � V Pð Þ: So W0 ¼ V Pð Þ: Thus, V Pð Þ is the unique dominant component W and

xV Pð Þ tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
: w

6.2. Proof of the main theorem

Before proving the main theorem, we need to bound the degree of Bs Vð Þ similar as in [8,
Proposition 4.3] to get the candidates of the algebraic Chow varieties which can be used to para-
mertrize D-varieties in G n, d, s, rð Þ Fð Þ:
Lemma 6.10. Let V � An be an irreducible D-variety in G n, d, s, rð Þ Fð Þ. Then Bs Vð Þ is an irreducible

variety in ss A
nð Þ over F of dimension d þ 1ð Þ sþm

m

� �
� 1 and the degree of Bs Vð Þ satisfies

r

,
sþm
m

� �
� deg Bs Vð Þð Þ � sþ 1ð Þ d þ 1ð Þr� 
n sþ1ð Þ sþm

m

� �
þ1
:

Proof. It is clear that Bs Vð Þ is an irreducible variety in ss A
nð Þ of dimension dþ 1ð Þ sþm

m

� �
� 1:

For the degree bound, we will first show that deg Bs Vð Þð Þ � ½ sþ 1ð Þ d þ 1ð Þr�n sþ1ð Þ sþm
m

� �
þ1
: Since

V 2 G n, d, s, rð Þ Fð Þ, the D-Chow form F u0, :::,udð Þ of V exists, and ord Fð Þ ¼ s, deg F, u½s�0
� �

¼ r: Let
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J ¼ ½I Vð Þ,L0, :::,Ld� � Ffu0, :::,ud,Yg: Let R be a ranking on Ffu0, :::, ud,Yg satisfying 1)
h uijð Þ < s ykð Þ for any h and s, and 2) R restricted to u0, :::,ud is an orderly ranking with u00

greater than any other uij. Let Rs be the ordering on u½2s�0 , :::, u½2s�d and Y½s� induced by R: Suppose

ld Fð Þ ¼ h u00ð Þ for some h 2 Hs and SF ¼ @F
@h u00ð Þ :

By Theorem 5.11, for j ¼ 1, :::, n, the polynomial Gj ¼ SFyj � @F
@h u0jð Þ 2 J and note that

deg Gjð Þ ¼ d þ 1ð Þr: We construct polynomials Gj, h 2 J for h 2 H�s with rk Gj, hð Þ ¼ h yjð Þ and

deg Gj, hð Þ � ord hð Þ þ 1ð Þ d þ 1ð Þr inductively on the order of h. Set Gj, 1 ¼ Gj: Let Gj, di ¼
rem di Gj, 1ð Þ,Gj, 1

� 	
be the algebraic remainder of di Gj, 1ð Þ with respect to Gj, 1: Clearly, Gj, di 2 J

and is of the form Gj, di ¼ S2Fdi yjð Þ þ Tj, di for some Tj, di 2 F½u½sþ1��: An easy calculation shows

that deg Gj, dið Þ � 2 d þ 1ð Þr: Suppose the desired Gj, s ¼ Sord sð Þþ1
F s yjð Þ þ Tj, s s 2 H�kð Þ have been

constructed, we now define Gj, s s 2 Hkþ1ð Þ: For s 2 Hkþ1, let Gj, s be the algebraic remainder of

s Gjð Þ with respect to < Gj, s : s 2 H�k; k � s > : Then Gj, s 2 J and Gj, s ¼ Skþ2
F s yjð Þ þ Tj, s,

where Tj, s 2 F½u½kþ1þs�� satisfies deg Tj, s
� 	 � kþ 2ð Þ d þ 1ð Þr: In this way, the polynomials Gj, s 2

J s 2 H�sð Þ are constructed.

Clearly, < F½s�,Gj, s : s 2 H�s > is an irreducible ascending chain under Rs, so J s ¼
F½s�, Gj, sð Þs2H�s

� �
: S1F is a prime ideal in F½Y½s�,u½2s�0 , :::, u½2s�d �, which is a component of

V F½s�, Gj, sð Þs2H�s

� �
: By Be�zout Theorem [11, Theorem 1], we have

deg J sð Þ � d þ 1ð Þr½ �
sþm

m

 !


Yn
j¼1

Y
h2H�s

deg Gjhð Þ

� d þ 1ð Þr½ �
sþm

m

 !


Yn
j¼1

Ys
l¼0

l þ 1ð Þ d þ 1ð Þr½ �
sþm

m

 !

< sþ 1ð Þ d þ 1ð Þr� 
n sþ1ð Þ lþm

m

 !
þ1
:

Let J 0
s ¼ J s \ F½Y½s��: We claim that J 0

s ¼ I Vð Þ \ F½Y½s��: Indeed, on the one hand, J 0
s �

J \ F½Y½s�� ¼ I Vð Þ \ F½Y½s��; on the other hand, for any polynomial H 2 I Vð Þ \ F½Y½s��, the
algebraic remainder of H with respect to hGj, s : s 2 H�si is a polynomial H1 2 J \
Ffu0, :::,udg ¼ sat Fð Þ with ord H1ð Þ � 2s: Thus, H1 2 asat F½s�ð Þ and H 2 J s: So by [11, Lemma

2] or [19, Theorem 2.1], deg I Vð Þ \ F½Y½s��
� �

¼ deg J 0
s

� 	 � deg J sð Þ:

Now, we show deg I Vð Þ \ F½Y½s��
� �

� r=
sþm
m

� �
: By item 3) of Theorem 5.11, ½I \ F½Y½s��,

L
½s�
0 , :::,L

½s�
d � \ F½u½s�0 , :::, u½s�d � ¼ Fð Þ: Similar to the procedures in [21, Theorem 6.25], the D-Chow

form of I Vð Þ could be obtained from the algebraic Chow form of I Vð Þ \ F½Y½s�� by algebraic

specializations. So d þ 1ð Þr � d þ 1ð Þ sþm
m

� �
deg I Vð Þ \ F½Y½s��
� �

and deg Bs Vð Þð Þ ¼ deg

I Vð Þ \ F½Y½s��
� �

� r=
sþm
m

� �
: w

Remark 6.11. In the ordinary differential case [8, Proposition 4.3], the construction of Gj, k is

much easier and each Gj, k k � sð Þ could be chosen from F½u½s�0 , :::, u½s�d ,Y½s��: However, due to the
more complicated structure of partial differential characteristic sets, the method could not be
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adapted here because there may exist s 2 H�s such that any derivative of s u00ð Þ does not appear

in F. Also, here Gj, h 2 F½u½2s�0 , :::,u½2s�d ,Y½s�� for h 2 H�s:

Now, we are ready to prove that D-Chow varieties of An of index (d, s, r) exist for all n, d, s, r:
As mentioned in the beginning of this section, we will use certain algebraic Chow varieties to
parametrize D-varieties in G n, d, s, rð Þ: For the sake of later use, we shall briefly recall the concept of
algebraic Chow varieties here.

For an irreducible variety V � Pn over F of dimension d, the algebraic Chow form of V is the
polynomial H u0, :::,udð Þ whose vanishing gives a necessary and sufficient condition for V and
dþ 1 hyperplanes ui0y0 þ

Pn
j¼1 uijyj ¼ 0 having a nonempty intersection in Pn: Here ui ¼

ui0, :::, uinð Þ: For a d-cycle W in Pn,W ¼Pl
i¼1 tiWi with ti 2 N and dim Wið Þ ¼ d, the Chow

form of W is the product of Chow forms of Wi with multiplicity ti. Its degree in each ui is called
the degree of W and its coefficient vector, regarded as a point in a higher dimensional projective
space, is defined to be the Chow coordinates of W. The set of Chow coordinates of all d-cycles in
Pn of degree e is a projective variety in the Chow coordinate space [3, 13], called the Chow var-
iety (of index (d, e)). Moreover, by [13, p. 57, Theorem II] and [3, p. 697–698], the defining
equations of Chow varieties are homogenous polynomial equations over Q: However, the affine
Chow variety of all d-cycles in An of degree e is not Zariski closed in the Chow coordinate space,
but it is always a constructible set [8, Proposition 3.4], denoted by Chown d, eð Þ: Each point of
Chown d, eð Þ Fð Þ represents a d-cycle in An of degree e over F : All the Chow varieties we use
here are affine ones.

To show the existence of D-Chow varieties of An of index (d, s, r), two cases should be consid-
ered separately. In the case s¼ 0, the D-Chow form of each V 2 G n, d, 0, rð Þ is just equal to the

Chow form of B0 Vð Þ � An, so the set of D-Chow coordinates of D-varieties in G n, d, 0, rð Þ is just
the same as the set of Chow coordinates of all irreducible varieties in An of dimension d and
degree r. By item 5) of Fact 6.3, the latter set is a definable subset of Chown d, rð Þ, so G n, d, 0, rð Þ is
a constructible set. Below, we focus on the case s> 0.

Let Chown sþm
m

� � d þ 1ð Þ sþm
m

� �� 1, e
� �

be the affine Chow variety of all cycles in ss A
nð Þ of

dimension d þ 1ð Þ sþm
m

� �� 1 and degree e. Consider the disjoint union of algebraic constructible

sets

C ¼ [
D1�e�D2

Chown sþm
m

� � d þ 1ð Þ sþm
m

� �
� 1, e

� �

where D1, D2 are the lower and upper bounds given in Lemma 6.10. So each point a 2 C repre-

sents a ½ dþ 1ð Þ sþm
m

� �
� 1�-cycle in ssA

n: To represent an irreducible D-variety V of the

desired Kolchin polynomial and D-degree by a point in C, we only need to consider those irredu-
cible varieties with Chow coordinates in C:

Let C1 be the subset consisting of all points a 2 C such that a is the Chow coordinate of an
irreducible variety W which is prolongation admissible and additionally satisfies the follow-
ing conditions:

1) ps, 0 Wð Þ is of dimension dþ 1;
2) The unique dominant component of the D-variety defined by equations of W is of

D-degree g.

Theorem 6.12. The set C1 is a D-constructible set and the map which associates an irreducible
D-variety V � An in G n, d, s, rð Þ with the Chow coordinate of the irreducible variety Bs Vð Þ � sl A

nð Þ
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identifies G n, d, s, rð Þ with C1. In particular, the D-Chow variety of all irreducible D-varieties of

Kolchin polynomial d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
and D-degree r exists.

Proof. First, we show C1 is a D-constructible set. From the definition of Chow coordinates,

we know each Chown sþm
m

� � d þ 1ð Þ sþm
m

� �
� 1, e

� �
actually represents a definable family Se :¼

Fcð Þc2Chow
n

sþm
m

� � d þ 1ð Þ sþm
m

� �
� 1, e

� �
of homogenous polynomials which are Chow forms of

algebraic cycles in ssA
n of dimension d þ 1ð Þ sþm

m

� �
� 1 and degree e. The algebraic cycle

whose Chow coordinate is c is irreducible if and only if its Chow form Fc is irreducible. Since

irreducibility is a definable property, the set C0 ¼ fc 2 Chown sþm
m

� � d þ 1ð Þ sþm
m

� �
� 1, e

� �
:

Fc is irreducibleg is a definable set. Take an arbitrary c 2 C0 and the corresponding polynomial
Fc 2 Se for an example. Let Vc be the corresponding irreducible variety with Chow coordinate c.
By item 5) of Fact 6.3, Vcð Þc2C0 is a definable family (For details, please refer to the proof of [8,

Lemma 3.5]). And by Lemma 6.7 and Fact 6.3, C2 ¼ fc 2 C0 :
Vc is prolongation admissible and dim ps, 0 Vcð Þð Þ ¼ d þ 1g is a definable set. Then by Lemma
6.9, for each c 2 C2, the D-variety corresponding to Vc has a unique dominant component Wc

and the Kolchin polynomial of Wc is d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
:

Since the Kolchin polynomial of Wc is d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
, the D-Chow form

of Wc exists. Let U be the algebraic variety in ssA
n � P

nþ1ð Þ sþm
m

� �
�1

 !dþ1

defined by the

defining formulae of Vc and h Lið Þ ¼ 0 for h 2 H�s and i ¼ 0, :::, d with each h Lið Þ ¼ h ui0ð Þ þ
Pn

k¼1

P
sjh

h
s

� �
h
s uikð Þs ykð Þ regarded as a polynomial in variables H�s ykð Þ and H�s uikð Þ: Since

Bs Wcð Þ ¼ Vc, by item 3) of Theorem 5.11, the Zariski closure of the image of U under the fol-
lowing projection map

p : ssA
n � P

nþ1ð Þ sþm
m

� �
�1

 !dþ1

!
P

nþ1ð Þ sþm
m

� �
�1

 !dþ1

is an irreducible variety of codimension 1, and the defining polynomial F of p Uð Þ is the D-Chow
form of Wc. By item 4) of Fact 6.3, the total degree of F is definable in families; this quantity is
just equal to d þ 1ð Þ times the D-degree of Wc. So the D-degree of Wc is definable in families.
Hence, C1 is a definable set, and also a D-constructible set due to the fact that the theory DCF0,m
eliminates quantifiers [22, Theorem 3.1.7].

By Lemma 6.9 and its proof, each irreducible variety V corresponding to a point of C1 deter-
mines an irreducible D-variety W 2 G n, d, s, rð Þ, where W is the unique dominant component of
the D-variety corresponding to the prolongation admissible variety V. And on the other hand,
each W 2 G n, d, s, rð Þ determines the corresponding algebraic irreducible variety Bs Wð Þ, whose
Chow coordinate is a point of C1 guaranteed by Lemma 6.10. So we have established a natural
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one-to-one correspondence between G n, d, s, rð Þ and C1: Thus, G n, d, s, rð Þ is represented by the
D-constructible set C1: w

7. Conclusion

In this article, a quasi-generic partial differential intersection theorem is first given. Namely, the
intersection of an irreducible partial differential variety V with a quasi-generic differential hyper-
surface of order s is shown to be an irreducible differential variety with Kolchin polynomial

xV tð Þ � t � sþm
m

� �
: Then partial differential Chow forms are defined for irreducible partial

differential varieties of Kolchin polynomial d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
and basic proper-

ties similar to their algebraic and ordinary differential counterparts are presented. Finally, differ-
ential Chow coordinate representations are defined for such partial differential varieties, and the
set of all irreducible partial differential varieties of fixed Kolchin polynomial and differential
degree is shown to have a structure of differentially constructible set.

The above results have generalized the theory of differential Chow forms and Chow varieties
obtained for the ordinary differential case [8, 9] to their partial differential analogs. However, the
theory of partial differential Chow forms and partial differential Chow varieties is far from well-
developed and there are several unsolved problems. As stated in Conjecture 4.6, we conjecture

that xV tð Þ ¼ d þ 1ð Þ t þm
m

� �
� t þm� s

m

� �
for some d, s 2 N is not only a sufficient condi-

tion, but also a necessary condition such that the partial differential Chow form of V exists.
Another problem is how to represent general (irreducible) partial differential varieties by coordi-
nates and further how to provide a set of partial differential varieties of fixed characteristics with
a structure of partial differential constructible set.
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