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1. Introduction

In their paper on Chow forms [3], Chow and van der Waerden described the motivation in
these words:
It is principally important to represent geometric objects by coordinates. Once this has been done for a
specific kind of objects G, then it makes sense to speak of an algebraic manifold or an algebraic system of
objects G, and to apply the whole theory of algebraic manifolds. It is desirable to provide the set of objects

G with the structure of an algebraic variety (eventually, after a certain compactification), thus to
characterise G by algebraic equations in the coordinates.

Through the theory of Chow forms, they managed to represent projective algebraic varieties or
algebraic cycles by Chow coordinates; and Chow further proved that the set of all algebraic cycles
of fixed dimension and degree in the Chow coordinate space is a projective variety, called the
Chow variety.

Chow forms and Chow varieties are basic concepts of algebraic geometry [3, 13]. They play an
important role in both theoretical and computational aspects of algebraic geometry, and have
fruitful applications in elimination theory, transcendental number theory and algebraic computa-
tional complexity theory [4, 5, 10, 14, 23]. For instance, the Chow form was used by Brownawell
to achieve a major breakthrough in computational algebraic geometry by proving an effective
version of the Hilbert’s Nullstellensatz with optimal bounds [1].
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Differential algebra, founded by Ritt and Kolchin, is a branch of mathematics analogous to
algebraic geometry. Just as the aim of algebraic geometry is to study solution sets of polynomial
equations using algebraic varieties, the aim of differential algebra is to study solution sets of alge-
braic ordinary or partial differential equations using differential varieties [16, 25]. As algebraic
equations are special cases of algebraic differential equations, algebraic geometry may be viewed
as a special case of differential algebra [2], and most of the basic notions of differential algebra
are based on those of algebraic geometry. Given the importance of the Chow form in algebraic
geometry, it is worthwhile to develop a theory of differential Chow forms and differential Chow
varieties, and further to see whether they can play similar roles as the algebraic counterparts, for
example, whether the bound of the effective differential Nullstellensatz could be improved by
applying differential Chow forms.

A systematic development of such a theory was begun by Gao, Li, and Yuan [9, 20], which
established a theory of differential Chow forms for ordinary differential varieties in both affine
and projective spaces. In particular, differential Chow coordinates and two new invariants of
ordinary differential varieties (cycles) were introduced. Take an irreducible differential variety V
of differential dimension d for an example. Roughly speaking, the differential Chow form of V is
a single differential polynomial F whose general component gives a necessary and sufficient con-
dition when the given d + 1 differential hyperplanes and V have a common point; and V is deter-
mined uniquely by its differential Chow form F. The coefficient vector of F is called the
differential Chow coordinates of V. If the set of all differential cycles of fixed index (dimension,
order, and the two new invariants) is a differentially constructible set in the differential Chow
coordinate space, then we say the differential Chow variety of this index exists. The existence of
ordinary differential Chow varieties was first proved in some special cases by a constructive
method in Gao et al. [9], and was finally proved in general cases by Freitag, Li and Scanlon with
a model-theoretical proof [8].

However, the theory of Chow forms has not yet been developed for partial differential vari-
eties. Unlike the ordinary differential case, an insuperable obstacle is encountered in the course of
defining partial differential Chow forms: due to the more complicated structure of partial differ-
ential characteristic sets, it is impossible to define differential Chow forms for most of irreducible
partial differential varieties (see Example 4.2). That is, we may fail to find a single differential
polynomial that can represent uniquely the corresponding partial differential variety as in the
algebraic and ordinary differential cases. This leads to the following natural questions: under
what conditions can we define partial differential Chow forms? The set of which kinds of partial
differential varieties could be provided with a structure of partial differential variety (perhaps
under Kolchin closure)? This is what we will deal with in this article. Specifically, we will give
conditions under which we can define partial differential Chow forms; under these conditions, we
will prove that partial differential Chow forms have properties similar to those of their ordinary
differential counterparts. Finally, we will show that partial differential Chow varieties of a certain
type exist.

To define partial differential Chow form, we need to establish a generic intersection theorem
for partial differential varieties. This is also an interesting result in its own right. The intersection
theorem in algebraic geometry says that every component of the intersection of two irreducible
varieties of dimension r and s in A" has dimension at least r + s — n. However, as pointed out by
Ritt, this proposition fails for differential algebraic varieties [25, p.133]. Recently, Gao, Li, and
Yuan proved a generic intersection theorem for ordinary differential varieties and generic ordin-
ary differential hypersurfaces [9]. Freitag then generalized this result to the partial differential
case using more geometric and model theoretical language [6]. In this article, we prove the inter-
section theorem of partial differential algebraic varieties with quasi-generic partial differential
hypersurfaces (to be defined in Definition 3.1) using purely differential algebraic arguments. In
particular, when the quasi-generic differential hypersurface is a generic one, the proof gives more
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elementary and simplified proofs for generic intersection theorems either in the ordinary differen-
tial case [9, Theorem 3.6] or in the partial differential case [6, Theorem 3.7].

This article is organized as follows. In Section 2, basic notions and preliminary results are pre-
sented. In Section 3, an intersection theory for quasi-generic partial differential polynomials is
given. In Section 4, the definition of the partial differential Chow form and a sufficient condition
for its existence are introduced. Basic properties of the partial differential Chow form are
explored in Section 5. In Section 6, we show partial differential Chow varieties of a certain
type exist.

2. Preliminaries

In this section, some basic notation and preliminary results in differential algebra will be given.
For more details about differential algebra, please refer to [2, 16, 26].

Let F be a differential field of characteristic 0 endowed with a finite set of derivations A =
{01, ...,0m}, and let € be a fixed universal differential extension field of F. If m=1, F and £ are
called ordinary differential fields; and if m>1, they are called partial differential fields.
Throughout this article, unless otherwise indicated, all the differential fields (rings) we consider
are partial differential fields (rings), and for simplicity, we shall use the prefix “A-” as a synonym
of “partial differential” or “partial differentially” when the set of derivation operators in problem
are exactly the set A = {01, ...,0, }.

Let ® be the free commutative semigroup (written multiplicatively) generated by 6y, ..., 0p.
Every element 0 € O is called a derivative operator and can be expressed uniquely in the form of
a product ]I, 67" with e; € N. The order of 0 is defined as ord(6) = Y /", ¢;. The identity oper-
ator is of order 0. For ease of notation, we use ®, to denote the set of all derivative operators of
order equal to s, and @, denotes the set of all derivative operators of order not greater than s.
For an element u € £, denote ul = {0(u) : 0 € O}.

A subset £ of a A-extension field G of F is said to be A-dependent over F if the set
(000) pcg, 45 is algebraically dependent over F, and is said to be A-independent over F, or a fam-
ily of A-F-indeterminates in the contrary case. In the case X consists of only one element o, we
say that o is A-algebraic or A-transcendental over F respectively. The A-transcendence degree of
G over F, denoted by A-tr.deg G/F, is the cardinality of any maximal subset of G which are
A-independent over F. And the transcendence degree of G over F is denoted by tr.deg G/F.

Let F{Y} = F[O(Y)] be the A-polynomial ring over F in the A-indeterminates Y =
{y1>.->¥n}. Each element in 6(y;) € O(Y) is called a derivative, and the order of 6(y;) is equal to
ord(0). For a A-polynomial f in F{Y}, the order of f is defined as the maximum of the orders
of all derivatives which appear effectively in f, denoted by ord(f). A A-ideal in F{Y} is an ideal
which is closed under A. A prime (resp. radical) A-ideal is a A-ideal which is prime (resp. rad-
ical) as an ordinary algebraic ideal. Given S C F{Y}, we use (S)zy, and [S]z(y, to denote the
algebraic ideal and the A-ideal in F{Y} generated by S respectively.

By a A-affine space A", we mean the set £”. A A-variety over F is V(£)={n € &": f(n) =
0,Vf € X} for some set X C F{Y}. The A-varieties in A" defined over F are the closed sets in a
topology called the Kolchin topology. Given a A-variety V defined over F, we denote I(V) to be
the set of all A-polynomials in F{Y} that vanish at every point of V. And we have a one-to-one
correspondence between A-varieties (resp. irreducible A-varieties) and radical A-ideals (resp.
prime A-ideal), that is, for any A-variety V over F,V(I(V)) = V and for any radical A-ideal P
in F{Y}, I(V(P)) = P. For a prime A-ideal P, a point y € V(P) is called a generic point of P
(or V(P)) if for any f € F{Y},f() =0 <= f € P. A A-ideal has a generic point if and only if
it is prime. In this article, we sometimes use the algebraic version of ideal-variety correspondence,
to distinguish from the notation in the differential case, for an algebraic ideal P C F[Y], we use
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V(P) to denote the algebraic variety in A" defined by P; and for an algebraic variety V C A",
we use Z(V) to denote the radical ideal in F[Y] corresponding to V.

A homomorphism ¢ from a differential ring (R,A) to a differential ring (S,A") with A" =
{0,,...,08,,} is a differential homomorphism if ¢ o ; = ;0 ¢ for each i. Suppose A’ = A and R,
is a common A-subring of R and S, ¢ is said to be a A-Ry-homomorphism if ¢ leaves every
element of Ry invariant. If, in addition R is a domain and & is a A-field, ¢ is called a A-special-
ization of R into S. For A-specializations, we have the following lemma which generalizes the
similar results both in the ordinary differential case [9, Theorem 2.16] and in the algebraic case
[12, p. 168-169] and [9, Lemma 2.13].

Lemma 2.1. Let P, € F{U,Y} (i =1,...,£) be A-polynomials in the independent A-indeterminates
U = (u1,....u,) and Y. Let 1 be an n-tuple taken from some extension field of F free from F(U)."
If P(U,n) (i=1,...L) are A-dependent over F(U), then for any A-specialization U to U € F',
P(U,n) (i=1,...£) are A-dependent over F.

Proof. Assume k = max;ord(P;). Since P;(U,n) (i=1,...,£) are A-dependent over F(U), there
exists s € N such that the (P;(U, 11))[5] are algebraically dependent over F(UF™). When U
A-specializes to U € F7, U algebraically specializes to o, By [9, Lemma 2.13], (P;(U, n))[s]
are algebraically dependent over F. Thus, P;(U,%) (i=1,...,£) are A-dependent over F. O

2.1. Differential characteristic sets

A ranking of F{Y} is a total ordering of the set of derivatives @(Y) = {0y; : j=1,...,n;0 € O}
that satisfies (for any u,v € ®(Y) and J; € A) the two conditions: 1) dyu > u and 2) u>v =
Ok > Oxv. Two important kinds of rankings are often used:

1)  Elimination ranking: y; > y; = 01y; > 0,y; for any 0y, 0, € ©.
2)  Orderly ranking: k > | = for any 0, € Oy, 0, € ©; and i, j, O1y; > 0,y;.

Let f be a A-polynomial in F{Y}\F and £ a ranking endowed on it. The greatest derivative
Oy; w.r.t. # which appears effectively in f is called the leader of f, denoted by Id(f). Let d be the

degree of f in 1d(f). The rank of f is 1d(f)?, denoted by rk(f). The coefficient of rk(f) in f is
called the initial of f and denoted by Ir. The partial derivative of f w.r.t. 1d(f) is called the sepa-
rant of f, denoted by S;. For any two A-polynomials f, g in F{Y}\F, fis said to be of lower
rank than g if either 1d(f) < 1d(g) or 1d(f) = 1d(g) and deg(f,1d(f)) < deg(g,1d(f)). It is useful to
extend the above notion of comparative rank to the whole F{Y} by the following convention:
Every element of F has lower rank than every element of F{Y}\F and two elements of F have
the same rank.

Let f and g be two A-polynomials and rk(f) = (Oyj)d. g is said to be partially reduced w.r.t. f if
no proper derivatives of u appear in g. g is said to be reduced w.r.t. f if g is partially reduced
w.r.t. fand deg(g,0y;) < d. A set of A-polynomials A C F{Y} is said to be an autoreduced set if
each A-polynomial of A is reduced w.r.t. any other element of 4. Every autoreduced set is finite.

Let A be an autoreduced set. We denote H 4 to be the set of all the initials and separants of A
and H°% to be the minimal multiplicative set containing Hy. The A-saturation ideal of A is
defined to be

'By saying # free from F(U), we mean that U is a set of A-F (i7)-indeterminates.
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sat(A) = [A] : HY = {p € F{Y}|3h € HY, s.t. hp € [A]}.

The algebraic saturation ideal of A is denoted by asat(A) = (A) : HY.

Let A=< A, A, ...,A; > and B =< By, B,...,B; > be two autoreduced sets with the A; B,
arranged in increasing ordering. A is said to be of lower rank than B, if either 1) there is some k
(< min{s, }) such that for each i <k, A; has the same rank as B;, and Ax < By or 2) s>1 and for
each i € {1,2,...,1}, A, has the same rank as B;. If s=1 and A; has the same rank as B; for each i,
we say A and B have the same rank. Any sequence of autoreduced sets steadily decreasing in
ordering A; > A, > --- Ax > - - - is necessarily finite.

Let A =< Ay, A,,...,A; > be an autoreduced set with S; and I; as the separant and the initial
of A;. Given a A-polynomial F, there exists an algorithm, called Ritt’s algorithm of reduction,
which reduces F w.r.t. A to a A-polynomial R that is reduced w.r.t. A, satisfying the relation

t
H S?’If" -F =R mod [A],
i—1

for di,e; € N (i =1,2,...,t). We call R the remainder of F w.r.t. A. We will need the following
result in Section 3.

Proposition 2.2. [16, p.80, Proposition 2] Let A be an autoreduced set of F{Y}. If
Fy, ... Fy € F{Y}, then there exist A-polynomials E,, ..., E; € F{Y}, reduced with respect to A and
of rank no higher than the highest of the ranks of Fy,...,F), and there exist ja,ka € N (A € A),
such that

[[Sit - Fi=E,mod [A] (1<j<1).
AeA
Let J be a A-ideal in F{Y}. An autoreduced set C C J is said to be a characteristic set of 7,

if J does not contain any nonzero element reduced w.r.t. C. All the characteristic sets of J have
the same and minimal rank among all autoreduced sets contained in J. If J is prime, C reduces
to zero only the elements of 7 and we have J = sat(C). An autoreduced set C is called coherent
if whenever A,A’ € C with 1d(A) = 0,(y;) and 1d(A’) = 0,(y;) for some y;, the remainder of
SAr%(A) - SA%(A') w.rt. C is zero, where 0 = lem(0,,0,). (Here, if 0; = [[1, 67" (j=1,2) and
max(ay;, az;) = ¢, then 0 =lem(0y,0,) = [[I; 67.) The following result gives a criterion for an
autoreduced set to be a characteristic set of a prime A-ideal.
Proposition 2.3. [16, p.167, Lemma 2] If A is a characteristic set of a prime A-ideal P C F{Y},
then P = sat(A), A is coherent, and asat(A) is a prime ideal not containing a nonzero element
reduced w.r.t. A. Conversely, if A is a coherent autoreduced set of F{Y} such that asat(A) is a
prime ideal not containing a nonzero element reduced w.r.t. A, then A is a characteristic set of a
prime A-ideal in F{Y}.

2.2. Kolchin polynomials of prime differential ideals

Let P be a prime A-ideal in F{Y} with a generic point # € A". The A-dimension of P, denoted
by A-dim(P), is defined as the A-transcendence degree of F (i) over F. A parametric set of P is
a maximal subset U CY such that PN F{U} = {0}. Equivalently, the A-dimension of P is
equal to the cardinality of a parametric set of P. Let A be a characteristic set of P w.r.t. some
ranking and denote 1d(A) = {ld(F) : F € A}. Call y; a leading variable of A if there exists
some 0 € ® such that 0(y;) € Id(A); otherwise, y; is called a parametric variable of A. The
A-dimension of P is also equal to the cardinality of the set of all the parametric variables of A.
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For a prime A-ideal, its Kolchin polynomial contains more quantitative information than the
A-dimension. To recall the concept of Kolchin polynomial, we need an important numerical
polynomial associated to a subset E C N™.

Lemma 2.4. [15, 17] For every set E = {(ej1,....emm) 1 i =1,....,1} CN", let Vg(t) denote the set of
all elements v € N™ such that v is not greater than or equal to any element in E relative to the
product order on N™. Then there exists a univariate numerical polynomial wg(t) such that
wg(t) = card(Vg(t)) for all sufficiently large t. Moreover, wg(t) satisfies the following statements:

1) deg(wg) < m, and deg(wg) = m if and only if E= 0. And if E = 0, wg(t) = (t+ m>;
2)  wg(t) =0 if and only if (0,...,0) € E; "
3) Ifminl_ ey = 0 for each k = 1,...,m, then deg(wg(t)) < m — 1.

Theorem 2.5. [15, Theorem 2] Let P be a prime A-ideal in F{y1,...,y,}. There exists a numerical
polynomial wp(t) with the following properties:

1)  For sufficiently large t € N, wp(t) equals the dimension of PN f[(y][t])lgjgn].
2) deg(wp) < m = card(A). i
3)  If we write wp(t) =Y i, ai< ; ) with a; € Z, then a,, equals the A-dimension of P.

4) If A is a differential characteristic set of P with respect to an orderly ranking on F{y1,...,yn}
and if E; denotes for each y; the set of points (I, ...,L,,) € N" such that S-Sy € 1d(A),
then wp(t) = 35", wg(t).

The numerical polynomial wp(¢) is defined to be the Kolchin polynomial of P. Prime A-ideals
whose characteristic sets consist of a single polynomial are of particular interest to us. The follow-
ing result is a partial differential analog of [9, Lemma 3.10] in the ordinary differential case.

Lemma 2.6. Let P be a prime A-ideal in F{y\,...y,} and A € F{y1, ...y} an irreducible A-poly-
nomial. Suppose A constitutes a characteristic set of P under some ranking R. Then {A} is also a
characteristic set of P under an arbitrary ranking. In this case, we call P the general component
of A.

Proof. Follow the proof of [9, Lemma 3.10]. Suppose S4 is the separant of A under #. Since each
element of P that is partially reduced w.r.t. A is divisible by A, we have P = [A] : S°. Let %' be
an arbitrary ranking and 0(yx) be the leader of A under #'. It suffices to show that there is no
nonzero A-polynomial in P reduced with respect to A under %'. Suppose the contrary and let
f € P\{0} be reduced with respect to A under #'. Then f is free from all proper derivatives of
O(yk). Since f € P = [A] : ST, there exist ] € N and finitely many nonzero polynomials T, for
7 € O such that S,f = 3" T.7(A). For each t # 1,7(A) = S, - t0(yx) + L., where S, is the sepa-
rant of A under #'. Substitute t0(yx) = —L./S, for each t # 1 into both sides of the above iden-
tity and remove the denominators, then we get S, - (Si\)l’f: T1A. Thus, A divides f which
implies that f=0. This contradiction shows that A is also a characteristic set of P under any
ranking. |

Kolchin gave a criterion for a prime A-ideal to be the general component of
some A-polynomial.

Lemma 2.7. [16, p.160, Proposition 4] Let P C F{y,...,y»} be a prime A-ideal. Then a necessary
and sufficient condition in order that P be the general component of some polynomial A of order s
is
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(1) -(727)

The following results on prime (A-)ideals will be used later.

Lemma 2.8. Let P be a prime ideal in the polynomial ring Flxy,...,x,| of dimension d>0.
Assume PN Flx)] = {0}. Then T = (P) p(x)ix,,...x, i @ prime ideal of dimension d - 1.

Proof. Since PN Fx1] = {0}, T # F(x1)[x2, s xu]. If fi, o € F(x1)[x25 ..., %] and fifs € J, then
there exist M, M, € F[x;] such that Mf; € Flxy,...,x,] and M fiM,f, € P. So either M;f; € P
or M,f, € P, which implies that either f; € J or f, € J. Thus, J is a prime ideal.

Since dim(P) = d and P N F[x;] = {0}, without loss of generality, we suppose {x;,x5,...,x4} is a
parametric set of P. We claim that {x,,...,xs} is a parametric set of J. First, note that J N
F(x1)[x25 ..., x4] = {0}. For any other variable xi € {x411,....%, }, PNF[x1,%2,....%0,%k] # {0}, so TN
F(x1)[x2,....xa,xk] Z{0}. Thus, {x,,...,x4} is a parametric set of 7, and dim(7) =d —1 follows. O

Lemma 2.9. Let P be a A-prime ideal in F{Y} of A-dimension d. Suppose u is a set of A-indeter-
minates over . Then [P]r vy, is also a prime A-ideal of A-dimension d.

Proof. Let 1 be a generic point of P free from u. It suffices to show that # is a generic point of
[P] 7 wqvy- Obviously, 1 is a zero of [P]z, . Suppose f € F(u){Y} satisfies f(17) = 0. By col-
lecting the denominators of f, there exists some D(u) € F{u} such that D(u)-f € F{u, Y}.
Write D(u) - f in the form

D(u)f = fu(Y)M(u)

where fyy € F{Y} and M(u)’s are distinct A-monomials in u. Then f(n) =0 implies that for
each M, fu(n) =0 and fyr € P. So f € [Plzyy vy Thus, n is a generic point of [P]r .y, and

[Pl £wvy is prime. O

3. Quasi-generic intersection theory for partial differential polynomials

In this section, we will prove the quasi-generic intersection theorem with an elementary proof in
purely differential algebraic language, which generalizes generic intersection theorems in both the
ordinary differential case [9] and the partial differential case [6].

We recall that a generic A-polynomial in Y = {y1, ...,y } of order s and degree g is a A-polynomial
L of the form

L= Y uuM(Y),
Med,,

where .7 4(Y) is the set of all A-monomials in Y of order < s and degree < g, and all the coeffi-
cients uy € & are A-F-indeterminates. The A-variety V(IL) C A" is called a generic A-hypersurface.
If additionally s=0 and g=1, V(L) is called a generic A-hyperplane.

Given F € F{Y}, the set of all A-monomials effectively appearing in F is denoted by supp(F).
We now introduce the definition of quasi-generic A-polynomials.

Definition 3.1. A quasi-generic A-polynomial in Y of order s is a A-polynomial L of the form

L= Up —+ Z MJM,()/]) + Z uc{Mot(Y)’ (1)
j=1

M, esupp(L)\{1, My, ..., Mp}

which satisfies the following conditions:
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1) for each j=1,...,n,M;(y;) is a A-monomial in y; of order s;

2) {L,Mi(»n), ... My(yn)} C supp(LL);
3)  the coefficients uy, u; and the u, € £ are A-F-indeterminates.

We give the following main quasi-generic differential intersection theorem, which generalizes
the generic intersection theorem in the ordinary differential case [9, Theorem 3.6 and Theorem
3.13]. The proof of [9, Theorem 3.13] could not be adapted here due to the more complicated
structure of partial differential characteristic sets. However, the proof here could definitely sim-
plify that of its ordinary differential analog.

Theorem 3.2. Let V C A" be an irreducible A-variety over F. Let IL be a quasi-generic A-polyno-
mial of order s with the set of its coefficients u. Then

1) VNV(L)# 0 (over F(u)) if and only if A-dim(V) > 0.
2) if A-dim(V) >0, then VNV(L) is an irreducible A-variety over F(u) and its Kolchin
dimension polynomial is

ovavw) (t) = oy(t) — (t+ Z - 5>.

In particular, the A-dimension of VN'V(L) is equal to A-dim(V) — 1.

Proof. Let P =1(V) C F{Y} be the prime A-ideal corresponding to V and n = (4,,....,) € "
be a generic point of P free from u (i.e., the u are A-F(r)-indeterminates). Let L. be a quasi-
generic A-polynomial of the form (1) and set

T(Y)=L—u=» wM(y)+ > u,M,(Y) € Fi{Y},
=1 M, el \{1, M1, ... My}
where F; = F{u\{up}). Set {;, = —T(n).

1) The proof is similar to that of [9, Theorem 3.6]. Let Jo = [P.L] (v - We first prove
that Jo is a prime A-ideal by showing that (1,{,) is a generic point of J,. Clearly, 7, vanishes
at (11,o). Given an arbitrary f € F{Y, up} with f(1,{;) =0, we need to show f € J,. Take the
elimination ranking # : y; < -+ <y, < ug of F1{Y,up} and let f; be the A-remainder of f w.r.t.
L. Then f; € F1{Y} and f = f; mod [L], which implies that f;(s7) = 0. By the proof of Lemma
2.9, i is also a generic point of the prime A-ideal [P]z (v}, so fi € [Plr, vy and f € Jo follows.
Thus, J is a prime A-ideal with a generic point (7, {;).

Let J = [P.L]zyy(v;- We now show that J =[1] (ie, VNV(L)=0) if and only if
A-dim(V) = 0. First suppose A-dim(V) = 0. Then for each j = 1,...,n, n; is A-algebraic over F,
and so F;(n) is A-algebraic over F;. Since {, € F1(n), (o is A-algebraic over F;. Thus, Jo N
fl{uO} 7é [0} and j = [jo]f(u){Y} = [1] follows.

For the other direction, suppose J = [1]. Then 1€ J = [P.L]yy, implies that JoN
Fr{uo} # [0]. So {, is A-algebraic over F,. Consider —T(Y) € F{u\{up},Y} and {, = —T(y).
The quasi-genericness of I guarantees the existence of a A-monomial in y; for each j. For each j,
by differentially specializing u; to —1 and all the other elements in u\{uo, u;} to 0, {, will be spe-
cialized to M;(n;). By Lemma 2.1, each M;(n;), as well as n;, is A-algebraic over F. So
A-dim(V) = 0. Thus, J # [1] if and only if A-dim(V) > 0.
t+m-—s

2) Assume A-dim(V) > 0. We will show that ws(t) = wy(t) — ( m

) . For sufficiently

large t, let Z, = (P N F[Y!)], ]L[‘_s])f‘ . We claim that

v,y
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i) Itﬁ}"l[uot SJ = {0} and dim(Z;) = wp(t);
i) TN F@)Y) = (Z0) -

If i) and ii) are valid, then we have

wz(t) = dim(J N F)[Y"])  (by Definition 2.5)
= dlm((It)fl(ugﬁ])[Y[,]]) (by Claim ii))

£+ m—
= wp(t) — ( : S) (by Lemma 2.8 and Claim i)).

So it remains to show the validity of claims i) and ii).

We first show that {, = (nm,d)t_s]) is a generic point of 7, C F, [Y[t],u([)t_s]]. Note that PN
F[Y"] vanishes at 7l and LO(¢,) = (L(1,5))? =0 (i <t —s), so {, is a zero of ;. Suppose h
is an arbitrary polynom1al in Fy[Y1, o 5] satisfying h({;) = 0. Let h; be the pseudo-remainder
of h w.r.t. L= under the ordering of Y, 4!~ induced by the elimination ranking . Then
hy € F1[Y"] and h = h; mod (L), So hy(5l) = 0. Since y¥ is a generic point of the prime
ideal (PNF[Y M])f iy (by the algebraic version of Lemma 2.9), h; € (Pﬁ}_[Y[t]])ﬂ[Ym] and
h € T, follows. Thus, {, = (!, C[ 5]) is a generic point of Z,.

Since A-dim(V) >0, by 1), we have J # [1] and thus Jo N F1{uo} = [0]. Claim i) follows
from the fact that Z, ﬁ]—"l[ 1t~ S]] CTJoNFi{u} =10 and dim(Z,) = tr.deg F({,)/F: =
tr.deg F1(n)/F1 = wp(t). Also, note that for any h € J NF{Y,uy}, there exists D(ug) €
F1{uo} such that D-h € Jy. Since J, is prime and JoNF {ug} =[0],h € Jp and thus we
obtain J NF{Y,up} = Jo.

For claim ii), it suffices to show that for each f € 7 N F(u)[Y"], f can be written as a linear
combination of polynomials in P N F[Y"] and LI~ with coefficients in F(u)[Y"]. Let f e
J N F(u)[Y"]. Multiplying f by some nonzero polynomial in F;{u} when necessary, we can
assume f € F1[Y t]W‘g S+k]} for some k € N. So, f € TN F1{Y,up} = Jo and f(n'*, ([)t S+k]) =0
follows. Let Z=U! O, ;. Rewrite f as a polynomial in (0(ug)),., with coefficients in

Fi[YH, u([)tfs]], and suppose
f= ZgocM

and the M, are finitely many distinct monomials in the variables

where g, € F[Y!, 4l

(0(40)) pey- So f(n!" Ct S+k]) = 0 implies that
> g, G M0 oer) = 0.

If we can show that
(0(%0)) pez

are algebraically independent over F,(nl" COFS) = F1(n), then for each o, we have
2, C[t 5) =0 and g, € Z;, which implies that f € (Z;) z ;-
So it remains to show that

(0(0)) ez

are algebraically independent over F;(5). Let A be a A-characteristic set of P with respect to
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some orderly ranking of F{Y}. Since A-dim(V) > 0, there exists at least one j, such that y; is a
parametric variable of A. The quasi-genericness of L. guarantees that L.(Y) effectively involves a
A-monomial of order s only in yj,, say, the term u; M;,(y;,). Now consider the polynomials

(O(=T(Y)))gez © F | (u\{u ), ¥

and (0(—=T(n)))pe, = (0({o))gc,- Note that by algebraically specializing u;, to —1 and all the
other derivatives of u\{uo} to 0, (0((o))yc, are specialized to (0(Mj,(n;,)))pez- If (0(Co))pe, are
algebraically dependent over F(yl!), then by the algebraic version of Lemma 2.1,
(0(M;,(n;,))) gy, are algebraically dependent over F (n). So there exists a nonzero polynomial
8(X0)pey) € FN[Xy : 0 € Z] such that g((0(M;,(n;,)))pez) = 0. By clearing denominators of

the coefficients of g (i.e., multiplying some D(y)) € F[5”]) when necessary and replacing X, by
0(M;, (y;,)), we get a nonzero polynomial

G(Y) =D a(Y)Tu(M;, (33,)) € F{Y}
1

vanishing at 5. Here, the Tj(Mj,(y;,)) are distinct monomials in (0(M;,(yj,)))yc, and for each I,
g € F[Y!"] does not vanish at 5. Perform Ritt’s algorithm of reduction for all the g w.rt. A

under the orderly ranking. By Proposition 2.2, there exist i € F[Y!]\{0}, reduced with respect
to A, and natural numbers j4, ks (A € A) such that

H Ij;jf Sff(‘ g =h mod [A], for all Is.

AcA
Let H(Y) = 3, (YY) Ty(M;, (y;,)) € F{Y}. Since the order of M; (y;,) is s, (0(M;,(y,)))pey are
algebraically independent over F(Y!"). Thus, H(Y) is a nonzero polynomial that is reduced with
respect to A and satisfies H(17) = 0, a contradiction to the fact that A is a characteristic set of P.
Thus, (0({y))gcy are algebraically independent over F;(5) and claim 2) is valid. Consequently,

we have proved that wvqL(t) = g (t) = oy (t) — (t+ Z B S). O
Remark 3.3. Quasi-generic A-polynomials are important in that by linear change of coordinates,
“almost all” A-polynomials with a degree-zero term can be transformed to A-polynomials
with the same supports as quasi-generic A-polynomials. Precisely, let f=a+
2 M, esupp(en{113:Mx(Y) € F{Y} be a A-polynomial of order s with ag # 0. Denote M,(y;) :=
M, (Y|, iz1,..,n and set M¢(y1) = max,{M,(y1)} under the lexicographical ordering induced
by some orderly ranking # of F{Y}. Clearly, ord(M(y1)) =s. Let I = {a| M,(y1) = Ms(y1)}.

We associate to f a polynomial p(xi,....X,) ==, a, H?:lx?”’ € Flx1, ... %y], where d,; =
deg(M,, O(y;)) for each i. Assume p is nonzero. Then under the linear change of coordinates ¢ :
yi= 1 bz (i=1,...,n) with by € F satisfying det(by) - [, p(b1ir-.r bui) #0, ¢(f) €
F{z1,...za} is a A-polynomial of order s with {1,My(z1),.... Ms(z,)} C supp(p(f))
and ord(My(z;)) = s.

By the proof of Theorem 3.2, once we know some y;, which is a parametric variable of a char-
acteristic set of I(V) under some orderly ranking,” for those L of order s whose support contains

Here, the orderly ranking is assumed to guarantee that the order of h; is bounded by t and thus obtain H(Y) # 0, when
following the proof of Theorem 3.2 to prove the corollary.
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1 and a A-monomial in y; of order s with coefficients A-F-indeterminates, we can still obtain

oyaL(t) = oy(t) — (t+ Z N S>. Precisely, we have

Corollary 3.4. Let V C A" be an irreducible A-variety over F with A-dim(V) > 0. Suppose A is a
characteristic set of I(V) C F{Y} under some orderly ranking with a parametric variable y;,. Let
L(Y) be a A-polynomial of order s in the form
L = uo + w1 My (yi,) + Z uy M, (Y),
M, esupp(L)\{1, M}
where M, (y;,) is a A-monomial in y;, of order s and the coefficient set w = {ug, uy,u,} is a set of
A-F -indeterminates. Then V NV(L) is an irreducible A-variety over F(u) and its Kolchin dimension
polynomial is
t+m-—s
ovavr)(t) = ov(t) — ( m )

When L is a generic A-polynomial, Theorem 3.2 gives the partial differential analog of
[9, Theorem 1.1], which was proven by Freitag with a model-theoretical proof [6, Theorem 3.7].
t+m

m

Corollary 3.5. Let V be an irreducible A-variety over F with wy(t) > ( ) Let L be a gen-

eric A-polynomial of order s and degree g with coefficient set u. Then the intersection of V and

L = 0 is a nonempty irreducible A-variety over F(u) and its Kolchin polynomial is

oy (t) = oy (t) — <t+’” ‘S).

m

The following result gives the information of the intersection of several quasi-generic
A-polynomials, which generalizes [9, Theorem 3.15].

Corollary 3.6. Let L; (i=1,....,r;r <n) be independent quasi-generic A-polynomials of order s;
respectively. Suppose w; is the set of coefficients of L;. Then V =V (L,,...,1L,) C A" is an irreducible
A-variety over F(uy, ...,w,) with its Kolchin polynomial equal to

wy(t) = <n—r>(t1m> +Z [(tt«m) - <t+r:4_5i>]'

In particular, if r=mn, then its A-dimension is 0, the differential type is m — 1 and the typical
A-dimension is >\, s;.

4, Partial differential Chow forms

In this section, we introduce the definition of partial A-Chow forms and explore in which conditions
on A-varieties such that their A-Chow forms exist.
Let V C A" be an irreducible A-variety over F with A-dimension d. Let

Li=wo+uay + -+ tiwyn (i=0,1,..,d)
be independent generic A-hyperplanes with coefficients w; = (w4, ..., Uiy ). Let

j = [H(V),]Lo,...,Ld]}'{ﬁ\_{)u@,...,ud}' (2)

Lemma 4.1. JNF{u,...,uy} is a prime A-ideal of codimension 1 with a parametric
set U9 ju;\{uoo}-
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Proof. Let § = (1, ..., 11,) be a generic point of V free from each u;. Let
Ci = - Z Uik Nk (l =0,.., d) and C = (CO) Uols - Uons -+ Cd: Udls - udn)'
k=1

We first show that (1,{) is a generic point of 7. Obviously, I(V) and Ly, ...,L; vanish at (4, ).
Suppose f € F{Y,u,...,us} with f(1,{) =0. Let f; be the A-remainder of f w.rt. Lo,...,Ly
under some elimination ranking with u < ugy < 39 < - -+ < ugy, where u = Ufl:olli\{uio}- Then
fi € F{Y,u} with fi(n,{) =0. Write fi = >, fim(Y)M(u) as a A-polynomial in u with coeffi-
cients fipr € F{Y}, then fin(n) =0. So fiy € I(V) and f € J follows. Thus, (1,{) is a generic
point of J and J N F{uy, ..., us} is a prime A-ideal with a generic point {.

Since the A-dimension of P is d, there exist d of the 5; which are A-independent over F.
Consider P; = —3"p  ugyx (i=1,..,d) and the corresponding (; Using Lemma 2.1 with a
contrapositive proof, we can prove that (;,..,{; are A-independent over F(u). So
A-tr.degF(()/F > (d+ 1)n + d. Note that F({) C F(u,n). Then A-tr.degF({)/F = (d+ 1)n+
d. Thus, the codimension of J N F{uy, ..., us} is 1 and UZ_ ju;\{ug} is a parametric set of it. [

In the ordinary differential case, there always exists a unique irreducible J-polynomial F such
that 7 N F{uy,...,uy} is the general component of F. This unique polynomial F is the d-Chow
form of V. However, unlike the ordinary differential case, for a prime A-ideal of codimension 1,
it may not be the general component of any single A-polynomial, as Example 4.2 shows.

Example 4.2. Let m=2 and V =V(3(y),0,(y)) CA'. Let Lo=up+uyy and J =
[]I(V),Lo] C .7:{)/, Upo» uOl}- Then

T N F{ugo, uor } = sat(uo101(too) — tood1 (o), o102(too) — tooda(tor)),
which is of codimension 1 but not the general component of a single A-polynomial.

The above fact makes it impossible to define A-Chow forms for all the irreducible A-varieties
as in the ordinary differential case [9, Definition 4.2]. Below, we define A-Chow forms for irredu-
cible A-varieties satisfying certain properties.

Definition 4.3. If 7 N F{uo,...,us} is the general component of some irreducible A-polynomial
F(uy, ...,uy), that is,

[L(V).Lo. ... La] £y, g, .., up O F {005 ..o ug} = sat(F),

then we say the A-Chow form of V exists and we call F the A-Chow form of V or its correspond-
ing prime A-ideal I(V).

Following this definition, a natural question is to explore in which conditions on A-varieties
such that their A-Chow forms exist. Now, we proceed to give a sufficient condition for the exist-
ence of A-Chow forms.

Lemma 4.4. Let P be a prime A-ideal in F{yi,....yn} and A a characteristic set of P with respect

to some orderly ranking R. Suppose the Kolchin polynomial of P is wp(t) = (d + 1)<t—;m> -
<t+ Z _S) for some d,s € N. Then

1d(A) = (i Vi a0 00 0)}
for some 0 € O and n - d distinct variables y;,, ..., y;, ,.
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Proof. For each j = 1,...,n, let E; denote the matrix whose row vectors are (ay, ...,a,) € N" such
that 6{'---§}ry; is the leader of an element of A. Here, if y; is not a leading variable, then set

Ej = (). Suppose the leading variables of A are y;, ..., y;. By Theorem 2.5, wp(t) = 77, w,(t) =
(n—l)(t+m) +Z;:1 wp, = (d+ 1)<t—;m> — (t—l—m _S>. Since E; # ), the degree of

m m
g, is less than m. Comparing the coefficient of " of the both sides of the above equality, we

etl=n—d.
’ Forj=1,..,n—d, let € = (€ij1> s €in) € N be a vector constructed from E; with each eik
the minimal element of the k-th column of E;, and let H; be the matrix whose row vectors are
the corresponding row vectors of E; minus e;, respectively. Denote s; = > /_, e;x. Then clearly,
O, (1) = O, (t) + o (t = 53)- By item 3) of Lemma 2.4, the degree of o, (t = ;) is strictly less

than m—1. Thus, wp(t):(d+1>(tfﬂm>—<t+’”‘s):d<t+m>+z g, (1) +

m

St so (M) - (T m ) mgr (1) (om s )] e

g, (t = s;). Comparing the coefficients of "' and t" % on the both sides and use the fact

(ttnm> - <t+nm1 S) = Gt o), we get
n—d
s= s
=1
n—d n—d
—s*/2 = —252/2 +(m=2)! Zcoeff(a)Hij,tmd).
=1

=1

If two of the s; are nonzero, then obviously —s*/2 < — Z" ¢ 2/ 2, which implies that the above

system of equations is not valid. Thus, there exists only one i such that s; = s and all the other

n—d—1 of the s;; is equal to zero. Without loss of generality, suppose s;, , = s. So (t;m) —
<t+z—s> = (t;m) - <t+z—s> +Z] 1 OH, ( s,-].). As a consequence, Hij =
{(0,...,0)}. Thus, each E; has only one row vector, and 1d(A) = {yi,... 7, . > 0(i, 4)} for
some 0 € ©.

The following result gives a sufficient condition on A-varieties for the existence of
A-Chow forms.

Theorem 4.5. Let V C A" be an irreducible A-variety over F with

wv(t)z(dﬂ)(t;m) B (H'Z—s)

for some s € N. Then the A-Chow form of V exists. And the order of the A-Chow form of V is s.

Proof. Let P =1(V) C F{Y}. Let P* = [P.Ly. - Ldl £y, . ug (v} - Then by Corollary 3.5, P* is a
prime A-ideal of A-dimension 0 and owp = >

f¥m _(t—l—m—s). Let o=

m m
[P*xH—‘O]f(ll1>~w“d>{y>un}. Recall that J = [P’LO’""]Ld]]:{Y,ug,u.,ud} as introduced in (2). Clearly,

\70 = [\7]]-'<u1,m,ud>{Y,u0}' Let
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Zo=ToNFluy,.,un{ug} and Z = J N F{ug,...,uy}.

By Lemma 4.1, both 7, and Z are prime A-ideals of codimension 1 with parametric sets
uo\{ugo} and UL ju\{ugp} respectively. For any f € ZoNF{ug,..,uy}, there exists M €
Fluy,..,us} such that Mf € Z. Since M ¢ Z,f € Z. Thus, Z = Z, N F{uy,...,us}. We claim
that (*) Z is the general component of some irreducible F € F{uy,...,u;} if and only if Z, is the
general component of some irreducible G € F(uy, ..., ug){ug}.

To show the validity of claim (*), first suppose Z is the general component of some irreducible
F € F{uy,...,uy}. Fix two elimination rankings for F{uy,...,u;} and F(uy,...,uz){ug} with ug
higher than any other variable. Since Uf:()ui\{uoo} is a parametric set of Z, 1d(F) = O(ugo) for
some 0. Given any g € 7, let g, be the partial remainder of ¢ w.r.t. F. Then g1 € Z,. If g1 # 0,
there exists L € F{u,,...,us} such that Lg € Z. Since F is a characteristic set of Z and Lg is par-
tially reduced w.r.t. F, Lg is divisible by F over F, and thus g is divisible by F over F(uy, ..., uy).
Thus, F constitutes a characteristic set of Zy and Z is the general component of F. For the other
direction, suppose Z, is the general component of some irreducible G € F(uy,...,uz){uo}.
Clearly, 1d(G) = 0(ug) for some 0 and there exists N € F{u;,..,us} such that NG e

F{up,uy,...,uy} is irreducible. Since Z, = [G] : (ag?zo))oo, we have Z =7, N F{uy,...,uy} =

([NG} : (Nae?g ))x> { }:sat(NG). So Z is the general component of NG and (*)
F o Uy

is proved.
Thus, by (*), it suffices to consider for the case dim(V) =0, that is, to show the A-Chow

form of V exists if wy(t) = (tj:nm) - (t+ $ B S) for some s € N. Now suppose dim(V) =

0 and let » = (17, ...,11,,) be a generic point of V free from uo. Let {; = — Z]';l ugjn;- Then by the
proof of Lemma 4.1, ({y, to1, ---» on) is a generic point of Z = [I(V),Lo] N F{uo}.

On the one hand, since Co - .7-'(1401,. > uomn[t]), we have

t+m t+m—s
w(fo,um,...,uw)(t) < w(uol)""uﬂﬂ”])(t) = (n + U( m > - < )

m
On the other hand, by Lemma 4.4, wy(t) = <t-|n-1M> — <t+ Z N S) implies that the leading
variables of a characteristic set of A with respect to an orderly ranking is {y;,....y;,_,»0(yi,)}
with 0 € ©;. So {t(n;): T € O, 041} is algebraically independent over F. By the contraposi-
tive of the algebraic version of Lemma 2.1, S := {7({y) : 7 € O, 07} is algebraically independ-

ent over ]—'(u([ﬂ, . u([)i) Note that card(S) = (t—;m) - (t+ 2 a S>. Thus, we have

w(lmum»m»um)(t) = tr.deg f(”([)q’ Rt u([)i]’l’ [I])/f

= tr.deg F(ugq,...,u([;i)/f—i—tr.deg f(ugq,. ,u([)n)( )/.7-'( Ugps o gll)
>n(t+m>+(t+m>_(t+m—s>‘
= m m m

Thus, &, ug,, ...ue) (£) = (1 +1) ( t —;m) — <t+ Z B S). By Lemma 2.7, there exists an irredu-

cible A-polynomial F of order s such that J = sat(F), so the A-Chow form of V exists and it is
of order s. O
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We conjecture that for the existence of A-Chow form of V, the Kolchin polynomial wy(t) =
(d+1) ( t —;m) — (H_ Z - S) is also a necessary condition:

Conjecture 4.6. Let V C A" be an irreducible A-variety over F of differential dimension d. Then
the A-Chow form of V exists if and only if

a)v(t)(dJrl)(tJ;qm) - (terS) for some s € N.

m

In the remaining sections of this article, we focus on irreducible A-varieties V C A" of
Kolchin polynomial wy(t) = (d+ 1) < t —;m) — <t+ mes

m
forms exist guaranteed by Theorem 4.5.
Given d + 1 vectors a; = (aio, i1, ... i) € A" (E) for i =0,...,d, let

) for some s € N whose A-Chow

L,-(ai) =ajp t+any1 + -+ Ainyn

be the corresponding hyperplanes over F(a;). A natural question in (differential) intersection
theory arises as follows: Under which conditions can we have V N1Ig(ag)N---NLy(ag) # 02
In the algebraic case, Chow and van der Waerden showed that the vanishing of the Chow
form gives a necessary and sufficient condition such that the projective variety V and d+1
projective hyperplanes have a common point [3]. Similarly, we also have a geometric interpret-
ation for partial differential Chow forms. The following result shows that the general compo-
nent of the differential Chow form of V gives a necessary and sufficient condition in the
Kolchin closure sense such that V and the given d+1 A-hyperplanes have a nonempty
intersection.

Proposition 4.7. Let V C A" be an irreducible A-variety of Kolchin polynomial wy(t) =
(d+ 1)(1‘—;;71) - (t+ Z B S> and F(uy, ...,ug) be the A-Chow form of V. Let

d+1

S = {(a0,..ag) € (A"™™)" | VNLo(ag) N---NLa(aa) # 0}.

Then the Kolchin closure of S is the general component of F.

)d+

Proof. Let W be the Kolchin closure of S in (A""! '. Recall that

J = (V) Lo, ... Lal £, w, ., ugy and T 0 Ffug, ..., ug} = sat(F).

For any (ao,...a4) €S, there exists ¢ € A" such that £eVn Lo(ag) N---NILg(az). Then
(&9,....a4) € V(J) and so (ay, ...,aq4) € V(sat(F)). Thus, S C V(sat(F)) and W C V(sat(F)). On
the other hand, by the proof of Lemma 4.1, (#,{) is a generic point of 7, so { is a generic point
of V(sat(F)). Clearly, n € VNLo({,0) N NLa({,q), where (o = (i ity o thin). S0 { €S C
W. Thus, V(sat(F)) C W. Hence, we have V(sat(F)) = W. O

Below is an example of A-Chow forms.

Example 4.8. Let A={0,,0,}. Let P=[01(1),y2 —yi] C F{y,y}. Clearly, wp(t) =

<Hz‘2) _ (HZ—I) =t + 1. The A-Chow form of P is
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F(uo) = 01 (uoo) gy — 201 (uoo) o001 (U2 )thoz — 01 (thoo)Sr (o1 )torthoz + gy (51(M02))2+

O1 (uoo)ug; 01 (uo2) + thoo (51(u01))2u02 — tgo01 (o1 ) to101(Uo2) + 01 (thoo )01 (Ho1 ) o1 Uoz-

5. Properties of the partial differential Chow form

In this section, we will prove basic properties of A-Chow forms. In particular, we will show the
A-Chow form is A-homogenous and has a Poisson-type product formula similar to its ordinary
differential counterpart.

5.1. Partial differential Chow forms are differentially homogenous

In this section, we will show that the A-Chow form is A-homogenous. Recall that F is a A-field
with the set of derivations A = {0y, ...,0,,} and O® is the set of all derivative operators. Given two

derivatives 0, =[]}, 6{ and 0, =[], 0% € @, if a; < b; for each i, then we denote 0,]6,. In

case 0,]6,, we denote z_f:H1m15;b “%, and denote the product of binomial coefficients

[T5 (bf) by (gf ) It is easy to verify that 0(fg) = >,y ( ) 0(f) - <(g) for all f,g € F.

ai

Definition 5.1. A A-polynomial f € F{yo,y1,....yn} is said to be A-homogenous of degree r if
F (290, 215 - 2yn) = A'f (Y0, Y1 --» yn) holds for a A-indeterminate 4 over F{yo,y1, - ¥n}-

The following lemma is a partial differential analog of the Euler’s criterion on homogenous
polynomials, which was listed as an exercise in [16, p.71].

Proposition 5.2. A necessary and sufficient condition that f € F{yo, y1,....y»} be A-homogenous of
degree r is that f satisfies the following system of equations:

o  [rfs 0=1
ZZ( > () BIO(yj)_{o, 0c®, 0#1. (3)

€0 j=0

Proof. Denote Y = (yo,...,ys) temporarily for convenience. Let 4 be a A-indeterminate
over F{Y}.

First, we show the necessity. Suppose f is A-homogenous of degree r. Then f(1Y) = A"f(Y).
Differentiating both sides of this equality w.r.t. 0(1), we get

9t0(2y;)
;;( ) (%) 810 ;;) AJ afe )(W)
_ofQy) rf(Y)/V’l, 0=1
000 o, 0€®0+#1.

Setting 4 =1, we obtain (3).
To show the sufficiency, suppose (3) holds. We will show f (1Y) = Nf (Y) for some r. Let 0 €
O satisfy (*) f(AY) = 0 for all € ®\{1}. Then we have

(?‘50( )
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(4)

AY
j
_ ~(0N O .
R (re@ j=0 ( 0 > o9 areojj))Yﬂ{

For each 0 # 1 satisfying (*), by (3) and (4), we obtain 09(—?;‘)f(iY) = 0. Since ar‘(()nf(iY) =0 for

all 7€ O.pay), each 0€ O,y satisfies (¥). By backward induction on ©(4), we have
OGL().)f(ZY) =0 for each 0 € ®\{1}. Thus, we can take =1 and get 4 Zf(1Y) = 1f(2Y) from

(3) and (4). So

oY) L of(ay)
T = —rA f(iY) + 4 Y 0,
and f(2Y) = 2’f(Y) follows. Thus, f(Y) is A-homogenous of degree r. 0

Now, we show that the A-Chow form F(uy, ...,us) is A-homogeneous of the same degree in
each w;, which is a partial differential analog of [9, Theorem 4.17].

Theorem 53. Let V CA" be an irreducible A-variety of Kolchin polynomial

wy(t) = (d—&-l)(t—;m) — (t—l—z—s) Let F(uo,...,uy) be the A-Chow form of V. Then

F(uy, ..., uq) is A-homogenous of the same degree r in each ;.

Proof. By the definition of A-Chow form, F(uy, ...,us) has the symmetric property in the sense

that interchanging u; and u; in F, the resulting polynomial and F differ at most by a sign. In par-

ticular, F is of the same degree in each u;. So it suffices to show the A-homogeneity of F for u,.
Let n = (1;,...,11,) be a generic point of V. For i =0, ...,d, let

n
{i=— Z Uijn; and Cu,i = (Cia Ui, -~-)uin)~
j=1

By the proof of Lemma 4.1, ({, 0,y 15 {y q) is a generic point of
[H(V),]Lo, ""Ld]f{Y,ug,m,ud} N .7:{110, ...,lld} = sat(F).

Here, a ranking # of F{uy,...,us} is assumed. Let A be a A-indeterminate over F(uy,...,uy Y).
Similarly as in the proof of Lemma 4.1, we can also show that (4(, ¢, 1> .., {,4) is also a generic

point of sat(F). So F(il, 0 {u1s-lua) =0. Let F(Aug,uy,...uy) = >, FiM(Z) where the
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M(/)’s are distinct A-monomial in 4 and Fy € F{uy,...,us}. Since

(/LCM O’ [T EREE ZFM u, 0’ u, 1’~'~>Cu,d)M(;”) =0,

we have Fy(C,, 05 (o150 Cug) = 0 for each M. So Fy € sat(F). Since Fy, is partially reduced w.r.t.
F and deg(Fy) <F, there exists ay € F such that Fy; = apye Thus, F(lug,uy,...,uy) =
(> auM(2)) - F. Regard the two A-polynomials at both sides of this equality as polynomials
in F(2){up,...,us}, by comparing their coefficients of the leading monomial under the
lexicographic ordering induced by %, we obtain >, ayM(1) = 2" for some r € N. Thus, F is
A-homogenous in uy of degree r. O

Definition 5.4. The number r in Theorem 5.3 is defined to be the A-degree of the A-variety V or
its corresponding prime A-ideal.

5.2. Factorization of partial differential Chow forms

In this section, we follow the techniques in [9, Sect. 4.4] to derive Poisson-type product formulae
for partial differential Chow forms. For this purpose, fix an orderly ranking % on uy, ..., u, with
ugo greater than any other u;;. Suppose 1d(F) = O(ugo) and 0 is reserved for this derivative oper-
ator temporarily in this section. Let

Fu=F(up,..,ug,uor, . thps)  and  Fo = Fu(t(too) : T € ©,047).

Regard F as a univariate polynomial f (H(uoo)) in 0(ug) with coefficients in F and suppose g =
deg(F, Q(uoo)). Then f (H(uoo)) is irreducible over F; and in a suitable algebraic extension field
of Fo, f(@(uoo)) = 0 has g roots yy, ..., 7,. Thus

g

£(0(u00)) = A(ug, uy, ... ug) [ | (0(io0) — 1) (5)

=1
where A(ug, uy, ..., ug) € F{uy,...,uq} is free from 0(ugo).
Foreachl=1,...,g, let

Fir=Fo(n) (6)
be an algebraic extension of F defined by f (H(uoo)) = 0. We will define derivations 6y 1, ..., 01
on F; so that (F1,{0;1,....0,m}) becomes a partial differential field. This can be done step by
step in a very natural way. For the ease of notation, for each t =[]}, 5,‘? with (dy,....d,) € N",
we denote 7, = [}, (3?,(. In step 1, for each a € F,, define 7;(a) = t(a), in particular, J;x(a) =

Ox(a) for each k=1, ...,m. In step 2, we need to define the derivatives of ugo. For all 1 € @ with
04t or T = 0, define 7(ug) as follows:

‘C(uoo) S fo(Q f[), 0*‘[
Ti(too) =
Y1 (S .7:[, T = 9
And for all T € ® with 0|t and © # 0, we define 7)(ug) inductively on the ordering of ® ()
induced by % Since F, regarded as a univariate polynomial f in 0(ug), is a minimal polynomial

of y, S = 89(u does not vanish at 0(ugy) = y;. First, for the minimal t = 6,0 for some k €
{1,...,m}, defme
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def
‘L'l(uoo) = 5l’k(Vl) = _T/Sf‘(?(uoo):'/z’
where 0x(f) = Sf - 6x0(ugo) + T. This is reasonable, since all the derivatives of ug, involved in Sf
and T have been defined in the former steps and we should have d,x(f(7;)) = Sf|()(u00):”/,61)k(yl) +
)y

uoo)=p = 0. Suppose all the derivatives of ug less than t(ug) = 1?:1 5Zk9(u00) have been

defined, we can proceed in the similar way to define 7;(u00) = [ [}, 5fkk(y1). Namely, use the dif-
ferential polynomial t(f) = Sf - T(ugo) + T; and define 7;(ugo) = _Tf/sf‘n(?(uoo):n(yl),719<‘c‘ In this
way, (F,{0,1,....01,m}) is a partial differential field which can be considered as a finitely differ-
ential extension field of (Fy, A).

Since F, is a finitely generated A-extension field of F contained in £. By the definition of
universal differential extension fields, there exists a A-extension field F* C £ of F, and a differ-
ential F-isomorphism ¢; from (F1,{d,1,...0.m}) to (F*,A). For a polynomial G € F{Y} and
a point 7 € F}, G(n7) = 0 implies G(¢,;(n)) = 0. For convenience, by saying # is in a A-variety V'
over F, we mean ¢;(17) € V. Summing up the above results, we have a partial differential analog
of [9, Lemma 4.24].

Lemma 5.5. (F,{d,1,....0,m}) is a finitely differential extension field of (Fy,A), which is differ-
entially Fy-isomorphic to a differential subfield of £.

Note that the above defining steps give a differential homomorphism ¢; from
(F{uo,...,uz},A) to the differential field (5, {d;1,...,6,m}) for each I by mapping t(u;) to
ti(u;). That is, for a A-polynomial p € F{uo,...,us}, ¢;(p) is obtained from p by substituting
©0(u00) = 71(y;)- Then we have the following result similar to [9, Lemma 4.25].

Lemma 5.6. Let P € F{uy,...,us}. Then P € sat(F) if and only if ¢,(P) = 0.

Proof. If P € sat(F), then there exists m € N such that S'P € [F]. Since ¢, is a differential homo-
morphism and ¢;(F) = 0, ¢;(S#P) = 0. Note from the above that ¢;(S¢) # 0, so ¢;(P) =0 fol-
lows. For the other side, suppose ¢;(P) = 0. Let R be the differential remainder of P w.r.t. F
under the ranking #. Since ¢;(P) = 0, ¢;(R) = 0. Note that R is free from all the proper deriva-
tives of O(ugy) and deg(R, 0(uo0)) < g So Ry, = 0, which implies from the irreducibility of

F that R is divisible by F. Thus, R=0 and P € sat(F). O

Remark 5.7. Similar to the ordinary differential case, in order to make F; a partial differential
field, we need to introduce derivations dy 1, ..., 0; ,, related to 7, and there does not exist a unique
set of derivations to make all F;(I =1, ...,g) differential fields.

Below, we give the following Poisson-type product formula, which is a partial differential ana-
log of [9, Theorem 4.27].

Theorem 5.8. Let F(ug,uy,....,uy) be the A-Chow form of an irreducible A-variety over F of

Kolchin polynomial wy(t) = (d + 1) ( g —;1m> - (H_ Z -
uij and suppose 1d(F) = O(uoo) and g = deg(F,H(uoo)). Then, there exist &y, ..., &y, in a differential

extension field (F1, {011, ..., 0,m}) of (Fu,A) such that

>. Fix an orderly ranking with ug >

F(ug,uy, ..., ug) = A(ug, uy, ..., ug) H 0 (Moo + uopflp> (7)
p=1

I=1
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where A(ug,uy, ..., uy) is in F{ug,....,us}. Note that Equation (7) is formal and should be under-
stood in the following precise meaning: G(uoo + Zp 1 uopélp) 0(uo0) + 0; (Z” u0p§,p>.

Proof. Follow the proof of [9, Theorem 4.27] and the notation above. By Lemma 5.6, ¢;(Sg) # 0.
Let & = ¢ (%) J&i(Sp) for j=1,..,nand & = (&, ..., &) € F]. We will prove

=0 (Z Mo;fy)-
=1

Let ¢=(&,..¢) be a generic point of V and (=-37 u;¢. Then
F(Lo> 015 - o» Uon; -5 Cas Udts o> gn) = 0. Differentiating the equailty w.r.t. H(uoj) on both sides, we
have

F OF
D0(u)  D0(ui0) (=)

=0, (8)

OF
where the 30 ()
the above equation and for j from 1 to n, adding them together, we have

. OF " OF OF
= + Ly =0.
JZ:; uojao(uo 30 (too) ( Z o > ; uoja()(uoj) 90(uo0) g

Thus, Z;:O uoj% € sat(F). By Lemma 5.6,

- OF OF
Z ugj¢py (80( >> +¢1(M00)¢1< a0(u 00)) =0,

]_

are obtained by substituting {; to up (i =0,...,d) in 00 Multlplymg ug; to

(

S0 i(ton) = — S0 ugi&y. Thus, 01(y(uo)) = i(0(tto0)) = 71 = —0) (Z}':l uojg,j). Substituting
them into equation (5), (7) is proved. O
We have the following interesting result similar to [9, Theorem 4.34].

Theorem 5.9. The points (&, ..., &) (1=1,...,g) in (7) are generic points of the A-variety V over
F. If d> 0, they also satisfy the equations

Ugo + Zuaﬂyp =0 (c=1..4d).

p=1

Proof. Follow the proof of [9, Theorem 4.34]. Suppose P(yl,. o yn) € F{Y} is any A-polynomial

vanishing on V. Then P(¢y, ..., &,) = 0. From (8), &, = ()0 uo /()0 > S0 we have

o[ _9F ) oF oF [ oF \_,
90(uo1) / 00(ugo) "7 O0(uon) | 00(ugo) |

are obtained by substituting {; to u (i =0,1,...,d) in 60?5 5 Thus, there exists an

IF
where 77— (or)

t € N, such that
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<89(”00)> 'P<59(u01)/80(u00)’“" 00(uon) /50(u00)> € sat(F).

By Lemma 5.6, we have P(¢, ..., &,) = 0, which means that (&, ...,&,) € V.
Conversely, for any Q € F{Y} such that Q(&,...,&,) =0, by Lemma 5.6, there exists t € N

A (_oF \ ) ) p) of _
st Q= (k) Qs / iy oo s/ 0y) € Sat(F). S0 Q(Eryes &)=0. Thus,
(& eenéyy) isa generic point of V.
By Equation (8), d() uo, +()0(u00) (=¢j) =0, so we have Z] 1””100(140, —i—CJdO (o) = 0. Thus,
>0 Uoj 39( )E sat(F). If o #0, then > im0 ug,¢;<m) =0. Consequently, ug+ >,
ugjflj =0 (O' = 1,...,d>. O

Remark 5.10. In [9], the number g in the Poission-type formula is defined as the leading differ-
ential degree of d-cycles, which has similar geometric meaning as the degree of algebraic varieties.
But in the partial differential case, the leading differential degree could not be defined, for the
number g in Theorem 5.8 depends on the orderly ranking we choose to get the Poisson-type

product formula. For example, let A = {d,,8,} and V C A' be the general component of A =
51(y1)(52(y1))2+ 1 € F{y1}. Then the differential Chow form of V is F(ug) = fuglél(uoo)
(52(1400))2 + 2ugotg 01 (tho0) 92 (t400) 2 (to1) — tgy01 (too)tor (52(%1))2 + uOOuélél(“Ol)(52<u00>)2_
2 11 01 (tho1 )02 (100 ) 02 (thor ) + ugoél(um)(éz(um))z +u§,. There are two orderly rankings of
Fin}, that is, %y :000% > 0k = (iy +in i) >rex(ji +joji)  and Ry 016E >
88y <= (i1 + iri2)>1ex (1 + j2,j2). Under  %,,1d(F) = 01(uo) and g=1; while under
R,,1d(F) = 0y(ugo) and g=2. Also, even under a fixed orderly ranking, the leaders of the
A-Chow forms of two irreducible A-varieties with the same Kolchin polynomial may be distinct,

so it is difficult to define partial differential algebraic cycles through A-Chow forms as we did in
the ordinary differential case.

We conclude this section by proposing the following properties of A-Chow forms, which are
similar to [9, Lemma 4.10] and [8, Lemma 3.9] in the ordinary differential case and will be used
in Section 6.

Theorem 5.11. Let V C A" be an irreducible A-variety of Kolchin polynomial wvy(t) =
(d+ 1)(t—:nm) — (t+ Z B S> and F(uy,...,uy) the A-Chow form of V. The following asser-
tions hold.

1) Let & be some elimination ranking satisfying u; < ugy <y; < --- < y. Let 1d(F) = 0(uo0)
and Sg the separant of F. Then

OF OF
{F) SFyl - m, ey SF}/n - ({W}

is a characteristic set of []I(}Qi}LO, o L] £y ug, gy WL R
2) Given (Vo> .- Vd) € (AmF)*) if F(vo,...,v4) = 0 and SE(V0s -+ Vd) #£0, then V and vy +

vayi + -+ Vieyn = 0 (i = 0,...,d) have at least one point in common.

3 (1) A ALY, L) A Fl ] = (Fo ).
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Proof. The proof of item 1) is similar to [9, Lemma 4.10]. And item 2) is a direct consequence of
item 1).

3) By Theorem 4.5, ord(F) =s, so (F) = [I(V),Ly,..., L] ﬂ]—'[ug],...,us}]. By the proof of
Lemma 4.1, (I is a generic point of (F). Similarly, we can show (!9, ¢8) is a generic point of
JTs = (]I(V) N F[YHE), LY, ...,]LS}) in Z[YH,ul, ., “5]]' Thus, (¥ is also a generic point of 7, N
]—"[u([f], ...,ug]} and 3) follows. O

6. Partial differential Chow varieties of a certain type exist

As mentioned in the introduction, to study a specific kind of geometric objects, it is important
and useful to represent them by coordinates and further show that the set of objects is actually
an algebraic system. For us, this specific kind of objects are irreducible A-varieties with Kolchin

polynomial (d + 1) ( ! tnm) — (t+ Z B S). As in the ordinary differential case, we could rep-

resent these A-varieties by coordinates.
Definition 6.1. Let V be an irreducible A-variety over F of Kolchin polynomial wvy(t) =
(d+ 1)(“};”1) - (H_ x B S) and of A-degree r. Let F(uy, ...,uy) be the A-Chow form of V.

The coefficient vector of F, regarded as a point in a higher dimensional projective space deter-
mined by n and (d, s, r), is defined to be the A-Chow coordinate of V.

Fix n and an index (d, s, r). Let G, 4, be a functor from the category of A-fields of charac-
teristic 0 to the category of sets, which associates each A-field F of characteristic 0 with the set

Gnasr)(F), consisting of all irreducible A-varieties V C A" over F with wy(t) =

(d+1)(t+m) - <t+m—s> and A-degree .
m m

Definition 6.2. If G, , ; ,) is represented by some A-constructible set over Q, meaning that there
is a A-constructible set defined over Q and a natural isomorphism between the functor G, 4
and the functor given by this A-constructible set (regarded also as a functor from the category of
A-fields of characteristic 0 to the category of sets), then we call this A-constructible set the
A-Chow variety of index (d, s, r) of A", and denote it by A-Chow(n,d,s,r). In this case, we also
say that the A-Chow variety of A" of index (d, s, ) exists.

In this section, we will show that A-Chow varieties A-Chow(n,d,s,r) exist for all chosen
n,d,s,r. Similar to the ordinary differential case, the main idea is to first definably embed
G(n,d,5,r) into a finite disjoint union C of the chosen algebraic Chow varieties and then show the
image of G, 4, is a definable subset of C. So the language from model theory of partial differ-
entially closed fields (see [18, 22, 24]) will be used. Assume & is a saturated A-closed field of
characteristic 0 (i.e., EFDCFy ,,) and A" = £" throughout this section.

6.1. Definable properties and prolongation admissible varieties

Here are some basic notions and results from model theory to be used in the proof of the main
theorem. For more details and explantations, see [8].
We say that a family of sets {X, },.p is a definable family if there are formulae y(x; y) and ¢ () so

that B is the set of realizations of ¢ and for each a € B, X,, is the set of realizations of y(x; ).
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Given a property P of definable sets, we say that P is definable in families if for any family of
definable sets {X,},.p given by the formulae i (x; y) and 0(y), there is a formula ¢(y) so that the
set {a € B : X, has property P} is defined by ¢.

Given an operation £ which takes a set and returns another set, we say that £ is definable in
families if for any family of definable sets {X,},p given by the formulae /(x;y) and 0(y), there
is a formula ¢(z;y) so that for each a € B, the set L(X,) is defined by ¢(z;a).

We recall the following facts about definability in algebraically closed fields.

Fact 6.3. [8, Theorem A.7] Relative to the theory of algebraically closed fields (ACF), we have the
the following statements.

(1)  The Zariski closure is definable in families.

(2)  The dimension and degree of the Zariski closure of a set are definable in families.

(3)  Irreducibility of the Zariski closure is a definable property.

(4)  If the Zariski closure is an irreducible hypersurface given by the vanishing of some nonzero
polynomial, then the degree of that polynomial in any particular variable is definable
in families.

(5) [8, Lemma 3.5]The set of irreducible varieties in A" of dimension d and degree g is a defin-
able family.

We also need to generalize results on prolongation admissible varieties [8] to the partial differ-
ential case. Notations 7, V}, B; should be specified beforehand. For an algebraic variety X =

I+m
V(fi, - fo) € A" defined by polynomials f; € Fly, ..., yx), 1(X) C A"(5") denotes the algebraic
variety defined by (0(f;))y.e_, considered as algebraic polynomials in F [O4(Y)] with Y =

I+m
(V1>-->yn)-  Thus, T A" = A"( m > with  coordinates  corresponding to  variables
(Y, 0,(Y),...,0,(Y)). Given a point a € A",V,(@) denotes the point (a,®;(a),...,0(a)) €
7A", and for a A-variety W C A", B/(W) is the Zariski closure of the set {V,(a): a € W} in
7;A". In other words, Bj(W) = V(I[(W) N f[@gl(Y)]) C A"

Definition 6.4. Let V C 7,A" be an algebraic variety over F. We say V is prolongation admis-
sible if B{(V(Z(V))) = V.

Irreducible prolongation admissible varieties are of special interest in this article. The fol-
lowing lemma shows that algebraic characteristic sets of irreducible prolongation admissible
varieties have a special form, which generalizes [8, Lemma 2.13] to the partial differen-
tial case.

Lemma 6.5. Let V C 1,A" be an irreducible prolongation admissible variety over F and A a char-

acteristic set of V w.r.t. an ordering induced by some orderly ranking R on O(Y). For each
k=1,...n let

Ep = {0y, €1d(A) : (V Yk € ld(A)/\(‘c|9)) = 1) = 0 }-

If Ex # 0, then for each ty, € O(yx) which is a proper derivative of some element of Ex, there
exists Ay € A such that 1d(A. ) = tyx and A, i is linear in tyy.

Proof. Follow the proof of [8, Lemma 2.13]. Let W =V(Z(V)) C A" and W =U_ W, be
the irreducible decomposition of W. Since V is prolongation admissible, Bi(W) = V. So
there exists some iy such that B{(W; ) = V. Suppose B is a A-characteristic set of W w.r.t. %.

Ip
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Let C = O(B) N F[O(Y)], C is a characteristic set of B;(W;) = V. Since C and A have the
same rank, A should satisfy the desired property. O

Example 6.6. Let m=2,n=1ands=1.Let V; = V(y,01y,d2y) C 1 Aland V, = V(y, d2y) C 7 AL
Then V(Z(V;)) = {0} C A' fori=1, 2. So V, is prolongation admissible while V, is not prolongation
admissible, for B;(V(Z(V3))) = {(0,0,0)}& V> = {(0,¢,0) : ¢ € £}. This fact can also be obtained by
Lemma 6.5 for E = {y} and there does not exist such an A, linear in J,y in a characteristic set of V,.

We now show that prolongation admissibility is a definable property similarly as in the ordin-
ary differential case [8, Lemma 2.28].

Lemma 6.7. Let (V}),.5 be a definable family of algebraic varieties in t,A". Then {b € B:
V), is prolongation admissible} is a definable set.

Proof. Follow the proof of [8, Lemma 2.28]. Suppose each Vj, C 7,A" in the definable family
(Vb)pep is defined byﬁ(b, (Qyj)eeegs,gjgn) =0, i=1,..., L. By abuse of notation, let B;(V},) be
the Zariski closure of {V,(a) : Vi(a) € V,} in t,A". Then deg(Bs(V})) has a uniform bound T in
terms of the degree bound D of the f;, m, n, £ and s. Indeed, let zjy (j =1,....,n;0 € O) be
new A-variables and replace 0(x;) by zj¢ in each f; to get a new differential polynomial g;.
Consider the new differential system S := {g, ...,gg,ék(Zj)g) —2Zis0: k=1,..,m0€ O}
Regard § as a pure algebraic polynomial system in zj) and Jk(zj9) temporarily, and let U be the
Zariski closed set defined by S in t;(t;A"). Let Z = {c € t,A" : V(c) € U}. Clearly, Z = {V,(a) :
V(@) € Vi}. By [7, Corollary 4.5], the degree of the Zariski closure of Z, namely By(V}), is

bounded by some number D; which depend on D, m, n, £ and s.
By [11, Proposition 3], an irreducible algebraic variety V C t;A” can be defined by

n(s —;m) + 1 polynomials of degree bounded by the degree of V. Since the degree of an alge-
braic variety is the sum of the degrees of its components, combined with Kronecker’s theorem
[25, p.146], By(V}) could be defined by at most n(s —:nm) + 1 polynomials of degree bounded
by D;. Hence, (Bs(V3)),cp is a definable family. Since Vj, is prolongation admissible if and only if
Vi, = B(V}), which implies that {b : V}, is prolongation admissible} is a definable set.

Definition 6.8. Let V C 7;A" be an irreducible prolongation admissible variety and W = V(I(V))
be the A-variety defined by defining equations of V. A component W; of W is called a dominant
component if B{(W;) = V.

The following result shows how to get the desired unique irreducible A-varieties from irredu-
cible prolongation admissible varieties, where additional conditions are required to generalizes [8,
Lemma 2.15] to the partial differential case.

Lemma 6.9. Let V C 1,(A") be an irreducible prolongation admissible variety of dimension
(d+ 1)(5—;]%) —1 and in the case s> 0, suppose additionally 7, (V) is of dimension d—+ 1.
Then W =V(I(V)) has a unique dominant component W, and wow,(t)=

(d+1)<t;m> - (“’2_5).

Proof. Two cases should be considered according to whether s=0 or not.
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Case 1) s=0. In this case, P =I(V) is a prime ideal of F[yi,...,y,] of dimension d. By [16,
p.200, Proposition 10], {P} is a prime A-ideal of F{yi,....y,} with Kolchin polynomial

oy (t) =d <t—;m> Thus, W = V(P) itself is its dominant component and satisfies the

desired property.

Case 2) s>0. Fix an orderly ranking # on F{Y} and denote %, to be the ordering on
©-(Y) induced by 2. Since 7, ¢(V) is of dimension d+ 1, a characteristic set of the Zariski clos-
ure of 75,0(V) w.r.t. % is of the form By, ...,B,_4_; where 1d(B;) = y,, for each i. Since V is irre-
ducible and prolongation admissible, by Lemma 6.5,
S={0(ys): ord(0) <s,i=1,...,n—d— 1} is a subset of the leaders of a characteristic set A

of V w.r.t. %;. Since the dimension of Vis (d + 1) <S J:nm) —1,1d(4) = SU {1(ys,.4)} for some

1€ 0O and 0,4 € {1,....,n}\{01,...,0,_4-1}. So there exists B,_4 € A s.t. Id(B,_4) = (Yo, q)-
Let B=<B,...By—q>. Clearly, B is an irreducible coherent autoreduced set of
F{y1>-->yu}> by [16, Lemma 2, p.167], B is a A-characteristic set of a prime A-ideal P C

F{y1,-.oyn} wrt. R. Clearly, P=sat(B) and its Kolchin polynomial wp(t)=

(d+ 1)(t—:nm) - (t+ Z B S). We now show that V(P) C W and B,(V(P)) = V. Since V is

an irreducible prolongation admissible variety, there exists a point a € A" such that V (a) is a
generic point of V. So as A-polynomials, B; vanishes at a while Hz does not. Thus, P vanishes at
a, and consequently, Vi(a) € B;(V(P)). So V C B,(V(P)). Since both V and B;(V(P)) are irre-
ducible varieties of the same dimension, B{(V(P)) = V. So, Z(V) = PN F[O(Y)]C P, as a
consequence, V(P) C V(I(V)) = W.

Suppose W is a dominant component of W. Given a generic point £ € Wy, V(&) is a generic
point of V. So, B vanishes at ¢ and Hp does not vanish at &. Thus, V(P) vanishes at ¢, i.e.,
Wy CV(P). So Wy =V(P). Thus, V(P) is the unique dominant component W and
wV(P)(t):(d—kl)(t;m)—<t+m_s>. O

m

6.2. Proof of the main theorem

Before proving the main theorem, we need to bound the degree of By(V) similar as in [8,
Proposition 4.3] to get the candidates of the algebraic Chow varieties which can be used to para-
mertrize A-varieties in G, 45 ) (F).

Lemma 6.10. Let V C A" be an irreducible A-variety in G(,,)dys),)(}"). Then By(V) is an irreducible
variety in t,(A") over F of dimension (d + 1) (S —;m) — 1 and the degree of B,(V) satisfies

r/(Ser) < deg(B,(V)) < [(s+ 1)(d + 1)r]"(5“’(”m)“.

m

Proof. Tt is clear that B,(V) is an irreducible variety in t,(A") of dimension (d + )(S —;m> —1.

ns+1 (‘ )41

For the degree bound, we will first show that deg(B,(V)) < [(s + 1)(d + 1 . Since

V€ Gy (F), the A-Chow form F(uy, ...,ug) of V exists, and ord(F) =s, deg(F, u([)s) =r. Let
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J = [I(V),Ly, ...L4] € F{ug,...,us,Y}. Let # be a ranking on F{uy,..,uy Y} satisfying 1)
O(uij) < t(yk) for any 0 and 7, and 2) Z restricted to uy,...,uy is an orderly ranking with g

greater than any other u;;. Let %, be the ordering on u([)zs], ...,ugs] and Y induced by %. Suppose
1d(F) = 0(ug) for some 9 € O, and Sp = 89?500)

By Theorem 5.11, for j=1,..,n, the polynomial G;= Spy; — 80(” € J and note that
deg(G;j) = (d+ 1)r. We construct polynomials Gj g€ J for 0 € O, with 1k(G;¢) = 0(yj) and
deg(Gj ) < (ord(0) +1)(d+ 1)r inductively on the order of 0. Set Gj1 =Gj. Let Gjs =
rem ((5 (Gjh1),G ) be the algebraic remainder of 6;(Gj ) with respect to Gj ;. Clearly, Gjs5 € J
and is of the form Gjs, = SFéi(yj) + Tj s, for some Tj € Flult]. An easy calculation shows
that deg(G;s,) < 2(d + 1)r. Suppose the desired G; . = s‘;‘d“>“r(yj) + Tj: (1 € ©) have been
constructed, we now define Gj; (1 € @y1). For T € Opyy, let Gj; be the algebraic remainder of
7(Gj) with respect to < Gj.: 1€ Og;k<s>. Then G;; €J and Gj,= S’fﬁzr(y]) + T
where T; . € F[u*""] satisfies deg(T; ) < (k+2)(d + 1)r. In this way, the polynomials G; . €
J (7 € O) are constructed.

Clearly, < F[S],Gj,T : 71€ O > is an irreducible ascending chain under %, so J;=

(F[Sl’(GJPT)ze@SS) :S¥ is a prime ideal in F[Y ,u([) 9 ,u([fs]], which is a component of

V(F[S], (Gj’r)‘CE("Dg;). By Bezout Theorem [11, Theorem 1], we have

deg(J,) < [(d + 1)7] <S+m) H H deg(Gjo)

=1 0cO.,

< [(d+1)r] <+) HH )d+1) ](Hm)

7=11=0

< [s+1)(d+1)7] ”<5+1)<[+M)+1.

Let jgzjsﬂf[YM]. We claim that 7| :]I(V)ﬂ}"[YM]. Indeed, on the one hand, J| C
J N FIYH] =1(v) n F[YY]; on the other hand, for any polynomial H € I(V) N F[Y"], the
algebraic remainder of H with respect to (Gj.: 1€ @) is a polynomial H; € JN
F{uy, ...,us} = sat(F) with ord(H;) < 2s. Thus, H; € asat(FY) and H € J,. So by [11, Lemma

2] or [19, Theorem 2.1], deg(]I(V) NFY ]) = deg(J}) < deg(J).

Now, we show deg(]I(V) n f[Y[S]]) > r/(S J:ﬂm) By item 3) of Theorem 5.11, [Z N F[Y¥],
]L([)S}, ...,L([;]] ﬁ]—'[ug,. ,u‘[;]] (F). Similar to the procedures in [21, Theorem 6.25], the A-Chow
form of I(V) could be obtained from the algebraic Chow form of (V) N F[Y¥] by algebraic
specializations. So (d+1)r < (d+1) (S * m)d g( (V)n ]—'[YMD and deg(B,(V)) = deg

(H(V) mF[W]) > r/(”r'nm) O

Remark 6.11. In the ordinary differential case [8, Proposition 4.3], the construction of Gjj is

much easier and each G (k <s) could be chosen from F [u([,s], ...,ug],Y[S]]. However, due to the

more complicated structure of partial differential characteristic sets, the method could not be
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adapted here because there may exist T € @ such that any derivative of 7(ug) does not appear
in F. Also, here Gj ¢ € ]—"[u([)zs], ...,ugsl,Y[s]] for 0 € O,.

Now, we are ready to prove that A-Chow varieties of A" of index (d, s, ) exist for all n,d,s,r.
As mentioned in the beginning of this section, we will use certain algebraic Chow varieties to
parametrize A-varieties in G, 4 ,). For the sake of later use, we shall briefly recall the concept of
algebraic Chow varieties here.

For an irreducible variety V C P" over F of dimension d, the algebraic Chow form of V is the
polynomial H(uy,...,u;) whose vanishing gives a necessary and sufficient condition for V and
d+1 hyperplanes wu;y + ZJLI ujjy; = 0 having a nonempty intersection in P". Here w; =

(tios --» thin). For a d-cycle W in P", W = Zi’:l tW; with t; € N and dim(W;) =d, the Chow
form of W is the product of Chow forms of W; with multiplicity ¢;. Its degree in each u; is called
the degree of W and its coefficient vector, regarded as a point in a higher dimensional projective
space, is defined to be the Chow coordinates of W. The set of Chow coordinates of all d-cycles in
P" of degree e is a projective variety in the Chow coordinate space [3, 13], called the Chow var-
iety (of index (d, e)). Moreover, by [13, p. 57, Theorem II] and [3, p. 697-698], the defining
equations of Chow varieties are homogenous polynomial equations over Q. However, the affine
Chow variety of all d-cycles in A" of degree e is not Zariski closed in the Chow coordinate space,
but it is always a constructible set [8, Proposition 3.4], denoted by Chow,(d,e). Each point of
Chow,,(d, e)(F) represents a d-cycle in A" of degree e over F. All the Chow varieties we use
here are affine ones.

To show the existence of A-Chow varieties of A" of index (d, s, r), two cases should be consid-
ered separately. In the case s=0, the A-Chow form of each V € G, 4, is just equal to the
Chow form of By(V) C A", so the set of A-Chow coordinates of A-varieties in G, 4, is just
the same as the set of Chow coordinates of all irreducible varieties in A" of dimension d and
degree r. By item 5) of Fact 6.3, the latter set is a definable subset of Chow,(d,r), s0 G, 4.0,y i
a constructible set. Below, we focus on the case s > 0.

Let Chow /cim ((d+1)(*m) —1,e) be the affine Chow variety of all cycles in 7,(A") of
) yof sl o

m

dimension (d + 1)(‘;’") — 1 and degree e. Consider the disjoint union of algebraic constructible

sets

C= U Chow /iim|(d+1) s+m —1l,e
D1<e<D, "(m) m

where D;, D, are the lower and upper bounds given in Lemma 6.10. So each point a € C repre-
sents a [(d+ 1)(sjnm) — 1]-cycle in 7,A". To represent an irreducible A-variety V of the

desired Kolchin polynomial and A-degree by a point in C, we only need to consider those irredu-
cible varieties with Chow coordinates in C.

Let C; be the subset consisting of all points a € C such that a is the Chow coordinate of an
irreducible variety W which is prolongation admissible and additionally satisfies the follow-
ing conditions:

1) m,0(W) is of dimension d+ 1;

2) The unique dominant component of the A-variety defined by equations of W is of
A-degree g.

Theorem 6.12. The set Cy is a A-constructible set and the map which associates an irreducible

A-variety V C A" in Gnds,r) with the Chow coordinate of the irreducible variety B,(V) C 7(A")
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identifies G, 4, with Ci. In particular, the A-Chow variety of all irreducible A-varieties of
Kolchin polynomial (d + 1) ( g —l—nm) - (t+ Z a s> and A-degree r exists.

Proof. First, we show C; is a A-constructible set. From the definition of Chow coordinates,

we know each Chown<s+m> ((d +1) (5 tn m) 1, e) actually represents a definable family S, :=

m

s+m
m

(Fe) cechow () <(d +1) <S J;m) - 1,e> of homogenous polynomials which are Chow forms of

algebraic cycles in 7,A" of dimension (d + 1)(5;:1”1) —1 and degree e. The algebraic cycle
whose Chow coordinate is ¢ is irreducible if and only if its Chow form F. is irreducible. Since
irreducibility is a definable property, the set Co = {c € Chown(HM) ((d +1) (5 J};m) _ 1,3) :

F, is irreducible} is a definable set. Take an arbitrary ¢ € Cy and the corresponding polynomial
F. € S, for an example. Let V. be the corresponding irreducible variety with Chow coordinate c.
By item 5) of Fact 6.3, (V,).cc, is a definable family (For details, please refer to the proof of [8,
Lemma 3.5]). And by Lemma 6.7 and Fact 6.3, Cr={ceCy:
V. is prolongation admissible and dim(7m,o(V,)) =d+ 1} is a definable set. Then by Lemma
6.9, for each ¢ € C;, the A-variety corresponding to V. has a unique dominant component W,

and the Kolchin polynomial of W, is (d + 1)(tJrrnm) B (t+ Z - s>'

Since the Kolchin polynomial of W, is (d + 1) ( t —;m> — <t+ Z B S), the A-Chow form

d+1
(s +m )
(n+1) -1
of W, exists. Let U be the algebraic variety in ;A" X (]P’ m defined by the
defining formulae of V. and 0(L;) =0 for 0 € ®<, and i =0,...,d with each O(L;) = 0(uy) +

v 0 9 (ui)t(vi) regarded as a polynomial in variables @< (yx) and ®«(uy). Since
k=1 2uejo | o | 7 (Hik)T(Vk) Teg y <s(Vk) <s(

By(W.) = V., by item 3) of Theorem 5.11, the Zariski closure of the image of U under the fol-
lowing projection map

d+1 d+1
(n+1) s+m -1 - (n+1) s+m -1
w: T A" x \P m P m

is an irreducible variety of codimension 1, and the defining polynomial F of n(U) is the A-Chow
form of W.. By item 4) of Fact 6.3, the total degree of F is definable in families; this quantity is
just equal to (d + 1) times the A-degree of W,.. So the A-degree of W, is definable in families.
Hence, C, is a definable set, and also a A-constructible set due to the fact that the theory DCF ,,
eliminates quantifiers [22, Theorem 3.1.7].

By Lemma 6.9 and its proof, each irreducible variety V corresponding to a point of C; deter-
mines an irreducible A-variety W € G, 4 ,, where W is the unique dominant component of
the A-variety corresponding to the prolongation admissible variety V. And on the other hand,
each W € G, 4, determines the corresponding algebraic irreducible variety B{(W), whose
Chow coordinate is a point of C; guaranteed by Lemma 6.10. So we have established a natural
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one-to-one correspondence between G, 4, and C;. Thus, G, 4, is represented by the
A-constructible set C;. O

7. Conclusion

In this article, a quasi-generic partial differential intersection theorem is first given. Namely, the
intersection of an irreducible partial differential variety V with a quasi-generic differential hyper-
surface of order s is shown to be an irreducible differential variety with Kolchin polynomial

wy(t) — (t_ ;:— m) Then partial differential Chow forms are defined for irreducible partial

differential varieties of Kolchin polynomial (d + 1) < g —;m) — (t+ Z B S) and basic proper-

ties similar to their algebraic and ordinary differential counterparts are presented. Finally, differ-
ential Chow coordinate representations are defined for such partial differential varieties, and the
set of all irreducible partial differential varieties of fixed Kolchin polynomial and differential
degree is shown to have a structure of differentially constructible set.

The above results have generalized the theory of differential Chow forms and Chow varieties
obtained for the ordinary differential case [8, 9] to their partial differential analogs. However, the
theory of partial differential Chow forms and partial differential Chow varieties is far from well-
developed and there are several unsolved problems. As stated in Conjecture 4.6, we conjecture
that wy(t) = (d+ 1) < g ;m) - <t+ Z B S) for some d,s € N is not only a sufficient condi-
tion, but also a necessary condition such that the partial differential Chow form of V exists.
Another problem is how to represent general (irreducible) partial differential varieties by coordi-
nates and further how to provide a set of partial differential varieties of fixed characteristics with
a structure of partial differential constructible set.
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