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PREFACE

In 1932, the author published Differential equations from the algebraic stand-
point,! a book dealing with differential polynomials and algebraic differential
manifolds. In the sixteen years which have passed, the work of a number of
mathematicians has given fresh substance and new color to the subject. The
complete edition of the book having been exhausted, it has seemed proper to
prepare a new exposition.

The title Differential algebra was suggested by Dr. Kolchin. The body of
algebra deals with the operations of addition and multiplication. We are con-
cerned here with three operations—addition, multiplication and differentiation.

If T am not mistaken, the general nature of the subject here treated is now
well enough known among mathematicians to permit me to dispense with a de-
tailed introduction, such as was givenin A. D. E. My prinecipal task is to show
how much the present book owes to my associates. I am referring to H. W.
Raudenbush, W. C. Strodt, E. R. Kolchin, Howard Levi, Eli Gourin and
Richard M. Cohn.

Cohn’s construetive proof of the theorem of zeros will be found in Chapter V.
The theorem on embedded manifolds due to Gourin is contained in Chapter I1I.
Chapter VI contains a discussion of Strodt’s work on sequences of manifolds.

In Chapters I, I1I and IX, there are presented portions of Levi’s work on
ideals of differential polynomials and on the low power theorem. Of Kolchin’s
investigation of exponents of differential ideals, I have been able to give only a
bare idea. Other work of Kolchin, for instance, proofs for the abstract case of
results previously established for the analytic case, is given in Chapter II. His
work on the Picard—Vessiot theory, which employs the methods of differential
algebra, has just appeared in the Annals of Mathematies,? and may be permitted
to speak for itself.

The contributions of Raudenbush c¢an only be described as fundamental. The
basis theorem of Chapter I was, in the analytic case, implicitly contained in
A.D.E. It exists there in two parts; the first, the theorem on the completeness
of infinite systems; the second, the theorem of zeros. Only casually had I no-
ticed that the two theorems amounted to a basis theorem. I was acquainted
with the fact that the theorem on the decomposition of manifolds amounted, in
virtue of the theorem of zeros, to a theory of perfect and prime ideals of differen-
tial polynomials. In the summer of 1933, I suggested to Raudenbush the prob-
lem of constructing a theory of perfect ideals which would be valid in the ab-
stract case. This he accomplished, and, in the course of his work, he brought
the basis theorem to its present complete and abstract form. In the proof of

1 These Colloquium publications, vol. 14, Called below A. D. E.
2 Kolchin, 14. (See Bibliography, p. 180.)
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v PREFACE

the basis theorem, the procedure of taking powers is due to Raudenbush. The
chains, characteristic sets and methods of reduction existed in the older theorem
of completeness.

Raudenbush introduced generic zeros of prime ideals. Here he adapted a
method of van der Waerden, which can be traced back to Kénig. Raudenbush
gave the first example of a system of differential polynomials with a weak basis.
Systems with no strong bases were later produced by Kolchin.

The problems which this book treats are very concrete problems. They deal
with situations of the classical theory of differential equations. Seldom would
much be lost, as far as the results are concerned, if one limited oneself to the
material of classical analysis. The abstract method which we generally employ
has, however, a definite utility. It serves to separate algebraic methods from
analytic methods. On the whole, it contributes to simplicity, although at times
an abstract treatment is less natural than an analytical one. The form in which
the results of differential algebra are being presented has thus been deeply in-
fluenced by the teachings of Emmy Noether, a prime mover of our period, who,
in continuing Julius Konig's development of Kronecker’s ideas, brought mathe-
maticians to know algebra as it was never known before.

In this connection, I should like to say something concerning basis theorems.
The basis theorem of Chapter I will be seen to play, in the present theory, the
role held by Hilbert’s theorem in the theories of polynomial ideals and of alge-
braic manifolds. When I began to work on algebraic differential equations,
early in 1930, van der Waerden’s excellent Moderne Algebra had not yet ap-
peared. However, Emmy Noether’s work of the twenties was available, and
there was nothing to prevent one from learning in her papers the value of basis
theorems in decomposition problems. Actually, I became acquainted with the
basis theorem principle in the writings of Jules Drach? on logical integration,
writings which date back to 1898. How a basis theorem is employed by him
will now be described.

There are two distinct methods for characterizing an irreducible algebraic
equation. On the one hand, an equation f(z) = 0 is irreducible if f(z) cannot
be factored. On the other, there is irreducibility if every equation which is
satisfied by a single solution of f{x) = 0 is satisfied by all such solutions. The
first formulation of irreducibility leads to the notion of irreducible algebraic
manifold and to that of irreducible algebraic differential manifold. The
second leads to the concept of irreducible system of algebraic differential
equations which was employed by Koenigsberger and by Drach. A system of
such equations, ordinary or partial, is irreducible if every differential equation
which admits a single solution of the system admits all solutions. Drach under-
takes to show that, given a system of partial differential equations, the repeated
adjunction of new equations will eventually produce an irreducible system. For
this he invokes a theorem of Tresse,* which states that, in every infinite system

3 Drach, 4, pp. 292-296.
¢ Acta Mathematica, vol, 18 (1894), p. 4.
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of partial differential equations, there is a finite subsystem from which the infinite
system can be derived by differentiations and eliminations. A study of Tresse’s
paper will quickly convince one that he claims for his work a generality which it
does not have. The statement of his theorem, and his argument, have a definite
meaning only for linear systems.

It has not been possible for me to present all of the material which has been
developed since the publication of A. D. E. Thus, I have had to pass by most
of Kolchin’s study of exponents and a good deal of Levi’'s work on ideals. Of
Strodt’s paper, only a sketch is given. My own work on general solutions of
equations of the second order in one unknown, and of equations of the first order
in two unknowns, is also omitted.

I have tried to give, to the present book, the elementary quality which is
possessed by A. D. E. Essentially, no previous knowledge of abstract algebra
is necessary. Asin A, D, K., a treatment is given of Riquier’s existence theorem
for orthonomic systems of partial differential equations.

New York, N. Y.
January, 1948.
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CHAPTER I
DIFFERENTIAL POLYNOMIALS AND THEIR IDEALS
DIFFERENTIAL FIELDS

1. We deal with an algebraic field of characteristic zero, denoting the field by
§. §, then, is a collection of elements of one type or another, upon which can be
performed the operations of addition, subtraction, multiplication and division,
except that division by a certain element 0 of ¥ is excluded. Addition and
multiplication are commutative and associative, and multiplication is distribu-
tive with respect to addition. Subtraction and division are one-valued opera-
tions. & contains a subset which is isomorphic, as regards addition and multi-
plication, with the system of rational numbers; this subset we consider, as we
may, actually to be the system of rational numbers.

We are going to work with fields & of characteristic zero in which an operation
of differentiation is performable, This operation, which replaces every element
a of § by its derivative, an element a’ of F, must be such that, for  and b in &,

(1) (at+b) =a -+
and
(2) (ab)’ = ba’+ ab’.

When such an operation of differentiation exists for §, we shall call § a dif-
ferential field.

From (1) with b = 0, we see that 0/ = 0. From (2) withb = 1 and ¢ = 0,
it follows that 1’ = 0. It is easy to show that the derivative of every rational
number is zero. An element with zero for derivative is called a constant.

The system of rational numbers, with derivatives taken, as they must be
taken, equal to zero, is a differential field. So are the system of real numbers
and the system of complex numbers. Further examples are the totality of
rational functions of a variable z, with complex coefficients, and the totality
of elliptic functions with a given period parallelogram; in these examples, dif-
ferentiation is supposed to be performed as in analysis.

If § and 5, are differential fields and if §; contains &, , is called an extension
of & It is understood that, when ¥ is considered by itself, the rational opera-
tions and differentiation are performed in it just as when & is regarded as part
Of fﬁ.

Hereafter the term field will be used as an abbreviation for differential field.
When an ordinary algebraic field is used, a proper announcement will be made,
We repeat that the characteristic will always be zero.

1



2 DIFFERENTIAL ALGEBRA

INDETERMINATES

2. We shall be given frequently a letter such as ¥, the first of an infinite se-
quence of symbols

(3) Y, y,; y”) Tty y(p)7 Tt

The symbols in (3) will be used for building polynomials, each polynomial in-
volving, of course, only a finite number of the symbols. We shall call y a
differential indeterminate or an tndeterminate, and y» the pth derivative of y.
Furthermore, for every p, and for every ¢ > 0, y®» + 2 will be called the gth
derivative of y®. It is to be emphasized that only y in (3) is an indeterminate;
the ¥‘® are not indeterminates, but derivatives of an indeterminate.

Our problems will deal with any finite number » of indeterminates 1, + -+ + , Y.
The jth derivative of y; will be written y;;. We shall call y; its own derivative
of order zero and shall sometimes write i for y;. Where unsubscripted letters
u, v, -+, w are used for indeterminates, derivatives will be written with sub-
seripts rather than with superseripts. Thus, « being an indeterminate, u; is the
jth derivative of .

DIFFERENTIAL POLYNOMIALS

3. In what follows, we work with an arbitrary field &, which, in every ques-
tion treated, is assigned in advance. Let there be given indeterminates
Yy, + o, Ya By a differential polynomial (d.p., singular and plural), we shall
mean a polynomial in the y;; with coefficients in F.

Two d.p. are considered equal if, and only if, their coeflicients of like power
products in the y;; are equal. This is part of the basis for calling the y indeter-
minates.

In describing a d.p. A, it is at times desirable to refer to the field ¥, under-
lying the discussion, in which A has its coefficients. This is done by calling A
a d.p. over F.

The totality of d.p. in y1, -+, y» over F will be denoted by § {4y, - -+ , y. }.
At each stage of our work, &, as has been observed, is supposed to be known.
F is not changed without an explicit statement being made.

Let A be a d.p. By the derivative of A, we shall mean the d.p. obtained from
A with the use of (1) and (2) of §1.

Thus, if § is the totality of rational functions of a variable x and if

A =y} + 2%yn,

the derivative of A is y? 4+ 2zyyn + 22ya + 2%

Higher derivatives are defined in the expected way.

Until further notice, capital italics will denote d.p.

By the class of 4, if A is not merely an element of &, we shall mean the great-
est p such that some y,; is present in a term of A whose coefficient is distinet
from zero. If A is an element of §, A will be said to be of class 0.
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We shall at times speak of a d.p. 4 as involving a certain y; effectively. We
shall mean by this that at least one y;; appears effectively in A.

By the order of A with respect to y;, if A involves y; effectively, we shall mean
the greatest j such that y;; appears effectively in A. If A does not involve y;,
the order of 4 in y; will be taken as zero.

Tet A, and A; be two d.p. Suppose that some indeterminate y, appears
effectively in both of them. If A, is of higher order in y, than A;, 4, will be
said to be of higher rank than A, and A, of lower rank than A, in y,. If A; and
A, are of the same order, say ¢, in yp, and if A is of higher degree than A4, in y,,,
then, also, 4, will be said to be of higher rank than A; in y,. Finally, 4, will
be of higher rank than A4; in y, if A, involves y, and 4, does not. Two d.p. for
which no difference in rank is established by the foregoing criteria will be said
to be of the same rank in y,.

If A is of higher class than A;, A: will be said to be of higher rank than A,,
or to be higher than A,. If A, and A, are of the same class p > 0, and if 4, is
of higher rank than A, in y,, then, again, 4, will be said to be higher than A;.
Two d.p. for which no difference in rank is created by what precedes will be said
to be of the same rank. Thus, all d.p. of class zero are of the same rank.!

If A, is higher than A, and A; higher than A, then Aj; is higher than A4;.

Where unsubscripted indeterminates u, v, - - - , w are used, class and relative
rank are established by giving to the pth indeterminate from the left the role of
Y above.

The following simple fact will be important in our later work.

Every aggregate of d.p. contains a d.p. which is not higher than any other d.p. of
the aggregate.

If the aggregate contains a d.p. of class zero, any such d.p. answers our re-
quirement. Otherwise, let p be the least of the classes of the d.p. From the
d.p. of class p, we select those which are of a least order, say g, in y, and from
the d.p. just selected we pick one, A, which is of a lowest degree in y,,. Then
no d.p. in the aggregate is lower than A.

CHAINS

4, If A, is of class p > 0, 4, will be said to be reduced with respect to A, if A,
is of lower rank than A; in y,.

The system
“4) Ay Agy -, As
will be ealled a chain if either
(a) r=1 and 4,%0,
or

(b) r > 1, Ay is of positive class and, for j > i, A;is of higher class than A; and
reduced with respect to A;.

t As will be seen in Chapter IX, there are other ways of ordering d.p.
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Of course, r = n.
The chain (4) will be said to be of higher rank than the chain

(5) Bl) BZ: e )BB

if either

(a) there is a j, exceeding neither v nor s, such that A; and B; are of the same rank
for i < j and that A ;s higher than ® B;

or

(b) s > rand A; and B; are of the same rank for it = r.

Two chains for which no difference in rank is created by what precedes will be
said to be of the same rank. For such chains, » = s and A; and B; are of the
same rank for every <. ‘

Let @, &, ®; be chains such that & is higher than ®; and &, higher than &;.
We write ®; > &, ®, > ®3. We shall prove that &, > &s.

Let &, and &; be represented by (4) and (5) respectively and let &; be

C,Cy -+, Chs

Suppose first that ®; > &, for the reason (a) and that ® > & for the reason (a).
Let  be the smallest integer such that B, is higher than C;. Then either A; is
of the same rank as B; for ¢ = j or there is a k = j such that A is higher than
Bi. In either case, ® > @®; by (a). Suppose now that & > &, by (b), while
&, > ®; by (a). Let j be taken as above. Ifj > r,® > ®3by (b). Ifj = r,
#; > ®; by (a). Now let & > &, by (a) while & > &; by (b). Let j be the
smallest integer for which A;is higher than B;. Then A; is higher than C; and
A;is of the samerank as C; fort < j. Thus & > ®; by (a). Finally, if & > &,
by (b) and &, > ®; by (b), then & > ®; by (b).

We shall use later the following fact:

In every aggregate of chains, there ts a chatn which is not higher than any other chain
of the aggregate.

Let o be the aggregate. We form a subset oy of e, putting a chain @ into oy
if the first d.p. in @ is not higher than the first d.p. of any other chain in « (§3).
If the chains in a; all consist of one d.p., any chain in @; meets our requirements.
Suppose that there are chains in @; which have more than one d.p. We form the
subset ap of them whose second d.p. are of a lowest rank. If the chains in o
all have just two d.p., any of those chains serves our purpose. If not, we con-
tinue, reaching lowest chains in no more than n steps.

CHARACTERISTIC SETS

5. Let Z be a finite or infinite set of d.p. in F{y1, -+ ,y.} (8§3). We do
not assume the d.p. in T to be distinct from one another.? Suppose that the
d.p. in T are not all zero.

2If j = 1, this is to mean that A, is higher than B;.

3 What we are really considering then, is a system of distinct marks, each mark being asso-
ciated with a d.p. Two marks may be associated with identical d.p.
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It is possible to form chains with d.p. in Z; for instance, every nonzero d.p.
in = is a chain. Among all chains in =, there are some, by §4, which have a
lowest. rank. Any such chain will be called a characteristic set of Z.

If A;in (4) is of positive class, a d.p. F will be said to be reduced with respect
to the chain (4) if F is reduced with respect to A, ¢ =1, -+, r.

Let A, in (4) be of positive class and let = be a system containing (4). We
shall prove that, for (4) to be a characteristic set of Z, it vs necessary and sufficient
that T contatn no monzero d.p. reduced with respect to (4). Suppose that (4) is
not a characteristic set of Z, while (5) is. Suppose that (5) is lower than (4)
by (b) of §4. Then B, . is reduced with respect to (4). If (5) is lower by
(a), there is some B; with ¢ £ r which is reduced with respect to (4). Suppose
now that (4) is a characteristic set and that T contains a nonzero d.p. F which
is reduced with respect to (4). If the class of F is higher than that of 4,, we
get a chain lower than (4) by adjoining F to (4); otherwise, if the rightmost A
whose class is not exceeded by that of F is A;, the chain Ay, --- , A;_1, F is
lower than (4).4

Let Z be a system for which (4), with A, of positive class, is a characteristic
set. We see that, if a nonzero d.p., reduced with respect to (4), ts adjoined to Z,
the characteristic sets of the resulfing system are lower than (4).

Let Z be a system of d.p. which are not all zero. The following method for
constructing a characteristic set of £ can actually be carried out when T is
finite. Of the nonzero d.p. in Z, let A; be one of least rank. If A, is of class
zero, it is a characteristic set for . Let A be of positive class. If Z contains
no nonzero d.p. reduced with respect to A,, then A, is a characteristic set. Sup-
pose that such reduced d.p. exist; they are all of higher class than A,. Let A4,
be one of them of least rank. If T has no nonzero d.p. reduced with respect to
A and A, then A,, A, is a characteristic set. If such reduced d.p. exist, let As;
be one of them of least rank. Continuing, we arrive at a chain (4) which is a
characteristic set.

Until further notice, large Greek letters not used as symbols of summation or
of multiplication will denote systems of d.p.

RepucTioN

6. In this section, we deal with a chain (4) with A, of positive class.

If a d.p. G is of class p > 0 and of order m in y,, we shall call 3G/dy,n the
separant® of G. The coefficient of the highest power of ¥, in G will be called
the initial of G.8

The separant and initial of G are both lower than G.

4 When j = 1, we use the chain F,

5If G, arranged as a polynomial in ypm, is ELO (oF y; s the separant is Ef=1 1 C; y‘p"ml.
As § has characteristic zero, the separant does not vanish identically.

¢ If the indeterminates are u, v, - - + , w, then w will play the role of y, above, in the definitions
of separant and initial of a d.p. actually involving w.
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In (4),let S; and I, be respectively the separant and initial of 45,2 = 1, -+, 1.

We shall prove the following result.

Let G be any d.p. There exist nonnegative integers s;, ty, © = 1, -+ , 1, such
that, when o suitable linear combination of the A, and of a certain number of their
derivatives, with d.p. for coefficients, is subtracted from

S SeIe .. IMG,
the remainder, R, is reduced with respect to (4).
We limit ourselves, as we may, to the case in which @ is not reduced with re-
spect to (4).
Let j be the greatest value of 7 such that G is not reduced with respect to A,.
Let A; be of class p, and of order m in y,. Let G be of order % in y,.
We suppose first that A > m. If ks = b — m, then A, the k;th derivative

of A; will be of order hiny,. It will belinear in y,, with S;for coefficient of yps.
Using the algorithm of division, we find a nonnegative integer v, such that

876G = CLA® + Dy

where D, is of order less than h in y,. In order to have a unique procedure, we
take o1 as small as possible.

Suppose, for the moment, that p < n. Let a be an integer with p < ¢ £ n.
We shall show that D; is not of higher rank than G in y,. We may limit our-
selves to the case in which Dy s 0. Also, since S; is free of y,, we need only
treat the case in which y, is present in G. Let @ be of order g in y,. Then the
order of D, in y, cannot exceed g. If D; were of higher degree than G in y., Ci
would have to involve y,, to the same degree as D; and C; A{® would contain
terms involving ¥,, and ¥, which would be balanced neither by D, nor by S} G.
This proves our statement.

If D, is of order greater than m in y,, we find a relation

SP Dy = C,A™ + D,
with D of lower order than D; in y, and not of higher rank than D, (or @) in
any y, with @ > p. For uniqueness, we take v, as small as possible.
We eventually reach a Dy, of order not greater than m in y,, such that, if
8 =v+ o+
we have

8§ G = BAP + -+ + B A + D,

Furthermore, if @ > p, D, is not of higher rank than G in y,.

If D, is of order less than m in y,, D, is reduced with respect to A; (as well
as to any A; with ¢ > 7). If D, is of order m in y,, we find, with the algorithm
of division, a relation

1D, = HA; + K
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with K reduced with respect to 4, as well as to A; 4, ---, 4, For unique-
ness, we take t; as small as possible.

If K is not reduced with respect to (4), we treat K as G was treated. For
some [ < j, there are s, f; such that S;' I’ K exceeds, by a linear combina-
tion of A; and its derivatives, a d.p. L which is reduced with respect to
Al, Al+1, ey, A,;. Then

nSy I I G
exceeds L by a linear combination of A;, 4; and their derivatives.
Continuing, we reach a d.p. R as described in the italicized statement.

Our procedure determines a unique B. We call this B the remainder of G with
respect to the chain (4).

IDEALS OF DIFFERENTIAL POLYNOMIALS

7. Let = be a system of d.p. in F{ 4, -+, ¥ }, any two d.p. in T being
distinet from each other. We shall call Z a differential ideal of differential
polynomials if T satisfies the following two conditions:

(a) If Ay, -+, A, s any finite subset of d.p. in Z,
Cidr+ -+ + CA,
where the C are any d.p. at all in F{ 11, +++ , yn }, s contained in Z.

(b) The derivative of every d.p. in Z is contained in Z.

Condition (a) makes Z an algebraic ideal in F{ v, ---,y.}. Together,
(a) and (b) state that, given any finite subset of d.p. in Z, every linear combi-
nation of the d.p. of the subset, and of their derivatives of any orders, belongs
to Z. The coefficients in the linear combination may be any d.p.

Throughout our work, unless some other indication is made, the term ideal
will stand for differential ideal of d.p.

An ideal contains an infinite number of d.p. unless it consists of the single d.p.
0. The intersection of any finite or infinite number of ideals is an ideal.

An ideal Z will be called perfect if, whenever a positive integral power of a
d.p. A is contained in Z, A is contained in Z. The intersection of any finite
or infinite number of perfect ideals is a perfect ideal.

An ideal Z will be called prime if, whenever a product AB is contained in Z,
at least one of A and Bis in 2. Every prime ideal is perfect.

Let A be any system of (not necessarily distinet) d.p. There exist ideals, for
instance F{ y1, -+, ¥~ }, which contain all d.p. in A. The intersection of all
ideals containing A will be called the ideal generated by A and will be denoted by
[A]l. A d.p. A is contained in [A] if, and only if, A is a linear combination of
d.p. in A and of derivatives, of various orders, of such d.p.?

The intersection of all perfect ideals containing A will be called the perfect
tdeal determined by A and will be denoted by { A }. One sees that { A } contains
[A].

7 Unless other indications are given, the coefficients in a linear combination may be any d.p.
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8. We represent by (A) the totality of linear combinations of d.p.? in A and,

when we wish to express the fact that a difference A — B is in (A), we shall
write

A = B, (4).0
The statements
A=B, [A] ; A=B, {A}
will mean, respectively, that A — B is contained in [A] orin { A }.
9. We are going to prove that { A } consists of those d.p. which have positive

integral powers tn [A]. We use the following lemma, in which the field is the
field of rational numbers.

LemMaA: For u an tndeterminate and for every positive tnieger p,

(6) uirt =0, [u]w
Differentiating u? and dividing by p, we have
) w =ty =0,  [ur],

which gives (6) if p = 1. Suppose that p > 1. By (7),
(p—1Dur—2f +ur—lyy =0, [wr].
Multiplying by w; and using (7), we find that
wr—%i=0, [ur]

and we have (6) for p = 2. Continuing, we find (6) to hold for every p.

We return now to i, ---,¥.} and to { A}. As { A} contains [A],
{ A} contains every d.p. which has a power in [A]. If we can show that the
totality of such d.p. is an ideal, we shall recognize that totality to be { A }.
If A has a power in [A], CA, for every C, has a power in [A]. If A7 and B?are
in [A], (A 4+ B)?+ ¢—!ig seen, on being expanded, to be in [A]. Thus the set
of those d.p. which have powers in [A] is closed with respect to linear combi-
nation. The lemma above shows that, if A7 is in [A], then (4/)?? ! with 4’
the derivative of 4, isin [A]. OQur statement is proved.

10. We prove the following lemma, in which the field is that of the rational
numbers.

Lemma: If u and v are indeterminates and if j is @ nonnegative integer,”
ui + 11)]' = 0; (uv, (uv)l; Ty (uv)j)
where (uv)x 18 the kth derivative of uv.
8 Note that we do not use derivatives of d.p. in A.
¥ If, for instance, A consists of d.p. ¢4, - - -, Cr, we may write
A =B, (Cry +++,Co).

10 See remarks on notation in §2.
Ny =,
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The statement is true for § = 0. We make an induction to j = r, where
r > 0, supposing lower values of j to have been treated. We have

(8) uv, -1 =0, (uv, <+, (W) - 1).
Then
wo, + rut g, -1 = 0, (uv, -+, (u),).

We multiply by « and use (8). The induction is seen to be accomplished.

Suppose now that, F being any field, we are given a perfect ideal Z in §
{y, - ,yn}. Let AB belong to Z. By the lemma, with j = 1,2 A2B’, with
B’ the derivative of B, is in 2. This puts AB’ in Z. In general, we see that
if = is a perfect ideal, and if AB is in Z, every A9 BW, superscripts indicating
differentiation, 1s in Z,

11. We denote the union®® of systems Z; and Z; by Z; 4+ 2. The inter-
section of =, and Z; will be denoted by Z; M Z,.

Let = be any system of d.p. and Fy, - - - , F, any finite set of d.p. We shall
prove that

) {E+F1F2---Fp}={E-{—Fl}f\{Z—I—Fg}ﬂ---f\{Z+Fp}.

It suffices to treat the case of p = 2. The first member of (9) is easily seen
to be contained in each { = 4 F;}. It is enough, then, to consider an 4 which
is contained in {4+ F,} and in { £ + F,} and to prove that A is in
{ =+ FF,}. By §9, thereis a g such that

(10) A1 =8+ Gy Ae= 8 4 G,

with Sy and Sy in [Z], G1in [F1] and G in [F:]. Multiplying the two equations
of (10), we have

(11) A% = Ss + G1G2
with S; in [E] Let
(12) Gi = MF, + M\FY + +-+ + M,F®,

Gy = NF; + NiFy' + -+« + N,

where superseripts indicate differentiation. Now FiF, is in { F1F, }. By §10,
every FO FY isin { FiF, }. By (12) GiG; is in { FiF, }, thus in { = + FuFs }.
By (11), A?¢ and therefore also 4, must be in { T 4 F1F; }.

BaAsEs

12. Let Z be an infinite system of (not necessarily distinet) d.p. We shall
call a finite subset ® of = a basis of =if { & } contains every d.p. in Z. Thus,
if ® is a basis of Z, there is, for every A in Z, a positive integer p, depending
on A4, such that A is linear in the d.p. in ® and their derivatives of various or-

12 The complete lemma will be used in Chapter II1.
18 Where other indications are not given, we use d.p.in §{ y1, +++ , yn }, with § any field.
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ders. If ®is a basis of =, and if &, is a finite subset of £ which contains ¥,
then @®; is also a basis of Z.
We shall prove the

TueoreM: Every infinite system of differential polynomials in F{ yy, - ,¥yn }
has a basts.

The fundamental role played by Raudenbush in bringing the basis theorem to
its present complete form has been deseribed in the preface.

We assume the existence of infinite systems without bases and work towards
a contradiction.

13. LEMMA: Let Z be an infinite system with no basis. Let d.p. I'y, --- , Fy
extst such that, when each d.p. in Z is multiplied by a suitable product of powers
of the F, one secures a system A which has a basis. Then at least one of the systems
Z4F,i=1,.--,p, has no basis.

Let us suppose that each = + F, has a basis. Since a basis may be enlarged
(§12), we may assume that we have a finite subset ® of £ such that & + F; is
a basis for T4+ F,, i =1, ---,p. We suppose, furthermore, enlarging ® if
necessary, that when each d.p. in ® is multiplied by a suitable produet of powers
of the F, we secure a basis of A.

For each 1, { Z + F;}, the smallest perfect ideal containing Z 4 F;, is
contained in {® + F;}. Let K=F,F,---F,. By §11, {24+ K} is the
intersection of the { £ 4+ F;} and so is contained in every {® 4+ F;}. As
{® -+ K} is the intersection of the {® 4+ F;}, { £ 4+ K} is contained in
{® 4+ K}. Thus® + K is a basis for £ + K.

It follows that, for every d.p. A in Z, there is a relation

A1=G@+ MK+ MK + --- + M,K®
with G in [®]. Then
(13) Aetl =G4 + MKA + M\K'A + --- + M, KA,

We shall prove that KA isin { ® }. We know that A has a basis ¥, each d.p.
in ¥ being obtained from one in & by a multiplication by a power product in
the F. We see immediately that { ® } contains { ¥ }; also that some power of
KAisin { ¥}, Then KA isin { ¥} and hencein { @ }.

By §10, each K?A isin {®}. As GA isin { ® }, we see from (13) that
Ae+tisin { @ }. Thus Aisin { @}, that is, ® is a basis for =. This proves
the lemma.

14. From among all infinite systems which lack bases, we select one, Z, whose
characteristic sets (§5) are not higher than those of any other system which
lacks a basis (§4). Let (4) be a characteristic set of =. Then A; is not of
class zero; otherwise A, an element of ¥, would be a basis of Z.

For every d.p. in 2 which is not in (4), let a remainder with respect to (4)
be found as in §6. Let A be the system composed of the d.p. in (4) and of the
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products of the d.p. of = not in (4) by the produects S7 --- I/ used in their
reduction. Let @ be the system composed of (4) and of the remainders of the
d.p. of Z not in (4).

Now € must have a basis. Otherwise it would certainly have nonzero d.p.
not in (4). As such a d.p. would be reduced with respect to (4), (4) could not
be a characteristic set of @ (§5). This means that the characteristic sets of
would be lower than (4), and = would not be a system, lacking a basis, of
lowest characteristic sets.

We may suppose that @ has a basis ® composed of d.p.

Ay, ++-,A; Ry -, R.

Let H; be the d.p. of A which corresponds to R;,, ¢ = 1, --- ,s. Let ¥ be the
set

Ay - Ay Hy - H.

We wish to see that ¥ is a basis for A.
We know that { ® } contains [A4, - -~ , 4,].
Because

HiERi; [Al’“';AT]y ’i=1,"',8,

we have H;=R;, {®}. Aseach R;isin { ®}, each H;isin { ®}. Hence
{®} contains { ¥}. Reciprocally, { ¥} contains { &}, so that {®} and
{ ¥} are identical. Now if H is any d.p. of A and R the corresponding d.p. of
Q, we see as above that H, like R, is in { @ }, therefore in { ¥ }. Thus ¥ is a
basis for A.

The lemma of §13 informs us that at least one of the systems £ + S;, 2 + I;
has no basis. But, for each 7, S; and I; are distinet from zero and reduced with
respect to (4). Then, by §5, the characteristic sets of £ + S; and 4 I are
lower than (4). This produces a final contradiction and the truth of the basis
theorem of §12 follows.

STRONG AND WEAK BASES

15. A basis @ of a system T will be called a strong basis if there exists a posi-
tive integer p such that the pth power of every d.p. in Z isin [®#]. Bases which
are not strong may be called weak.

We are going to give an example of a system which has no strong basis.”*

Let 2, and Z; be ideals. Let £ be the totality of products AB where 4
is any d.p. of Z; and B any d.p. of ;. We shall call [Z] the product of Z;
and ¥, and shall write [Z] = Z;-%,. Multiplication as thus defined is com-
mutative and associative.

We use a single indeterminate ¥ and any field §. We shall prove that the
ideal [y]? has no strong basis. Suppose that there is a strong basis. Then
there is one, ®, made up of d.p.

14 Raudenbush, 23, and Kolchin, 9. See bibliography on page 180.
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(14) Y, 0

where s is some integer.

Let p be such that the pth power of every d.p. in [y]? is in [®]. We shall
prove that the product of any p d.p. in [y]? is in [®].

For any A and B, and for any positive integer r, the » + 1 powers (A + ¢B)",
1=0,---,r, are linear in the r + 1 products 4B’ ¢ + j = r, with a non-
vanishing determinant. It follows that AB”—! is linear in the (4 + iB)"
with rational coefficients. Thus, for instance, AB is a sum of three terms
a;M} with rational @ and with M which are linear, with integral coefficients, in
A and B. This implies, by what precedes, that for any A, B, C, the product
ABC is a sum of terms a;M; with M which are linear, with integral coefficients,
in 4, B, C.

In this way, we find that the product of any p d.p. in [¢]? is linear in pth
powers, and is therefore in [®].

Let o be a positive integer, which will be fixed at a large value later. We
consider all d.p.

A
.
IIA
.
IIA

)

(15) YulYi * * ° Yy
for which %y + %2 + - - + %2, = a. Each d.p. in (15) is the product of p d.p.
in [y]2. If we define the weight of a product of y; as the sum of the subscripts,
the weight of each d.p. in (15) is «.

By the nature of (14) and by the homogeneity and isobaricity of the d.p. in
(14) and (15), each d.p. in (15) is linear, with coefficients in &, in the d.p.

(16) (WY Un *** Ynps
where the subscript k& indicates k differentiations and where one uses all non-
negative 7, j, k, j, for which
0=i=j<s i+j+k+in+- - +ip-2=0c
A set of distinet d.p. (15) is a linearly independent set; we mean by this that

there is no nonidentical linear relation, with coefficients in §, among the d.p.
Thus the number of distinet d.p. (15) does not exceed the number of distinct

d.p. (16).
Let a be divisible by 2p. Let us consider these d.p. (15) which are obtained
by assigning to %1, - - - , 12, — 1 arbitrary values from 0 to o/ (2p) inclugive. When

such assignments are made s, is determined. The number of times which any
one d.p. can be secured from such assignments is at most (2p)!. Then there are
at least

) enle )

distinet d.p. (15).
In (16) when all subscripts except & are selected, k is determined. As the
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number of d.p. in (14) is (s + 1) (s + 2)/2, the number of distinet d.p. (16) is
not more than

(18) s+ 1) (+2) (at+12%

For a large, the quantity in (17) exceeds that in (18). This furnishes a con-
tradietion which proves that [y]? has no strong basis.

DECOMPOSITION OF PERFECT IDEALS

16. We prove the following theorem 5
TrrorREM: Every perfect ideal of differential polynomials in F{ys, «++ ,yx}
has a representation as the intersection of a finite number of prime ideals.

We suppose that we have a perfect ideal £ with no such representation.
Then ¥ is not prime.® Let A and B be d.p. which are absent from £ while
AB is contained in Z. By §11, T is the intersection of {Z + A} and
{Z 4+ B}. At least one of the latter two ideals must fail to be the intersection
of a finite number of prime ideals. Suppose that { £ 4+ A }, which we denote
by Zi, so fails. Repeating our argument, we find %, to be a proper part of a
perfect ideal Z, which is not an intersection of a finite number of prime ideals.
Continuing, we form, with the help of the axiom of selection, an infinite se-
quence of perfect ideals

(19) 25217"';217)"

each a proper part of its successor. Let @ be the union of the ideals in (19) and
let & be a basis for ©.'7 Then & is contained in some ideal in (19), say in Z,.
Then Z, contains { ® }, hence @ and thus Z, ;. This contradiction proves
the theorem.

17. If an ideal 2, contains an ideal Z,, Z, will be called a divisor of Z;.
Let a perfect ideal Z have a representation

as an intersection of prime ideals.

If =, is a divisor of any other Z; we may suppress =; in (20). On this
basis, we suppose that 2 is not a divisor of any other ;. By repeated purg-
ing, we obtain a representation (20) with no Z; a divisor of any Z; with j # 4.

Let £’ be any prime divisor of . We shall prove that X’ is a divisor of
some Z; in (20). Let this be false, and let 4;, for each 7, be a d.p. in Z; which
is not in £’. Then A4;A4, --- A, is not in £’. This contradicts the fact that
the product is in Z.

A prime divisor of Z which is not a divisor of any other prime divisor of X

15 Raudenbush, 21.
18 We understand the ‘ ‘intersection’ of a single aggregate to be that aggregate.
7 Note that Z, as it is not prime, does not, consist of the single d.p. 0.
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will be called an essential prime divisor of Z. The only essential prime divisors
of Z are the Z;in (20). Every prime divisor of = is a divisor of an essential
prime divisor. Qur discussion of (20) shows that, in every representation of a
perfect ideal Z as the intersection of a finite number of prime ideals, every
essential prime divisor of = appears; the other prime divisors are redundant.
We partially summarize what precedes as follows: Every perfect ideal has a
Jinite number of essential prime divisors, and is the intersection of those divisors.

RELATIVELY PRIME IDEALS

18. Two ideals Z; and Z, will be said to be relatively prime if there are an
Ay in Z; and an Ag in 3, such that 4; + 4. = 1.

Let 2; and 2, be ideals and suppose that { Z; } and { Z:} are relatively
prime. We shall prove that Z, and %, are relatively prime. ILet 4; + 4. =1
with A, in { 21} and 4, in { 2, }. Let ¢ be such that A and A% are in Z;
and =, respectively. In the expansion of (4; + A4,)22 1 we let B; be the sum
of these terms in which the exponent of A4, is at least ¢ and B, the sum of the
remaining terms. Then B, is in 2, Be in %, and

(21) Bl + Bz = 1

We show that the intersection of two relatively prime ideals is their product
(§15). The product is in the intersection. Let G be in the intersection. Then
G = GB, + GB; with B; and B; as above. @B, and GB; are in the produet; so
then is G.

An ideal which is relatively prime to each of several ideals is easily seen to be
relatively prime to their intersection.!®* It follows that, given several ideals,
every one of which is relatively prime to every other, the intersection of the
ideals is their product.

19. We derive a theorem of decomposition whose significance will be seen
after the theory of algebraic differential manifolds is developed in the following
chapter.

TuasoreM: Let Z be an ideal. Suppose that { Z | has a representation
(22) {Z}=N&N - NQ

where the Q are perfect ideals,' every one of which is relatively prime to every other.
Then Z has a unigue representation,

(23) T=5MNZN - NZ,
where the Z; are ideals such that { =; } = Q..
By §18, the Z; are relatively prime in pairs and the intersection in (23) is a

product.

18 One multiplies the equations which express the relative primeness.
19 Not, necessarily prime.
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We treat first the case of p = 2. Let A; + A; = 1 with A, in @, and 4; in
Q. As A1dqisin { 2}, some (41ds)2is in Z. In (4; 4+ A2)?7— 1 let By be
the sum of those terms in which the exponent of A, is at least ¢ and B, the sum
of the remaining terms. Then Bj is in @ and By in Q. B;B; is in £ and
Bl + B2 = 1

We shall prove that B; and By, accents indicating differentiation, are in .
As BB, is in Z,

(24) B,B; + BiB; = 0, ().

As B =1 — By and B, = — Bi, (24) gives B; = 2 ByB;, (2). Then B; =
4B§§'1, (Z). We know from §10 that B2B; is in 2. Thus B; is in Z; so also
is Bs.

Let Z; = [T+ B;],i=1, 2. We prove that { 2,1} = %. Because B
isin @, that ideal contains { =, }. It suffices then to show that if a d.p. Gisin
G, Gisin §{ Z}. Now B:Gisin { £ } and therefore in { Z;}. Again, B¢
equals @ — BiG. As Byisin 2y, Gisin { 2;}. Similarly { 2, } = Q..

We prove now that = = Z; /M 3. It suffices to show that if G is any d.p.
common to Z; and Zp, G isin 2. As G isin Z; and Bj is in 2, we have

(25) G = C + DB,

with ¢ in . Because G isin 2, DBy isin 2. As By =1 — Byand B; isin
Zy, Disin 2. Let D = E 4 FB, with Ein . As BiB; is in Z, DB, is in Z.
This puts G in Z.

We have obtained a representation (23). We have to prove uniqueness.
Let a second representation be = = Z; N Z;. Let G be any d.p. in Z.
As B, is in 9, some Bbis in ;. Then GBtisin 2. As B, = 1 — By and B,
is in Z;, Gisin 2. Again, let H be any d.p. in 2;. For some ¢, T; contains
B: and therefore HBi. As Bi =1 — B;and HB; is in Z, =1 contains H. We
have proved that Z; and =, are identical. So also are Z; and =;. This settles
the question of uniqueness.

We now consider any p > 2 and perform an induetion. Let @’ be the inter-
section of the Q; with ¢ > 1. By §18, & and @' are relatively prime. In a
unique way, = = Z; M 2 with {2} =@ and {3} = 0. Also =’ is
a unique intersection of ideals =, ---, 2, with { ;] = Q; so that we have a
representation (23). We have to prove uniqueness. Consider any repre-
sentation (23) and let =’ be the intersection of 2, ---, Z,. Obviously,
{ '} is in the intersection of &, -+-,Q,. If A is in that intersection, some
Atisin each of 23, ---, Z,, hence in Z”. Then { 2’} is identical with Q' as
above. It follows that =/ = =’ and that (23) is unique.

If the Q are not relatively prime, there may be no decomposition (23) with
{2} = Q. Thus,in F{w,v},{uw} ={u}MN{v}. Levihasshown that
[uv] has no representation Z; M Z; or 2, Z; where Z; and Z, are ideals with
()= {u}and {3} = (v}

0 Levi, 17.
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20. Each Z; in (23) is of the form [Z + B;] with B; in =. Suppose now
that = has a strong basis ® and that the qth power of every d.p. in Z is in [@].
Let G be any d.p. in Z;. Then (25) holds with C in =. It follows that G¢ is
in [® + Bi]. Thus, for every i, ® + B; is a strong basis for Z; and the gth power
of every d.p. in ;15 in [@ + Bj].

We would state in conclusion that it is possible to generalize the theory of
ideals of d.p. into a theory which applies to algebraic rings of any type in which
operations of differentiation exist.

THE 1IDEAL [y?]

21. We work in §{ y }.22 The ideal [y*], where p is any positive integer, has
properties which will be useful in Chapters III and VII.
We consider any power product

(26) P=ypyl - y”

where r and the ¢ are any nonnegative integers. The degree and weight of P
will be

d=q+ -+, w=q+2p+ -+,

respectively. We are going to find a condition on d and w which will be suffi-
cient for P to belong to [y*].

If p = 1, every P of positive degree is in [y?]. In what follows, we assume
that p > 1.

Let d be any positive integer. One can express d in one and only one way in
the form

27 d=a(@p—-1)+0b
where @ and b are integers witha = 0,0 <b < p — 1. Let
f@,d) =al@—1) (p — 1) + 2ab.
The function f(p, d) has the property that, if d > p — 1,
(28) f@,d) —flpd—p+1)=2d—p+1).
We prove the following theorem, which is due to Levi.®

TuaroREM: Let p > 1 and let P be a power product in the y;, of positive degree d
and of weight w. Ifw < f(p, d), then P = 0, [y*].
22. P of (26), distinct from?

a0’ ar
Q=95 -y,

% Raudenbush 21, and Kolchin, 10, 11.

22 One understands that & is any field.

2 When two products have distinct r, the r may be made equal by the adjunection of zero
powers.



DIFFERENTIAL POLYNOMIALS 17

will be said to be lower than Q if the nonzero difference ¢; — ¢, of greatest 1 is
negative. This is a transitive relation and, if P is lower than Q, RP, with R
any power produet, is lower than RQ.

23. Let A = y». We denote the jth derivative of A4 by A;. Then 4;is a
sum of terms ¢;R; where the ¢ are positive integers and the R are power products
of degree p and weight j. Every power product of degree p and weight j is an
R in A ;; this is easily proved by induction.

Let j, any nonnegative integer, be written in the form rp + s where r and s
are nonnegative integers and s < p. We shall show that the lowest power
product in A4 ;is

i= Y Y
Suppose that some power product P in A; is not higher than L; Then P in-
volves no y; with ¢ > r -- 1 and the degree ¢ of P in ¥, , 1 does not exceed s.
P has p — ¢ factors y; with ¢ < r. Their total weight does not exceed r(p — 7).
Then the weight of P is no more than rp -+ ¢t. Hence ¢t = s and each factor y;
of Pwitht £ risy,., ThusP = L.

24. P in (26) will be called a weak product if, for 1 =0, - -+ ,r — 1, one has
¢: + ¢: +1 < p. Thus P is weak if and only if there is no 4 ; whose L; is a factor
of P. If P is not weak, it will be called strong.

We prove that of F is a d.p. with rational coefficients, homogeneous, of degree
d > 0, and isobaric, of weight w, either F = 0, [A], or

(29) F=YaQ, I[A

k=1

where t s a posttive tnteger, the a rational numbers and the Q weak products of degree
d and weight w.

If the power products in F are all weak, there is nothing to prove. Other-
wise, let F = ¢gG + R where G is the lowest strong product in F and R is free
of @. Let G = HL; with L; the lowest product in 4;, Then

A;=rL; + 4i_”:lc,-Pi,
with r and m integers and the P higher than L;, We have
F=2H(,- ZeP)+E,
so that
(30) = —IT cHP. +R, [4l
The strong products in the second member of (30) are higher than G. A finite

number of repetitions of this process will remove the strong products, so that
either F = 0, [A4], or a relation (29) holds.
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25. Now let d be any positive integer. We shall show that there exists no
weak product of degree d whose weight 18 less than f(p, d).

Let Q be a weak product of degree d. If d < p — 1, f(p,d) = 0, since
¢ = 0in (27). Thus the weight of @ is not less than f(p, d). Assuming our
statement to hold for d < s, where s > p — 1, we shall prove it ford = s. We
can write @, of degree s, in the form

Q = Yl * - Yipa Q,

with @' a power produet which involves no derivative which is lower than one
or more of the y; standing before @'. If @ involved yo, @ would be divisible by
y5. If @ involved y,, the exponents of yo and 3, in @ would add up to at least p.
Thus @’ is free of y, and 1.

Let each y; in @’ be replaced by y; —2. Then @’ goes over into a weak product
Q" whose weight is less than that of @ by 2(s — p 4+ 1). By (28), if the weight
of @ were less than f(p, s), that of @ would be less than f(p, s — p + 1). This
cannot be, since Q" is a weak product of degree s — p + 1.

If now we refer to §24, the theorem of §21 is seen to be established.?

Levi showed that for every w not less than f(p, d), there is a power produet
of degree d and weight w which is not in [y*]. The proof is too long to be given
here.

26. Let p be any positive integer and P any power product in the y;, of degree
d and weight w. We prove that if

(31) d> p—g—l + [(p ~Dw+ (”—21—)2]"2’

then P = 0, [y7].
We suppose, as we may, that p > 1. Let (31) be satisfied. Then

(32) (p—Dw<d—dp-1.
Let d be expressed as in (27). Asb(p — 1 — b) = 0, (32) gives
(33) @P-Dw<d—dlp—1-+b(p—1-0).

We replace d in (33) by its expression in (27), finding that w < f(p, d). This
proves our statement.

ADJUNCTION OF INDETERMINATES

27. It is sometimes desirable to enlarge the system of indeterminates
Y1, *** , Y, introducing by their side a new indeterminate v.

We consider a prime ideal = in F{ 41, --- ,y.}. We can generate with =
anideal Zyin F{yy, «-- ,yn;v}. If Aisin =, 4 is linear in d.p. of 2, with

2 In dealing with partial d.p. in Chapter 1X, we shall obtain a theorem similar to that of §21
by a simpler method, due to Kolchin, That method does not give the best bound, as the above
method does.
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d.p. in F{yy, -+, ya; v } for coeflicients; if 4 is arranged as a polynomial in the
v, it will have d.p. in 2 for coeflicients.

We are going to show that =; is prime.

Let A and B be absent from 2, while AB is contained in it. Let A, B and
AB be arranged as polynomials in the v;, We suppose that no coefficient in
A or B is in Z, suppressing those which are.

We order power products as in §22. The coefficient of the first term in AB
is the produet of those in A and B. This, since £ is prime and the coefficients
in A and B are not in 2, furnishes a contradiction which proves our statement.

FieLp EXTENSIONS

28. Let = be an ideal in F{ 41, +++ , ¥« }. Let 51 be an extension of F (§1)
with respect to which the y are indeterminates.®® Z generates an ideal Z; in
Fr{ vy, -+ , ¥ }. BEach d.p. in Z; is linear in d.p. of = with coefficients which
are d.p. over F1.

A set of elements i, - -+, v, of F, will be said to be linearly independent with
respect to §, or independent, if there exists no relation

avi+ - Fevr =0

with the ¢ in § and not all zero.
It is easy to see that every nonzero d.p. over ¥, can be written in the form

(34) yids 4+ -+ + v,

with A which are d.p. over &, and with independent v. Of course, r is different
for different d.p.

We shall prove that if a nonzero d.p. G in =; is written in the form (34) with
the A d.p. over § and with the v independent, each A is in =.

G can be written as a linear combination, with coefficients in ¥, of d.p. in =.
Let

(35) BIBI + Tt + B.sBs

be such an expression for G, with s as small as possible.

We wish to show that each g is linear in the v in (84), with coefficients in &.
Given any power product in the y,;, we find from (35) that its coefficient in G
is linear in the 8. We secure thus a system of linear equations for the 8. We
say that this system is of rank s; that is, it determines the 8 uniquely. The
system is compatible. If it were of rank less than s, we would be able to replace
some of the 8 by zero and determine the remaining 8 so as to satisfy the system.
Then s in (35) would not be a minimum.

Thus the g8 are linear in the ¥ with coefficients in . Then, by (35), G has an
expression

71Ci+ +++ 4+ 7.C;

% Thus a d.p. in the y over F; (§3) is zero only when all its coefficients are zero.
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with the C in . As
Y1(C1 — A1) + -+ + v.(C, — 4,) =0,

it follows easily that C; = 4;,7 =1, --- , p. This proves our statement.

FIELDS OF CONSTANTS

29. We shall at times wish to assume that § contains at least one element
which is not a constant (§1). We establish now a result which will permit us
to make this assumption with no real loss of generality.

Suppose that F consists purely of constants. We adjoin to § a quantity «
which we suppose to be iranscendenial with respeet to §. By this, we mean
that, considering z as a pure symbol, we form the totality F, of rational combi-
nations of z with coefficients in . Kach element of &, is of the form P/Q with
P and @ polynomials in z with coefficients in §. Two polynomials in z are
considered equal only if coefficients of corresponding powers of = are equal.?
Two expressions P1/Q; and P./Q, are equal if PiQ, = Py@Q:. We attribute to «
a derivative equal to unity and differentiate polynomials P, and quotients P/@Q,
using the familiar formulas of the caleculus. On this basis, §; becomes a dif-
ferential field and, indeed, an extension of &.

Suppose that we have a prime ideal 2 in F{yy, -+ ,y.}. Let Z; be the
ideal of d.p. over ¥ generated by .

We shall show that Z; ¢s prime.

Let F be any d.p. in Z; of the type

By + Bix - -+ 4 B

where the B are d.p. over §. As 1, z, - - - , 2" are linearly independent with re-
spect to F, each B is in = (§28).

Now let AB, but neither 4 nor B, be contained in Z;. Multiplying 4, B,
AB by elements of F;, we may suppose them to be polynomials in z with d.p.
over § for coefficients. The coefficients in AB are in Z. In A and B, we sup-
press all terms with coefficients in Z. We may suppose 4 and B, when ar-
ranged in ascending powers of z, to start with terms free of z. Now 2 is prime,
the first term of AB is in Z, the first terms in 4 and B are not in 2. This
contradiction proves our statement.

26 This is the basis for ealling x transcendental with respect to F.



CHAPTER II
ALGEBRAIC DIFFERENTIAL MANIFOLDS
MANIFOLDS AND THEIR DECOMPOSITION

1. Let = be any finite or infinite system of d.p. in {4, -+ ,y.}. Let
there be given an extension F; of ! Suppose that there exists in F; a set of n
elements 7, - -+, 7, which are such that when each y; is replaced by #; in the
d.p. of =, those d.p. all reduce to zero. We shall call the set 51, -+ - , 5, a zero
of 2. Thus a zero of 2 is a solution of the system of equations obtained by
equating the d.p. in Z to zero.

If = has zeros, the totality of its zeros, for all possible extensions %, of ¥, will
be called the manifold of =, or of the system of equations obtained by equating
the d.p. in Z to zero.* A zero of = will at times be called a point of the mani-
fold of Z. The manifold of any system will be called an algebraic differential
manifold, or, more briefly, a manifold.

Let M and M, be respectively the manifolds of systems =; and 2,3 If 9,
is contained in Mz, we shall say that 2; holds Z;. Also, we shall say that =,
vanishes over or holds 1. If Z is a system with no zeros, every system will be
said to hold 2.

Let = be an infinite system, and & a basis of Z (I, §12).¢ Because = con-
tains ®, ® holds =. Because every d.p. in Z has a power in [&], = holds &.
Thus, if = has zeros, = has the same manifold as ®. If 2 has no zeros, ®
has no zeros. Thus the mantfold of any infinite system of d.p. is the manifold of
some finile subset of the system.’

If 9 and M, are manifolds of systems =, and =,, the intersection P N N,
if not vacuous, is the manifold of Z; 4 Z;. The union 9 -+ P is the mani-
fold of the system of all products AB with 4 in Z; and B in ..

2. A manifold M will be said to be reducible if it is the union of two mani-
folds, not necessarily mutually exclusive, which are proper parts of M. If I
is not reducible, it will be called drreducible.

A manifold I of a system 2 is irreducible if, and only if, whenever a product
AB vanishes over I, at least one of A and B vanishes over M. Suppose first
that AB holds I while neither A nor B does. The manifolds of = 4+ A4 and

1The v need not be indeterminates with respect to ;.

2 Unfortunately, the totality of extensions of § is an illegitimate totality. At the present
time, there is no process of closure for differential fields analogous to the algebraic closure
method. One knows, however, that troubles of this sort are not fatal to a theory.

8 All d.p. have coefficients in F, even though extensions are used in connection with zeros.

4 Chapter I, §12. When no chapter number is given, the chapter is that in which one is
reading.

5 We understand this statement to stand for the two sentences which precede it.

21
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2 4+ B, whose union is I, will be proper parts of I and P will be reducible.
Again, let M be the union of smaller manifolds P and PN, manifolds respec-
tively of systems 2; and 2. Let A;, 7 = 1,2, be a d.p. of Z; which does not
hold M. The product 414, holds .

Let 9N be the manifold of a system =. The totality @ of those d.p. which
vanish over I is an ideal, and, indeed, a perfect ideal. We shall call @ the per-
fect ideal assoctated with M. It will be seen in §7 that Qis { £}. I is irreduci-
ble if, and only if, @ is prime. When © is prime, we call it the prime ideal asso-
ciated with M.

3. We prove the following fundamental theorem.

TuroOREM: Every manifold is the union of a finite number of irreductble mani-

folds.

Let the theorem not hold for the manifold I of some system =. Then I is
not irreducible. Let AB hold I, while neither A nor B does. Then M is the
union of the manifolds of = 4+ A and Z 4+ B. At least one of the latter mani-
folds must fail to be the union of a finite number of irreducible manifolds. ILet
such failure occur for the manifold of = - A, which system we represent by
3;. Continuing, we produce, with the help of the axiom of selection, an in-
finite sequence

(1) 21217"';2117"';

each Z, containing, while not holding, its predecessor. Let £ be the union of
the systems (1) and let ® be a basis of 2. Then & is contained in some system
of (1), say in Z,. We see that ® is a basis for =, By §1, ® and =, have the
same manifold. But the same argument shows that & and Z,.: have the
same manifold. This furnishes the contradiction that =, . holds Z,. The
theorem is proved.

Let a manifold I have a representation

@) M= M+ -+ DMy

as a union of irreducible manifolds P2;. If an IN; contains an IN; with § == 3,
then M, may be suppressed in (2). We thus suppose that no M, contains any
M, with j = 7.

Now let = be the perfect ideal associated with It and let, for each 7, Z; be
the prime ideal associated with 9%;. Each 2; is a divisor of =. If 4 is a d.p.
common to all Z;, A holds I and is thus in =. Then = is the intersection of
the ;. If j # ¢, Z; is not a divisor of Z;; otherwise IM; would contain IN;.
Then the Z; are the essential prime divisors of Z.

If 9 is an irreducible manifold contained in 9%, the prime ideal associated
with D is a divisor of some =; (I, §17). Thus P is contained in some M.

An irreducible manifold contained in I which is not part of a larger irreduecible
manifold contained in N will be called an essential irreducible component of M
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or a component of M. The only components of I are the M, in (2). Every
irreducible manifold contained in 9 is contained in some component of IN.
QOur discussion shows that in every representation of It as the union of a finite
number of irreducible manifolds, every component of I appears; all other ir-
reducible manifolds in the union are redundant.

We partially summarize what precedes. A manifold M has a finite number of
components, and is the union of them. The essential prime divisors of the perfect
1deal assoctated with I are the prime ideals associated with the components of M.

A component of the manifold of a system 2 will at times be called a com-
ponent of =.

ILLUSTRATIONS IN ANALYSIS

4. To illustrate the decomposition of manifolds, we shall employ differential
equations of classical analysis.

We use an open region A in the plane of the complex variable z. Our field ¥
will be supposed to consist of functions meromorphie throughout A.7

Given a system Z, we consider zeros of it obtained as follows. Let B be
any open region contained in A and let y1(z), -« - , ¥« (), analytic in B, annul
every d.p. of 2 in B. We shall call the entity composed of the y;(z) and B an
analytic zero,® or a zero, of =. Two sets y:(r) which are identical from the
standpoint of analytic continuation will give different zeros if they are not asso-
ciated with the same open region. TFor instance, if we use an open region B,
interior to B, and use, throughout B,, the y;(z) as defined for B, we get a dif-
ferent zero of =.°

The totality of analytic zeros of = will be called the resiricted manifold of =.
At this point in our work, we have no need to consider other types of zeros of
= and it will turn out finally that the consideration of the restricted manifold
produces a complete theory of the system 2.

The case in which § consists of meromorphie functions, and in which one uses
restricted manifolds, will be called the analyiic case. All definitions in §§1-3
following that of manifold retain their meaning and all proofs retain their
validity, in the analytic case. Thus, in the analytic case, a system Z; holds a
system Z; if every analytic zero of Z; is a zero of 2. The theorem of §3

¢ No misunderstanding can arise, since the only subsets of manifolds which we employ are
essential irreducible components.

7 It is futile to seek greater generality through the use of functions analytic except for isolated
singularities. If f(z) has an isolated essential singularity for # = a and if ¢ is a rational value

assumed by f(z) in every neighborhood of a, the reciprocal of f(z) — ¢ has a pole in every
neighborhood of a.

8 No confusion with the term zero of the theory of functions will arise.

9 Given an analytic zero, we have to go tbrough the formality of constructing an extension
of § in which its y(x) are contained. This is done by forming all rational combinations of the
y(z) and their derivatives, with coefficients in F. If such a combination coincides in B with a
function f(z) in ¥, we consider the combination to be identical with f(x), and thus to be in &.

10 In §11, it will be seen that, in this case, every zero of 2 is a zero of ¥;. Thus the word
hold will be established as a word of a single meaning.
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becomes: Every restricted manifold 1is the union of a finite number of irreductble
restricted manifolds. By a component of the restricted manifold I of a system
=, we mean an irreducible restricted manifold 9%’ contained in M, which is not
part of a larger irreducible restricted manifold contained in . We may call
MM a restricted component, or an analytic component of Z. It will be seen in
§11 that the perfect ideal associated with the restricted manifold of 2 is identi-
cal with the perfect ideal associated with the complete abstract manifold. The
essential prime divisors of this perfect ideal furnish both the analytic com-
ponents of = and the full components discussed in §3.

In our present work under the analytie case, the term manifold will be under-
stood to mean restricted manifold.

We consider some examples. § will be any field of meromorphic functions.

Example 1. Let = consist of the single d.p. A =y} — 4y in §{y}. We
call attention to the fact that A, as a polynomial in y and 34, cannot be factored
in any field. The manifold of = consists of the functions y = (x 4 ¢)? with ¢
constant, and of the function y = 0.1 The derivative of 4 is 2y (y. — 2).
Now y» — 2 vanishes for every (z + ¢)? but not for y = 0. Again, y: vanishes
for y = 0, but for no (z 4 ¢)>. Thus M is reducible and is the union of P,
composed of the funetions (z 4 c)? and of D, composed of y = 0. P is the
manifold of the system A, y» — 2 and IM; is the manifold of 4, .. It is obvious
that 9, is irreducible. As to I, let it be held by BC. When y is replaced by
(z + ¢)?, B and C become polynomials in ¢ with coefficients meromorphic in A.
If the product of two such polynomials vanishes identically in z and ¢, one of
the polynomials does. Thus one of B and C holds I and P4 is irreducible.

Example 2. Let = be the d.p. 4 = y5 — y in F{ y }. Differentiating A
successively, we have, over I,

2yeys — = 0,
(3) Qs+ 2y5 — 2 =0,
4) ' 2y2ys + Bysys — ys = 0.

Multiplying (4) by 2ys and substituting into the result the expression for 33
found from (3), we have, over IN,

Y2 (4ysys — 1295 + 8y — 1) = 0.
Thus M is reducible. It is composed of Pt and M, the respective manifolds of
A; Yz2; A) 4.7/3.7/5 - 12?/2 + 8.7/4 - 1.

As D% consists of y = 0, it is irredueible. We shall see later that 9, which is
the general solution of A, is irreducible.
Example 3. The manifold of 1 (1 — y) decomposes into the two irreducible

11 We shall not encumber our discussions with references to the areas in which the functions
in a zero are analytic.
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manifolds given by y = ¢ and y = ce’. These two manifolds have y = 0 in
common.

Example 4, Let 2 consist of A = 3y, —y. We find with a single dif-
ferentiation that I is reducible and is made up of the manifolds of

Ay A,y + 25 — L

We call attention to the fact that A cannot be factored and is of the first degree

in %,.
Example 5. Let Z be composed of A = uy — u} in §{ u,y}. Differen-
tiating, we find over I,

wy -+ ugn — 2uus = 0.
Multiplying this equation by y and using 4 = 0, we find
)] ur (Y2 + wigh — 2ugy) = 0.

Neither factor in (5) holds I, so that It is reducible. We call attention to the
fact that A eannot be factored and is of zero order in y.
Example 6. InF{y, 2}, let Zbe

z z

y—xyl-l-?%, z—xz1+?—/~;—1-
We are dealing with a pair of Clairaut equations. I consists of two irreducible
manifolds which are, to speak geometrically, the two-parameter family of lines

y=ax-—-%b; z=ba;-g£,

and their one-parameter family of envelopes
y=@+c} z=@—o>
The above examples might lead one to conjecture that the manifold of any

finite system can be decomposed into irreducible manifolds by differentiations
and eliminations. We shall see in Chapter V that this is actually so.

PrRIME IDEALS AND REGULAR ZEROS

5. We return to the use of an abstract field. We shall call §{ gy, -, ¥, }
the unit ideal. The prime ideal consisting of the d.p. 0 will be called the zero
ideal. A prime ideal distinct from the unit ideal and the zero ideal will be said
to be nonirivial.

Let = be a nontrivial prime ideal. Let

(6) Ay v, 4Ar

be a characteristic set of . The separant and initial of 4; will be denoted by
S; and I, respectively. Asthe S and I are reduced with respect to (6), they are
not in = (I, 5).
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We prove that, for a d.p. G to belong to =, it is necessary and sufficient that the
remainder of G with respect to (6) be zero. Let G be in 2. As the remainder,
R, is in 2 and is reduced with respect to (6), we have R = 0. Again, let
R = 0. There is a relation

(7) 8- I7G=0, (2).

As 2 is prime and the 8 and the I are not in %, it must be that G is in =.

A zero of the characteristic set (6) for which every 8; and every I; is distinct
from zero will be called a regular zero of (6).1? We shall prove that every regular
zero of a characteristic set of = is @ zero of Z. Let 41, « -+, 7, be a regular zero
of (6). Let G be any d.p. in =. In (7), the S and the I are not annulled by
the 5. Then @ is annulled by the . The 5 thus constitute a zero of =.

GENERIC ZEROS OF A PRIME IDEAL

6. Let = be a prime ideal distinet from the unit ideal.

Let A be any d.p., not necessarily contained in . We form a class « of d.p.,
putting into « every d.p. @ such that G = 4, (). We call « a remainder class,
modulo =. Thus F{y, -+ ,y.} 18 composed of a set of remainder classes.
As 2 contains no element of § except zero, two distinct elements of F belong
to distinet remainder classes; there are thus an infinite number of remainder
classes.

Let o and 8 be two remainder classes. All sums A 4+ B with 4 in ¢ and B in
B belong to the same remainder class. We call this class @ + 8. Actually,
every d.p. in « + 8 is the sum of a d.p. in & and a d.p. in 8. We define of as
the remainder class which contains all products AB with 4 in « and B in 8.
Usually o contains d.p. which are not products AB. The derivative o’ of «
is defined as the remainder class which contains the derivatives of the d.p. in a.

The remainder class which contains the d.p. 0 is Z. We call = the zero
class. As ¥ is prime, a relation AB =0, (Z), implies that either A = 0,
(Z) or B=10, (2). Thus, if each of two remainder classes is distinet from
the zero class, their product is distinet from the zero class.

We now consider pairs («, 8) of remainder classes in which 8 is not the zero
class. Two pairs, (e, 8) and (v, §), will be called equivalent if a8 = 8y. As
the equivalence relation is transitive, the totality of pairs of classes separates
into sets of equivalent pairs. If % is the set containing (o, ) and B that con-
taining (v, 8), we define A 4 B as the set containing («d + By, B5), and AB as
the set containing (ey, 38). The operations of subtraction and division are then
uniquely determined. In particular, %/% can and must be taken as the set
containing («§, By).* The derivative of the set containing (e, 8) is defined as
the set containing (B’ — «f’, 8%). With these operations, the sets of pairs of
remainder classes become a differential field, which we denote by .

12 Tt will be seen in §6 that regular zeros exist.
13 We attempt division only when « is not the zero class.
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With an element a of ¥, we associate the set in ; containing the pair (a, 8) in
which a contains @ and 8 contains 1. In this way we obtain a subset & of F
which is isomorphic with §. We replace each set of ' by the corresponding
element of §, and &, becomes an extension of F.

We are going to find a zero of = in ¥. Let w be that one of the remainder
classes above which contains unity, and for ¢ = 1, --- , n, let a; be the class
which contains the d.p. .. Let 5; be the set in & which contains (a;, o).

We shall show that 1, - - - , 7. is a zero of =.

Let G be any d.p. in =. The derivative of 4, is the set containing (aj, ),
and o; contains y4. It follows that when the 5 are substituted for the yin G,
we obtain a set containing (8, w), where g is the remainder class containing @,
that is, the zero class. The set just described has 0 as its proxy in ;. We see
that 1, -+« , 9, is a zero of Z.

We see immediately, in a converse way, that if m, - - , 7, annuls a d.p. G, G
is contained in =,

A zero of Z, naturally contained in some extension of &, which is such that
every d.p. over § which is annulled by the zero is contained in =, will be called
a generic zero'* of =, or a generic point of the manifold of . We know that
every prime ideal distinet from the unit ideal has a generic zero.

If we take = as in §5, we see that a generic zero of T is a regular zero of (6).

THE THEOREM OF ZEROS
7. We prove the following theorem:

TrareoreM: If Z is a perfect ideal distinct from the unit ideal, = has zeros and
every differential polynomial which holds = is contained in =.18

Let 2 be the intersection of essential prime divisors ;¢ =1,---,p. No
Z; is the unit ideal. For each Z; we form a generic zero. Fach of these p
zeros is a zero of Z. Now let G be a d.p. which holds . As G is annulled by
each of the generic zeros, @ is in each Z; and therefore in =,

We see, as was stated in §2, that, given a manifold 3 of a system X, the per-
fect ideal associated with I is { = }; it is the only perfect ideal whose manifold
is M.

Modifying slightly the theorem just proved, we obtain the

THEOREM OF zEROS: Let
P, -+, F,

be any finite system of differential polynomials and let G be any differential poly-
nomial which holds that system. Some power of G is a linear combination of the F
and of their dertvatives of various orders, with differential polynomials for coeffi-
cients. In particular, if F1, - -+, Fp has no zeros, some linear combination of the
F and of their derivatives of various orders equals unity.

U4 Raudenbush, 20.
15 A D.B., Chapter VII, and Raudenbush, 21.
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Let = be the perfect ideal determined by the F. If ¥ is the unit ideal, unity
is a linear combination as described above. Let Z be distinet from the unit
ideal. Then @G isin 2.

8. Let us reexamine the decomposition theorem of I, §19. ILet = be an ideal
with a manifold 9 which has a representation

%:%l-l—-...*_%p

where no two M; have a point in common. If Q; and ©; are the perfect ideals
associated with M, and M;, ¢ = j, the system Q; + @; has no zeros. Then
{ Q; + Q;} is the unit ideal. This implies a relation 4 + B = 1 with A in Q;
and B in Q;. Thus Q; and Q; are relatively prime. It follows that = has a
unique representation as the product of ideals whose manifolds are the 9.

Example: We consider, as in Example 1 of §4, the manifold I of 4 = 32
— 4y. At the present time, we use the full abstract manifold. 9 is the union
of P4 and My, the respective manifolds of A, ys — 2 and A, 1. Asy, — 2 and
11 have no zero in common, M and M have no point in common. Asy; (g, — 2)
isin [A], we have, by I, §11,

(8) A} ={4,n-2}N {44}

Of course, { A, 1} = {y} = [y]. As [A] contains y:(y. — 2), it contains
12(y2 — 2)2. Thus [A] contains BC where

B=(y—2? C=4p—y.
We have B + C = 4. It follows from (8) and I, §19, that
(4] = [4, B] [4, C].

Let =, = [4,C]. As Z; contains y,B, it contains y. (B + C) and therefore ..
Then, as Z, contains y:(y. — 2), it contains g and hence y. Thus ; = [y]
and

i — 4] = W] I} — 4y, (1 — 2)7].

9. We shall now obtain a theorem of zeros for the analytic case.

With § a field of meromorphic functions, we take Z as in §5. Let G be any
d.p. not in 2. We are going to prove the existence of a regular zero of (6),
composed of functions y1(x), - - - , ¥ (), which is not a zero of G.

The remainder R of G with respect to (6) is not zero. Let

K=RS -8 I,

where the S and I are as in §56. We wish, for a short time, to consider K and
the A; not as d.p., but as ordinary polynomials in the y;;. A letter y.; enters
into our present work only if it appears effectively in some of the » 4+ 1 poly-
nomials. Let ¢ be the system of polynomials A;. By a zero of ¢, we shall mean
any set of functions y.;(z), analytic in some area contained in A, which annul
every A;. We do not ask that y;, ;4 1(x) be the derivative of y,;(x).
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No power of K is linear in the 4; with coeflicients which are polynomials in the
y:;:1%  Otherwise K, considered as a d.p., would be contained in the prime ideal
3. We shall now invoke Hilbert’s theorem of zeros for polynomials, which is
proved in IV, §14. The system ¢ has at least one zero, composed of functions
7:;(x), which do not annul K. Let a be a value of z at which the 7,;(x) and all
coefficients in the A; and G are analytic, and at which K, when the 7:;(x) are
substituted into it, has a value distinet from zero.

10. We return now to the consideration of K and the A; as d.p. Let p; be
the class of 4,7 =1, ---,r, and m; the order of 4; in y,,. It may be that
r < nin (6), so that there are y; which are not among the y,,. Ivery such y;,
we replace in the A by a function y;(z) analytic at a, which is chosen with the
sole restriction that if some y.;is a letter used in §9, the jth derivative of y; has
at a the value §;;(a) as in §9. It is a matter of forming convergent series of
powers of z — @, with a finite number of coefficients assigned in advance. For
these replacements, each A4 ; goes over into an expression B;in yy, * +* , Ys; and
their derivatives.

We consider the equation B; = 0 as an equation determining ¥, as a fune-
tion of z, ypo, *** , Yo, m —~1. We work at z = a. To every ¥p: which is a
letter of §9, we assign the value %, (a). There may be ¥, with ¢ < m; which
do not appear in §9. To them we assign arbitrary numerical values. For the
values assigned to z and the y,,;, By vanishes. Now 0B1/0ypm, does not vanish
for these values.”” We can thus solve the equation B; = 0 for ypm, finding

(9) Ypymy = fl(x7 Ypo, *°° 5 Yo, ma — 1)

with f analytic for the assigned values of its arguments and equal t0 7pm(a) for
those values.

We now regard (9) as a differential equation of order my for y,. For the
initial conditions assigned as above at x = a, we obtain a solution y,(z) ana-
lytic at z = a. The functions y:1(z), « - + , yp (z) annul A; but neither S; nor I,.

We now substitute y,,(x) for ¥, in Bs; and treat the equation B, = 0 as above.
Continuing, we construct a regular zero of (6). This zero does not annul K at
z = g. Thus R, and also G, are not annulled by the zero at z = ¢.1°

11. The theorems of §7 now go over to the analytic case. Thus, if § ¢s a field
of meromorphic functions, and if = is a perfect ideal distinct from the unit ideal,
= has a nonvacuous restricied manifold. Every differential polynomial which
vanishes over the restricted manifold of Z is contained in 2.

In the theorem of zeros, if Fi, - -+ , F, has no analytic zeros, unity is contained
in the ideal of the F, so that Fy, - -+ , F;, has no zeros of any type. If thereisa

1% With coefficients in &.

17 The partial derivative is what S; becomes for the replacements made above in the A. We
note that K does not vanish for the % (a).

18 The work of §10 shows that a characteristic set of a prime ideal may be regarded as furnish-
ing a system of differential equations, in a standard form, whose solutions more or less make
up the manifold of the ideal.
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restricted manifold, every d.p. which holds it is in the perfect ideal determined
by the F and is thus annulled by all zeros of Fy, -+, Fp.

To sum up, given any system Z with § as above, and with { 2 } distinct from
the unit ideal, = has a restricted manifold 9? and an abstract manifold IV
which contains . Both I and M’ have { = } for associated perfect ideal.
We shall find on this basis, in dealing with differential equations of analysis, that
it suffices generally to work with restricted manifolds.

(GENERAL SOLUTIONS

12. Weuse §{ y1, -+ -, ¥n» } with ¥ any field. A d.p. of positive class will be
said to be algebraically irreducible if 1t is not the product of two d.p. of positive
class.

Let, F' be of positive class p and algebraically irreducible, We are going to
study the representation of { F } as an intersection of prime ideals.?

Denoting the separant of F by S, we let Z; be the totality of those d.p. 4
which are such that

(10) SA=0, (F}.

By §7, A is in = if A vanishes for every zero of F' which does not annul S.
Clearly, the sum of two d.p. in Z; is in 24, as is also the product of a d.p. in
Z1 by any d.p. From (10) it follows, by I, §10, that SA’, with A’ the derivative
of A,isin { F }. Then 4’isin 2. Thus 2, is an ideal.
We prove now that the ideal =, is prime. Let AB be in Z;. Let F be of
order m in y,. The process of reduction used for forming remainders shows the
existence of relations

11) SAd =R, SB=T, [F],

with R and T of order at most m in y,. We shall prove that at least one of
R and T is divisible by F. From (11) we have SRT = S*+ v +14B [F]. As
the second member of this congruence is in { F' }, the first member is also. Let
then

(SRT): = MF + MoF' + -+ + MF®,
superscripts indicating differentiation. We have
F@ =8ypmyo+ U

where U is of order less than m -+ ¢ in y,. We replace ¥p, »+ o In F9 and in
the M by —U/S. Clearing fractions, we find a relation

SURT)* = NF + NiF' + +++ 4+ N, _ Fa-D,

Continuing, we find that some S¢(RT)¢ is divisible by F. As F is algebraically
irreducible, and not a factor of S, F must be a factor of at least one of B and T'.

¥ Bvenif p < n, { § } will contain d.p. of class as high as n.
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Suppose that R is divisible by F. By (11), S4 is in { F' } so that 4 is in =,.
Thus 2, 1s prime.

13. We prove now that for a d.p. A to belong lo 24, it is necessary and sufficient
that the remainder of A with respect to F be zero. In particular, if A ts in 2y and
if A has the same order in y, as F, A is divisible by F.

Let A belong to Z,. We have a relation

(12) S°A = B, LF],

with B of order at most m in y,. Now SBisin { F } so that, as in §12, B is
divisible by F. This means that the remainder of A is zero. Conversely, if the
remainder is zero, we have (12) with B divisible by F so that A is in Z;.

We see, in particular, that =; does not contain S.

14. We prove that

{F}=2N{F8}

{ F } is contained in each ideal in the second member, so that it will suffice to
show that the second memberisin { F'}. Let A bein { F,S}. For some q,

(13) A*=B+C

with B in [F] and C in [8]. Now, let A also belong to Z,. Then S84 is in
{ F'} so that, by I, §10, the product of A by any derivative of Sisin { F }.
Then AC isin { F } so that A2+ 'igin { F }.

15. Let

(F,8) =AM - N A,

where the A are the essential prime divisors of { F, 8 }. Certain A may be
divisors of Z;. Suppressing these, and using symbols =; with ¢ > 1 for the
remaining A, we have

(14) (F}=3N%N - N3,

Thus, 2, is an essential prime divisor of { F' } and, in the representation of { F }
as an intersection of essential prime divisors, there is precisely one prime ideal,
namely =1, which does not contain S.

16. An interchange of the subscripts of the y may give F a new separant.
Any such separant involves only derivatives present in F and is not divisible
by F. Hence, for the original ordering of the ¥, such a separant has a remainder
with respect to F' which is not zero. Thus, in (14), =, contains no separant of F,
while Zy, - + -+, Z, contain every separant.?

We shall call the manifold of Z; the general solution of F, or of the equation
F=0.

2 Tt is only in our present work that we use several separants for a d.p., one for each indeter~
minate appearing effectively in the d.p. This matter will not cause confusion elsewhere.
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SINGULAR ZEROS AND SOLUTIONS

17. We take F as in §12. A zero of F will be called nonsingular if it fails to
annul at least one separant of F, and singular if it annuls every separant. Corre-
spondingly, we speak of nonsingular, and of singular, solutions of F = 0.

Every nonsingular zero of F is contained in the general solution of F. The
other components of F are made up of singular zeros.

If a d.p. G vanishes for all nonsingular zercs of F, then @ is in Z;. This is an
immediate consequence of the fact that a generic zero of = is a nonsingular zero
of F. 1In the analytic case, we get a less trivial result. If G vanishes for all
nonsingular analytic zeros of F, @ is contained in Z,. This follows from the
fact that the product of G and the separants holds the restricted manifold of F,
therefore the restricted manifold of =,. By the theorem of zeros, the product
isin 3y, so that G isin 2.

In the analytic case, we call the restricted manifold of Z; the restricted general
solution of F, and, as a rule, since misunderstandings do not occur, the general
solution of F.

The general solution may contain singular solutions of F = 0, as well as the
nonsingular ones. From what precedes, we see that a singular solution belongs
to the general solution if, and only if, every d.p. which vanishes for all nonsingular
solutions vanishes also for the singular solution. In the analytic case, one uses
here only the analytic nonsingular solutions.

18. As Z; contains no nonzero d.p. reduced with respect to F, F is a charac-
teristic set for Z;. Let = be any nontrivial prime ideal (§5) which has a char-
acteristic set consisting of a single d.p. G. We assume G to be algebraically
irreducible sinee, if it is not, we can replace it by one of its factors. As = con-
sists of those d.p. which have zero remainders with respect to G, the manifold
of Z is the general solution of G. The case in which the number n of indeter-
minates is unity is of special interest. For a single indeferminate y, every ir-
reducible manifold distinct from the manzifold of the zero ideal is the general solution
of a differential polynomial in y.

Forn > 1, this result does not hold. It will be seen, however, in Chapter IIT,
that if G is any d.p. of positive class, every component of G is the general solu-
tion of some d.p.

19. We consider some examples in the analytic case. In Example 1 of §4,
the component ¥ = (z -+ ¢)? is composed of nonsingular zeros and is the general
solution of y? — 4y. In Example 2, ¥ = 0 is the only singular zero, so that 9%,
is the general solution.

In Example 5, a consideration of the two separants shows that the singular
zeros are those for which ¥ = 0. 'We denote the general solution by ;. The
factor

B = y? -+ wh — 2ugy

in (5) vanishes, for v = 0, only if ¥ = 0. As w; in (5) is not divisible by 4, v,
does not hold ;. Thus B holds P, so that the only zero with 4 = 0 which
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can belong to Py isu = 0,y = 0. The zeros of A with v = 0 constitute an ir-
reducible manifold, the manifold M, of the d.p. . Thus MW = Py + PW,. We
can now see that 4 contains the singular zero u = 0, y = 0. Let G be any
d.p. in Z; and 4, 7, with 4 # 0, a zero of A. Tor every constant ¢ = 0, cil, cj
annuls A and is thus in 9%4. Thus G vanishes for ¢#, ¢ and hence for u = 0,
y=10. Thisputsu = 0,y = 0in D.

For another example of a general solution which contains a singular zero, we
consider A = y3 — 4y*, whose manifold is ¥ = (z + ¢)~2andy = 0. The only
singular zero is y = 0. We see, letting | ¢ | increase, that a d.p. which vanishes
for every (z + ¢)~2 vanishes for y = 0. Thus y = 0 is in the general solution.

20. The above formulation of the concept of the general solution of an alge-
braic differential equation appears to be the first fully precise one which has
ever been given. In the literature in general, the term “‘general solution” is
used in a loose sense. For a differential equation of order n, an n-parameter
family of solutions is called the “general solution.” Some authors are aware
that singular solutions should sometimes be considered as belonging to the gen-
eral solution, but no sharp criterion is given.

It is interesting, however, that a paper on singular solutions published by
Lagrange® in 1774 shows him to have possessed a really good idea of the nature
of a general solution. Dealing with an equation

(15) 14 (x: Y, g—?;) =0,

he supposes determined for it a one-parameter family of solutions y = f(x, a),
which he calls the complete integral. He seeks conditions for a particular (in
modern parlance, singular) solution y(z) to be considered as belonging to the
complete integral. e furnishes conditions under which y(z) satisfies not only
(15), but also ‘“all equations of higher orders which can be derived from it.”
The satisfaction of all such higher equations is given as the condition for y(x)
to belong to the complete integral. How the higher equations are to be deter-
mined is left to be guessed. One is apparently supposed to perform different;i-
ations and eliminations, as in the examples treated by Lagrange. Tt is proper,
however, to credit Lagrange with the possession of a heuristic version of the
criterion for membership in the general solution given in §17 above, and to re-
gard his work on singular solutions, like that of Laplace and of Poisson which
will be considered in Chapter ITI, as precursive to the present theory.

PARAMETRIC INDETERMINATES

21. Let = be a nontrivial prime ideal in F{ y1, -+, ¥ }.

There may be some y, say yj such that no nonzero d.p. in 2 involves only Y
that is, every d.p. in which y; appears effectively also involves some y; with
i 5 j. If there exist such y;, let us pick one of them, arbitrarily, and call it u,.

There may be a y distinet from u; such that no nonzero d.p. in = involves
only u; and the new y. If there exist such y, we pick one of them and call it u;.

2t Lagrange, 15.
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Continuing, we find a set w;, - - - , %4 (¢ < n), such that no nonzero d.p. of =
involves the » alone and such that, given any y; not among the u, there is a non-
zero d.p. of 2 in y; and the u alone.?

Let the indeterminates distinct from the u, taken in any order, be represented

now by 41, *++, ¥ (p + ¢ = n).
We now list the indeterminates in the order
(16) Upy *** y Ug Y, =y Yoo

We shall speak generally as if u exist. It will be easy to see, in every case,
what slight changes of language are necessary when they do not.

Of the nonzero d.p. in 2 involving only y; and the u, let Ay be one of least
rank. There certainly exist d.p. of Z of class ¢ 4+ 2 which are reduced with
respect to A4;; for instance, any nonzero d.p. in y; and the u is of this type. Of
such d.p., let A, be one of least rank.

Continuing, we build a characteristic set of Z,

17) Ay Agy -0 A,
We shall say that A; introduces ;.
We shall call u, - -+, 4, & parametric set of indeterminates for =, or for the

manifold of Z.
THE RESOLVENT

22. The investigation which we now undertake will show that every irreduci-
ble manifold except that of [0] may be regarded as a birational?® transform of
the general solution of some d.p.*

Through §23, we shall work with a field ¥ which contains at least one non-
constant element.

We present first two lemmas of a special character.

A set of elements 1, -+ , 7. of § will be called linearly dependent if there exists
a relation

(18) cm 4 2 Came = 0
where the ¢ are constant elements of ¥, not all zero.
We prove that for m, -+ - , 1, to be linearly dependent, it is necessary and suffi-
cient that
mo o m
1) N )
e e g

where superscripis indicate differentiation.

22 T will be seen in §32 that ¢ does not depend on the particular manner in which the u are
selected.

23 The birational transformations which we use will involve derivatives.

2 A D.E., Chapter II, and Kolchin, 10. The treatment given here is taken over from Kol-
chin’s paper.
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The proof is conducted as in analysis. For the necessity, we differentiate
(18) s — 1 times. We secure a set of s homogeneous equations for the ¢. The
determinant must vanish, since there is a solution with some ¢ distinet from
zero. For the sufficiency proof, we proceed by induction. For s = 1, (19) is
evidently sufficient. We treat the case of s = r, supposing earlier cases to have
been examined. By (19) the equations

(20) C1n§”+"'+0m;n, J=0,---,r—1,

are satisfied by elements ¢;, - - - , ¢, of &, not all zero. We may evidently sup-
pose that when the last row and last column are suppressed in (19), the resulting
determinant is not zero. Then, in (20), ¢,# 0. We may thus take ¢, equal to
unity. For j £ r — 2, we differentiate (20) and then subtract the equation
(20) corresponding to j + 1.

We find that

(21) c;'ﬂiﬁ + -+ cr’-l'ﬂf(-jll =0, j=0,---,r=2

where accents indicate differentiation. As the determinant of (21) is not zero,
the ¢; with ¢ < r are constants. This completes the proof.

We prove now that if G is @ nonzero d.p. in F { Uy, -+ , ug }, there exist ele-
ments p1, +++ , pq tn F such that G is not zero for u; = pyy 1 =1, -+, q.

It suffices to treat a d.p. @ in a single indeterminate . Let £ be a noneon-
stant element in §. Let r be any nonnegative integer. We shall prove that if
G is a nonzero d.p. of order not exceeding r, there is an element

(22) co+ af+ el + - +of,

where the ¢ are constants in &, which does not annul G. Let this be false, and

let H be a nonzero d.p. of lowest rank which vanishes for every element (22).

Let the order of H be s. We know that s < r. It is easy to see that s > 0.
When u is replaced in H by (22) and each u; with 1 <7 < s by

(23) at?® + (@ 4+ - + 6 (2)9,

the superseript (¢) denoting ¢ differentiations, H, considered as a polynomial in
the indeterminates ¢, must vanish identically. Its partial derivatives with
respect to the ¢ are thus all zero. We have thus, from ¢, - - , ¢,,
aH
du =9

a_li éIi' e .a_Ii(s) —
aus"'aulg + +ausg _0;

(24)

Mo Mgy .-+

oH 8H ., o —
du dur ETR &)@ =0,

aHa_ﬁ Oy ﬁ ) () —
SE e @)+ SO =0,
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In each 0H/du;, i = 0, -+ , s, the substitutions (22), (23) are supposed to be
made.

We regard equations (24) as equations for the dH/ou;.. As 0H/du, is of
lower rank than H, it does not vanish identically in the ¢. The determinant of
(24) is therefore zero. This means, by the preceding lemma, that there is a
relation

mE + () + -+ a8 =0

where the @ are constants in &, not all zero. Then
GE+aE 4 +ad = a

with @, a constant. Thus £ satisfies an algebraic equation whose coefficients
are in & and are not all zero. Let an equation of this type of least degree be

f& =0.

Then f/(£)¢ = 0. Asf'(§) = 0, we have £ = 0. We reach the contradiction
that £ is a constant and the lemma is proved.

23. Working in &{ uy, <+, ug; %1, *** , ¥p },%° we consider a nontrivial prime
ideal = for which the u are a parametric set (§21). We are going to show the
existence in § of elements

(25) Byttt M

and the existence of a nonzero d.p. G, free of the y, such that either
(a) there exist no two distinct zeros of Z, contained in a single extension of F,

_ _ ’ ’

(26) Uz, * "y Ugs Yiy *** s Up»
_ _ . " ”
Uy 0, Ug Y1, "y Y,

with the same u, which u do not annul G, or
(b) such pairs of zeros exist and, for each pair,

(27) @ = y) + o oy — y)

18 not zero.?

We consider the system =’ obtained from Z by replacing each y, by a new
indeterminate z;. Introducing p more indeterminates Ny, -+, \,, we consider
the perfect ideal @ determined by Z, =’ and

>‘1(y1 - 21) + -+ )‘p(yp - zp)-

We have thus 3p + ¢ indeterminates, the u, y, 2, A, and we operate in
Flu;y;e N}
Let A be any essential prime divisor of Q. Suppose that not every y; — z;,

2% We recall that & is supposed to contain nonconstant elements.
 If no w exist, this is to mean that, if = has a pair of distinct zeros in a single extension of &,
(27) does not vanish for the pair. We take G = 1 in this case.
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1=1+-+,p,isin A. We shall prove that A contains a nonzero d.p. which in-
volves no indeterminates other than the u and \.

If A contains a d.p. in the u alone,” we have our result. Suppose that A
contains no such d.p.

Since A has all d.p. in =, A has, forj =1, .-+, p, a d.p. B; in y; and the u
alone. Let B; be taken so as to be of as low a rank as possible in y;. Then S;,
the separant of B is not in A.

Similarly let C;, i =1, --+, p, be a d.p. of Ain 2; and the u, of as low a rank
as possible in z;, Letting z; follow the % in C;, we see that the separant S; of C;
is not in A.

To fix our ideas, suppose that y1 — 21 is not in A, Consider any generic zero
of A, TFor it, we have
(28) M= _>‘2(y2_22)+ +)‘p(yp_zp).

h— =2

From (28) we find, for the jth derivative of A in the generic zero, an expression

(29) )\lj = Pj ()‘2; R )‘P;yl; oty YnRy 0, ZP):

in which p; is rational in the \, y, 2z and their derivatives, with coefficients in .
The denominator in each p; is a power of y;, — 2.

Let B; be of order r; in y; and C; be of order s;inz;, i =1, ---, p.

If a p; involves derivatives of y; of order higher than r;, we can get rid of those
derivatives by using their expressions in the derivatives of y; of order r; or less,
found from B; = 0. Similarly, we transform each p; so as to be of order not
exceeding s;inz;, ¢ =1, ---, p.

The new expression for each p;, which will involve the u, will have a denomi-
nator which is a product of powers of y3 — 2, S;, S;, 2 =1, ---,p. Let g be
the maximum of the integers r;, s;. Let

h=2p@g+1)+1

Let & be the total number of letters y.;, z:;; which appear in the relations (29),
transformed as indicated. Then h > k.

We consider the first A of the relations (29).2 (That is, we let j = 0,
1,-+-,h—1) Let D, an appropriate product of powers of g — z;, the
S:, S;, be a common denominator for the second members of these relations.
We write

(30) )\1j=%: j=0,+,h—1.

Let D and the E; be written as polynomials in the k letters y.;, z:;; present in
them, with coefficients which are d.p. in Ay, +-+ , N, and the u. Let m be the
maximum of the degrees of these polynomials (total degrees in the y;;, 2:5).

2 At times the term nonzero will be omitted. One will always know when it is being tacitly

employed.
2 When j = 0, (29) is (28).
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Let « represent a positive integer to be fixed later. The total number of dis-
tinet power products of degree ma or less, in k letters, is?

Using (30), let us form expressions for all power products of the A\i; in (30) of
degree « or less. Let each expression be written in the form

F,
Da

(32)
Then F, as a polynomial in the y;, 2;;, will be of degree at most mo.
The number of power produets of the h letters \;; of degree o or less is

33) CESHCES)

Now (31) is a polynomial of degree k in a, whereas (33) is of degree 2 in a. As
h > kand asm, h, k are fixed, (33) will exceed (31) if e is large. Let a be taken
large enough for this to be realized.

If now the F in (32) are considered as linear expressions in the power products
in the ¥, 2;;, we shall have more linear expressions than power products. Hence
the linear expressions F' are linearly dependent. That is, some linear combi-
nation of the F, with coefficients which are d.p. in Xg, - - - , A, and the u, not all
zero, vanishes identically.

The same linear combination of the power products of the A;; will vanish for
the generic zero of A for which (28) was written. Now this last linear combi-
nation is a d.p. H in the v and N. H is not identically zero, since the power
products in the \y; in H are all distinct.

As H vanishes for a generic zero of A, H isin A.

Let Ay, - -+, A, be the essential prime divisors of ©. Let Ay, - -+, A, each not

contain some y; — z; and let A, .1, - -+, A, each contain every y; — 2z;. Let H;
be a nonzero d.p. in A;, ¢ =1, ---,s, involving only the » and \. Let
K=H, - H.

Using the second lemma of §22, we replace each \; in K by an element u; of
F, in such a way that K reduces to a nonzero d.p. G in the u. We shall show
that G and the u serve as in the statement at the head of this section.

The zeros of @ with N\; = u; j =1, ---, p, will be the zeros of the A; with
N; = u; Now the zeros with A\; = u, of Ay, -+, A, have » which annul G.
The zeros of Ag 1, **+ , A, even with \; = y;, havey, = z;,¢ =1, -+, p.

Suppose now that Ay, - -+, A, actually exist. Then there exist distinet pairs
(26); the 3’ can be taken as the y in a zero of some A;, ¢ < s, and the y”’ as the
2% Tor any such pair (26), (27) is zero only if the u, ¢’, '/ are in a zero, with

29 Perron, Lehrbuch der Algebra, vol. 1, p. 46.
3 We are not supposing here that the A are replaced by the .
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N=wu; f=1--+,p, of some A; with + £s. In that case, G vanishes for
the w.

When every A; contains every y; — z;, we take G =1, yy = -+ = u, = 0.

We have thus produced the required G and u.*

24. We shall now relinquish the condition that § contain a nonconstant ele-
ment. Let us assume that parametric indeterminates u exist. We are going

to prove the existence of d.p. G, M, - -+, M,, in the u alone, with G # 0, such
that, for two distinct zeros (26) for which G does not vanish,
(34) Mi(yh — o) + -+ + Myp(wh — ¥
18 not zero.

The diseussion of §23 holds through the construction of K. We are going to
prove the existence of d.p. My, - -+, M, in the u alone, such that when X\; is re-

placed by M; in K, the resulting d.p. G is not identically zero.

Let K be arranged as a polynomial in the M, with d.p.in Ny, - -+ , N\, and the u
for coefficients. Let uy be a derivative of w1 of order greater than that of any
derivative of 4; which may appear in the coefficients. If A; is replaced by uy,
K becomes a d.p. Ky in Ng, -+ -, N\, and the % which is not identically zero.
Similarly, if we replace A2 by a sufficiently high derivative of %, in K, we obtain
a nonzero d.p. Ky in A;, -+ - , \p and the . Continuing these replacements, we
obtain a nonzero d.p. @ in the u alone.

Continuing as in §23, we see that the zeros of @ with \; = M;, 7 =1, ---,p,
are the zeros of the A; with \; = M;. Now the zeros withA; = M;of Ay, -+, A,
have u which annul G. The zeros of A, +1, -+ +, A,, even with A; = M ;, have
yi=2z;fori =1, ---,p. This proves our statement.

25. The results of §§23, 24 permit us to state that if either
(a) ¥ does not consist purely of constants, or
(b) there exist u,
triads of d.p. G, P, Q exist in F{ wy, -+, ug; Y1, --* , ¥Yp }, With G and P not in
2 and @ free of the y, such that, for two distinct zeros of = in a single extension
of &, with the same u, the zeros annulling neither G nor P, the expression Q/P
has two distinet values. For instance, if (a) holds, we can take P = 1 and
Q=+ - + Yo

The ideas will be more complete, and even simpler, if we use general d.p. P.
The following is a nontrivial case in which P is of positive class. Let & be the
totality of rational functions of z. We take 2 as { yu, yu } InF{ y1, 2 }. The
zeros are 1, = ¢, ¥» = d with ¢ and d constant, but otherwise unrestricted. We
take G = 1. If

P=y +ay, Q=uy;+ 2%

3 The following example shows that = may have many zeros with given » and that a G may
exist such that, for G £ 0, there is only one zero for given u. Let = be the perfect ideal gener-
ated by wiyy — uz in F{ w, us, y1 }. 2 is prime, since the separant for us is unity, The set
Uy, U is parametric. Let G = w. If s = up = 0, y, may be taken arbitrarily, but, for given
1, uz with G # 0, there is only one 3.
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the expression /P assumes distinet values for distinet zeros of Z with P = 0.3

In certain cases in which ¥ consists purely of constants and in which no u
exist, there may exist no pair P, @ as described above. For instance, let § be
the totality of complex numbers. ILet 2 be as in the preceding example. For
every zero, the y,; are zero for j > 0. We therefore lose no generality in seek-
ing a P and @ of order zero in y; and 3. For any such P and @, Q/P will yield
the same result for infinitely many distinet pairs of constants y1, ye.

In developing the theory of a prime ideal = for the case in which ¥ has only
constants and in which there are no u, two courses are open to us. If we adjoin
an element z to &, as in I, §29, = will generate, for the enlarged field, a prime
ideal whose theory may be expected to be equivalent to that of Z; in the
analytic case, the ideals have the same restricted manifold. Again, by I, §27,
we can introduce a new indeterminate u%; and Z will generate a prime ideal in
Flu; ¥y, o+ ,Ya}. After either type of adjunction, the theory which follows
will apply.

26. From this point on, through §30, we work with a nontrivial prime ideal
2. We assume that either

(a) & does not consist purely of constants, or

(b) parametrie indeterminates exist.

We take a triad @, P, @ as in §25. Introducing a new indeterminate, w, we
let A represent the ideal { =, Pw — Q } in F{ u;y;w}. Let Q be the totality
of those d.p. @ in F{ u; y; w } which have the property that

PG=0, (A).

We see immediately that Q is an ideal. We shall prove that @ is prime.

Let B and C be such that BC is in 2. For s appropriate, P*B minus a linear
combination of Pw — @ and its derivatives is a d.p. R free of w. We obtain
similarly, from a P*C, a d.p. Sfree of w. As RSisinQ, PRSisin A. A generic
zero of Z does not annul P, and thus furnishes a zero of A. Thus a generic zero
of = annuls RS, so that one of R and Sisin Z. If Risin Z, P*B is in A.
Then B is in , so that Q is prime.

We notice that those d.p. of @ which are free of w are precisely the d.p. of Z.
In particular, @ contains no d.p. in the « alone.

We are going to show that @ contains a d.p. in w and the « alone.

Let B;yt =1, -+ ,p, be a d.p. of 2 involving only y;; u1, - - - , %, of mini-
mum rank in y;. Let S; be the separant of B;, Consider any generic zero of
Q. For it, we have

w = %.
For the jth derivative of w, we have an expression
(35) w; = pk

% As usual, we compare only zeros contained in the same extension.
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Using the relations B; = 0, we free each Q; from those derivatives of each y;
which are of order higher than the maximum of the orders of @, P and B; in y;.
Each w; will then be expressed as a quotient of two d.p., the denominator being
a product of powers of P, 8y, -+, S,. If we use a sufficient number of the
relations (35), as just transformed, we will have more w; than there are y;; in
the second members. Using the process of elimination employed in §23, we
obtain a d.p. K in w; w, +-- , u, which vanishes for a generic zero of @ and is
therefore in Q.
27. We now list the indeterminates in the order

Uty =ty U WY » 5 Yp
and take a characteristic set of Q,
(36) A Ay - Ay

Here w, 3, -+ , ¥p are introduced in succession (§21). The separants for (36)
will be represented by S, Sy, « -+, Sp and the mitials by I, I, - -+, I.

If A is not algebraically irreducible, we can replace it by one of its irreducible
factors. We assume therefore that A s algebraically trreducible.

We are going to prove that 4g, -+, 4, are of order 0 in y3, - -+ , ¥, respec-
tively and, indeed, that A; is of the first degree in y;. Thus, since, for ¢ > j,
A; is of lower degree in y; than A4 ; each equation A; = 0 expresses y; rationally
in terms of w; uy, « - - , u4 and their derivatives.

The determination of the manifold of = will in this way be made to depend
on the determination of the general solution of 4 = 0 (§16), which equation
will be called a resolvent of the prime ideal Z, or of the system of equations ob-
tained by equating the d.p. in = to zero.

28. Let us suppose that our claim with respect to the A; is false and let A,
be the A; of highest subseript for which it breaks down. Thus the 4 with
i > k, if they exist, are of zero order in %z 1.1, - - + , ¥, respectively and are linear
in those letters. On the other hand, either A; is of positive order in yx, or Az is
of zero order in y; and is not linear in y;. We shall foree a contradiction.

Let P; be the remainder with respect to (36) of P of §26 and let U be the
remainder with respect to (86) of

PSilule s s I,
In g{uly tet Uy WY, 0, Yk }7let
B o= (4, Ay -+, A T).

U is not zero and is reduced with respect to (86).% Of all nonzero d.p. in &
which are reduced with respect to (36), let B be one of a least degree in yur,
where 7 is the order of A;in y,. We say that B is free of ¥

3 The fact that Ax 41, - -+, Apinvolve 4 1, =+ + , ¥p, which do not figure in X, need give no
concern. Note that U is free of those indeterminates.
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Suppose that this is not so. Let C be the initial of B, that is, the coefficient
of the highest power of yx, in B. For m appropriate,

with D of lower degree than Ay in yi, and E, if not zero, of lower degree than
Bin yi. Eisin E.

We shall prove that E isin €. This is certainly true if E = 0. Suppose that
E is not zero. Let F be the remainder of E with respect to A, Ay, --+ , Ar —1.%
Then F is in E and is reduced with respect to (36). If F were not zero, it would
be, like E, of lower degree than B in yz,. Thus F = 0 and E isin Q.

Thus DB is in €. B is not, since it is reduced with respect to (36). Then
Disin . With ¢ the degree of D in 4, let

D = Gy + Gypr + -+ + Gk

As E, if not zero, is of lower degree than Aj in 4., the initial of DB is identical
with that of C"A4;. Now C, reduced with respect to (36), is not in Q. Thus G,
isnot in Q. It is easy to see that there exist integers @, ai, - - - , ax — 1 such that

IeI8 - I Ge= G, (Q), i=1, 0,1

where each Gi is reduced with respect to A, Ay, -+, Ax—1. We see that
G; = 0. Then

Go+ -+ + Gk,
is a nonzero d.p. in € which is reduced with respect to (36). This contradiction
proves that B is free of Y.
29. Now let @' be the totality of those d.p. in @ which are free of yx, «+ + , Yp.

We see immediately that Q@ is a prime ideal with 4, -+, Ay —1 as a charac-
teristic set.

Let
37) u=ryt=1-,gw=§yi=n,1t=1,---,p,
be a generic zero of €, contained in an extension & of §. Then
(38) 7'11"';7"1;5;771"";771:-—1
is a generic zero of Q. We replace wy, -+, Ug;W;Y1, <+, Yr —1 in Ay by the
quantities (38). We secure a d.p. Hxin & { 4 }.
We examine H;.. Let 4, be arranged as a polynomial in the yx:;, ¢ = 0, -- -, ,

with nonzero coefficients. The coefficients are not in £ and hence do not vanish
for (38). Thus H; has the same degree in y;, that A, has.

Let H; be expressed as a product of irreducible factors over &; and let K be
an irreducible factor which is of order r in y;. Let {& be a generic point (§6) in
the general solution of K.

# For k = 1, we take the remainder of E with respect to A.
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For (38), B becomesad.p. LinF: { y» }. As Bisnotin, L is not identically
zero. L is of order less than r in y, if » > 0 and is an element of &, if »r = 0.
Thus L cannot vanish for y, = ¢ (§13). Then B does not vanish for
(39) Tttty Te &5ty M~ 15§

As A, Ay, -+ -, Ay vanish for (39), U does not. Then (39) annuls none of
P8Iy, -+, Iy

The failure of I3 4 1, - -, I, to vanish for (39) shows that, when (39) is sub-
stituted into an 4 ; with j > k, the equation 4; = 0 determines y; as a quantity
¢;in the extension of & which contains {x. The quantities

(40) Tttty T &y =158k 0, $p

are seen to constitute a regular zero of (36) which does not annul®® PG. Thus
(40) is a zero of Q and

(41) Tyt T My M =138k 0, $p

is a zero of 2 which does not annul PG.

Suppose now that r > 0. We cannot have #; = {z Otherwise yi — m
would be a d.p. in §1 { y» } of lower rank than K which is annulled by ¢.. In
(41) and in the generic zero of 2

T TN, Up

we have two zeros of = which do not annul PG and which yield the same value
& for w. This contradicts the nature of G, P, Q.

We have thus proved that A, is of order zero in y;.

30. The denial made at the beginning of §28 now becomes a claim that A
is not linear in y;. We use the material of §29. As {; must equal®® i, yx — 7
must be divisible by K. This means, if H; is of degree ¢ in ¥, that

(42) Hi = a(yr — m)*

where « is the coefficient of yi in H;. Let 8 be the coefficient of y;™' in H,.
By (42),

(43) tamy 4+ 8 = 0.

In o and B, we reverse the substitution made to convert Ay into Hy. Also, in
the first member of (43), we replace 4, by .. We obtain a d.p.

My + N
which is in @, since, by (43), it is annulled by (37). As a # 0, M is not zero.

% (¢, which is not in @, cannot vanish for the 7,
% Note that the theory of the general solution applies to d.p. which do not involve proper
derivatives.
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Furthermore, M, which is the product by ¢ of a coefficient of 4, is reduced with
respect to 4, -+, Ax~1; s0is N.

We have a final contradiction of the agssumption of falsity made in §28.

Thus, every A; is linear in y; and, in the manifold of Z, each y; has an expres-
ston rational in w; wy, -+, Ug and their derivatives, with coefficients in .

31, We say that <f

(44) Uy * Uy Wy Gy 000, Up

1s a zero of Q, then @, - -+ , @g; W belongs to the general solution of A Let K be
any d.p. in w and the u belonging to the prime ideal whose manifold is the gen-
eral solution of 4. As the remainder of K with respect to 4 is zero, K is in Q
and therefore vanishes for @y, - - - , @4 W.

32. The introduction of the resolvent accomplishes the following:
(a) It reduces the study of an irreducible manifold I to the study of the gen-
eral solution I’ of some d.p. The correspondence between It and P’ may be
described as birational. Of course, in the expression for w in terms of the y,
and in those of the y in terms of w, derivatives may appear. For zeros in 9t
with P = 0, there may be no corresponding w, and for other zeros in IR the
initial of some A; may vanish. For restricted manifolds, we shall gain infor-
mation on these special zeros in Chapter V1.
(b) It extends into the theory of differential equations a property of systems of
algebraic functions of several variables. It is well known that, given a finite
system of algebraic functions, we can find a single algebraic function in terms
of which, and of the variables, the functions in the system can be expressed
rationally.
(¢) It furnishes an instrument useful in the treatment of various problems.

DIMENSION OF AN IRREDUCIBLE MANIFOLD

33. Let 2 be a nontrivial prime ideal in F{ 31, +++ , y» } with & any field.

We propose to show that, if parametric indeterminates exist, their number, g,
does not depend on the manner in which they are selected; in other words, two
- sets of parametric indeterminates contain the same number of indeterminates.

Let us suppose that a set uy, - -+ , u, has been selected, and that one has, in
addition, 1, - -+ , ¥, It will suffice to show that, given any ¢ + 1 indeter-
minates among the u and y

2y " R4

there exists a d.p. in = which involves only the 2,

We form a resolvent for =. As u exist, this is possible. Let us consider a
generic zero of €. The z in that zero have expressions rational in w, the « and
their derivatives. If a z; happens to be a u, say u,, the expression for z; is simply
u;.  We write

37 Here we consider 4 as a d.p. in w and the % alone.
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(45) zf:Pi(w;ulx"'tuQ)x i=17"';Q+1-

On differentiating (45) repeatedly, we get expressions for the 2;, which are ra-
tional in the w; and u;;. Making use of the relation A = 0, we transform these
expressions o as not to contain derivatives of w of order higher than r, where r
is the order of A in w.

Since there are ¢ 4+ 1 of the z and only ¢ of the v, it follows that if we differen-
tiate (45) often enough (and then transform), the 2;; will become more numer-
ous than the u;; and w, wy, - -+, wy.

It follows as in §23 that there exists a nonzero d.p. in the z which vanishes for
a generic zero of Z. Such a d.p. isin 2.

We shall call the number ¢ the dimensicn of =, or of the manifold of Z. To
a nontrivial prime ideal without parametric indeterminates, we attribute the
dimension 0. The dimension of [0] will be defined as =.

From §18, it follows that, for F{ 4, : -+, y. }, every manifold of dimension
n — 1 4s the general solution of a differential polynomial.

ORDER OF THE RESOLVENT

34. We work with a nontrivial prime ideal Z of dimension ¢ in F{ uy, - -+, ug;

#h, ", Ys |, the u being parametric for Z.* We suppose that triads G, P, Q,
and therefore resolvents, exist. Let
(46) Ay, 0 Ay

be a characteristic set for Z, the separant and initial of A; being S; and I;
respectively. We denote the order of A;in y; by ;. Let

h=r+ o + 1

We shall prove that every resolvent of Z us of order h in w3

We begin by proving that Q contains a d.p. in w; u, -+« , 4, whose order in
w does not exceed k.

Consider a generic zero of Q,

(47) By oo v, Ug; Wi T, 20y o
For it, we have
(48) w = %

We shall show the existence of d.p. R and T, each of order not exceeding r;
iny; t=1,---,p, such that, for (47), T is not zero and

(49) w = 1731

3 When ¢ = 0, there are no u.
% For a brief proof, based on the theory of algebraic fields, see Kolchin, 13.
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Let @i and P; be the remainders of @ and P respectively relative to (46).
Let @1 be obtained by subtracting a linear combination of the A; and their
derivatives from

8t 13 Q
and let P; be obtained similarly from
.- IPP.
Then, for (47), we have
_ QST - I
(50) R ¥

For R and T in (49), we take the numerator and denominator in (50).
We find from (49), for the jth derivative of w, an expression

B;

(51) Wi =iy

If U; is the remainder of B; with respect to (46), we can write (51)
2
where W;is a product of powers of T, Sy, - -+, I,.

Consider (49) and the first h of the relations (52). Let D be a common
denominator for the second members in these 2 | 1 relations. We write

(53) w; = %

-

j=0 ---, h

Let D, the E, and the 4 in (46) be written as polynomials in the y;; with co-
efficients which are d.p. in the . Let m be the maximum of the degrees of
these polynomials.

For convenience, we represent the r,th derivative of y; by z;. Let A; be of
degree v; in 2.

Let « be a positive integer, to be fixed later. In (53), let us form all power
products in the w; of degree a or less. Let the expression for each power prod-
uct be written in the form

F
(54) e
Then each F is a polynomial in the y,; of degree not exceeding ma.
Let each expression (54) be written

FIma
(65) D= pzta'

Consider a particular F, and let it be written as a polynomial in z,. Suppose
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that its degree d in 2, is not less than m. Then, as 4, = 0 for (47), we have,
letting
M= 4, - 1z,
the relation
(56) Iz8 = — Mz%",
If

F=Jo+ Juzp+ -+ + T,
with the J free of z,, we may write the numerator in (55) in the form
(57) (JoIp + - ++ + Jalgg) 15"

Since I, is of degree less than m in the y.j, each term in the parentheses in (57)
is of degree less than m(a + 1)

We replace J4I 22 by —JaMz3™” in (57). As J;is of degree not exceeding
ma — d in the y;; and as M is of degree at most m, then JaMzi"" is of degree
less than m{a + 1) in the y;;. Thus (55) goes over into

Fudyet

DIy’
where F, is of degree less than m(a + 1) in the y;; and of degree less than d in
zp. 1f the degree of F in 2, is not less than m, we repeat the above operation.
After t £ ma operations, we get an expression
HIp?
Derge
with H of degree less than m in 2z, and of degree less than m(a -+ ¢) in the y;;.
The numerator in (58) is of degree in the y,; less than

mla + 1) + m(ma — 1) £ 2mla.

(58)

Thus, if we let D, = DI, we can write each power product in the w; of
degree « or less in the form
K
(59) e
where K is of degree less than 2m? in the y;; and of degree less than m in z,.
We now write each expression (59) in the form

KIe
DI

(60)

and employ, with respect to z, — 1, the procedure used above. We find for each
expression (60) an equivalent expression

L

(61) D3
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with Dy = D,I2™, and with L of degree less than 4m3« in the y;;and of degree less
than m in z, and z, 1. Continuing, we find, for each power product of the w;,
an expression

w
(62) D=
where W is of degree less than 27m? + 1o in the y;; and of degree less than m in
zi,t =1, .-+, p. Let crepresent 2?m? * 1,

The number of power products in 2, « -+, 2, of degree less than m in each
letter is m». Thus, as the y:; with § < r; are & in number, the number of power
products of the y;; of degree ca or less, and of degree less than m in each z,, is
not more than

L lea+ 1) -+ (oo +1
(63) mp & - (e ),

The number of power products of degree « or less in the & + 1 letters w, is

(atht) (@t
41!

As (64) is of degree k + 1 in « and (63) is only of degree h, (64) will exceed (63)
for a large. This, we know from §23, implies the existence of a nonzero d.p. of
Q in w and the u alone, of order not exceeding & in w.

This shows that the order in w of the resolvent does not exceed k. Suppose
that the order of 4 in wis k < h. TFor (47), we have relations

C
(65) yi = 3:

(64)

where the C and D are d.p. in w and the u, of order not exceeding k in w. We
obtain from (65) expressions for the y:;, j = 0, - -+, r; — 1, which are rational
in the w; and w;; with powers of the D for denominators. Using the relation
A = 0, we depress the orders in w of the numerators until they do not exceed .
The transformed expressions will have denominators which are power products
of S and the D.

By an elimination, we obtain a nonzero d.p. W in the % and y which belongs
to @, hence to 2. This W, which is of order less than r; in each y;, is reduced
with respect to (46). This is impossible.

We have thus proved that the order in w of every resolvent is A.

35. Let = be as in §34, except that we waive the condition that resolvents
exist.

If we consider any h + 1 of the y;; the elimination process of §34 shows that
% contains a nonzero d.p. which, in addition to those y;;, involves only the
and their derivatives.* Thus, ¢f M is the manifold of Z, there exist h of the y;;
such that no algebraic relation among those y;; and any set of wu:; holds throughout

4 The statement which follows is an informal one, whose meaning is clear.
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M, whereas, given any h + 1 of the y;;, an algebraic relation holds throughout IMN
Jor those ys; and certain u;;.

The quantity h will be called the order of = (or of IN) relative to uy, - -+ , U,
When ¢ = 0, we call h the order of Z.

The two numbers ¢ and & measure the extensiveness of M. In the analytic
case, we may think of ¢ as the number of arbitrary functions which figure in I,
and of h as the number of arbitrary constants at one’s disposal when the arbi-
trary functions are selected. This can be seen from §10.

The relative order depends, as one would expect, on the choice of the v. For
instance, the manifold of g — y, is irreducible. If we let u; = y» we have
h=1. Ifu1=y1,h=0.

If F consists purely of constants and if &, is secured from § by the adjunction
of an element z of derivative unity, the prime ideal Z; of d.p. over & which
generates has the same parametric sets and the same relative orders as Z. This
is because a characteristic set of = is also one of =,.#

EMBEDDED MANIFOLDS%

36. TurOREM: Let = and 2’ be nontrivial prime ideals, with Z' a proper
divisor of 2, of the respective dimensions q and ¢'. Then q= ¢'. If ¢ = ¢/,
every parametric set uy, -+ , ug for Z' is such a set for T and the order of =’
relative to uy, - -+ , Uq 18 less than that of Z.%

To show that ¢ = ¢/, we observe that =, which is contained in Z’, can have
no d.p. in the uy, - -+, uy of a parametric set for 2. Thus we can build a
parametric set for Z starting with w,, -« - , ug.

Suppose now that ¢ = ¢’. By the final remark of §35, we may suppose, even
if ¢ = 0, that resolvents exist for = and Z'.

We can build resolvents simultaneously for = and 2/, using a single relation

W=y + '+ uYp

The u and G which serve for T will serve also for Z’, because the manifold
of 3’ is part of that of =. For = we obtain an @, and for 2’ an Q' which is
a proper divisor of . Let

A Ay, o A AN AL, - A

be characteristic sets of @ and @ respectively. As A isin @/, 4’ is not of higher
order in w than A. Suppose that A’ is of the same order in w as 4. By §13,
A is divisible by A’. The algebraic irreducibility of A and 4’ implies that
A = cA’ with ¢ in . This imples that 4, 4, -+, A, is a characteristic set
for @ as well as for . Now a prime ideal is the totality of those d.p. which
have zero remainders with respect to one of its characteristic sets. Thus Q'

4 A d.p. in Z; which is a polynomial in 2z has coefficients in =, (I, §29).
£ Gourin, 5.
#1f ¢ = 0, 2’ is of lower order than 2.
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and @ are identical. This contradiction shows that A’ is of lower order in
w than A. The theorem is proved.

When ¢ = ¢/, not every parametric set for I need be such a set for Z'.
Let 2 = { yrotoo + yu }. Either y1 or y: is a parametric set. = = {4},
¥ is parametric and ¥ is not.

PRIME IDEALS AND FIELD EXTENSIONS

37. Let T be a nontrivial prime ideal. Let & be an extension of § and =’
the ideal of d.p. over ¥, which ¥ generates. We are going to show that 2’ is
perfect and we shall discuss the essential prime divisors of Z’.

Let us suppose first that 2 is of dimension ¢ > 0, with a parametric set

Uty ,Ug.  We build a resolvent for Z, using a d.p.
(66) W= Y — * — Uplp.
Let

(67) A Ay oo A,

be a characteristic set of , with A = 0, of order r in w, a resolvent for =.
Suppose now that the irreducible factors of 4 over F; are By, ---, B,. Then
each B; is of order r in w. Otherwise, the coefficients of the powers of w, in 4,
having a common factor over F;, would have one over § and A would not be
algebraically irreducible.
We consider some B;. Let its general solution have a generic point

(68) Tyttt Tes £

We now examine any A in (67), denoting its initial by I.. It cannot be that
I; vanishes for (68). Otherwise I,, being of order not greater than r in w,
would be divisible by B;. Thus A and I; would have a common factor over &,
hence one over §. This is impossible because I; is of lower rank than A. Thus
the equation 4; = 0, when w and the u are as in (68), determines y. as a quantity
n: in the extension of ¥, which contains (68).

We consider the quantities

(69) Ty, T, Te 5;771; tt oy Mo

The totality Q; of d.p. over &, which vanish for (69) is easily seen to be a prime
ideal. We shall prove that Q; contains Q.

To take care of a point which arises later, let us start with any d.p. G over ..
Let H be the remainder of G with respect to

Ay, -+, A,
For some g, if S is the separant of 4,
SeH = K, [4],

whete K is of order not higher than r in w.
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Suppose now that G is in . Then K is divisible by A and hence by B;.
Thus K vanishes for (68). Now S does not vanish for (68); if it did, S would be
divisible by B; and would have a factor over & in common with A. Then @
vanishes for (69) and is in ©;. Thus Q; contains Q.

Let &' be the ideal of d.p. over F; which Q generates. Because a d.p. in © goes
over into one in = when w is replaced by uiyy + - -+ + uzys, those d.p. of Q' which
are free of w constitute Z’. Each Q; contains @'. Let G be any nonzero d.p.
which is contained in each ;. Let K be found from G as above. Then K is
divisible by each Bj, and hence by A. Thus 8°H isin @'. Then some J@, with
J =87 .- I, isin @, Let G be written, as in I, §28, in the form

(70) 7101+ -+ + Yl

with the C d.p. over ¥ and the v linearly independent with respect to . When
we multiply by J in (70), we get a d.p. in . Hence each JC; is in 2. Then
each C;isin @ and G isin @'. Thus @' is the intersection of the ;.

On this basis, if Z; is the prime ideal consisting of those d.p. in @; which are
free of w, 2’ is the intersection of =y, - -+, Z,. Thus 2’ is perfect.

No Q; contains any Q; with ¢ # j; if it did, B; would be divisible by B;, Now
Q; is the ideal of d.p. over F; generated by =; and the d.p. in (66). Thus none
of the 2; contains any other, and the 2; are the essential prime divisors of .

Consider some Z; If it contained a d.p. G in the u alone, G would vanish
for the r in (68). Thus each Z; is of dimension ¢, with the same parametric
sets as Z. One can see now that B; = 0is a resolvent for =;, Thus the order
of Z; relative to any parametric set equals that of =.

Suppose now that ¢ = 0. We adjoin a new indeterminate u. Z generates
a prime ideal A of d.p. in v and the y (I, §27). A is of dimension unity, with «
as a parametric set and with an order relative to u equal to the order of Z.4
Let A’ be the ideal of d.p. over &, generated by A. Then =’ consists of those
d.p. in A’ which are free of u. Let the essential prime divisors of A’ be Ay, - - -, A,.
If 2; is the prime ideal composed of those d.p. in A; which are free of u, A; con-
tains the prime ideal =; in :{ w; 4, +++, y. } generated by Z;, As I;is a
divisor of Z', &, is a divisor of A’. This means that A; = E;, Then no Z;
contains any 2; with ¢ # j, and the =; are the essential prime divisors of 3'.
As the order of any T; equals that of A; relative to u, each Z; has the same
order as Z.

We summarize. Let Z be a nontrivial prime ideal of dimension q, and Z' the
tdeal of d.p. over F1, an extension of F, generated by Z. Then Z' 1s perfect and
each of its essential prime divisors Z; j=1,--.,8, is of dimension q. If
g > 0, every parametric set for = is such a set for every =; and the orders of the
2; relative to such a set all equal that of =. If ¢ = 0, every Z; has the same
order as T8

4 A characteristic set of = is one for A.
4% A.D.E., Chapter VI, and Kolchin, 13.
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ADJUNCTIONS TO FIELDsS*

38. Let F be a field and &, an extension of §. Let ¢ be any set of elements
of F. There exist fields which are contained in 5, and contain & and ¢. The
intersection of all such fields is a field which will be denoted by F<¢> and will
be called the field obtained by the adjunciion of ¢ to . F<o> consists of all
rational combinations of elements of ¢, and of derivatives of such elements, with
coefficients in &.

A quantity ¢ lying in an extension of § will be said to be differential with re-
spect to F if  annuls a nonzero d.p. in one indeterminate over J.

TaEOREM: Let § contain a nonconstant element. Let 1, - -+, n. be elements
lying in oan extension of ¥, each differential with respect to 5. The field
F<m, *** , Na> contains an element & such that

F<my -0y na> = FE>,

Let = be the set of those d.p. in F{ g1, -+, ¥» } which vanish for y; = 7,
, =1,---,n Then Zis a prime ideal of dimension zero. We form a resol-
vent for =, using a d.p. asin (66) withp = n. Let £ = 2 um:. Consider the
initial I; of some A, in (67). If I; vanished for £ and the 4, I; would go over
into a d.p. in 2 when w is replaced by the sum of the u;; thus I; would be in
Q. It follows that each 5; is contained in F< ¢>. This proves the theorem.

ANALOGUE oF LUROTH'S THEOREM

39. Let F be any field and % an indeterminate. The totality of rational com-
binations of the u;, with coefficients in &, is a field which, by §38, it is proper to
call F<u>.

We prove the following theorem.

TaeorReEM: Let F' be any extension of F which 1s coniained in F<u>. Then
F contains an element v such that F<v> = F'.¥

This theorem is analogous to a well known theorem on algebraic fields which
is equivalent to Liiroth’s theorem on the parametrization of unicursal curves.®

40. Every element of § <> can be written in various ways in the form P/R
with P and R in { « }. We shall write F(u) for a d.p. F in u, irrespective of
the number of derivatives of u which appear in F.

LemMa: Let P, Q, R be in §{ u }, with R not zero. Let the relation

P() _ P(r)
(1) R(n) ~ R’

where 1 and 7 lie in the same extension of § and do not annul R, imply the relation
4 Kolchin, 12,

4 A.D.E., Chapter VIII, and Kolchin, 12.
4 van der Waerden, Moderne Algebra, vol. 1, p. 126.
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Q) _ Q)
72) R = BGY

Then Q(u) /R (u) ts contained in the field obtained by adjoining P(uw)/R (u) to F.

If Q(u)/R(w) is an element of §, the conclusion holds in a trivial way. If
P(u)/R(u) is an element of F, (71) holds when 5 and r are indeterminates. Then
(72) holds when 7 and 7 are indeterminates and Q/R is in ¥. In what follows,
we assume that neither P/R nor Q/R is in &.

Let F be a dp. in F{u,y,2z}. For the substitution y = P(u)/R(u),
z=Q)/R(u), F becomes an element of F<u>. There exist d.p. in
{ u,y,z}, for instance, 0, which vanish for the indicated substitution. The
totality 2 of such d.p. is a prime ideal.

We show first that = contains no d.p. in y alone. Let such a d.p. G exist.
Let P/R be written P,/R; with P, and R, relatively prime as polynomials in the
u;. We consider the algebraically irreducible d.p. K = P;(u) — yRi1(u). Let
u = 1, y = 7 be a generic point in the general solution of K. R is not annulled
by r. Hence G(n) = 0. This contradicts the fact that no nonzero d.p. in ¥
alone holds the general solution of K, and our statement is proved. Similarly,
Z contains no nonzero d.p. in z alone.

A generic zero of T satisfies the relations y = P(u)/R(w), 2 = Q(w)/R ).
With an elimination, we find that = contains a d.p. in ¥ and #z alone.

For the order y, z, u, let Z, U be a characteristic set of Z with Z algebraically
irreducible. Here y is parametric, Z introduces z and U introduces u. We
claim that Z is of order zero in z and linear in z. The justification of this claim
will amount to the proof of our lemma.

We denote the order of Zinzby r. Lety = »,2 = {, u = 7 be a generic zero
of Z. In Z, we replace y by 4, securing a d.p. Z: in §<9 > {2}, of order r in
z. Let Z; befactored in § <u, ¢, >, and let Z, be one of those irreducible factors
of Z, which are of order r in 2. Let {’ be a generic point in the general solution
of Zs.

We shall show that #, ¢/, which annuls Z, is a generic point in the general
solution of Z. It will suffice to show that 4, {’ annuls no d.p. B which is reduced
with respect to Z. On the one hand, this will show that 4, ¢’ does not annul the
separant of Z, and is therefore in the general solution. On the other hand, it
will prove that a d.p. whose remainder with respect to Z is not zero cannot
vanish for 4, {’.  We shall know thus that the only d.p. which vanish for 5, {’
are those which hold the general solution of Z.

Let 4, ¢’ annul a B as above. By §28, some linear combination C of B and Z
is reduced with respeet to Z and free of z.. As 9, ¢’ cannot annul C, it eannot
annul B.

Thus, if we substitute 7, {’ into U, we obtain a d.p. U; in % whose order in u
is the same as that of U. Let s be that common order. We factor U; in
F<q¢T >, Let Up be one of those irreducible factors of U; which are of
order s in % and let +' be a generic point in the general solution of U,.



54 DIFFERENTIAY: ALGEBRA

We say that 4, ¢, 7" is a generic zero of Z. For this, it suffices to show that
7, ¢', 7 annuls no ¢ which is reduced with respect to Z, U. Given such a C,
some linear combination of Z, U, and C is, by §28, reduced with respect to Z, U
and free of u,. The proof is now easily completed.

We see now that " = . Otherwise + and 7/, which do not annul R, would
produce the same P/R and two distinet Q/R.

We find as in §§29, 30 that r = 0 and that Z is linear in 2.

41. There exist d.p. in §'{ y } which vanish for y = w. For instance, if
P(u)/R(u) is an element of §’, we can use

@) PG) - HA RG).

The totality Z of such d.p. is a prime ideal. Clearly ¥y = wu is a generic zero of
3. We shall prove that the manifold of 2 is the general solution of a d.p. of
the type (73).

We know that the manifold of Z is the general solution of some d.p. B (§18).
We suppose each coefficient in B to be written as the ratio of two d.p. in &{ u }.
Multiplying B by a suitable element of F{ u }, we obtain a d.p. C in F{u, y}
which is not divisible by any d.p. in §{ u } actually involving one or more u..
If C is arranged as a polynomial in the y;, the ratio of any two of its coefficients
will be in 5",

42. There must be a pair of coefficients, P (%) and R(u), in C, whose ratio is
not an element of §. Otherwise, we could secure from C a d.p. in 5{ y } vanish-
ing for y = u. Let

(74) D = R(w)P(y) — P(WE(y).

We are going to show that D is the product of C by an element of &.
Let E = D/R(u). We consider E as a d.p. in'{ y }. Then E vanishes for
y = uwand soisin Z. Hence, if S; is the separant of B, there is a relation

(75) SiE = 0, [B].

From (75), if we represent the separant of C for the order u, y by S, we secure a
relation

(76) FSD =0, [C],
with Fin §{ » }. Let
(77) C=G -Gy

be a resolution of C into factors which are algebraically irreducible in §. Each G
involves 4. Let 7 be the order of C'in y. We say that each G is of order r in y.
Suppose that Gy is of order s < r in y. Then, when C is arranged as a poly-
nomial in y., each coefficient is divisible by Gi. Let B above be arranged as a
polynomial in y,. Let Hi, --- , H; be the coefficients in B. The H, considered
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as polynomials in 41, «+ -, ¥r —1, are relatively prime. Hence, there is a rela-
tion®

(78) MH +---+MH., =N

where N and the M are polynomials in y1, + -+, y»~1 and where N is distinct
from zero and free of y.. We can obtain from (78) a relation which shows that
the coeflicients of the powers of y, in C are not divisible by a d.p. of order sin y.

No two of the G in (77) have a ratio which is an element of ¥. Otherwise S
would have a factor in common with C. As above, we see that this is impos-
sible for the reason that S; has no factor in common with B. By §13, no G,
holds the general solution of a G; with j # .

We wish to show that D holds the general solution of each G. This will fol-
low from (76) if we can show that S holds no such general solution. For this,
we observe first that S is of order not more than r in y. As S has no factor in
common with C, S is not divisible by any G. :

Let s be the order of C in u. By (74) the order s’ of D in u does not exceed s.
Let Gy, - - - , Gy, be those G which are of order s in u. As s’ = sand as D holds
the general solutions of Gy, *+ + , G, it must be that s’ = s and that D is divisible
by each G; with ¢ < m.® Then let

(79) D = KG1 te Gm.

The degree of Gy - -+ Gm in u, is that of C. As, by (74), D has a degree in u,
which does not exceed that of C, K is of order less than s in w.

Let Gm 41, -+, G be those G which are of order s — 1 in . Their general
solutions are held by D but by no &; with ¢ £ m. Thus K holds the general
golutions and is divisible by Gm 41+ + Gw.

If C and D are arranged as power products in the u; and if such power prod-
ucts are ordered as in I, §22, the highest product in D will not be higher than
that in C. Tt follows from (77) and (79) that

K=LGnir  Gw

with L of order less than s — 1 in . Continuing, we find D {0 be the product
of C by adp. M(y) in §{y }. M has to be an clement of §. Otherwise, D,
by its symmetry, would be divisible by M (u) and M (1) would be a factor of C.5

43, Let T be the d.p. in ¥'{ y } obtained by dividing D by R(u). Then T
is of type (73) and is the product of B by an element of 3.

Let v = P(uw)/R(u). We are going to prove that ¥ = F<o>.

Let U(u)/V (u) be any element of . We shall show that U(u)/V (u) is in
F <v>. Let

# Perron, Lehrbuch der Algebra, vol. 1, p. 204,
® The remainder of D with respect to G; for the order y, u is zero.
8 Tt is easy now to prove that the G are all of order r in .
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W = UGy) — %@3 V().

Then Wisin 2. If S;is the separant of T, there is a relation
SiW =0, [r].
This gives
X8VwUy) —UwWVyl=0  [D],

with X in F{ « } and S the separant of D. Let u = 7, ¥y =  be a zero of D.
We suppose that X (r)R(r) # 0. Let 7, y annul S. Then, if

Y =P Ry — R (yPy),

where P’ = 0P/dy, and R’ = dR/dy,, n annuls Y. We shall show that Y (y) is
not zero. As C is not divisible by a d.p. in u alone, D is not. Hence P and R
are relatively prime. If, for instance, R’ is not zero, R’ is not divisible by E.
Thus Y (y) is not zero. If Y(y) # 0, 7, y annuls V(«)U(y) — UV (y).

We now write P(w)/R(u) and U(w)/V(u) with a common denominator
RVXY. Applying the lemma of §40, we find that U/V is rational in P/R and
its derivatives. This proves the theorem of §39.

44, Let w be any element of §' such that F<w> = F. We seek a relation
between w and the v found above. The totality of those d.p. in §{ y, 2z } which
vanish for y = v, 2 = w is a prime ideal 2 whose manifold is the general solu-
tion of a d.p. F (§33). As w has an expression rational in v and its derivatives,
S contains a d.p. which is of order zero in z and linear in 2. F must be such a
d.p. Similarly, F is of zero order in y and linear in y. This means that
w = (av + B)/(yv 4 8) where «, B, v, § are elements of &.

45. From the theorem of §39, it follows that if » and w are elements of F<u>,
that is, quotients of two d.p. in u, there exists a quotient ¢ of two d.p. in u such
that » and w are rational in ¢ and its derivatives while ¢ is rational in », w and
their derivatives. This result parallels Liiroth’s theorem on unicursal curves.



CHAPTER III
STRUCTURE OF DIFFERENTIAL POLYNOMIALS

I. Manifold of a Differential Polynomial
THEOREM ON DIMENSION OF COMPONENTS

1. If F is an algebraically irreducible d.p. in & { 41, -+, ¥ }, the dimension
of the general solution of F is n — 1. One might inquire as to the dimensions
of the other components of F (II, §3). This question is answered by the follow-
ing theorem:

TrEOREM: Let F be a differential polynomial® of positive classin F{ y1, -+ ,y= }.
Every component of F is of dimension n — 1.

From II, §33, it follows that every component of F is the general solution of a
differential polynomial.

2. Let the essential prime divisors of { F} be 2y, --+,2,. We have to
show that every Z; is of dimensionn — 1. Consider some Z; and let 51, - - - , 9,
be a generic zero of Z;, We shall show that #,, -+, 7. is a zero of some Z; of
dimension n — 1. Any such Z; must be contained in =; and must therefore
be identical with ;. This will prove that 2; is of dimension n — 1.

3. We use new indeterminates z;, -+ ,%2. In F, we replace each %; by
z; + 7. Then F goes over into a d.p. K in Fo{ 21, +++,2,} where &, is
F<m, + -, 1.>. K vanishes when each z; is replaced by 0.

4. Now let W be the sum of the terms of lowest degree in K considered as a
polynomial in the 2;;. Let V be a factor of W, algebraically irreducible in &,.
Changing subscripts if necessary, we shall assume that V involves 2, effectively.
Let &1, - -+, £« be a generic point in the general solution of V and let F; repre-
sent Fo <1, *++, >

ARBITRARY CONSTANTS

5. We shall explain now what is to be meant by the term arbitrary constant.
At each stage of our work we operate in a definite field; thus far we have met
F, Fo, F1. A field having been given, we understand by an arbitrary constant
with respect to the field, a quantity ¢ which can be adjoined to the field,? which
is transcendental with respect to the field (I, §29), and whose derivative is zero.

THE POLYGON PROCESS
6. We are going to show that K has a zero
1 Algebraic irreducibility is not necessary.

2 That is, ¢ lies in an extension of the field.
57
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2 = {ic, T =2 --,n,
a=fc4 @™+ o0 oo™ el

Here the ¢ are elements of a field ¥’ which contains §; while ¢ is an arbitrary
constant with respect to ¥’. The p are rational numbers with a common
denominator; they exceed unity and increase with their subscripts.?

7. It may be that K vanishes for 2z; = {i«c, ¢ = 1, - -+ |, n, where c is an arbi-
trary constant with respect to §;. In that case, the {ic are suitable expressions
(1) with ¥ = §..* In what follows, we assume that such vanishing does not
occur.

We put in K

ey

2 z; = {iC, T=2,---,m; 2 = {ic + .

Then K goes over into an expression K’ which is a polynomial in ¢ and the uy;.
We may write

3) K =d()+ z b(0) U,

Here ¢’ (c) and the b'(c) are polynomials in ¢ with coefficients in ¥y, p is a posi-
tive integer and the U’ are power products, of positive degree, in the u;;. We
know that a’(c) is not zero. We understand that no b’ (c) is zero.

8. Let ¢’ be the least exponent of ¢ in &’ and o; the least exponent of ¢ in b;.
Let d; be the total degree of U;/. Finally, let

! !
@) p = Max ~—".
We shall prove that g, > 1.

To begin with, if d is the degree of W of §4, ¢’ > d since W is annulled by the
¢. Under (2), the constituent W of K contributes to K’ terms which effectively
involve one or more u1;.> The total degree of any such term in ¢ and the uy; is d.
Thus, for at least one ¢ in (3), we have o +di=d As o > d, we have
then ¢/ — oy > d;. Thus p; > 1.

9. Let ¢’ be the coefficient of ¢ in a’. Let k', denote the coefficient of ¢*, or
denote zero, according as (¢ — o7)/d: equals p; or is less than p,. Let

P
(5) Liu) =g+ X2 hUs.

3 The zero (1) will lie in an extension of §'. How to use formal infinite series, and how the
fractional powers of ¢ are to be regarded, will be obvious.

4 One sees how to go through the formality of building an extension of ¥’ which contains the
2z; presented.

& To see this, it suffices to show that W does not vanish identically for z; = {s, +++, 20 = {n.
Let W be arranged as a polynomial in the z1;. The coefficients are d.p. in 2, - - - , 2, and thus
cannot hold the general solution of V, which d.p. involves 2;.
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We consider L' as a d.p. in F1{ w; }. Let { L' } have @y, -- -, Q, for essential
prime divisors. Each £, hag a generic zero ¥; in an extension (depending on 17)
of F1. We select one of the ¢; in the following manner.

Let L’ be of effective degree f in the ;. Then certain partia' derivatives of
L', of order f, with respect to the ui;, are elements of F; distinct from zero. Of
all positive integers r for which there is a ¥, which does not annul every partial
derivative of L’ of order r, let fi be the least. We choose a y¥; which does not
annul every partial derivative of order f; and designate it by ¢;. Let F =
Fi< @2 >.

10. From now on we understand that ¢, used above, is an arbitrary constant
with respect to F.. It may be that ¢, causes K’ to vanish when substituted
for ;. In that case we have suitable expressions (1) with

7z = &ic + ™

Let us suppose that the vanishing does not oceur.
We make in K’ the substitution

(6) Uy = @™ 4 us.
Then K’ goes over into an expression K’ in ¢ and u, which may be written
1) K" =a"(c) + X b (c) Uy

Here o/’ and the b” are sums in which each term is the product of a rational
power of ¢ and an element of F.. We know that o'’ = 0, and we assume that no
b” vanishes. The sums ) in (3) and in (7) do not necessarily involve the same
power products.

Let o” be the least exponent of ¢ in a”’; o; the least exponent in b;’; d; the
degree of U;. Let

g’ — g

8) ps = Max a; ot

We are going to prove that oz > ps.

Using an indeterminate v, we replace %; in K’ by ¢"». The ith term of 3 in
(3) will produce a set of terms, each of the type BcT', where T is a power product
in the v;,° 8 an element of ¥, and where

9) g 0'; + pods.

By (4), ¢ = ¢. We will have ¢ = ¢’ only if 8 is an 2’ in (5). On this basis,
we may write

10) K'(¢™) = ¢ L'(v) + ¢"M'(c, v),

where, in regard to L’, M’, 7/, the following statements apply.
L’ is as in (5) with u; replaced by v. M’ is a polynomial in the »; with co-

6 T is the same in all terms and is merely U :-with u; replaced by v,
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efficients which are sums of terms, each the product of a nonnegative rational
power of ¢ by an element of F;. As to 7/, which we understand to be taken as
large as possible, it is a rational number greater than ¢’.

We now put v = ¢ + ¢ =™ us. Then (10) gives, by (6),

(11) K" (ug) = ¢"L'(¢2 + ¢ = "us) -+ ¢"M'(c, o1 + ¢~ "us).

Let K’ be of order r in u;. Suppose that, for some set of nonnegative
integers lo, -+ - , I,
Qv+ I ()

(12) Fourn -+ O un,

does not vanish for u; = ¢». This implies that at least one [ is positive. Let
Z = u -+ uy. We shall prove that Z is present in Y. in (7) and we shall
determine the o, associated with that power product.

The coefficient of any u%, - - - 43, in the second member of (11), whether (12)
vanishes for it or not, is the quotient by I,! - - - I,! of

(13) ¢ TP (@) + 7 TPM,. (e, 02

where A=Ilp+ <+« + 1,; L,... is (12) with w; replaced by ¢2; My,.... is ob-
tained by the same differentiation and substitution from M’ (c, u;).

The assumption that (12) does not vanish for ws = ¢, implies that Z is pres-
ent in (7). The associated o; is given by

(14) o) = ¢ — pN =0 — puds.
On the other hand, if ¢ annuls (12) and if Z is present in (7), we have
(15) of > o — pds.

We can now study p; in (8). We have, for every 1,

' —da' ' —gq a — o
(16) d; T d; + )

By (14) and (15) we have

(17) —t=p
or

r__
(18) == <,

according as (12) with suitable ! does not vanish or does vanish. From (17)
and (18) we see that (¢’ — ¢ )/d; is a maximum, namely ps, for those ¢ for which
(12) does not vanish. Such 7 exist, as was seen in connection with the stipu-
lation made in regard to ¢ in §9.

From (13) with every I zero, we see now that ¢’’ > ¢’. Turning now to (16),
we see that there are 7 for which the first member of (16) exceeds ps.
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This proves that pz > pe.

11, We now form for K’ a d.p. L'’ analogous to (5) and obtain a zero ¢; of
L' in the manner followed for ¢;. In this, we consider L' as a d.p. in F2f{ u» }.

We continue this procedure. It may be that at some stage we reach a
K %=1 which is annulled by ¢, ¢’*. In that case

(19) 2= 1c - 0" o0 o’

is suitable for (1). We suppose in what follows that our procedure does not
terminate in a finite number of steps, so that we are led to form an infinite series

(20) 21 = flc + goch’ + e,

We shall then be working in a field 5 which is the union of all F; and we under-
stand ¢ to be an arbitrary constant with respect to §'.

We shall prove that the p; have a common denominator. This will imply
that the p;, become infinite with k. It will be seen also that the z; of (1) annul K.

12. We begin by showing that the degrees of the L‘® as polynomials in the
uz; do not increase with k. Let us compare the degree of L’ with that of L.
Let f, and fi < f, be as in the stipulation of §9 relative to ¢s, with f the degree
of L'.

In (16), (¢’ — o’)/d; is less for d; > fi than for d; < fi. On the other hand,
(¢’ — &;)/d; obtains its maximum value p; for some d; equal to f;. This shows
that the first member of (16) cannot be as great as ps for d; > fi. Referring now
to the description of the coefficients in (5), which deseription is similar to that
of the coefficients in L'/, we see that the degree of L'’ does not exceed fi.

Thus there is a positive integer ¢ such that, for k = e, the L™® are all of the
same degree, say m. Consider any k = e, the corresponding L®, and the par-
tial derivatives of all orders of L™ with respect to the uz;. We shall prove that
if R is any such derivative of order less thanm, Ris in { L® (w) }.7 Let { L®}
have the essential prime divisors &y, - ++, @, If one refers to the stipulation
made in regard to the various ¢; (§9), and considers that the degree of L&+ D
equals that of L™, one sees that R is annulled by a generic zero of every Q..
Thus R is in every 2; and so in { L® }.

Let, now, R be a partial derivative of L™ of order m — 1, distinct from zero.
Then R is linear in the uz:.. Let L® be decomposed into factors over F which
are algebraically irreducible. Let Z be an irreducible factor of the same order
in u; as L®. Then Risin { Z } so that the remainder of R with respect to Z is
zero. As the order of R in u;, does not exceed that of Z, R is divisible by Z.
As R is linear, Z is the product of R by an element of §,. We have thus, for
some ¢,

(21) L® = QRr

where @, except perhaps in the case in which it is an element of F, has an order
which is less than the common order, call it 2, of L® and R in ;. We have

" We work in Ff{ us }.



62 DIFFERENTIAL ALGEBRA

aaL(k)
oufn

= u@)

with » in ;. As u@ is reduced with respect to R, it is not in { £ } and thus not
in { L® }. Tt follows that ¢ in (21) equals m, so that

(22) L® = \R™

Wlth A in Fr.

In the expression for L analogous to (5), there is a term like ¢’ in (5), free
of the uz;. This means that E has such a term, so that, by (22), L® has terms
of the first degree. Thus, in the equation of definition of p; 41 analogous to
(4), there will be, among those ¢ which give a maximum, certain ¢ for which
d; = 1. In other words, the denominator of p; 4 1 can be taken as the common
denominator of ¢ and the ¢%. For that common denominator, we can use
that of P2,y Pk

This shows that the p; have a common denominator, so that they approach
« with k. ‘

13. We have to show now that the expressions in (1), obtained as above,
annul K. Because a®, for any k > 1, is the result of performing in K the sub-
stitutions

(23) 2; = tic, T=2 ., mn,
2= fic + -+ erd™,

3 (&)

it suffices to show that ¢* approaches « with k. This is so because the o
increase with k¥ and have a common denominator.

DIMENSIONS OF COMPONENTS

14. We see now that F of our theorem has a zero

Yi =i S, ‘i=2;"',n)
(24)
Yr=m + Hie -+ @ -,

Then (24) is a zero of some Z; of §2, say of Z,. We shall prove that Z; is of
dimension n — 1, It will suffice to prove that Z; contains no d.p.iny,, -+ -, ¥
Let M be such a d.p. in Z;. We replace each y; in M by z; + %;. Then M
goes over into a d.p. N in Fo{ 2z, ---,2,} which vanishes for 2z; = {uc,
1=2,---,n Let P be the sum of the terms of lowest degree in N. Then P
vanishes for 2; = ¢, ¢ =2, -+, n. We have here the contradiction that P,
which is free of 25, holds the general solution of V of §4.

Then Z; is of dimension n — 1. If, in any d.p. M of =, we replace each
y:; by its expression in (24), the term free of ¢ which is obtained is the result of
replacing each y; in M by ;.. Thus n, -+, 9. is a zero of 2. This, as was
seen in §2, implies the truth of our theorem.
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DEGREES OF GENERALITY

15. Suppose that F is algebraically irreducible, and let =y, in §2, be the prime
ideal associated with the general solution of F. Consider any Z; with ¢ > 1.
The manifold of Z; is the general solution of a d.p. A. We say that if y; is an
indeterminale effectively present in A, the order of F in yi, exceeds that of A. Thig
follows from the fact that F is in Z;, so that, if F were not of higher order in y;
than 4, F would be divisible by A and Z; would be identical with Z,.

II. Low Powers and Singular Solutions
COMPONENTS

16. Let F be as in §15. We know that the components which F may have in
addition to its general solution are general solutions of d.p. 41, -+ -, A,. There
arises the problem of determining the 4. More than this, one will desire to
know whether the A are visible in some way in the structure of F.

There will be developed, in Chapter V, a method for determining a finite set
of algebraically irreducible d.p. whose general solutions make up the manifold
of . However, not all of the general solutions there found need be compo-
nents of F'; it may be that some of them are contained in others of them. The
problem of selecting the components is identical with that of determining the
influence of the components on the structure of F. It is best formulated as
follows, without requiring the algebraic irreducibility of F. Let F and A be d.p.
mF {ysy -, Ya} with A algebraically irreducible. Let F hold the general solu-
tton of A, that is, let the rematnder of F with respect to A be zero. It is required to
determine whether the general solution of A is a component of F. The solution of
this problem is contained in the low power theorem presented below.

PrerParaTION PROCESS

17. Let F and A be any two d.p. of class n.2 Let the orders of F and 4 in
y» be m and [ respectively. Let A; represent the jth derivative of 4, and S the
separant of A. We shall show the existence of a nonnegative integer t and of a
positive integer r such that S'F has a representation

T
(25) 121 CLAPAVAY - Apy
with nonnegative p; and iy;, where no two of the r sels Ty, - - , im — 1, j are tdentical,

the C; being of orders not exceeding l in y ., and not divistble by A.

If m =1, we express F in the form CA? with C not divisible by 4 and we
understand this expression of F' to be that which is indicated in (25). In what
follows, we assume that m > [

We let z represent y, and we start with the case of m =1 4- 1. Let F be of
degree a in 21+ 1. Then S°F can be written as a polynomial in Sz , 1 with co-
efficients whose orders in z do not exceed I. Now

8 We are not assuming algebraic irreducibility for A.
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Air=8z1+T

with the order of T in 2 at most I. Thus SeF can be written as a polynomial in
Ay — T, and hence as a polynomial in A;, with coefficients whose orders in z
are at most I. If we write each coefficient in the form CA?, p = 0, with C not
divisible by A, we have a representation (25) for SF.

Suppose now that (25) can be produced for m < s where s > 1+ 1. We
make an induction to m = s. Let F, of order s in 2, be of degree a in z,, We
see as above that S°F can be written as a polynomial in A, _; with coefficients
whose orders in 2 are less than s. For a sufficiently large positive integer b, the
product of any of these coefficients by S? will have a representation (25). Thus
S?+eF has a representation (25).

18. We shall show now that, for any admissible ¢, (25) is unique. Let S*F
have two distinct representations (25). By a subtraction, we get a relation

(26) 0=3 DAY ... Alnni
i=1

where the v sets of exponents are distinet and where the D, distinet from zero
and of order no more than [ in 2z, may be divisible by 4.
We have

Am_1=82n+ T

with T of order less than m in 2. In (26), let us replace 2, by (w — T')/S where
u is an indeterminate in the customary sense of algebra. Then A, —; is re-
placed by u in (26). Continuing, we see that (26) holds if the A ; are considered
as algebraic indeterminates. This contradicts the fact that the D are not zero.

19. Suppose now that A is algebraically irreducible. We see, because S is
not divisible by A4, that for two distinet values 4 and & of ¢, with & > #, (25) is
the same except that the C for ¢, are those for ¢ multiplied by S*~*.

By taking ¢ as small as possible, we are led to a unique expression (25). In
all that follows, it will be understood that the smallest admissible ¢ is used.

When 4 and F are both algebraically irreducible, the smallest ¢ can be found
as follows. If Sis an element of &, we take t = 0. Otherwise, we first secure
(25) with any admissible ¢ and then determine the highest power 8¢ of S which
is a factor of every C. As F is algebraically irreducible, St must be divisible by
Se. A division by S? will thus give the unique representation sought.

THE LOW POWER THEOREM®

20. Let F and A be of class n, of the respective orders m and I in y,, with 4
algebraically irreducible. Let F hold the general solution of A. Then there is
no term in (25) which is free of A and the A;. Otherwise some C would hold

* First proved by the author in paper 31. The analytic sufficiency proof there given is
reproduced in Chapter VI. The algebraic sufficiency proof, to be given now, is due to Levi, 17.
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the general solution of A. This is impossible since the C' are of order at most
lin y,, and not divisible by A. We can now state the

Low rowEer THEOREM: For the general solution of A to be a component of F,
1t 18 necessary and sufficient that (25) contain a term CrA™, free of proper deriva-
tives of A, which, if (25) is considered as a polynomial in A, Ay, <+ , Am—1, 78 Of
lower degree than every other term of (25).

The assumption that F and A are of class » is made only for convenience.
Any indeterminate present in A is present in F and may be used as ¥n.

The low power theorem is very easily remembered for the case of a single
indeterminate y, with A = y. It then becomes: Let F, in §{y }, vanish for
y=0. Fory =010 be acomponent of F, it is necessary and sufficient that F,
considered as a polynomial in y and its derivatives, contain a term in y alone, that
18, a term free of derivatives of y, which is of lower degree than every other term of F.

Thus y = 0 is a component of yy: — y, but not of yys —~ y2 or of yays — Y2

One of the ideas in the sufficiency proof can be seen in a simple example. In
Flyl,let F=y 4y, A =y. Wehave

y+uyw=0, [F]
Differentiating, we find
Y1+ s+ ;= 0, [Fy,

Yo+ ywa + Byays =0,  [F].
The three congruences may be written

(14 Bw)y + Bu #1 4 Be ys = 0, [F],
By y+ (1+ Bu) y1+ B =0, [F],
By y + Ba 1+ (14 Bg) y:=0, [F],

where the B vanish fory = 0. The determinant D of the coefficients of y, y1, ¥2,
in the congruences just written, contains unity as a term and is thus not zero.
If we solve for y, we find that

yD=0, [Fl

Then yD holds F. Thus D holds every component of F which y does not. As
D does not vanish for y = 0, the manifold of y is not part of any larger irreducible
manifold held by F. This makes ¥ = 0 a component of F,

The above method can be applied to any d.p. F of the type y + C where the
terms of C are of degree at least 2. The pth derivative of F contains y,. Now,
as is easy to see from a consideration of weights, when p is large each term in the
pth derivative of € involves a y; with © < p. This leads to a system of con-
gruences of the type met above.

10 That is, for j #= &, 2 < p; + 45 + +++ +in 1,5 . If m =1, so that (25) has just one
term, and that of the type Ci A%, the condition will be regarded as fulfilled.



66 DIFFERENTIAL ALGEBRA

For F of the type y? + C with p > 1, further elements of proof are necessary.
These are provided by Levi’s theory of power products, considered in Chapter 1.
We shall now treat the general case.

SUFFICIENCY PROOF

21. Using indeterminates w, 2, 41, * -+ , 4, and the field of rational numbers,
we prove the following lemma.

LeEMMA: Let
g
27 C =wz? — 3 u;B;
i=1

where p 18 a positive integer and the B are power products, of degree p + 1, in z and
its derivatives. There exists a relation

(28) z2¢w+ D) =0, [C],

with d and s positive integers and with each power product in D of positive degree in
the z; and of degree s in the w;, uq;.

Let 7 be the maximum of the weights of the B. If r = 0, each Bigz? +!and
we have immediately a relation (28) withd = p and s = 1.1
We suppose now that » > 0 and refer to I, §21. Let

d=r(p—-141, t=d{r—1).

We say that every power product in the z; of degree d and weight not more than
¢ is contained in [27]. If p = 1, this is a trivial statement. Let p > 1. In
(27) of I, §21, we have, for d as above,a = r, b = 1. Then

f(p,d)=t+r+1

and the truth of our statement follows.

Let Ey, -+, E, be the power products of degree d and of weight not more
than t. Let p; be the weight of E; Let G represent 2. Consider the repre-
sentation of an E; as a linear combination of the derivatives G; of G. Each G,
is homogeneous, of degree p, and isobaric, of weight ¢. On this basis, we cast
out, from the representation of Ej;, all G; with ¢ > p;; from the coefficient of a G;
with ¢ £ p;, we cast out all terms which are not of degree d — p and of weight
p; — 1. Thus we write, forj =1, --- , g,

¥21
(29) E; = 3 HuG

k=0

where H j is either zero or else homogeneous, of degree d — p, and isobarie, of
weight p; — k.
By (27),

11 The case of 7 = 1 is also trivial.
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g
(30) w@ = jZ] u,-B,-, [C].
Representing by (w@); the kth derivative of w@, we have by (30), for k = 0,
|

@31 (wGh = Ki,  [C],

where each term in K is of the first degree in the u;; and of degree p + 1 in the
z;; the p + 1 letters z; in each term have a total weight no more than r + k.
By I, §10, we have, for any k,

k
(32) wk+ IGk = Z Lk.'(’U)G),'.
i=0

We may suppose each L;; to be a d.p. in w alone, which is homogeneous, of
degree k, and isobaric, of weight & — 7. By (29) and (32), we have for

J=1 e m
Pi

<33) wt+ IEJ' = Z Mj,'(’U)G);.
=0

An M ; which is not zero is homogeneous, of degree ¢, in the wy and homogeneous,
of degree d — p, in the z; it is isobarie, of weight p; — 4, in all of its letters.
By (31) and (33),

(34) Wi = Y MK, [Cl.
i=0

If N is a term of some K, the total weight of the p + 1 letters 2, in N is, as has
been noted, no more than r + 1.
We shall now write (34), with prompt explanations, in the form

(35) wttiE; =3 P, [C].

The sum in (35) depends on 7. Each ¢, is a rational number. Each P, is a
power product, which is of the first degree in the uu, of degree ¢ in the w: and
of degree d + 1 in the z;. The total weight of P, in the w; and 2 is, for some
1 < py, not more than

;=) ++)=pjt+r=si+r

Certainly then, the total weight of the d - 1 letters #z; in P, is no more than
t4 .

Working with some P,, let @ be the product of the d 4 1 letters 2z, in P,. Let
2, be the highest derivative of zin Q and let @ = z,R. The weight of R cannot
exceed {. Otherwise, as { = d(r — 1), some derivative in R would be of order
at least 7. We would have ¢ = r and the weight of @ would exceed ¢ + 7.
Then R is one of the E;.

We may now write (35)
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I
(36) w'tiE; = ; T B, [C],
-1

with each nonzero T homogeneous, of the first degree, in the u4; homogeneous, of
degree t, in the w;; homogeneous, of the first degree, in the z:. We write (36)

(Tu — wt +l) El + T12E2 + .- + TlpEu = 0; [C]y

(BT) ettt
TaB:+ TpoBe+ -+ + (T,, —w'*) E, =0, [Cl.
If U is the determinant of the system (37),
UE; =0, ci, i=1 -,
We have

U= (—Dfwre+n 4V

where each power product in V is of positive degree in the z; and of degree
u(t + 1) in the w; and ws;;. Observing that 2¢ is an E; we have (28) with
s =p(t 4 1)and D = (—1)*V.

22. We now prove a theorem which gives a result somewhat stronger than
the sufficiency of the condition in the low power theorem.

TrEOREM: If (25) contains a term CrA™ which s the only term in (25) of
degree as low as pr, every component of A which is held by F, but not by Cy, is a
component of F.

Let 9 be a component of A. If m =1 (25) becomes F = C;,A™ and the
theorem holds. Let m > 1. We compare (25) and (27). We let 4 in (25)
correspond to zin (27), Ci to w and py to p. In a term of (25) other than CrA™,
we take a power product of degree p + 1in A and the A; and make it a B as in
(27). Corresponding to (28), there is a relation

(38) AYCi+ E)=0, [S7],

where E holds A.

Suppose now that 9% is not a component of F but rather a proper part of a
component M’ of F. Then A does not hold M’ so that, by (38), Ci + E holds
9. As E holds 4, C; holds M and the theorem is proved.

We note that Ci does not hold the general solution of A. The question of
sufficiency, in the low power theorem, is settled.

23. TuroreM: If (25) contains a term CrA™ which is the only term in (25) of
degree as low as ps, every zero of A which is contained in a component of F which
is not held by A is a zero of Cy.

Let the zero #1, -+ , 7 of A be contained in a component IM of F which is
not held by 4. By (38), C; + E holds IR. As E holds 4, C; is annulled by

My " ° 5y Mn
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NECESSITY PROOF

24. Let It be the general solution of A. The set 41, -+ , ¥« — 1 is parametric
for M and the order of M with respect to y,, - -+ , ¥y —1is I. We shall prove
the following theorem, which will settle the question of necessity in the low
power theorem.

TuEOREM: Let the terms of lowest degree tn (25) involve proper derivatives of A
and let Ay be the highest derivative of A which appears in the terms of lowest degree.
Then M is not a component of F and M is contained in a component M, of F whose
order with respect to y1, *++ , Yn —118 af least I 4 h.22

We shall replace y. in (25) by y, -+ %o, where uo is an indeterminate, and
examine the resulting d.p. in u, and the y. Such a replacement, made in any
d.p. B in the y, of order s in y, will convert B into

(39) B + Bgtgo -+ - -+ 4 Biugs 4 terms of higher degree in the uq;,

where B; is the partial derivative of B with respect to ¥ ..

For B = A, (39) will contain the term Suy and for B = 4,, (39) will con-
tain Suo, 1+ d»

Let m, -+, n. be a generic point of M. In (25), we make the substitution

(40) Yi = 15 1:=1"":n_1; Yn = N+ Uo.

Then S'F, as in (25), goes over into a d.p. K in T {uy}, where =
F <771; v ,7711>-

Each C in (25) will produce, under (40), a nonzero term free of the uy;. As
each A;, 1 =0, -+, m — I, vanishes for the 5, while S does not, the terms of
lowest degree in the uo; produced by A; will be of the first degree and will involve
Uo, 1 + -

From the terms of lowest degree in (25), we select those which are of a high-
est degree in A;. From the terms just taken, we select those which are of a
highest degree in A, 1. We continue through 4;. Our process isolates a single
term of (25)

T = CAPAY .. A,

Under (40), T produces a term in uj; - -+ ug’; , , which is not cancelled. Thus
the sum W of the terms of lowest degree in K, which sum is of positive degree,
will be of order I 4 & in u,.

We are going to find for K a zero

(41) uo=§'0+¢20"—|—-*-+¢kc"k+...

of the type exhibited in (1).
Let V be a factor of W, irreducible in F,, which is of order I + A in u,. Let
¢ be a generic point in the general solution of V. It may be that K vanishes for

12 Note that g1, «++ , ¥n -1 is parametric for DY if P contains I,
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up = ¢e. If so, ¢{c is a suitable series (41). In what follows, we assume that
the vanishing does not occur.

We make, in K, the substitution uo = ¢t + w;. Then K goes over into an
expression K’, a polynomial in ¢ and the uy, which may be written as in (3).
The lowest exponent of ¢ in a’ exceeds the degree of W. W contributes, to the
sum in (3), terms, free of ¢, whose degree in the uy; is the degree of W. This justi-
fies us in imagining that it is the present K’ which is being used in §§7-13. We
secure thus the zero (41) of K,

25. We have thus a zero of S‘F

Yi = N4 i=17"'1n_1)
Yn =1n+ 4 o™ + - .

As the » do not annul S, (42) gives a zero of F.

Let the components of F be general solutions of d.p. By, - -+, B,. Then (42)
is in the general solution of some B;. To fix our ideas, we suppose that the gen-
eral solution N, of B; contains (42). Let D be any d.p. which holds I%;,. Then
D must vanish for the 5, else it could not vanish for (42). Then D holds 9.
Thus 9 contains IN.

Under (40), let B; go over into a d.p. E in ue. Let U be the sum of the terms
of lowest degree in E. Then U is annulled by {. Hence the order of U in ug
is at least that of V, namely I + A. Thus By is of order at least I 4- 2 in y, so
that the order of M with respect to vy, -+, yn—1 is at least I 4 A. This
proves our theorem, and, with it, the necessity of the condition in the low power
theorem.

(42)

AN EXAMPLE
26. We consider, in §{ y }, the d.p.

F=pB +jI_Il(y1 —y +39)

where B = yy, + yy1 — 2y° and m is any positive integer.

We show first that F is algebraically irreducible. Suppose that F has a
factor @ free of 2. Then @ is a factor of ¥?, the coefficient of y.. As F'is not
divisible by ¥, there is no factor free of %.. As the equation F = 0 defines ¥
as a function of two branches of ¥ and y1, there are no factors of the first degree
m Y.

Thus the manifold of F consists of the general solution, M, and perhaps, of
components held by S, the separant of F. As S = 2yB, and as B holds y, B
holds the components other than M. Thus every zero of F not in N must
annul one of the d.p.

Ai=y1_y+jy2; j=1’°":m-
We have, for each j, with A, the derivative of 4,
B = ij - 2y1A,-.
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The low power theorem shows us immediately that the manifold of each A4;is a
component of F.

FURTHER THEOREMS ON LOW POWERS

27. Levi obtained a very broad theorem, dealing with systems of d.p., which
is essentially a generalization of the low power theorem, at least as far as the
question of sufficiency in that theorem is concerned. We consider a special
case, which involves a single d.p.

Let

F=ylys --ynr+D

where the p are nonnegative integers whose sum is positive and where D is a
d.p. of the following description:

(a) Each of its terms has a degree in the y which exceeds p1 + <+« 4+ ps.

(b) Given any of its terms, E, and any y;, E is either divisible by ;" or else
of degree higher than p; in the y;.

It is easy to see, and, in fact, it will be explicitly shown in the course of our
work, that, if p; > 0, the manifold of y; is a component of F.

We shall prove that the zeroy; = 0,1 = 1, -+, n, of F is not contained in any
component of F which is not the manifold of some y; with p; > 0.

We treat first the case in which only one of the p, say p., is positive. We
collect those terms of /' which are not of degree higher than p, in the ¥ .z; they
are all divisible by 2. We write

(43) F=0Gy;+H

where each term of H is of degree greater than p, in the y... We have
(( =14+ K where K is free of y, and vanishes fory; = 0,7 =1, -+, n.

We can now apply the low power theorem, taking A as y,. The manifold of
¥ is a component of F. The zero y; = 0,7 =1, .-+, n, of ¥, does not annul
G. By §23, it cannot lie in any component of F' other than the manifold of ¥ .

Suppose now that the proof has been carried through for the case in which no
more than 7 of the p are positive, where r < n. We make an induction to the
case in which » 4 1 of the p are positive.

Let p. be positive. We use (43). H satisfies (a) and (b) and each of its
terms is of degree greater than p, in the ... We have

G=yl-yami+ K

where K satisfies the following two conditions:

(¢) Each of its terms is of degree higher than p; + +++ 4 P, —1 in the yu,
=1 .- n

(d) Given any of its terms, E, and any y; with j < n, E is either divisible by
y3! or else of higher degree than p; in the y.

We write (43)
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F=Gyn"+L1M1+"'+LgM,

where the M are power products of degree p 4- 1 in the y.; and where the L,
like K, satisfy (d) above.
By §21, there exists a relation

v+ N)=0, [F],

where N is a homogeneous polynomial, of degree s, in derivatives, proper or im-
proper, of G and the L, with coeflicients which vanish when y, = 0.

Suppose now that the zeroy, = 0,2 = 1, - -+ , n, lies in a component I of I
other than the manifold of ¥,. Then G* 4 N holds I%. Now G* 4 N is of the
form

Wyt + P
where P satisfles (a) and (b) above if, in those statements, p, is taken as zero
and each p; with ¢ < n is replaced by sp:. By the earlier cases, I is held by
some ¥; with ¢ < n and is thus the manifold of such a y;. The result is estab-

lished.
28. InF{y }, let

F = y»i + D,

where p > 0, ¢ > 0, and each term of D is of degree greater than ¢ in proper
derivatives. The manifold of % is a component of F. The only point which
this manifold can have in common with other components is y = 0.

Suppose now that each term of D is of degree greater than p -+ ¢ in y and proper
derivatives. We shall show that the only component of F which contains y = 0
18 the manifold of y.®

We find readily that

Yily + N)=0, [F],

where each term of N is of degree greater than ps.

If y = 0 were in a second component, M, of F, M would be held by y?* + N.
That d.p. hags ¥ = 0 as a component,

29. IngF{y}, let

(44) F=y?+D

with p positive and less than the degree of any term of D. There exists a rela-
tion

(45) yl+N) =0, [F]

where N vanishes for y = 0. We are interested in the least value of d for which

it is possible to have a relation (45).
It is easy to see that d cannot be less than p. If F is of positive order, the

13 Tevi, 17, where a more general result is secured.
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work of §21 gives r(p — 1) + 1, with r the greatest of the weights of the terms
of D, as an employable value of d. If p = 1, we can thus take d as unity. Itis
not possible to take d as p for every p. For instance, let F = y® + yi. Sup-
pose that we have a relation

(46) y(1+ N) = MF + MiF’' 4 -+ + M JF®,

For the second member of (46) to have ¥ as one of its terms, it is necessary for
M to have unity as a term. Then MF has ¥t as a term. Equating terms of
degree 4 and weight 4 for both sides of (46), we find y; = 0, [¢*], which is easily
shown to be falge.

We now let A represent y? and A4 ; the jth derivative of A. Suppose that, for
some m > 0,

(47) F=A+73 MA,
i=0

where each M vanishes for y = 0. We are going to show that d may be taken
as p.14

We assume, as we may, that no M is zero. We may write, on the basis of
(47) with a suitable range for 7 and j,

(48) A= 12, Ciysds,  [F],

in which we understand that no C is zero. If, in the second member of (48),
each A4;is replaced by the jth derivative of the second member, there results a
congruence

(49) A= i%cijkyiy,-Ak, (F].

For each C;;in (48), we consider 7 4- j. Let r be the maximum of these sums.
Then, in (49), no 7 4 7 4+ k can exceed 2r. If the substitution just made is
carried out s — 1 times, we find a congruence

4= Z Cyﬁylz et yiAlHu [F];

C depending on the <. No sum 7 4 -+ 4+ % +1 can exceed sr. By §21, if
s=(+1)(p—-1) 41, every y, +-- y;, will be in [4]. We have thus a
congruence

(50) A - Z D,;J'A,'Aj = 0, [F]

Let L represent the first member of (50). We know from what precedes that
there is a relation

AQ4N)=o0, [L],
with N = 0, [4]. Q.E.D.

“ Levi, 17.
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TERMS OF LOWEST DEGREE
30. We prove the following theorem.

THEOREM: Let A and B be nonzero d.p. in g1, -+ ,yn Let Bhold A, Let A,
be the sum of the terms of lowest degree in A considered as a polynomial in the y.;
and let By be the corresponding sum for B. Then B, holds A,.

A similar result holds for the terms of highest degree.

31. Remark. The simplest case is that in which B = 0, [4]. One might
expect to have then By = 0, [4;]. We shall show by means of an example that
this need not be so. Let, in F{ y },

A=yi+y B=2pd -yl = 2y — 3yui

Then A1 =14}, Bi=B. If we had B, =0, [A;], it would follow that
y*y2 = 0, [A1]. The derivatives of 42 have weights which exceed 2. Thus y*y.
would have to be a multiple of 42. This proves our statement. From the ex-
pression of B in terms of A, one might now conjecture that some power of B; is
linear in A; and the first derivative of A;. In that case, some power of %%y,
would be such a linear combination. This is impossible since %%y, is not divisible
by y1. Actually, the cube of B, is linear in A, and its first two derivatives.

32. We enter into the proof. If A, is free of the y, B; certainly holds A;. In
what follows, we assume that the terms of A; are of positive degree. Then A,
vanishes for y; = 0,7 =1, --- , n.

We shall prove the permissibility of assuming that A; contains a term in-
volving only the 415, Let 2, -«-, 2, and wy, - - - , w, be indeterminates. Let
¥s, for © > 1, be replaced in A; by 2z; + w;. Then A, goes over into a d.p. C in
Y1, the 2 and w. C contains terms free of the z;;; the sum D of such terms is
found by substituting w; for y; in A, for ¢ > 1. Let £, be an integer which ex-
ceeds the order of D in 4. On putting w; = y1,, in D, we convert D into a non-

zero d.p. Drin y1, ws, + -+, ws.. We now replace w; in Dy by 1., where f; ex-
ceeds the order of Dy in 5. Continuing, we find a substitution
(51) Yi = 2 + Y1y 1=2,-0,m,

which converts A; into a d.p. E in y; and the 2;, E possessing terms free of the
2ij. 'The terms of E will have the same degree as those of A;.

The substitution (51) may be applied to A and B and will give a situation in
which E takes the place of A;. This proves the legitimacy of the assumption
described above, and, in what follows, 4; will be understood to have terms in-
volving only the y1;.

Now let ¢y, -+ -, £ be any zero of A;. We wish to show that A has a zero

Y = {ic, =2, 000 ,m,
h=5c+ g™+ -0,
of the familiar type. If A vanishes for y; = tw, ¢ = 1, - -+, n, we have (52).

(52)
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Otherwise, we replace each y; with ¢ > 1in A by {ic and y, by fic + wi.  Then
A goes over into an expression K’ in ¢ and u; which may be written as in (3).
The lowest exponent of ¢ in a’ exceeds the degree of A;. Also, because A4, has
terms in y; alone, A contributes to the sum in (3) terms, free of ¢, whose degree
in the u:; equals the degree of A;. The discussion of §§7-13 thus holds for the
present K’, and we have the zero (52) of A.

As (52) annuls B, the ¢ annul B;. The theorem is proved.

33. The case of the terms of highest degree, mentioned in §30, is perhaps
most conveniently treated as follows. Let 4, and B; be the sums of the terms

of highest degree in A and B respectively. Using indeterminates u; z;, -+« , z,,
we put in A and B
(53) Y = z:/u, 1=1,,n

We have then
A = C/ur, A1 = Cy/um,
B = D/u"‘, B1 = Dl/u"',

with m a positive integer and C, C1, D, D; d.p. in u and thez. Cjand D; will be
the sums of terms of least degree in C and D. Because B holds A, «D holds C.
By what precedes, wD, holds C1. Because every zero of A, yields zeros of C;
with 4 # 0, By holds 4,.

SINGULAR SOLUTIONS

34. In studying the components of a d.p. F, and in examining the manner in
which they make themselves visible in the structure of ¥, we have thus far had
no need to assume F algebraically irreducible. For a closer examination of the
components, algebraic irreducibility is important for F, and accordingly we as-
sume it.

As we saw in Chapter II, the discussion of the manifold of F is allied to the
study of the singular solutions of ¥ = (0. The general solution of ¥ contains
all nonsingular solutions and sometimes, in addition, some or all singular solu-
tions. If there are other components, they are made up of singular solutions.

The problem of singular solutions has two aspects. On the one hand, one
will wish to know how the singular solutions are distributed among the com-
ponents of . On the other, one will, in the analytic case, desire to know how
the singular solutions are related analytically to the nonsingular ones. For
instance, singular solutions may be envelopes of nonsingular solutions, or may
be embedded among them in an interesting way.

35. Let us examine the first question. With what we already know of the
components and with what will be developed in Chapter V, we shall be able to
produce a set of d.p.

(54) F:Ah'":AP

whose general solutions are the components of F. The general solution of a d.p.
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in (54) contains all nonsingular zeros of the d.p. One will wish to determine the
singular zeros which are contained in the general solution. If one has done this,
and thus knows the nature of each component of ¥, one may be interested in

" determining the intersection of two or more components; this is a matter of find-
ing the intersection of the general solutions of two or more d.p.

If it were possible effectively to construct bases for the various essential prime
divisors of the perfect ideal determined by a given finite system of d.p., the above
questions would be answered. For instance, we could get a finite system of d.p.
whose manifold is the general solution of F and, after that, a finite system whose
manifold consists of the singular zeros in the general solution.

The problem of determining bases for the prime divisors is at present far from
being solved.’® It is thus a matter, at this time, of treating special differential
equations with such methods as one can devise.

For the case of a single indeterminate, the problem of the singular zeros in a
general solution, and that of the intersection of components, reduce to the fol-
lowing problem: Given two algebraically irreducible d.p. in y, F and A, with F
holding the general soluiion of A, to determine whether the general solution of A is
contained tn the general solution of F.

If Fis of order n in y, and A of order » — 1, this is merely a matter of deciding
whether the general solution of 4 is a component of F. The low power theorem
gives the decision. If the order of 4 is less than n — 1, the question becomes
complicated. For instance, suppose that A is of order n — 2. It may be that
F has certain components Iy, -+ -, M, of order » — 1. The general solution
M of A may be found, when the low power theorem is used, to be contained in
some of the $t;. In that case, the question of testing for the presence of M in
the general solution of F' is an intricate one, which thus far has been solved only
for the case of n = 2.1

For the case of n = 2, our problem can be reduced to the following: Let F,
of order 2, vanish for y = 0. It4s required to determine whether y = 0 is contained
in the general solution of F. This question can always be answered after there
are performed a finite number of operations in which one examines polygons, of
the Newton type, associated with F. The discussion is too lengthy to be pre-
sented here.

For instance, let ¥ be the d.p. of §26. F is annulled by y = 0. Form > 3,
it follows from §24 that ¥ = 0 is in the general solution of . For m = 3, the
methods of the paper cited above show that y = 0 is in the general solution.

We wish, in conclusion, to compare two very simple d.p. According to §28,
y = 0 is not in the general solution of yy: + yi. Consider, again, yy: + 3.
By §24, its general solution contains y = 0.

36. The second problem on singular solutions mentioned in §34 belongs to

15 A theoretical solution of the problem is presented in Chapter V. This solution is incom-

plete in that one does not know how far the process used in the solution must be carried to be
effective. ‘

18 Ritt, 31.
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classical analysis rather than to differential algebra. For instance, Hamburger’s
work on differential equations of the first order'” shows that if a singular solution
of such an equation is not contained in the general solution, the singular solution
is an envelope of nonsingular ones. If the singular solution is contained in the
general solution, it is analytically embedded among nonsingular solutions. An-
other paper of Hamburger’s deals with algebraic differential equations of any
order 7, supposed to have a component of order » — 1. Of course, the notions
of component, and of general solution, as we have them, did not exist when
Hamburger wrote. The component of order n» — 1 is shown, speaking geo-
metrically, to consist of envelopes of curves in the general solution. The theory
of algebraic differential manifolds throws new light on the analytic theory of
singular solutions, and, as one sees in connection with partial differential equa-
tions,!® points the way in analytical investigations.

37. Just as Lagrange dealt, to an extent, with the general solution of a dif-
ferential equation, so Laplace,’ in a paper published in 1772, treated questions
resembling those of the present chapter. Dealing with a differential equation
F = 0 of order n, in an unknown y, Laplace uses the term general integral to
designate a family of solutions depending on n arbitrary constants. By a
solution of the given equation, he understands an equation A = 0 of order lower
than n which ‘“‘satisfies” the given equation. What seems to be meant, in a
vague way, is that F' holds the general solution of A. A particular integral is a
solution “contained in”’ the general integral and a particular solution is one
which is not so contained. Laplace sets the following two problems:

Being given a differential equation of any order,

(1) to determine whether an equation of lower order which satisfies it is contained
in the general integral;

(2) to determine all of the particular solutions of the given equation.

The second problem corresponds to that of the deftermination of the com-
ponents of a d.p., the problem which is solved by the low power theorem. The
first problem corresponds to that of determining whether the general solution of
A is contained in that of F.

As one would expect, Laplace’s treatment of his problems is of a heuristic
nature. It does not contain the elements of a sound theory, or even serviceable
conjectures. One can have only admiration, however, for his ability to imagine
problems which, with the mathematics of his day, could not be soundly formu-
lated, much less solved.

38. A paper published by Poisson in 1806 treats,” in a manner somewhat
different from that of Laplace, the questions raised by the latter. Poisson’s
method is most easily understood from his discussion of “‘algebraic particular
solutions.” These, which had been considered by Laplace, have for counter-

17 Hamburger, 6.

18 Ritt, 41.

19 Laplace, 16.

2 Poisson, 19.
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parts, in the theory of manifolds, components composed of one point, for in-
stance, the manifold of y when

oy (B

F=y+ (dﬁ) '
Poisson considers that it is proper to call a solution y(z) of a differential equa-
tion an algebraic particular solution if and only if the equation does not have a
one-parameter family of solutions y(x) + ¢z with ¢ an arbitrary constant and
z a function of z and e¢. More or less, an algebraic particular solution is, for
Poisson, one which cannot be analytically embedded in a one-parameter family
of solutions. With this definition, Poisson is able to state, for certain classes of
equations, necessary and sufficient conditions for a given solution to be an
algebraic particular solution. The results of Poisson may be regarded, as may
also those of Laplace, as heuristic equivalents of portions of the low power
theorem. For instance, Poisson concludes that y = 0 is a particular solution of

dy\ &y _ .
dz) du2 =Y
if and only if m = n. Poisson’s treatment of his problem vaguely resembles
the necessity proof for the low power theorem.
39. There is an aspect of the theory of singular solutions which is not revealed
by our algebraic considerations. The equation
dy , (Y
2 el - =
(55) ] ydx+(dx) 0
has y = 0 in its general solution. If we solve for y in (55) in terms of dy/dz,
we secure two expansions proceeding according to increasing integral powers of
dy/dx. They are

@) vt (8) 4o,
(57) y= (%)2+

Now the solution y = 0 of (57) can be shown to be an envelope of solutions of
(57). Furthermore, the low power theorem can be extended to cover equations
like (57), in which infinite series appear. This suggests extending the theory of
differential polynomials into one of differential power series.®

III. Exponents of Ideals

40. In ${y1, -+ ,¥yn }, we consider an ideal = and, with it, { Z}. Every
d.p. in { = } has a power in Z. By I, §15, if, for some p, and for every 4 in
{2}, A» = 0, (Z), the pth power of { = | will be contained in Z. If there is a
positive integer p such that = contains { Z }?, the least such integer is called

2 Ritt, 33.
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the exponent of { = |} relative o Z. When no such integer exists, the relative
exponent is taken as .

Relative exponents were investigated by Kolchin.?? He studied, in particular,
for an algebraically irreducible d.p. 4 in y, of the first order, the exponent of
{ A} relative to [A]. The exponent depends on the nature of the singular
zeros of A. We shall content ourselves with the presentation of an example.

41. Let A = y; — 4y. (See Example 1 of IT, §4.) We shall prove that the
exponent of { A } relative to [A] is 2. We have, subscripts of A4 indicating
differentiation,

4, = 2y1y2 - 4y1,
Az = 2y + 245 — 4y,
(58) As = 2y + 6yays — dys,

Ar=2yYr 1+ -+ + 2ryy. — 4y, (r> 2).

The unwritten terms in A, with » > 2 are of the form cy,y, withp + ¢ =r + 2
and with p and ¢ greater than 2 and less than r. As y1(y. — 2) is in [4],
yz(yg bl 2)2 isin [A]. If r > 2,

Yo(ys — 2)2 = P(2rys ~ 4) + ¢,

with ¢, a constant distinet from zero. We find then, from the last equation of
(58),

(59) cyr = Pr(2ysyr 41+ --+), [4],

the unwritten terms being as in A4,.
We shall now prove that, for r > 2,

(60) yr(y —2) =0, [4]
By (59) with » = 3, we have
(61) csys = 2ywiPs,  [A]

We multiply by y= — 2 in (61), noting that 4; = 2y, (y. — 2). We obtain (60)
with » = 3. If we observe that the subscripts in the unwritten terms of (59)
exceed 2 and are less than r, the induction necessary to establish (60) for all r is
accomplished.

Then, for r > 2,

(62) Yrer(ma—2) +ys =0, [A]
As the first term in (62) is in [4], we have, for r > 2, y,ys = 0, [A]. Then
Yrr1ys + Ys = 0, [4],
2 Kolchin, 10.
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so that yy.is in [4] for » > 2. In this way, we see that
(63) Yoy =0,  [4],
forp > 2,¢> 2.

Let P, any d.p. in { 4 }, be written

P=Q+R,
where @ consists of those terms of P which involve only y, 41, ¥.. The y; with
t>2arein {A}. ThusQisin { A }. We write
Q=M{y.—2)+N
with N free of 2. Then y.N isin { 4 } so that N is divisible by A. Thus
P=M@y -2 +R [4]
Then
P = M*y, — 2)* + 2MR(y» — 2) + R?, [4].
Now R?isin [A] by (63) and R(y; — 2) isin [4] by (60). Hence
P = M(y. — 2>, [A]

Each term in M involves at least one of y, y1, yo. We know that y;(y: — 2)
and y2(y: — 2)? are in [A]. Also, because 35 = 4y, (4), we see that y(y, — 2)
isin [A]. Hence P? = 0, [A].

Thus { 4 }? is contained in [A].

42. It remains to be proved that { A } is not identical with [4]. This we
show by proving that y; is not in [A]. Suppose that

(64:) Ys = CcA + 01A1 R C,-Ar.
In the second member of (64), we put y = y7/4, y» = 2. We find, writing
B: = yys, Bs = yiys + 4y,

Br=y1yr+1+"'+(2r_2)yr (7‘>2),
that

(65) ys= DBy + -+ + D,B,.

We see immediately that r > 2. The only term in the second member of (65)
which can yield a constant times ys is D3B;.  Thus 1/4 must be a term in D; so
that D;B; must contain (y1y4)/4. The term just mentioned must cancel out in
(65). The only B other than B;s which contains a term of which ¥y, is a multi-
ple is By, which contains 6ys. 'Thus D, must contain —y;/24 so that — (y3ys)/24
appears in D.Bs. The only term other than B, which contains a factor of yiys
is Bs, in which ys appears. It follows that DsB; contains a term in 43ys. Con-
tinuing, we produce the contradiction that r in (64) is not exceeded by any
integer. This completes the proof.



CHAPTER IV
SYSTEMS OF ALGEBRAIC EQUATIONS

1. The preceding chapters contain, of course, a theory of systems of algebraic
equations. One has only to suppose oneself working with a system of d.p.
which are of order zero in each indeterminate. It is, however, desirable to make
a separate examination of algebraic equations. ,

For instance, the theory of algebraic equations can be developed from the
algorithmic standpoint, so that every entity whose existence is established is
constructed with a finite number of operations. The results of the algebraic
theory will permit us, in Chapter V, to give an algorithmiec treatment of various
questions connected with finite systems of d.p.

Again, we shall obtain an approximation theorem for systems of algebraic
equations (§39) which will be found useful in the study of algebraic differential
manifolds in the analytic case.

Our account of algebraic equations differs in certain respects from the classical
treatments. On the one hand, it is convenient for us to use the methods of the
preceding chapters; on the other, it is necessary for us to develop formal pro-
cedures which can be applied later to differential equations.

POLYNOMIALS AND THEIR IDEALS

2. In the present chapter, we use an algebraic field § of characteristic zero
(I, §1), without requiring that an operation of differentiation exist in F. We
study polynomials in algebraic indeterminates 41, « - - , ¥4, With coefficients in &.
The totality of such polynomials is represented by F[y1, -, ¥»]. Polynomials
will be represented by capital italics and systems of polynomials by large Greek
letters.

We carry over definitions from Chapter I as follows. Let & be regarded
momentarily as a differential field in which all derivatives are zero, and the y as
differential indeterminates. We then define, as in Chapter I, the terms class,
separant, initial, chain, characteristic set and remainder.

3. Let = be a system of polynomials in F[y1, +++, y»].- We shall call Z a
polynomial ideal (p.i.) if, for every finite subset Ay, -+, 4, of = and for all
Cy +++,Crin Fyy, + -+, y»], the polynomial C;4; + -+ 4 C,4, is contained
in 2.

If = and 2, are p.i., and if =, contains 2, Z, is called a divisor of 2.

Let A be any system of polynomials. Let (A), be the totality of linear combi-
nations of polynomials in A with polynomials for coefficients. Then (A), is a
pi. We call (A) the p.i. generated by A.

Let 2 be a p.i. Suppose that, whenever a polynomial 4 is such that some

81
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positive integral power of A is in Z, 4 itself is in =. We shall then call = a
perfect pi. Let A be any system of polynomials. TLet { A }o be the totality of
those polynomials 4 for which a positive integer p, depending on A, exists such
that A7 isin (A)o. It is easy to see that { A }o is a perfect p.i. We call { A },
the perfect p.i. determined by A.

Let Z be a pi. We shall say that = is prime if, for every pair of polynomials
A and B with AB in Z, at least one of A and B is in Z. KEvery prime p.i. is
perfect.

For p.i., the following theorem holds.

TureorEM: Every perfect p.i. is the infersection of a finite number of prime p.i.

In §4, we shall show how this theorem can be proved using only material de-
veloped in the present book. Let us, however, first found a proof on Hilbert’s
classic basis theorem for systems of polynomials.

According to Hilbert’s theorem, given an infinite system X of polynomials,
% has a finite subset ® such that (), contains =. Now let = be a perfect
ideal for which our theorem is not true. Then Z is not prime. Let AB be in
= while neither A nor B is. We see easily that

{Z+A4ABlo={Z+ A} N{Z+ B}

and the proof is completed as in 1, §16.

4. We may also operate as follows. Let us consider & as a differential field
in which all derivatives are zero and let the y be regarded as differential indeter-
minates. Let = be an infinite system of polynomials, and ® a basis for T as in
I, §12. We consider any polynomial 4 in Z. - Let A? be linear in polynomials
of ®, and their derivatives, with d.p. for coefficients. The jth derivative of a
polynomial of positive class is isobaric and of weight j. If, in the linear ex-
pression for A?, we cast out all terms of positive weight, we have for A? an ex-
pression linear in polynomials in @, with polynomials for coefficients. We se-
cure in this way a basis theorem for systems of polynomials which, to be sure, is
weaker than Hilbert's theorem, but which is adequate for the purposes of §3.

5. If T is a perfect p.i., a prime divisor of £ which is not a divisor of any
other prime divisor of Z will be called an essential prime divisor of Z. Every
perfect p.i. has a finite number of essential prime divisors, and is the intersection
of those divisors.

ALGEBRAIC MANIFOLDS

6. Let = be a system of polynomials F[yy, -+« , y.]. Let & be any exten-
sion of &, that is, any algebraic field which contains . Let there exist in ' a
set of elements 7y, - - -, 7, Which cause every polynomial in £ to vanish when
7: is substituted for y; The set 1, ---, 7, will be called a zero of =Z. If =
has zeros, the totality of its zeros, for all extensions F' of &, will be called the
manifold of Z. The manifold of a system of polynomials will be called an
algebraic manifold.
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Let an algebraic manifold % be the union of two algebraic manifolds, each a
proper part of 9. We shall then call I reducible. If P is not reducible, it is
called ¢rreducible.

Let It be an algebraic manifold. The totality = of polynomials which van-
ish over! 9t is a perfect p.i., the perfect p.i. associated with M. Z is prime if and
only if It is irreducible. If I is irreducible, we call = the prime p.i. assoctated
with M.

We see readily that every algebraic manifold is the union of a finite number of
irreducible algebraic manifolds.

Let 9% be the union of irreducible algebraic manifolds Py, -« -, W,. We
suppose that no IM; contains any PN ; with §j = 7. We then call each IM; a com-
ponent of M, or of any system of polynomials whose manifold is 0. If = is
the perfect p.i. associated with I and Z; the prime p.i. associated with IN,,
Z is the intersection of the Z; and the Z; are the essential prime divisors of
Z.

GENERIC ZEROS OF PRIME POLYNOMIAL IDEALS

7. Let Z be a prime p.i. distinct from the unit p.i., (1)o. Let 4 be any poly-
nomial, not necessarily contained in 2. We form a class « of polynomials,
putting into « every polynomial G such that G — 4 isin Z. We call a a
remainder class modulo 2. If a and B are remainder classes, o + 8 is defined
as the remainder class which contains every 4 + B with A in « and B in 8.

We define o similarly. We call 2, which is a remainder class, the zero class.
Because Z is prime, the product of two nonzero remainder classes is distinet
from the zero class.

We now consider pairs (e, 8) of remainder classes in which 8 is not the zero
class. Equivalence is defined as in II, §6, and the totality of pairs of classes
separates into sets of equivalent pairs. For the sets of equivalent pairs, addi-
tion and multiplication are defined, as in II, §6. Subtraction and division are
then performable and unique, with the usual reservation in regard to division.
The sets of equivalent pairs constitute an algebraic field & which, after an
adjustment, becomes an extension of F.

Let w be the remainder class which contains 1. Let a;, 7 = 1, - -+, n, be the
class which contains y;. Let #; be the set in &; which contains (o, w). We
find that o, «+ -, 94 is a zero of . Every polynomial in &y, - -+, y,] which
vanishes when each y; is replaced by 7; is contained in Z.

Let = be as above. Every zero u, <+, 5. of £ which is such that every
polynomial in F[y, -+-,y.] which is annulled by the 5 1s in 2 is called a
generic zero of Z.

RESOLVENTS

8. A prime p.i. distinct from (1), and from (0), will be said to be nontrivial.
Let = be a nontrivial prime p.i. in [y, --- ,y.]. The y can be divided

! Language as in Chapter II.
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into two sets, wy, +++, %y and Yy, - -+, Yp, » + ¢ = 0, such that no nonzero
polynomial of Z is free of the y, while, for j = 1, - - - | p, there is a nonzero
polynomial in ¥ in y; and the w alone. We call the u a parametric set. Let
the tndeterminates be listed in the order

Uy ***, Ug; Yy, 5 Yny
and let
(1) Al) :AP

be a characteristic set of Z. :

A regular zero of (1) is defined as a zero of (1) which does not annul the initial
of any A. Every regular zero of (1) is a zero of 2.2

9. Let K be any polynomial not contained in Z. We shall prove that

(Al, Tty AP: K)U;

which we represent by A, contains a nonzero polynomial in the % alone.

We start with the observation that the polynomials in 2 which involve no y;
with © > j, where 1< j < p, constitute a prime p.i.; we designate this p.i. by
5

A contains the remainder of K with respect to (1). Of all nonzero poly-
nomials in A which are reduced with respect to (1), let B be one which is of a
lowest rank. We say that B is free of the y.

Suppose that this is not so, and let B be of class ¢ + r with r > 0. The
initial C of B is not in . There is a relation

C"A,=DB + E

where E, if not zero, is of lower degree than B in y.. We say that E is in Z.
Let this be false. If r > 1, the remainder of E with respect to Ay, <+~ , 4,1
is a nonzero polynomial contained in A, which is reduced with respect to (1)
and of lower rank than B. If r = 1, a similar statement can be made of E it-
self. Thus E is in 2, so that DB is in 2. Then D isin Z. D is of positive
degree in y,. As the initial of DB is that of C™A,, the initial I of D is not in Z.
If we had r = 1, D would be a nonzero polynomial in Z which is reduced with
respect to (1); this is because D is of lower degree in y, than A,. Thusr > 1.
The remainder of D with respect to Ay, -+, A, _11s zero. Thus JD, with J
some product of powers of the initials of Ay, ---,4,_1, is linear in
Ay -or, A, —1. If we write JD as a polynomial in y,, its coefficients will be
in 2,_1 Thus JI is in Z, _;. This is false because neither J nor I is in
Ze 1
Thus B is free of the y and our statement is proved.

2 We are applying here, to the theory of characteristic sets, an idea due to van der Waerden.
See Mathematische Annalen, vol. 96 (1927), p. 189; also Moderne Algebra, first edition, vol.
2, p. 56.



ALGEBRAIC EQUATIONS 85

10. We are going to show the existence of a nonzero polynomial G, free of the
¥, and the existence of a polynomial

Q =My + -+ My,

where the M are polynomials free of the y, such that, for two distinct zeros of
> with the same u (if u exist) lying in the same extension of § and having
@G # 0, @ assumes two distinct values.

We consider the system X’ obtained from I by replacing each y; by a new
indeterminate z;. Using p more indeterminates A;, --- , A\, we consider the
system A composed of Z, =’ and

M —2z2)+ o N Y — 7).

As A contains Z, A has, forj = 1, -+« , p, a nonzero polynomial B; in y; and
the u alone. Similarly, let C;,j =1, -+, p, be a nonzero polynomial of A in z;
and the u alone.

Let D be the product of the initials® of the B and C.

Consider a zero of A for which (y» — 2z) D # 0. For it, we have

N —z) 4 o+ A Y — 2)
h— 2

(2) A =

Let m be the maximum of the degrees of the B;in the y; and of the degrees of
the C;in the z;. Let a be any positive integer. We write, for s =0, -+ , «
and for the above zero,
B,
A=
YT — )

where E, is a polynomial. Now it is plain that, using the relations B; = 0,
C; = 0, we can depress the degree of E, in each y and in each z to be less than m.
The new expression for each A will be of the form
F,
M=
' (g — 2)°Dy
where D, is a product of powers of the initials of the B and C. Let L be the
least common multiple of the D,. We write
H;
(yr — 2L’
s=0,---,qa, each H, being a polynomial of degree less than m in each y and z.
Now the number of power products of the y and 2, of degree less than m in each
y and 2, is m?®. Consequently, if we take @ = m??, we find a nonzero polynomial
in N, of degree not greater than «, whose coeflicients are polynomials in
N2, -, Ap and the u, which vanishes for every zero of A which does not annul
(y — z)D. The product K of this polynomial by D vanishes for every zero of
A which does not annul y; — 2.

3) M=

3 The initial of C; is the coefficient of the highest power of z;.
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Similarly, for ¢ = 2, -, p, we find a K; which vanishes for every zero of A
which does not annul y; — z,.

Let M;, 1 =1, ---,p, be polynomials in the u, which, when substituted for
the \; in K, - - - K,, reduce that polynomial to a nonzero polynomial G in the
u. Any such set of M will furnish a @ as above. The M may be taken as

integers.
11. Introducing a new indeterminate w, we let @ represent the p.i.
(2, w— Q) in Fluy, <+« ,uUg; Wiy, *++,Yp). It is easy to prove, as in II,

§26, that @ is prime. The polynomials of @ which are free of w are precisely the
polynomials of Z.

As above, we prove that @ has a nonzero polynomial free of the y.

We arrange the indeterminates in © in the order

(4) Uty 5 U, WYy " Yp
and take a characteristic set for @,

5) 4,4y, -, 4,
Here w, 11, - - - , ¥ are introduced in succession.

We take A irreducible in &.

We are going to prove that each 4; is linear in y;, so that the equation A; = 0
expresses ¥y, rationally in terms of w and the .

12. Let us suppose that our claim is false and let Ax be the A; of highest sub-
seript for which it breaks down. Then every A; with © > k which may exist is
linear in y,.

Let U be the remainder with respect to (5) of

| A o
Of course, U is free of yr 41, - -+, Yp. By §9,
(A) Al; Tty Ak; U)O

inGluy, « -+, up; w4, -+, Yi) contains a nonzero polynomial B in the w alone.
If k = p, there is no B.

Let
(6) Ui = Ti, i=1;"'yQ; w = §; Yi = 1, i=1y"'7p;

be a generic zero of &, lying in an extension &, of .

We replace the u, w and 41, -+ * -, y» —1 in A, by the corresponding quantities
in (6). Then A, goes over into polynomial H; in y, over! §1, whose degree in y;
equals that of A;. Let K be a factor of [, irreducible in §1. Then (K),, in
F1[y:], is a prime p.i. Let {x be a generic zerod of (K),.

The quantities

4 That is, with coefficients in ;.
8 The irreducibility of K implies that every zero of K is a generic zero of (K),.
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(7) 7'1)"')7'41;5;7]17"',ﬂk—l;g-k

do not annul Iy 4 --+ I, If they did, they would annul U and therefore B.
Now B, which is a nonzero polynomial in the u, cannot vanish for the . We
obtain thus a zero of @,

(8) o T b =158k 0, o

lying in an extension of Fi. The zeros (6) and (8) do not annul G and they
have the same w. They are thus identical. This means that ¢ = m. The
proof that Ay is linear in y, is now completed as in II, §30.

We shall call the equation 4 = 0 a resolvent of Z.

It is now easy to prove that ¢, in §8, is independent of the manner in which
the u are selected. We call ¢ the dimension of Z.¢ Following II, §36, we can
show that if a prime p.i. 2’ is a proper divisor of Z, the dimension of =’ is
less than that of Z.

HiILBERT'S THEOREM OF ZEROS

13. We prove the following theorem.

TurEorEM: If T is a perfect p.i. distinct from the unit p.i., = has zeros and
every polynomial which holds™ T is contained in Z.

Let i, - -+, Zp be the essential prime divisors of Z. No ZX; is the unit p.i.
If G holds Z, G vanishes for the generic zeros of each Z; and is thus in each Z;.
Then @ is in 2.

We present now

HILBERT'S THEOREM OF ZEROS: Let, in Fy1, * -, ¥,
) Fy -, F,

be any finite system of polynomials, and G any polynomial which holds that system.
Then some power of G is linear in the F, with polynomials for coefficients.

It is a matter of showing that G is contained in the perfect ideal determined by
the F. If that ideal is the unit p.i., G is certainly contained in it. Otherwise,
we have merely to apply the theorem which precedes.

14. The analytic case, in which F consists of functions meromorphic in an
open region A, needs more detailed treatment. We use analytic zeros of (9),
the definition being as in Chapter II. Hilbert’s theorem then becomes:

If F vanishes for every analytic zero of Iy, - - - | F,, some power of G is linear in
the I, with polynomials for coefficients.

Let 2 be the perfect ideal determined by the F and suppose that G is not con-~
tained in . Then Z is not the unit ideal. Let Z’ be an essential prime
divisor of 2 in which G is not contained. It will be seen that we may sup-

¢ The dimension is zero when there are no u.
7 As in Chapter II.
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pose Z' to be distinct from the zero ideal. Let the indeterminates be written
U, v, Ug} Y1y -, Yp With the u parametric for 2.

We form a resolvent for Z’. Let (5) be a characteristic set for the system
Q, associated with 2’ as in §11. We shall prove the legitimacy of assuming that
the initials of the A; in (5) are free of w. Let

A = M Y + N.
As A and M are relatively prime polynomials, there is a relation
PA+QM =1L

where P and @ are polynomials in w and the u, and L is a nonzero polynomial
in the u alone.! Then @ contains Ly, + QN. If I is the initial of A, thereis a
relation

I'QN = CA + R

with R reduced with respect to A. Then I°Ly, + R is in £ and may be used in
place of A, in (5). We treat the other A, similarly.

Let H be the remainder of G with respect to (5). Some linear combination
of H and 4 is a nonzero polynomial K in the » alone. Every zero of 2’ which
annuls G annuls K.

To complete our proof, we have to show that =’ has a zero which does not
annul K. We fix u1, - -+ , 4, a8 analytic functions which annul neither K nor
any initial in (5). We can then find an analytic w which annuls A with the
selected u. The equations A; = 0 then determine 4, - -+ , y,.

CHARACTERISTIC SETS OF PRIME POLYNOMIAL IDEALS

15. We consider, in F{us, <+, %g; Y1, - * * , Y»), 2 chain
(10) Al) A27 Tty AP:

A; being of class ¢ + 7. We are going to find a condition for (10) to be a charac-
teristic set of a prime p.i.

Since a nontrivial prime p.i. consists of those polynomials which have zero
remainders with respect to any characteristic set, (10) cannot be a characteristic
set for more than one prime p.i.

16. If &, is an extension of § and if 73, - - - , . is a finite subset of elements of
¥, the totality of rational combinations of n, -+ - , % with coefficients in F will
be denoted by F (1, -« - , %) and will be called the field obtained by the adjunc-
tion of the 4 to ¥ Thus, we represent by® F(u, -, u,) the totality of the
rational combinations of the u with coefficients in &.

17. Considering (10), we suppose first that p = 1. We shall show that for
Ay to be a characteristic set of a prime p.i. in wuy, « -+, Uq; Y1, it 1S necessary and

8 Chapter IT, §42.
9 Abbreviated below as F(u).
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sufficient that A, considered as a polynomial in yi, be trreducible in F(u). We
first prove sufficiency. Let A: be irreduecible, as indicated. Then A, = BC
with B free of y; and C irreducible in F as a polynomial in y; and the u. Now
(C)o 18 a prime p.i. for which C is a characteristic set. Then A, is also a charae-
teristic set for (C)e. TFor the necessity proof, let A; be a characteristic set for a
prime p.i. 2. Let 4; = BC, where B and C are polynomials of positive degree
in ¥(u) [y1]. Clearing fractions, we secure a relation GA; = HK among poly-
nomials in F[u; y1] with H and K of lower degree than A, in y;. As one of H
and K is in =, we have a contradiction.

18. We understand now that p > 1. We furnish a necessary and sufficient
condition which is of an inductive type. If (10) is a characteristic set of a prime
p.i. Z5, those polynomials in Z, which are free of y, constitute a prime p.i.

for which A4, - - -, A, — 118 a characteristic set. Thus, ¢f (10) is a characteristic
set of a prime p.i. T, then
(a) A1, - -+, Ap_ 118 acharacteristic set of a prime p.a. Z, _ 1Yy, * -, Yp—1.

Let condition (a) be fulfilled. Let

(1) T, T Myt Mp—1

be any generic zero of =, — 1. Let &, _ i represent the field obtained by adjoining
the quantities in (11) to §. The initial of 4, is not in Z, _; and thus does not
vanish for (11). We shall prove that if (10) is a characteristic set of a prime p.i.,

(b) A,, when the indeterminates other than y, are replaced by their corresponding
quantities 1n (11), becomes a polynomial in T, _1[y,] which is trreducible in
Fp_ 1.

A few words are necessary to show that our work is not influenced by the
choice which is made of a generic zero (11). For (11), let A, become a poly-
nomial B in §F, -1 [yp]. Let B = CD with C and D polynomials of positive
degree in y,, over F, —1. A coefficient in C or D may be written in the form
o/¥ where ¢ is obtained by making the substitution (11) in a polynomial P in
Uty , Ug Y1+t , Yp—1 over F, and where ¢ is obtained similarly from a
polynomial Q. Then @ is not in 2, _;. Suppose now that

’ ' ’
(12) Ty "y T My " s -1

is a second generic zero of =, _; and that the adjunction of the quantities (12)
to & produces a field ¥, _ . If, in the equation B = CD, we replace the quanti-
ties in (11) by those in (12), and bear in mind that an algebraic relation among
the quantities in (11), with coefficients in ¥, holds also for the quantities (12),
we secure an equation B’ = C’D’ which shows that (12) may be used with the
same effect as (11).

It will be proved that the conditions (a) and (b), which are necessary for (10)
to be a characteristic set of a prime p.i., are also sufficient.

19. We prove the necessity of condition (b). Let (10) be a characteristic
set of a prime p.i. Z, Suppose that there is a relation B = CD as in §18.
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Writing each coefficient in C and D in the form ¢/ as indicated above, we clear
fractions. We obtain a relation

(13) 5B = EF

where § is a polynomial in the quantities in (11) and E and F are polynomials
in y,, of positive degree, whose coefficients are po’ynomials in the quantities in
(11). We write (13)

(14) 6B — EF = 0.

In the first member of (14) we replace each quantity in (11) by the indeter-
minate which corresponds to it. We obtain a polynomial

(15) G4, — HK.

If this polynomial is arranged according to powers of y,, its coefficients will
vanish for (11) and thus are in Z,_;. Hence HK is in Z,. Suppose that
H isin Z,. The degree of H in y, is less than that of 4,. As @ and the initial
of A, are not in Z,, the initial of H is not in Z,. ILet L be the remainder of
H with respect to Ay, -+, 4, -1 Then L is reduced with respect to (10).
Furthermore, L is not zero (§9). As Z, cannot contain a nonzero polynomial
reduced with respect to (10), the necessity of (b) is proved.

20. Suppose now that (a) and (b) are satisfied. When (11) is substituted
into A,, 4, becomes a polynomial B, irreducible in §, 1. Let 5, be a zero of
B. Let Z, be the totality of those polynomials in ${u;y] which vanish for

Ti, "7y Tg; M, "y Mps

Then Z, is a prime p.i. We shall prove that (10) is a characteristic set of Z,.
Let the contrary be assumed. Then Z, contains a nonzero G which is
reduced with respect to (10). Now G must be of class p, else, vanishing for
(11), it would be in =, _; in spite of being reduced with respect to (10). For
(11), @ becomes a polynomial H in F, _1[y,] which is annulled by 7, and is of
lower degree than B. The sufficiency of conditions (a) and (b) is thus estab-
lished.

CONSTRUCTION OF RESOLVENTS

21. Before we can give a method for the effective construction of a resolvent
for a prime p.i. for which a characteristic set is given, we must have a solution
of the following problem.

Let Fo represent F(uy, -, uy). Let A be a polynomial in Fluy, -- - u,; w]
irreducible as a polynomial in w over F.. Let 4:; be a polynomial in
Fluy, - -+ , uqg; w; Y], of positive degree in y. Let w = m be a zero of 4 con-
sidered as a polynomial in Fo[w]; of course, 7; lies in an extension of §,. Let &y
represent Fo(n). We assume that the initial of A; does not vanish when w is
replaced by m. We represent by B the polynomial in &; [y] obtained by re-
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placing w by 71 1n A;. It is required to find the irreducible factors of B over F..°

It will be seen that the only knowledge of % which we need is that it annuls 4.

Let m be the degree of 4 in w. We shall show the existence of an extension
¥ of F1 in which A has m distinct zeros g1, - -+ , 7m. Let C be the polynomial
in F[w], of degree m — 1, obtained by dividing A by w — 1. Then C has a
2ero 7, lying in an extension F, of F1. The irredueibility of A in &, implies that
m and 7, are distinct. Let D = C/(w — n). We secure a zero of D. Con-
tinuing, we obtain a set 91, -+ , 7m.

Let 2 be an indeterminate and let E: be the polynomial in [y, 2] which re-
sults on replacing y in Bby y — 2q1. Let E;; i = 2, -+, m, result from E; on
replacing 7 by .. Let G = E\Es - -- E,.

Then @ is a polynomial in F,[y, z], the coefficients in G being capable of
determination by the theory of symmetric functions. Let G be resolved into
factors irreducible in ¥,. This is possible, provided we are able to factor a
polynomial in one indeterminate over §.1* Let

(16) G=H,---H,
with each H a polynomial in F,[y, 2], irreducible in F.
We wish to show that, forj = 1, --- , r, E; and H; have a common factor, of

positive degree, over F1. Let this be false for some definite j. Then there
exists a relation

an U, +VH; =W,

with Uy, Vi, Wy polynomials over §1 and with W free of z and distinet from
zero. In (17), we replace m by #;, where 1 < ¢ < m. We secure a relation'

This shows that H; has no common factor over ¥, of positive degree in 2, with
any E; Similarly H; has no common factor over ¥, of positive degree in y,
with any E;. On the other hand, the factors of H; irreducible over ¥ must be
factors of the E. This proves our statement.

Iet K;, 1 =1, ---, r, be the highest common factor of E; and H;, the field
being §1. We determine K; by the Euclid algorithm, bearing in mind that a
polynomial £ in m, %1, + -+ , %4 is zero when and only when the polynomial in w
and the u, obtained by replacing n by w in £, is divisible by 4.

We shall prove that the K become, for z = 0, the irreducible factors of B in
F,.18 Let

B=M:-- M:

10 Our treatment follows van der Waerden, Moderne Algebra, first edition, vol. 1, p. 210.

1t Perron, Algebra, vol. 1, p. 210.

12 Bvery 5 is & generic zero of (4)o, the field being Fo.

13 We do not establish a one-to-one correspondence between the K and the irreducible fac-
tors. 'The knowledge of the essentially distinet irreducible factors of B permits the repre-
sentation of B as a product of powers of irreducible factors.
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be a resolution of B into factors irreducible in ;. Then
El =N1N2 Nk

where each N; results from M, on replacing y by y — 2. It is easy to see that
each N, as a polynomial in y and z, is irreducible in ;.

Manifestly each N, is a common factor of E; and some H;in (16). If we can
prove that, in this case, N, is the highest common factor of E, and H;, we will
have our result.

Let N? , forj = 2, - - -, m, be the polynomial obtained from N; on replacing
71 by Nje Let

(18) P; = N.N; --- N{™.
Then P; is a polynomial in ¥, [y, z] and
G=P1P2Pk

Each H;in (16) is a factor of some P;.

Suppose that N, is a factor of H, and that H; is a factor of P.. If we can
prove that N; is the highest common factor of E; and P;, we will have our re-
sult.

Suppose, for instance, that Py is divisible by NiN.. Then by (18),

(19) NY --- N{™ = R(y, 2)N,,

where R is a polynomial in F1{y, z].
The set of terms of highest degree in the first member of (19) is of the form

(20) by —am)’ -+ (y — 29m)°

with b a rational combination of the u and %. The terms of highest degree in
the second member give an expression of the type

21) Sy, 2) (y — zm)*.

Now (20) and (21) cannot be equal, since no y — 29; with ¢ > 1 is divisible by
y — zm. This completes the proof.

22. We consider a nontrivial prime pi. 2 in Fluy, -+, ug; 41, - -+, Yp) for
which
(22) Al; ) AP

is a characteristic set, 4; introducing y;. In §§24, 25 we show how, when the
A are given, a resolvent can be constructed for Z.

23. Let Ay, -+, A, be new indeterminates. If = is regarded as a system of
polynomials in the w, \, y, Z generates a p.i. (Z), which can be seen, as in
I, §27, to be prime. Furthermore (Z), contains no nonzero polynomial in the
u and \.

We see as in §10 that there exists a nonzero G in the w and \ such that, for
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two distinet zeros of (Z)o with the same % and A, lying in the same extension of
¥ and not annulling G,

Q=N+ - + Ny

assumes two distinet values." ,
By §8§11, 12, a resolvent exists for (2), for which w = Q. Let @ = (3,
w — @) in Flu; N\;w;y]. We consider a characteristic set for @

(23) R’ Rl, cee RP

in which w, y1, -« - , ¥, are introduced in succession and in which R is irreducible
in . Then R = 0 is a resolvent for (Z), and each R; is linear in ..

24. We shall show how a characteristic set (23) can actually be constructed.

Using the polynomials in (22), and also w — @, we can, by the method of
elimination of IT, §34, determine, by means of a finite number of rational oper-
ations, a nonzero U in w, the w, and )\, which vanishes for every generic zero of
Q. It is a matter of considering relations w’ = @7 and depressing the degrees
of @7 in the y by using the relations A; = 0. Then U is in @. Now let

U=U1...UT

with each U, irreducible in . Some U;is in Q. The selection of such a U; can
be made as follows. Consider any U; and let V be the polynomial obtained
from it by replacing w by @. For U; to be in Q, it is necessary and sufficient
that ¥V be in (Z),. Let V be arranged as a polynomial in the . For V to be
in (Z)o, it is necessary and sufficient that every coefficient in the polynomial
be in Z. A coefficient will be in Z if and only if its remainder with respect to
(22) is zero.

A polynomial in w, the «, and N which is in € is divisible by E. Thus an ir-
reducible factor of U which is in @ must be the product of R in (23) by an ele-
ment, of F.

We have then a method for constructing a resolvent for (Z),. It remains
to show how a complete set (23) can be determined.

Let W be the polynomial which results from R on replacing w by w + y: and
M by A+ 1. Then W holds © and is thus in 2. The degree of W in ¥, is that
of R in w and the coefficient of the highest power of 41 in W is free of w.

Let & represent & (uy, - - -, %g; Ny, + -, Np) and let R be considered as a poly-
nomial in Fo[w]. Let w = 4 be any zero of B. We represent by B the poly-
nomial in y; over Fo(y) obtained by replacing w in W by 4. Let

(24) B =B, Bn

be a decomposition of B into factors irreducible in Fo(x), obtained as in §21.
The coefficients in the B; are rational in 5, the v and \. Let a be the product of
the denominators of these coefficients. We write

14 At present we have no way of determining G.
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aB=Cl-'-Cm.

The C are irreducible in Fo(y) and their coefficients are polynomials in 4, the
u, and . Let D be the polynomial which results from « on replacing % by w.
Let E; result similarly from C,. Let

F=DW —E, - E,.

Then F vanishes identically in y, if w is replaced by #. Hence, if F is arranged
as a polynomial in ¥, its coeflicients are divisible by . Thus F isin . Then
one of the Fisin . Suppose that E; is found (by test) tobein 2. We say that
B is linear in 1. If Iy is the initial of Ry in (23), we have

(25) I';E1 = HRl + K

where K is free of ;. Thus, if E; were not linear, it would follow that C; is
reducible in Fo(y).”

It is only necessary, then, to take the remainder of E; with respect to R to
have a polynomial which will serve as £, in (23).

The R; with ¢ > 1 are determined in the same way.

It can be arranged, as in §14, so that, for each ¢, the initial I, of R; is free of
w. We suppose this to be done. If two zeros of © have the same u, A, w,
they will have the same y if no I; vanishes for their 4, A. We may thus take

Gas I I,--- I,
25. It remains to construct a resolvent for =. Let I be the initial of R in
(23). Let ay, - -+, a, be integers for which IG, with G as above, becomes a

nonzero polynomial in the » when each XA, is replaced by a..
We shall show how (23) yields a resolvent for = with

(26) W=t + -+ Yy

Let @ = (3, w —ays — -+ — GpYp)o in Flu; w;y]. Then & is a prime p.i.
Forni=a,,i=1, -+, p, (23) becomes a system of polynomials

(27) R, Ry, -, R,

each of which holds @" and is therefore in @',  As R and R’ have the same degree
in w, (27) is a chain.

We are going to show that R’ is not the product of two polynomials over &
which are of positive degree in w. Thus, if we free R’ of its factors in the u, we
secure a polynomial R, which is irreducible in §. The equation By = 0 will be
a resolvent for Z.1 Also (27) will be a characteristic set of Q.

If R’ is a product of two polynomials of positive degree in w, @' will have a
characteristic set

T7T1) "';TIH

15 We note that I; cannot vanish for w = 4.
16 For w as in (26), two distinct zeros of = with the same « and w annul ¢/, obtained from G
by putting »; = a..
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with T of lower degree in w than R’. We assume that the initials of the T'; are
free of w. If D is the product of those initials, we have, for a generic zero of Z,

. 7. . -1
(28) yi — E10+E7,1w+ D+E’L,y—-1u}g ,

where g is the degree of T in w and the E are polynomials in the . We under-
stand w to be given by (26).
Let us now consider the prime p.i.

Q" = (Z,v—My1 — -+ = Mln)o

in® [u;N\;v;y]. We show that @ contains a nonzero polynomial K, free of the
y, which is of degree no more than g in ». We consider the relations

V= Oui e Ml i=0, 0

We replace the y by their expressions in (28) and depress the degrees in w of
the second members to less than g, using the relation 7 = 0. By a linear de-
pendence argument, we secure the polynomial K. This furnishes the contra-
diction that R in (23) is of degree at most ¢ in w.

Thus Ry = 0 is a resolvent for =.

COMPONENTS OF FINITE SYSTEMS

26. Let ® be a finite system of polynomials in F{yi, - -, y.], not all zero.
We are going to show how to determine characteristic sets of a finite number of
prime p.i. whose manifolds make up the manifold"” of #. Later, we shall obtain
finite systems whose manifolds are the components of &.

A system T of polynomials will be said to be equivalent to the set of systems
2, -+, 2, if the manifold of 2 is the union of the manifolds of the Z;.

Let

(29) Ay, -e Ay

be a characteristic set of ®, obtained as in I, §5. If A, is of class zero, & has no
zeros. We assume now that A, is of positive class. For every polynomial in &,
let the remainder with respect to (29) be determined. If these remainders are
adjoined to &, we get a system &’ equivalent to &. By I, §5, if some of the re-
mainders are not zero, & will have a characteristic set lower than (29). We
see, by I, §4, that after a finite number of repetitions of the above operation, we
arrive at & finite system A, equivalent to ®, with a characteristic set®® (29) for
which either A, is of class zero or for which, otherwise, the remainder of every
polynomial in A is zero.

27. Let us suppose that we are in the latter case. We make a temporary
relettering of the y. If, in the characteristic set (29) of A, 4, is of class j;, we

17 If ® has no zeros, we obtain (1),.

18 In this, we understand that if Z has no zeros, no Z; has zeros.
19 Naturally, (29) is not the same for A as for ®.
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replace the symbol y; by ¥;. The ¢ = n — p indeterminates not among the
y; we call, in any order, uy, -+, 4, We list the indeterminates in the order
Uty >, Uq; Y1, """y Yp-

With this change of notation, we proceed to determine, using §§17-19,
whether (29) is a characteristic set for a prime p.i.

28. If A;is reducible as a polynomial in y; over F(uy, - - - , u,) andif Ay = MN
with M and N polynomials in wy, - - -, ug; Y1, of positive degree in ¥, then A is
equivalent to A + M, A + N. Each of the latter systems, after we revert to
the old notation, will have a characteristic set lower than (29).

Suppose now that A, is irreducible in F(uy, -+ , ug). We use indeterminates
1, -+, 7o and the field F(ry, --- , 7,) which we represent by Fo. TFor u; = 7.
i=1,---,¢q, A1 becomes a polynomial B; in F, [y:]. Let y» = m be a zero of

B,. Let B; be the polynomial in Fo(y1) [y2] which A4; becomes for y, = m,
u; = 75 Suppose that By is reducible in Fo(51). We have, in analogy to (14),

(30) 8B, — EF = 0,

where § is a polynomial in 4, and the 7. E and F are polynomials in y., of posi-
tive degree, whose coefficients are polynomials in 7; and the . When we re-
place m and the » by y; and the u, the first member of (30) becomes a poly-
nomial

GA; — HK

which, when arranged according to powers of y;, has coeflicients which are
divisible by A;.

Thus G4, — HK is in (A1) so that HK is in?® (A,, As)o. Let M and N be,
respectively, the remainders of H and K with respect to 4;. Because the initial
of GA, is not divisible by Ai, the initials of H and K are not so divisible. It
follows that M and N are not zero (§19). As MN isin (A1, As)o, we see that A
is equivalent to A + M, A + N, whose characteristic sets, in the old notation,
are lower than (29).

29. Suppose that B; is irreducible in 5, (n1). By §18, Ay, A, is a characteristic
set of a prime p.i. Z; in y;, ¥z and the u. Let 5, be any zero of B.. We shall
show that

(31) Ty, ", Tq M, M2

is a generic zero of Z,. Let G be a polynomial in Z,. The remainder of G
with respect to A, A: is zero. As the initials of A; and As do not vanish for
(31), G is anmulled by (31). Conversely, let G be a polynomial in y;, y» and the
u which is annulled by (31). The remainder R of G with respect to A, A also
vanishes for (31). Suppose that R is not zero. If R is arranged as a poly-
nomial in ys, its coefficients will not be divisible by A; and thus will not vanish
for n; and the . Substituting these quantities for ; and the » in R, we secure

2 In F[u; y1, yol.
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a polynomial in y, of lower degree than B; which vanishes for y» = 9. This
contradiction shows that E = 0. Then G is in 2. Thus (31) is a generic zero
Of 22.

We substitute the quantities (31) into A; securing a polynomial B; in y;
over Fo(m, 72). We need a method for finding the irreducible factors of B; in
Fo(m, 7). Let a resolvent be constructed for Z; as in §§24, 25, with

w — ;Y1 — QY2 = 0,
a1 and a; being integers. Now

Tttty Ta) arm + axme; n, N2

is a generic zero of the prime p.i. for which (27), with p = 2, is a characteristic
set. Thus ap + @ annuls R’, but not the initials of R} and R;. Hence m
and 7, are rational in aim + Goms and the . Thus, to factor Bs in Fo(mp, 72 it
suffices to factor Bs in Fol{aim + amme). This we know how to do.

Suppose that Bs is reducible in Fo(n;, 12). We have, as in (30), a relation

6B; — EF =0

where § is a polynomial in 41, 72 and the ». If, in the first member, we replace
m, 72 and the 7 by y1, ¥» and the u, we secure a polynomial GA; — HK which,
when arranged in powers of ys, has its coefficients in Z,. Let L be any of these
coefficients. Let I, represent the initial of 4;in (29). As the remainder of L
with respect to A, A; is zero, some I$I3L is in (A1, A5)s. Then some

1G4 — HK)

is linear in A, and A,, so that I7I3 HK is in (4., Ay, As)e. Let M and N be,
respectively, the remainders of I;13 H and K with respect to A;, A;. Then
M and N are not zero and MN is in (A;, Az As)e. Thus A is equivalent to
A+ M, A+ N, each of which, in the old notation, has characteristic sets
lower than (29).

30. If B is irreducible in Fo(n, n2) then Ay, As, Az is a characteristic set of a
prime p.i. Z;, and we continue as above.

All in all, we have a method for testing (29) to determine whether it is a char-
acteristic set for a prime p.i. and for replacing A by a pair of systems with charac-
teristic sets lower than (29) when the test is negative.!

In developing our method, we have recast the conditions of §§17, 18 and have
secured the following theorem.

TrEOREM: A chain of polynomials of posttive class fails to be a characteristic
set of a prime p.i. if and only if there exist two nonzero polynomials, reduced with
respect to the chain, whose product is in the p.i. generated by the chain.

2 Tf, when the indeterminates are wy, + -+, Ug; ¥1, * -+, ¥p, (29) is a characteristic set for a
prime p.i. ©, then, when we revert to the old notation, (29) will be a characteristic set for the
prime p.i. into which @ goes.
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31. Using now the old notation for the indeterminates, let us suppose that
(29) has been found to be a characteristic set for a prime pi. =. Then A is
equivalent to 2

(32) S A+ o A+ I

Each A + I; has characteristic sets which are lower than (29).

What precedes shows that the system & of §26 can be resolved into an equiv-
alent set of prime p.i., as far as the determination of characteristic sets for the
prime p.i. goes, by a finite number of rational operations and factorizations, if
the same can be done for all finite systems whose characteristic sets are lower
than those of ®. The final remark of I, §4, gives a quick abstract proof that
the resolution is possible for . What is more, the processes used above, of re-
duction, factorization and isolation of prime p.i., give an algorithm for the re-

duction.
32. It remains to solve the following problem: Given a characteristic set

(33) Al) R} AP

of a nontrivial prime p.i. £ in ${yi, : -+, y.], each 4; being of class ¢ + ¢
(p + ¢ = n), it is required to find a finite system of polynomials equivalent to

2.23
33. Using indeterminates ¢;;, we make the transformation

(34) Zi=tlaypn+ -0+ tinYa, i=1---,n.

For a zero of 2 in an extension F; of F, (34) gives quantities 2 in the field ob-
tained by adjoining the { to §;. Given any ¢ 4 1 of the z

Ziy 5 %4,

we find, by the method of elimination of 11, §34, a nonzero polynomial in them and
the ¢ which vanishes when the z are replaced by their expressions in (34), with
Y1, *** , Yn & generic zero of 2.

Let B be such a polynomial in 2y, - -+, 2441 and the {.  Let m be the degree
of B considered as a polynomial in the z. 'We shall show how to obtain a rela-
tion C = 0 among 2y, - -+ , 2¢ +1 and the* ¢, where C is of degree m as a poly-
nomial in the z and, in addition, is of degree m in each z separately.

We make in B the transformation

(35) zi=ailz;+"'+ai.4+1zi’1+17 ?’=1)7Q+17

where the a and 2’ are indeterminates. Then B becomes a polynomial B’ in
the 2z’ whose coefficients are polynomials in the ¢ and the a. The degree of B’

22 Note that A is contained in = because the remainder of every polynomial in A with respect
to (29) is zero. Every zero of (29) which annuls no initial is a zero of =.

28 @ of §26 leads to several =. For each Z, we reletter the indeterminates appropriately.
After finite systems are found, equivalent to the various Z, we revert to the original lettering,

24 Satisfied when the ¥ in (34) are a generic zero of = .
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in each 2{ will be effectively m.?® Furthermore, we can specialize the a as
integers in such a way that the determinant | ai,-l is not zero and that the co-
efficient of the mth power of each z; in B’ becomes a nonzero polynomial in the .
Let this be done and let B” be the polynomial in the 2’ and ¢ into which B’ thus
goes.

The transformation (34), and (35) with the a as just fixed, give a trans-
formation

(36) Z=rayr+  + Tialfn i=1,--,q+1,

where each r is a linear combination, with rational coefficients, of the ¢;; with
i £ g+ 1. From (35), (36), we see that the #;; with¢ < ¢ + 1 are linear in the
7 with integral coeflicients.

In B”, we substitute for each ¢ its expression in terms of the = and we regard
the symbols 7 as indeterminates instead of linear combinations of the ¢&. Then
B’ goes over into a polynomial B in the 2, 75, 7 = 1, --- , ¢ + 1. We see
that B’"’ vanishes identically in the r if we replace the 2’ by their expressions in
(36), with the y a generic zero of 2. We now replace, in B, each 7;; by &;
and each z; by z;. Then B’ goes over into a polynomial C in 2y, -+, 24 41
and the ¢, C being of degree m as a polynomial in the z and of degree m in each 2z
separately. C vanishes for the 2 as in (34) with the y a generic zero of Z.

Evidently the relation C = 0 just described will subsist if we replace
21, '+ ,24+1 by any ¢ + 1 of the 2;, provided that a corresponding substitution
is made for the ¢t in C.

We now specialize the ¢ in (34) as integers with a nonvanishing determinant,
in such a way that, for every set of ¢ + 1 indeterminates 2, the polynomial over
§ obtained from C remains of effective degree m in each z appearing in it.

34. We consider the transformation (34) with the ¢ as just fixed. If the y
are replaced in (33) in terms of the 2, we get 2 system & of p polynomials in the
z. Let characteristic sets be determined for a set of prime p.i. equivalent to &.
Let =4, - -+, Z; be those prime p.i. which do not contain the initial of any A4 in
(33), the y being replaced in the initials in terms of the 2.2 There will be one
of the Z; which holds the remaining =,. This is because, in a resolution of
(33) into an equivalent set of prime p.i., none of which is a divisor of any other,
there is precisely one p.i. which contains no initial.#? To determine which X;
holds the others, all we need do is to find a =; whose characteristic set holds the
other Z;. Suppose, for instance, that the characteristic set of =, holds
2y, =+ +, Zs. Then, if 2 does not hold Z;, the initial of some polynomial in the
characteristic set of 2, must hold Z;, Then surely Z; cannot hold Z;. Thus,
if =; does not hold all £;, no £; can hold all ;. Then Z; holds all =;

%, is obtained from Z of §32 by replacing the y in terms of the zz We shall

2% Perron, Algebra, vol. 1, p. 288.

2 The condition for a polynomial to be contained in a prime p.i. is that its remainder with

respect to the characteristic set vanish.
27 This is seen from (32).
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prove that Z; has the same dimension as Z. To begin with, it is easy to see
that the polynomials in any ¢ + 1 of the 2, found in §33, belong to Z;. On the
other hand, if there were fewer than g indeterminates in a parametric set of =,
we could use a characteristic set of =; to determine a nonzero polynomial in
F [y, * -+, Yo belonging to Z.

Changing the notation if necessary, let 2;, - - - , 2, be a parametric set for =,
Then =, will have a characteristic set
(37) Bl; ) BP

in which B; introduces 2, .. ;.
35. We construct a resolvent R = 0 for Z;, with

(38) W= UZg41+ *°° + Qp2n,

the a being integers. Let R be of degree ¢ in w.

We shall prove that the initial of R is an element of ¥. According to §33,
each 2,7 > ¢, in a zero of 2 satisfies with 2y, - - - , 2, a fixed equation of degree
m in z;, the coefficient of 2" being an element of . The coefficient just men-
tioned will be assumed to be unity. Then (38) shows that w satisfies with
21, ** -, Z¢ an equation in which the highest power of w is unity.?® This implies
that in the irreducible polynomial B, the coefficient of w? is free of 21, - - - , 2,.
We may and shall assume that coefficient to be unity.

Referring to §25, we see that

. , ... ) -1

(39) zi=EtO+Ezlw+ D+E'L:y—1wg "
t=q-+1,---,n, where D and the E are in® F[z, - - -, 2,].

36. Let &y, - - - , tp; v be new indeterminates and let

A= (21,2) et t12q+1 —_ v = pz,,)o

in §{z;¢; %], Then A is a prime p.i. Also A contains an irreducible polynomial
Uinw, 2, -+, 2, and the ¢, the coefficient of whose highest power of », say v¢,
is unity.®

We shall prove that d = g. We see first, following §25, that d < g. As v,
in a zero of A, equalswift; = a;,2 =1, -+, p, we cannot have d < g.

Let v be replaced in U by
(40) tlzq +1 + cet + tpzn-

Then U becomes a polynomial V in 2y, -+, 2, and the . Let V be arranged
as a polynomial in the ¢ with coefficients which are polynomials in the z.

28 This is analogous to the fact that the sum of several algebraic integers is an integer. See
Landau, Zahlentheorie, vol. 3, p. 71.

2 The relations (39) hold for any zero of Z; with D # 0, and for the corresponding w.

3 Note that each i:z, , ; satisfies an equation in which the coefficient of the highest power of
tizq + ¢ is unity.

31 As the coefficient of v¢ in U is unity, U cannot vanish identically for £, = a;.
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Let ¥ be the finite system of those coefficients (polynomials in the z). We
are going to prove, in the following sections, that ¥ is equivalent to Z;. Thus,
if the z are replaced in ¥ by their expressions (34), we get a finite system of
polynomials equivalent to . We shall thus have solved the problem stated
in §32.

37. We begin with the observation that for given elements 2y, -- -, 2, of an
extension F; of F to constitute a zero of ¥, it is necessary and sufficient that for
21, * -+, 2, as just given, V vanish for arbitrary ¢ in® §,. This shows, in par-
ticular, that ¥ holds =..

Let G be the discriminant of R with respect to w and let

H = DG
where D is asin (39). We shall prove that every zero of ¥ with H £ 0 is a zero
of Z;. Let g, -+, n. besuch a zero of ¥. Forz; =19,7=1,---,q, R be-
comes & polynomial 7 in w. From §21, we see that T has g zeros in some ex-
tension of §(n, - -+, ng). These zeros are distinct, because 7, - - - , 7, do not
annul G. Using each such w in (39), we get g distinct zeros,
M, " Nes zéjzl-l)”'7zr(tj)y j=1)"'yg7
of 2. Let Z be the polynomial which U becomes for z; = 9,1 =1, --- , q.
Then®
g
(41) Z=10w—teP — - —tzd).
i=1
But v — tingp1— -+ — {ma 1s a factor of Z. This shows that, for some j,
2 =n;,1=¢q-+1,--+,n, and proves our statement.
38. We have to show that a zero g, - -+, n, of ¥ which annuls H is a zero of

%1 Our proof will employ a Newton polygon process, which we can carry out
rapidly by using the material of Chapter IIL.

Forz; =, 1 =1, .-+, ¢, R becomes a polynomial J in w. In some exten-
sion F1 of F(m, - -+, 14), J has g linear factors. We write

J=w—5&) - (w—§&).
Now let by, - - -, by be integers such that
H(m + by, 00+ bg) # 0.
Then, if ¢ is an indeterminate,
(42) H(n + bie, -+, mq + bee)

is a polynomial in ¢ which is not identically zero. We put in B,

32 This means that V vanishes identically in the .

3 Note that Z is a polynomial in v and the ¢ which vanishes for ¢ = tlzﬁ 14 e 2.
We have thus g distinct factors of Z. As Z is of degree g in », with unity for the coefficient of
v9, it has the expression in (41).
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2; = 15 + buc, 1=1---,4q

Then R goes over into a polynomial K in w whose coefficients are polynomials

ine. In K, we put w =& + wi. Then K becomes an expression K’ in w,;
and ¢ which we write

(43) K =d(c) + {‘E_",b;(c) wi.

We shall now regard $; as a differential field in which every derivative is zero.
Furthermore, we regard w; as a differential indeterminate and ¢ as an arbitrary
constant. We wish to show that K’ in (43) is annulled either by w; = 0 or by
a series

(44) wr = (pgcpz + - 4+ (pkcpk + ..

similar to the series employed in Chapter I11, with the distinction that p., while
positive, need not exceed unity.

It may be that K’ is annulled by wy = 0. Let us suppose that this does not
happen. Then a’(c) is not zero. We compare (43) with (3) of III, §7. The
role of Uj is taken over by wi. Because K’ vanishes when w; and ¢ are replaced
by zero, the lowest exponent of ¢ in @’ is positive. Again, the only exponent of
¢ in b, is zero. Thus py of III, §7, will be positive. Without further change,
the work of Chapter 111 furnishes the series in (44).

Let

a = b+ o™+
We have

K= (w— a)Ka

where K; is a polynomial in w of degree g — 1, whose coeflicients are series in c.

The terms free of ¢ in K; are anmulled by w = &. When w is replaced by

& - wi, Ky goes over into an expression K’ like that in (43) except that the

a’ and b’ are infinite series of fractional powers instead of polynomials. We

secure a series like (44) which annuls the K’ with which we are now working,.
All in all, we have a representation of K

K= (w=—a)- - (w— a)

where each «; is a series of the type

(45) a;i = b+ o+ -

The p and the ¢ depend on 7. If we replace ¢ by a suitable positive integral
power k" of an indeterminate A, we have, fors = 1, -+ g,

(46) @ = Ei + Yah + Yok + -

The ¢ all lie in some extension of F;.
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From this point on, we regard our fields as algebraic fields and & as an alge-
braic indeterminate.
The « are distinet, since G does not vanish for

(47) 2: = ms 4 b7, i=1-,q

We use (39), understanding that (47) holds and that w = a;. We secure ¢
distinet zeros of 2,

. €
m -+ blhf} Tty Me + bth, zaj)+ 1, """ ng,

i=1,---,g. Each 2 is a series of integral powers of h. Such a series can
contain no negative power of h. This follows from the fact that =, contains a
polynomial in 2y, - - - , 24, 2; in which one of the terms of highest degree is a term
in 2; alone (§33).

Let ¢ be the term of z” which is of zero degree in h. Then, for every j,

(@] @
g' P

MM, ;Mg 7+ 1 y $a

is a zero of 2.
Let Z;, be the polynomial in v and #, - - - , ¢, which U of §36 becomes for (47).
Then

g
h %)
Zn =TI (0 — 2% 1 — -+« — t27).
i=1

Letting Z, represent Z, with h = 0, we have

g
Zy=T1 (v — tfQh1 ~ -+ — L)
i=1
Now v — tig 1 — -+ — t.is afactor of Z,. This shows that 7,11, -+, 7n
are the ¢ for some j, so that, as we undertook to prove, n, -, 7. is & zero

Of 21.
We have thus proved that ¥ is equivalent to 2.

AN APPROXIMATION THEOREM

39. Working in the analytic case, we prove the following theorem.

THEOREM: Let = be a prime pi. inyy, -+ -,y Let B be any polynomial not
contained in =. Given any zero of =, consisting of functions analytic in an open
region B, there is an open region C, coniained in B, tn which the given zero can be
approximated uniformly, with arbitrary closeness, by zeros of = for which B is dis-
tinct from zero throughout C.

We assume, as we may, that = is nontrivial. If the transformation of §33
is effected, = may be replaced by Z,, while B goes over into a polynomial B;
nz, -,z

By is not in 2. Let 2444, -+, 2, be replaced in By by their expressions
(39). We find that, for every zero of £, with D s 0,
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_M
~ D+

where M is a polynomial in w; 2y, -+ , 2, Because DB is not in Z;, M is not
divisible by R of §35. Thus we have

XR+YM =N

(48) By

where N is a nonzero polynomial in z;, - -+, 2,. A zero of 2; which annuls B,
annuls N.
Let m1, -+, 7. be a zero of =y, analytic in an open region B, which annuls N.
Shrinking B if necessary, we assume that every one of the polynomials in w
and the z which we meet in what follows has its coefficients analytic throughout
B

Let Hy = NH. We use constants b; such that
Hl("ll + bl: Tty N + bQ)

does not vanish for every . Then, if h is a complex variable,

(49) Hi(m + bik, -+, mq + boh)
is & polynomial in % of the type
(50) arhT _|_ [N _|_ ashs

where the « are functions of x analytic in B. As H;in (49) vanishes for h = 0,
we have r > 0. We assume that «, is not identically zero.

Let B; be a simply connected open region contained with its boundary in B,
in which a, is bounded away from zero. Let h be small but distinet from zero.
Then (50) cannot be zero at any point of B,. Thus, if

(51) zi:ni_l_bih) i=1;"'7q’

R = 0 will have ¢ distinct solutions for w, each analytic in B;. This is because
H, is divisible by the discriminant of E.

As H, is divisible by D in (39), =; will have g distinct zeros with 2, -+ - | 2,
as in (51),

. ® &) 1.
3 P 2% 2041 """ 5%, k=1, s 0,

each consisting of functions analytic in B;. The 2 are given by (39).
Consider a sequence of nonzero values of & which tend towards zero,

(52) By hay -+ By, oo,

each h; being so small that (50) is distinet from zero throughout B;. For each
g, if

(63) 2; = n; + bihy, 1=1+--,q,
U of §36 will vanish if
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(54) v =tz + o 2P,

E=1,---,¢. It is understood, of course, that the z®, which are analytic
throughout By, depend on k;. For any hj, the g expressions (54) are distinet.

As the equation of degree m which a z; j > ¢, satisfies with 2y, - -+ , 2, has
unity for the coefficient of 27*, there is a positive number d, such that, through-
out By,

(55) 20| <d
forj=q¢+1,---,n;k=1,---,¢g and for every h in (52). This is because
the coefficients of 2" 7%, - -+ | 2} in the above mentioned equation are bounded
quantities.

For each h; of (562), let one of the g expressions (54) be selected, and be desig-
nated by ». We form thus a sequence

(56) Vv, e 0@

)

Let C be any open region which lies with its boundary in B;. From (56) we
see, using a well known theorem on bounded families of analytic functions,®
that, for some subsequence of (56), the coefficients of each &, ¢ =1, --- , p,
converge uniformly throughout C to an analytic function 5. We find thus that
if

(57) 2 = Mi, /’:=17"'7QJ
U vanishes for

v=limgyrt o A e

Deleting elements of (56) if necessary, we assume that the convergence occurs
when the complete sequence (56) is used, rather than one of its subsequences.
For each h;, there are g — 1 expressions (54) not used in (56). Let one of these
be selected for each h; and let (56) be used now to represent the sequence thus
obtained. As above, we select a subsequence of (56) for which the coefficients
of each t; converge uniformly in C. This gives a second expression which causes
U to vanish when (57) holds. Continuing, we find g expressions

(58) v=tm®  + -+ b, E=1,---,9,

which make U vanish when (57) holds.

Let vy represent the second member of (58). Again, let w; represent the
second member of (54), it being understood that the subscripts k are assigned,
for each k;, in such a way that the coefficient of ¢; in w; converges to that in v, as
h; approaches zero.

Then, since the g expressions w; are distinet from one another for each h;, we
will have, representing by Z; the polynomial which U becomes when (53) holds,

% Montel, Les familles normales de fonctions analytiques, p. 21; Dienes, The Taylor Series,
p. 160.
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Z;= (v —w) - (0 — wy.
By continuity, if we represent U, when (57) holds, by Z,
Z=(v—v) - (v — 0.

Asv — tmgp1 — -+ — b is a factor of Z, it must be that, for some F,
‘fli="l;k); Z=Q+17;n
Thus 71, - -+ , 7. can be approximated uniformly in C, with arbitrary close-

ness, by zeros of Z; for which B, is distinet from zero throughout C. As the y
vary continuously with the 2, we have our theorem.

ZEROS AND CHARACTERISTIC SETS

40. We consider a nontrivial prime p.i. = in Fluy, -, Ug; Y1, **, Yol
with the u a parametric set. Let
(59) Ay, -+, 4y

be a characteristic set for . We know that every zero of (5§9) for which no
initial vanishes is a zero of . We shall prove that every zero of (59) for which
no separant vanishes ts a zero of Z.

Let g, -+ - , 7x be a zero of (59) which annuls no separant.

In A,, we replace u; by 7; + 7., %2 = 1, - - - , ¢, where the r are indeterminates,
and 4, by 74 +1 -+ %1. Then A; goes over into a polynomial B; in yy and the 7
which vanishes when the indeterminates are all replaced by zero. Because the
separant of A; does not vanish for the », By contains a term ayy with o in
F(m, -+, 7.) and distinet from zero. We solve the equation By = 0 for U
in terms of the 7, using the formal process of the implicit function theorem for
securing a representation of y; as an infinite series of powers of the . We can
do this because of the presence of ay;. Let & be the series thus obtained for
y:. The terms of £ are all of positive degree.

The set

(60) mt T,y M0+ T Tg+1+ &

is a generic zero of the prime p.i. in 3, and the u for which A, is a characteristic
set.

We substitute the quantities (60) into A, and replace y2 by 74 4 2 + ¥5. Then
A, goes over into a polynomial B, in y;. The coefficients in B; are series of non-
negative powers of the r and the coefficient of y; contains a term free of the .
We can thus solve By = 0 for ys, expressing ¥, as a series £ of powers of 7, the
terms of & being of positive degree. By §29,

mtoTy, e, Nq + 74} Nq+1 1+ &, g2+ &

is a generic zero of the prime p.i. 2, for which 4, 4 is a characteristic set.
It follows that %1, -+, 7442 I8 a zero of Z, Continuing, we find that
m, <+, Na 18 & zero of 2,



CHAPTER V
CONSTRUCTIVE METHODS
CHARACTERISTIC SETS OF PRIME IDEALS
1. We return to differential fields and to differential polynomials. Let
(1) Aly cee Ap

be a chain in F{yy, ---,yn.}, 4; being of positive class j;. We are going to
find a necessary and sufficient condition for (1) to be a characteristic set of a
prime ideal.

Let the order of A; in y;, be r;. We represent each y;,, by z;. The remain-
ing yum in (1) we designate now by new symbols! vz, attributing the subscripts k
in any convenient way. With these replacements, (1) goes over into a chain
of polynomials

(2) By, ---,B,
in algebraic indeterminates
(3) U1, =0, Ur; 21, "ty 2p.

The passage from (1) to (2) is purely formal. Once it is effected, we treat (2)
as we would any other set of polynomials in the » and 2. For the B, the basic
differential field F is regarded as an algebraic field, its operation of differentiation
being suppressed. Again, whereas in a zero of (1) ¥ m 4+ 1 must be the deriva-
tive of Y, any set of v, 2 which lie in an algebraic field containing the elements
of ¥, and which annul the B, is a zero of (2).

We are going to prove that for (1) to be a characteristic set of a prime ideal, it is
necessary and sufficient that (2) be a characteristic set of a prime p.i.2 in the indeter-
manates (3).

2. We prove first the necessity. Suppose that (2) is not a characteristic set
of a prime p.i. We refer to IV, §30. There are polynomials M and N, reduced
with respect to (2), such that MN isin (By, -+, Bp)e. When we replace the
v and z by the ym, M and N become, respectively, d.p. P and @, reduced with
respect to (1), such that PQ is in (Ay, + -+, 4,). I (1) were a characteristic
set of a prime ideal =, then PQ, but neither P nor @, would be in 2. The
necessity is proved.

3. We now prove sufficiency. Let (2) be a characteristic set of a prime p.i.
Let 2 be the totality of those d.p. G for which there exists a power product J
of the separants and initials of the A, depending on G, such that

1 We use only letters effectively present in (1).
2 As has been indicated, the algebraic field used for (2) is the set of elements of F.
107
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JG = O; [Al; e )AP]'

We see from Chapter I that = is an ideal. We shall prove that = is prime
and that (1) is a characteristic set of Z.

Suppose that 2 contains a d.p. PQ but neither P nor Q. Let R and T be,
respectively, the remainders of P and @ with respect to (1). Then = contains
RT but neither R nor T'.

In what follows, every J; will be a power product of the separants and initials
of the A. Some J:RT has an expression linear in the A and their derivatives.
Let AP be the highest derivative of A, in this expression. Suppose that k > 0.
Then

A;k) = Spyjp, etk T U

with S, the separant of A, and U of order lower than r, + kin y;,. In the ex-
pression for J.RT, we replace y,,.,, + x by — U/S,. Clearing fractions, we have
an expression for some J,RT which is free of A®. Continuing, we find a J .RT
which is linear in the 4 in (1).

R and T may contain ¥, not effectively present in (1). If so, we adjoin
corresponding letters v to (3). The set (2) will be a characteristic set of a prime
p.1. for the enlarged system (3). The prime p.i. just considered will be called
Zo. LetJ,, R, and T be regarded as polynomials in the » and z. They are not
in Xo; neither is their product. Hence the d.p. J.RT cannot be linear in the 4.
We know thus that Z is prime.

We have just seen that if each of two nonzero d.p. is reduced with respect to
(1), their product is not in =. Taking one of the d.p. as unity, we see that >
contains no nonzero d.p. reduced with respect to (1). Thus (1) is a character-
istic set of Z and the sufficiency proof is completed.

4. We shall prove that if (1) ¢s a characteristic set of a prime ideal Z, every
zero of (1) for which no separant vanishes is a zero of Z.

Let G be any d.p. in =. Proceeding as in I, §6, we can find a power product
J of the separants of the A such that

JGEH: [Al; "';AP];

where H is of order not more than r; in y;, ¢ =1, -+ ,p. As H isin Z, its
remainder with respect to (1) is zero. Hence there is a power product J; of
the initials of the A such that

JlH = 0, (Al, o ,Ap).

We suppose, enlarging (3) if necessary, that every letter in H has a correspond-
ing letter in (3). Let H be regarded as a polynomial in the z and v. As H isin
the prime p.i. for which (2) is a characteristic set, H vanishes for all zeros of (2)
which annul no separant (IV, §40). Then H as a d.p. vanishes for all zeros of
(1) which annul no separant; the same is true of G. This proves our state-
ment,.
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FINITE SYSTEMS

5. Let ® be any finite system of d.p. in F{ w1, -+, y» }, not all zero. We
shall show now how to determine characteristic sets for a finite set of prime
ideals equivalent® to ®. In §28, we shall give a theoretical process for deter-
mining finite sets whose manifolds are the components of &.

Let (1) be a characteristic set of ®. If A, is of class zero, ® is equivalent to
the unit ideal. We suppose now that A4, is of positive class. For every d.p. in
®, let the remainder with respect to (1) be determined. If these remainders
are adjoined to ®, we get a system equivalent to &. If the remainders are not
all zero, the new system will have characteristic sets lower than (1). After a
finite number of repetitions of the above operation, we arrive at a system A,
equivalent to ®, with a characteristic set (1) for which either A, is of class zero
or for which, otherwise, the remainder of every d.p. in A is zero.

Let us suppose that we are in the latter case. We determine, by §1, whether
(1) is a characteristic set of a prime ideal. If it is not, we see from §1 that A
is equivalent to A 4+ P, A + @, where P and @, reduced with respect to (1),
can be obtained by calculation. Xach of A + P, A -+ @ will have characteristic
sets lower than (1).

Let us suppose that (1) has been found to be a characteristic set for a prime
ideal Z. Then, by §4, A is equivalent to

(4) 27A+Sl;"')A+SP

where the S are the separants for (1). Each A 4+ S; has a characteristic set
lower than (1).

What precedes shows that the given system & can be resolved into an equiv-
alent set of prime ideals, as far as the determination of characteristic sets for
the ideals goes, by a finite number of rational operations, differentiations and
factorizations, provided that the same can be done for all finite systems whose
characteristic sets are lower than those of ®. The final remark of I, §4, gives
an abstract proof that the resolution is possible for ®. What is more, the
processes used above give an algorithm for the resolution.

In the analytic case, the algorithm obtained above contatns a complete elimination
theory for systems of algebraic differential equations. We get all of the zeros of ®
by finding, for each characteristic set, those zeros which cause no separant to
vanish. A zero of a prime ideal which causes some separant to vanish will be
a zero of some system like the A + 8; above, and will thus be found among the
zeros of some other prime ideal, where it annuls no separant. Thus our algo-
rithm reduces the problem of determining all solutions of a system of algebraic
differential equations to a question of applying the implicit function theorem
and the existence theorem for systems of differential equations.

One sees, on the basis of the algorithm obtained above, that a system of d.p. in

3 We use this term as in Chapter IV.
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S{yy, -, Yn} tn which each d.p. s linear in the y;; has a manifold whick s ir-
reducible.

6. The work of §§1-5 furnishes a new proof of the fact that the manifold of a
finite system of d.p. is composed of a finite number of irreducible manifolds.*
The new proof does not depend on Zermelo’s axiom.

TEST FOR A D.P. TO HOLD A FINITE SYSTEM

7. Let @ be any finite system of d.p. Let it be required to determine whether
a given d.p. G holds ®. 'What one does is to resolve ® into prime ideals as in §5.
For @G to hold &, it is necessary and sufficient that G hold each prime ideal. The
condition for G to hold one of the prime ideals is that its remainder with respect
to the characteristic set of the prime ideal be zero. This gives a test which in-
volves a finite number of steps.

CONSTRUCTION OF RESOLVENTS

8. Let
(5) Ay, -0 4y
be given as a characteristic set of a prime ideal Z inF{ wy, -« , gy, *-+, ¥p |,

A; introducing y;,. We suppose that either § does not consist purely of con-
stants or u actually exist.

We shall show how to construct a resolvent for =.

We begin by showing how to obtain the d.p. G of I1, §23. Let B; be the d.p.
obtained from A; by replacing each y; by a new indeterminate z;, We consider
the finite system A composed of the d.p. in (5), the d.p.

By, - ,B,
and also

(6) My —2) + -+ MY — 2p)

where the N are indeterminates. We take the indeterminates in the order u;
N;y; 2. We apply the process of §5 for resolving A into prime ideals, each prime
ideal being represented by a characteristic set. The theory of II, §§23, 24,
shows that each prime ideal which is not held by every y; — 2, has a charac-
teristic set containing a d.p. in the » and N alone. We obtain, by a multipli-
cation of such d.p., the d.p. K of II, §§23, 24.

When § contains 2 nonconstant element, the determination of x which do not
annul K of I, §23, is an elementary problem whose solution is sufficiently indi-
cated in II, §22. When u exist, we find the M of II, §24, by inspection.

Let us limit ourselves now to the case in which § does not consist of constants.
Consider the system

+ This proof, like that of §§26, 27 below, does not use the basis theorem of I, §12. It is con-
structive to the extent that it produces characteristic sets for the associated prime ideals.
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(7) Al; T AP; w — (ﬂlyl + -4 f-‘pyp)

ing {u;w;y}.

The totality of d.p. which vanish for all zeros of (7) which annul no separant
is the system @ of 11, §26. The manifold of © is a component of (7) and every
other component is held by some separant.

We apply the process of §5 to resolve (7) into prime ideals. We test these
prime ideals to see whether they are held by the separant of some 4., and pick
out those, say =i, + -+ , =, which are held by no separant.

As (7) has only one component which is held by no separant, there must be
one ¥; which holds all other ;. To find such a Z,, we need only find a Z;
whose characteristic set holds all other 2;. For, let the set for I
hold 2, -+ -, 2. If Z; does not hold =;, the separant of some d.p. in the set
for 2; must hold Z; so that Z; cannot hold 2;,. Thus, if =, does not hold
every Z;, no 2; can hold every =..

2118 Q. 3y has a characteristic set

R Ry, -, R,

in which R is an algebraically irreducible d.p. Then R = 0 is a resolvent of =
and each R; is linear in y,.

CONSTRUCTIVE PROOF OF THEOREM OF ZEROS

9. The theorem of zeros states that if & holds a finite system &, some power of
G is in [®]. Richard Cohn® has given a proof of the theorem of zeros which
provides a method for expressing a power of G as a linear combination of the
d.p. in ® and their derivatives.

First, let ® have no zeros. We shall show constructively that unity is in [®].
We obtain the system A of §5. A is contained in [®]. If A contains a nonzero
element of class zero, we have the desired expression for unity. Suppose that
A contains no such element. Let (1) be a characteristic set for A. Then (1)
is not a characteristic set of a prime ideal. By §1 and by IV, §30, there exist
nonzero d.p. P and @, reduced with respect to (1), such that PQ =0

(Ay, -+, Ap). Neither of the systems A 4 P, A - @ has a zero. Suppose
that we are able to obtain relations

(8) 1=M0P—|—M1P'+'--—|—M9P(”)—}—C,

) 1=NQ-+NQ + --- +NQ? + D,

where superscripts indicate differentiation and where C and D are in [A]. If
we multiply (8) and (9), we secure a relation

(10) 1 = ZL,POQY + K
with K in [A]. We know from Chapter I how to find a power of any P®Q®

s Cohn, 1.
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which is in [PQ]. Thus, if we raise the second member of (10) to a sufficiently
high power, we have a representation of unity as an element of [&].

Our problem becomes that of finding expressions for unity in [A 4+ P] and
[A + @Q]. This is the familiar situation of systems with characteristic sets
lower than that of ®; one knows how to proceed.

We take now the general case. Let z be a new indeterminate.® The system

(11) 2G — 1, ®

has no zeros. Let unity be expressed linearly in the d.p. of (11) and their deriva-
tives. In this expression, let z be replaced by 1/G. When we clear fractions,
we have a power of G expressed linearly in the d.p. of ® and their derivatives.

A SECOND THEORY OF ELIMINATION

10. The theory of elimination for systems of algebraic differential equations
given in what precedes is apparently the first accurate such theory ever to have
been presented. There exist, in the treatises on differential equations, discus-
sions of the elimination problem for systems of n equations in n unknowns,
which start from the fact that a general system can be replaced by a system
involving only first derivatives.” The unsoundness of these discussions is re-
flected in the reductions to normal form which they claim to effect. The repre-
sentations at which they arrive are entirely unsuitable for general systems.

We shall develop, in what follows, using the principle of passing to a system
involving only first derivatives, a second elimination theory for systems of equa-
tions which are algebraic in the unknowns and their derivatives. This treat-
ment of the elimination problem may be regarded, more or less, as a rigorization,
for the case of algebraic differential equations, of the discussions in the older
literature.

The second elimination theory has the disadvantage, as compared with that
given above, of concealing the unknowns present in a given system of equations
among new unknowns, which are introduced to reduce the given equations to
the first order. The first elimination theory is thus more useful for certain ap-
plications.

On the other hand, the second elimination leads, in a natural way, to theorems
on the number of arbitrary constants in the solution of a system of algebraic
differential equations. This subject, which is really the subject of the order
of an irreducible algebraic differential manifold, will be investigated in Chapter
VIL

11. We consider a finite system & of nonzero d.p. in ${ y1, ++-,y.}, each
d.p. being of order not exceeding unity in each y. We shall show how to obtain

¢ The method used below is that given by Rabinoviteh for the proof of Hilbert’s theorem of
Zeros.

7 See, for instance, Jordan, Cours d’analyse, vol. 3, §3, or Forsythe, Differential Equations,
vol. 2, Chapter 1.
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the manifold of ®, if ® has zeros, by solving a set of systems of differential equa-
tions, each system being essentially in the Jacobi-Weierstrass normal form.?

12. Let uy, - - - , um be those y whose derivatives are actually present in some
of the d.p. in ®. Let v, - - - , v, be those y whose derivatives do not appear.?®
Then m + r = n.

We represent the first derivative of any u; by u;.

13. We now consider the u, u’, v as algebraic indeterminates. Then & be-
comes a system ¥ of polynomials in Flu;u'; v], F being regarded as an algebraic
field.

Our first step is to find, by the method of Chapter IV, a set of finite systems
Ay, -+ -, A; equivalent to ¥, each A being equivalent to a prime pi. We as-
sume that no A; holds any A; with j = 4. In conducting the decomposition,
we order the indeterminates as follows:10

’ '
(12) Uty * 0y Um; Ury =00y U, U, =00, U

Of course, ® will be equivalent to the systems obtained by regarding the poly-
nomials in each A as d.p.

The process which gives the A gives, for each ¢, a characteristic set of the prime
p.i. equivalent to A,

We consider any A;, calling it, simply, A. The prime p.i. equivalent to A
will be denoted by ©. In what follows, we assume that Q@ has zeros.

Suppose that the characteristic set of € contains polynomials in the u alone,
that is, polynomials free of the v’ and v. Let

(13) Al: ] AP,

taken in the order in which they appear in the characteristic set, be those poly-
nomials. Let A} be the polynomial in the u and %’ obtained, when one regards
§ momentarily as a differential field and u as a differential indeterminate, by
differentiating A; Then, if u, appears in A, u; will appear in A and, indeed,
will appear linearly.

14. The first case which we shall consider is that in which each 4] is in Q.
We are going to obtain, from the characteristic set of Q, a system of differential
equations, in a normal form, whose solutions are zeros of &.

15. If p < m, there will be certain » none of which appears as a % of highest
subscript in any 4 in (13). The totality of such % may be taken as part of a
parametric set of ©.'* We arrange the subscripts of the « in such a way that the
parametric u above become s, - - - , Unm —  and so that the  of highest subscript
in each 4 ;in (13) goes over into Um — 5 4 ;.

Now let the subseripts of the v’ in (12) be rearranged in such a way that, for

8 Forsythe, loc. cit.

9 The separation of the % and v is for the purposes of Chapter VII.

10 The sequence (12) corresponds to 41, « -+ , ¥= in IV, §26.

11 To complete the set, we can use those u’ and » which are not rightmost indeterminates in
any polynomial of the characteristic set.
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the new ordering of the u, u; may represent the derivative of u;2 The v we
leave undisturbed.

For the new arrangement of the indeterminates, we write B; for A, B for Aj;
A for A, @ for . Of course, @ is a prime p.i.

We determine a characteristic set for €. This is accomplished by decom-
posing A’ into prime p.i. none of which holds any other, each prime p.i. being
represented by a characteristic set. Only one prime p.i., namely €', will be ob-
tained. It is easy to see that the chain

(14) Bl; ) BP

can be taken as the first p polynomials in the characteristic set of . We under-
stand this to be done.

Of course, each B’ is in @',

16. We write h = m — p. We are going to show that

(15) u;,+1,--~,u:,,

are not among the parametric indeterminates for @' as given by the charac-
teristic set®® T' of ©/. Let us consider B;. It involves uj, ,  linearly, with 8,
the separant of B, for coefficient of uy , ;. We consider the polynomials of T'
which involve only indeterminates preceding u; . These polynomials con-
stitute a chain IT which consists of (14) and, perhaps, of polynomials introducing
certain u; with ¢ < k. Let C; be the remainder of B; with respect to II. Then
Cy, which is in @, involves u, , ; linearly. The coefficient D of uy . ; in Cy is
found by multiplying S by powers of the initials in II and subtracting from the
result a linear combination of the polynomials in II. If D were zero, S would
bein €. This shows that uj, ; ; is not parametric; if it were, C; would be a non-
zero polynomial in Q’, reduced with respect to I'.

As C, is only of the first degree in uj, , 1, we may use C; as a polynomial in T
to introduce! uj, +1. We suppose this to be done.

In the same way, the remainder C, of By with respect to I 4+ C; involves
up 4 2 and can be used in I'.  We continue in this way, showing that the indeter-
minates in (15) are not parametric, and determining a C; which introduces
u;l+1;7:= 1’ P

It is evident that if the C and the polynomials in II are considered as d.p. in
the u, each C holds II.

17. As given by I, the parametric indeterminates are us, - -+ , us, then per-
haps some of the u; with ¢ < % and some of the ». If the indeterminates are re-
ordered so that the parametric ones come first and so that the relative order of
the remaining indeterminates is undisturbed, I' will remain a characteristic set.

12 We regard the » momentarily as differential indeterminates.

13 To be specifie, the parametric indeterminates are those none of which is rightmost in any
polynomial in I, Among them are uy, + -+, us.

1 That is, we may replace the polynomial which introduces u 7, 11 by Cu
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We reorder the indeterminates so that the parametric ones appear in the order!s
’ !
(16) ul’ s . ’ uk; ul) DY ; uk; 1)1’ ... s vt; uk + 1, LI y u’L-
The remaining indeterminates will appear in the order
. ! ! 4 .
(17) uh+1;"',um, uk+1;"';uh+17"'yum; Ut+l,"'71)r-

For this new ordering, we write A” for A/, @” for @/, IV for I'; D; for B; and E;
forCy,t=1,---,p.

18. Those polynomials of Q" which are free of u, ., - -+ , u,, constitute a
prime p.i. A. A characteristic set of A is found by deleting Ey, - - - , E, from I".
This is because E; involves uy, , ; linearly, so that v .. ; appears only in E; in I".

We build a resolvent B = 0 for A, using a w which is a linear combination of

’ ’
(18) Un+1, "y Um; Up +1, ", Un; Vegay ~00 0

Kach indeterminate in (18) will have an expression which is rational in w and
the indeterminates in (16). If R is of degree ¢ in w, we can, by Chapter IV,
write each of these expressions in the form
Hi+Hw+ --- + Huw !

L H

where L and the H involve only the letters in (16). The H will depend on the
particular indeterminate in (18), but we may, and shall, use the same L for all
of the expressions.

Let G be the resultant with respect to w of B and its separant 6R/é6w. In
accordance with IV, §9, let M be a polynomial in the indeterminates in (16)
which vanishes for every zero of IV which annuls the product of the initials'® in
IV, We may and shall assume that L is divisible by GM.

19. We let 2 represent any of the indeterminates in (18) and consider, to-
gether with R = 0, the gystem of equations

(19)

-1
(20) 2 = H1 -l— -I|/—nga ,

where 2z runs through all indeterminates in (18). Speaking in the language of
classical analysis, we shall consider these equations as differential equations for
Ur +1, *** , Up and as algebraic equations for ws g1, * ¢, Um} Ve L1, + 00, n

It is important to explain precisely what we mean by a solution of the system
(20). For this, we consider § again as a differential field. Suppose that, in
some differential field which is an extension of &, there exist elements wy, + + + , Un;
vy, -, 0 w, with L # 0, which satisfy R = 0 and (20). We shall call the
elements « and v a solution of (20).

20. We are going to show that (20) has solutions. For the jth indeterminate
from the left in (18), let F; represent the polynomial

% For ¢ < k, u; and u) are both parametric.
16 The calculation of M involves no theoretical difficulty.
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Lz — (Hy+ -+ + Haw — ).
The chain of polynomials
(21) R7F1)"'yFQ7

where ¢ is the number of letters in (18), is, by the theory of resolvents, a char-
acteristic set for a nontrivial prime p.i.

We shall now regard the polynomials in (21) as d.p. in F{ w;v;w }. Let E
represent the system of d.p. (21) and S the separant of E. We consider those
d.p. K which have the property that

(22) ISK=0, {E}.

The totality = of the K is seen to be an ideal. We shall prove that 2 is prime.
Let UV belong to =. It is easy to see that there are relations

LS80 = Uy, Le8%V = Vl, [E],

where U, and V; are free of us 1, ** -, Um; Y241, -+, ¥r, and are of order at
most zero in ux .1, -+, U, w. Then U,V; is in . Thus some power of
LSU.\V1isin [E]. Given a relation

(LSU1V1)a = PR + .. -+ QF;J'),

we can proceed as in §3, making substitutions for the z and their derivatives, and
for the derivatives of w, the substitutions producing a relation

LPSY(U,Vy)® = WR.

Thus one of Uy and V; is divisible by E. Then one of U and V is in Z, and
T is prime. The procedure just used shows that unity is not in =; neither is L.

A generic zero of 2 furnishes a solution of (20).

21. In the analytic case, the solutions of (20) are found as follows. Let
Uy, * -, Uk U1, -, 0 be taken arbitrarily as analytic functions of z, with the
sole restriction that, when they are substituted into L, L becomes a function L’
of ¥, ux 41, - - -, us, which is not identically zero. Let numerical values be as-
signed t0 u 4 1, - - -, Us, ab some point z = a, so that I’ # 0 for these numerical
values and for z = a. Then R = 0 will determine a set of g functions w of z,
Uk 41, ** -, Un analytic in some neighborhood containing the chosen set of
numerical values. This is because L is divisible by G. Using any of these
analytic functions for w in (20), we find in those equations in (20) which corre-
spond t0 wz,q, -, u, a set of differential equations which determine
Uk 41, "+, U, Tor the initial conditions. We then use the equations in (20)
whose first members are

Uh +1y * 5 Um; Vegp1, ~°°,0r

to determine those unknowns.
The system (20) is essentially in the Jacobi-Weierstrass normal form.
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22. A solution of (20) consists of quantities
(23) Wy e Uml By e O
If we adjoin to (23) the derivatives of the quantities ¥, we get a set of quantities
(24) Uy < U, u;,---,u;,; v, e, D

We wish to show that the quantities (24) are a zero of Q.
If we adjoin to (23) the associated quantity w and also uy, - -, u;,, we get a
set

! I
(25) Uy * 5 Umy Uty * 5 Un; Vi, =0y Ury w

which annuls every polynomial in (21). We can see, however, that (25) annuls
no initial in (21). Firstly, L is the initial of every F. Again, L is divisible by
G, which vanishes when the initial of R is zero. Thus (25) is a zero of the prime
p.i. for which (21) is a characteristic set. If we suppress w in (25), we get a zero
of A

We know now that (24) annuls every polynomial in the characteristic set
I of Q”, except perhaps the E of §17. That the E are annulled follows from
the final remark of §16. Now (24) cannot annul any initial in I'’. This is be-
cause L is divisible by M. Thus (24) is a zero of Q. Then (24) is a zero of
A,

23. Let ®; represent A" considered as a set of d.p. We have just seen that
every solution of (20) is a zero of ®,. Kvery zero of & with L # 0 satisfies
(20) with a suitable w. Thus, to get the complete manifold of &;, we have to
add to the solutions of (20) the manifold of & + L. Now, by IV, §12, every
prime p.i. which A" -+ L holds has a dimension lower than that of Q.

We keep the facts just adduced in reserve, while we examine again A of §13.

24. We suppose now, returning to §§13, 14, that some A;, call it simply 4’,
is not in ©. Let &, represent A considered as a set of d.p. Then &, is equiv-
alent to & + A’. Now any prime p.i. which A + A’ holds has a dimension
lower than that of Q.

25. From §§23, 24, it follows that, if we treat each A; of §13 as A was treated,
and then begin with the resulting systems ® + L or & 4+ A’ as with ®, we ob-
tain, continuing the process sufficiently, a set of systems in the normal form (20)
whose solutions make up the manifold” of . This completes the investigation
undertaken in §11.

26. We consider the prime ideal = of §20. The prime p.i. for which (21) is a
characteristic set contains the polynomials of A, all of which are free of w.
Every such polynomial, considered as a d.p., is in 2. Thus 2 contains d.p.
free of w. The totality of such d.p. is a prime ideal 2’ in §{ u; v }.

A generic zero of 2’ is a solution of (20) and is thus a zero of &; of §23. Then
&, holds =’. We show now that every solution of (20) is a zero of £'. When

17 The u in the various systems (20) have to be reordered. Of course, if ® has no zeros, we
obtain no system (20), but are led to systems of polynomials without zeros.
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we adjoin, to a solution of (20), the quantity w attached to it, we get a zero of
E of §20. As L is divisible by @G, the solution and w do not annul S. It follows
from (22) that the solution and w are a zero of Z. This proves our statement.

We have thus another proof of the fact that the manifold of the finite system
& of §11 is the union of a finite member of irreducible algebraic differential
manifolds.

27. We now consider a finite system ¥ of nonzero d.p. n & { gy, -+, ya },
the 9 being involved in ¥ up to any order. If a y; occurs up to the order m; = 1,
we put, with prompt explanations,

!
(26) yi=ua,  Ya = U v, Yimi—1 = Uimg  Yim = Ugmge

The second subscript of a y indicates an order of differentiation. The u,; are
all distinet differential indeterminates and ug,,“ is the derivative of uy,,
If no derivative of y; appears in ¥, we put

(27) Yi = V4.

Making the substitutions (26) and (27) in the d.p. of ¥ and adjoining to the
resulting system the d.p.

(28) Uy — Ui, i+ 15

j=1,---,m; — 1, we obtain a system & of d.p. in the u;; and v;, each d.p. of
order at most unity in each indeterminate. The system &, aside from the nota-
tion in the subscripts, is of the type described in §11.

If A is a d.p. in the % and v, of any orders in its indeterminates, and if A goes
over into a d.p. B by the substitutions

(m) . =
(29) U = Yi, j+m—1; Vim = Yim,

superseripts of u, and second subscripts of v, indicating order of differentiation,
every zero of A which annuls each d.p. in (28) gives a zero of B for which y; = u,;
for certain 7 and y; = v, for the remaining i.

It follows that if ® is resolved into prime ideals, as in §26, the substitution
(29) will produce a set of prime ideals equivalent to ¥.

We have thus proved again that the manifold of any finite system of d.p. is
the union of a finite number of irreducible manifolds.

We have also secured a second elimination theory for the system ¥.

THEORETICAL PROCESS FOR DECOMPOSING THE MANIFOLD OF A FINITE
SYSTEM INTO ITS COMPONENTS

28. We deal with any finite system & in {4y, -*-,%¥.}. Let p be any
positive integer. We denote by #® the system obtained by adjoining to ® the
first p derivatives of each of its d.p.

When the d.p. in ®® are regarded as polynomials in the y,; which they effec-
tively involve, ®® goes over into a system ¥® of polynomials. For algebraic
field, we use .
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We decompose ¥, with a finite number of operations, into finite systems

(30) Ay, -

2

, A

each of which is equivalent to a prime p.i. and none of which holds any other.

Let the polynomials in the A be considered now as d.p. Then each A; goes
over into a system &; of d.p. Let any ®; which is held by some &; with j # ¢
be suppressed. This can be accomplished with a finite number of operations.
There remain, if ® has a manifold, systems

(31) Dy, -0, Dy
We say that, for p sufficiently great, the manifolds of the ®; are the components
of'8 ®.
29. Let
(32) 217 "';25

be finite systems, no two equivalent, whose manifolds are the components of ®.
When the d.p. in the 2 are regarded as polynomials in the y,;, (32) goes over
into a set of systems of polynomials

(33) Iy .-+, T

Let us make any selection of ¢ d.p., one from each 2, and take their product.
Let the products, for all possible selections, be

Ay, -, A,

Then each A holds ®. By the theorem of zeros, if p is large, some power of
each 4 will be linear in the d.p. of &®,

Thus, if each A, is considered as a polynomial in its y;z, and if it is represented
then by B;, each B will hold ¥ if p is sufficiently large. Let p be large enough
for this.

We shall prove that each A, of (30) is held by some I'; of® (33). Suppose
that A; is not so held. Tet C, be a polynomial of I';, § = 1, -+ | ¢, which does
not hold A;. Then C; -+ - C,, that is, some B, does not hold A;. That B cannot
hold ¥®, This proves our statement.

Tt follows that each ®; is held by some Z;.

On the other hand, each Z; is held by some ®; Let this be false. Let D;
be a d.p. in ®;, j = 1, - -+, r (we restore momentarily the suppressed ®;) which
does not hold ;. Then G = D; -+ - D, does not hold ;. Hence G does not
hold ®. Then, if G is considered as a polynomial in its yi, it does not hold
¥®, This contradicts the fact that ¥ is equivalent to (30).

Thus, if p is sufficiently great, the manifolds of the ®; in (31) are the com-
ponents of ®.

18 T is assumed that @ has a manifold.
19 The indeterminates are those which appear in (30) and (33).
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For the above process to become a genuine method of decomposition, it would
be necessary to have a method for determining permissible integers p. In VI,
§9 we treat a special case.

Example 1. Let & bey: — 4y in F{y }. Then ¥® is equivalent to the
system

yi—4dy, -2, gyt —2),
Yiys + 2yys + ys(ye — 2), -+,
Yp+1+ @ =Dy + -+ 0 — 1 yp—1ys + vz — 2).
¥’ decomposes into the two systems
(34) Y, U,
(35) -4y, -2
in [y, y1, ¥2], each of which is equivalent to a prime p.i. If we adjoin
yys + vz (2 — 2)

to (34), that system decomposes into
(36) Y, Yu s,
(37) YY1, Y2 — 2
in F[y, y1, 42, ¥s). The same adjunction to (35) gives (37) and
(38) vi— 4y, -2 Y

Thus (36), (37) and (38) give the decomposition of ¥/, Continuing, we find
the decomposition of ¥% to be, for p > 2,

(39) Yy Yz, Un
(40) Y, Y1, Yo — 27 Yay, * = 5 Yps
(41) vi—4y, 12— 2, ¥y, Upir

If we regard the last three systems as systems of d.p., (41) gives the general solu-
tion of ¥ — 4y, while (39) gives the zero y = 0, which is a second irreducible
manifold. The system (40) of d.p. has no zeros.

We notice that the system of polynomials y} — 4y, 3, — 2 holds the system
(40) of polynomials. This is in harmony with the fact that every A in (30) is
held by some I' in (33).

Example 2. Let ® be yi — 4y° whose manifold was seen in 11, §19 to be ir-
reducible. If we let

A1 = 2y2 - 12y2

and represent the rth derivative of 4, by A, ; 1, then ¥® will be
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vi— 48 mdy, pditpd,
ysd1 + 2yeds + ds, - - -,
Y1+ @ = Dyp—1da+ - + (0 — 1) yed, -1 + 1ady
Then ¥ decomposes into
(42) Y, Yy,
(43) vi — 4, Ay

We now examine ¥/, The adjunction of y.4, + 714, to (42) gives the single
system

(44) Yy Y1, Yo.
The same adjunction to (43) gives
(45) Z/f — 4y, Ay, A,

and also (44).

Let us examine ¥'”/. The adjunction of ysd;: + 2y, A2 + y1ds to (44) gives
the single system

(46) Ys Y1y Yo
in F[y, -+, ya]. The same adjunction to (45) gives
@7 Y3 — 497, Ay, Ay, Ay,

as well as the system, held by (46), obtained by adjoining ys to (46).
Continuing, it is not difficult to prove that the decomposition of ¥® is

(48) Y Y, " Yo
where g is the greatest integer in 1 4 p/2, and
(49) 1/? - 4y37 Al; Tty AP'

The system (49) of d.p. gives the manifold of ®, while (48) (d.p.), whose
manifold is ¥ = 0, is held by (49).



CHAPTER VI
ANALYTICAL CONSIDERATIONS
NorMAL zZEROS

1. We deal with the analytic case. Let Z be a nontrivial prime ideal in
21, + -+, Yn With a characteristic set

O Ay, -, Ap.

A zero of (1) which annuls no separant will be called a normal zero of (1). By
V, §4, every normal zero of (1) is a zero of 2. A zero of (1) may annul some
separant and still be a zero of Z. One of our objects, in what follows, is to
characterize such zeros of (1).

ADHERENCE

2. Let n be a fixed positive integer. We consider sets of functions y1(z), - - -,
ya(z), the functions of each set being analytic in some open region which de-
pends on the set. Let U be a family of such sets. Let ji(z), -+, §.(z) be a
set of functions which are analytic in an open region B, the set not belonging to
A. We shall say that 7, - -+ , §. adheres to ¥ if there exists in B a point o of
the following description. For every positive integer m and for every e¢ > 0,
there exists in 9 a set yi, -+, ¥, the ¥y being analytic in an open region® con-
taining a, such that

(2) ) 'yij(a)—gij(a)|<€; i=1:"'7n;j=0:"';m-
The point a will be called a point of contact of 41, - - - , F. with U.

THE THEOREM OF APPROXIMATION

3. Let T be as in §1. Let B be any d.p. which is not in =, and ¥ the set of
geros of % which do not annul B. Let §:1(x), - -« , §a(z) be a zero of B which
adheres to . We shall prove that the 7 are a zero of Z.

Let G be any d.p. in . We have to prove that @ is annulled by the §. Let
a be a point, of contact of the 7 with . Some of the coefficients in ¢ may have
poles at a. If so, we divide G by a power of one of its coeflicients and the pole
is removed. We thus assume that the coefficients in G are analytic at a. If
the § are substituted into G, we secure a v(x), analytic at a. Suppose that,

choosing a large m, and then a small ¢, we find a 1, « - - , ¥, in U satisfying (2).
When the y are substituted into &, we obtain a v’ (z) with a Taylor expansion at
a in which the coefficients of the (x — @), i = 0, - - - , m, are very nearly equal

to the corresponding coefficients in ¥. But 4" = 0. Then v = 0 and the §
annul G.

! The y and their region of analyticity will depend on m and e.
122
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We derive now a converse result.
TuroreM: Every zero of B which is a zero of = adheres to ¥.

We reletter the indeterminates so as to have a parametric set w1, « -+ , 4, and
so that A;in (1) introduces y;. Let

(3) ‘17/1(.’13), R dQ(x); gl(x)} Tty gm(x);

analytic in an open region B, be a zero of £ which annuls B. We shall find
points of contact of (3) with ¥.

Let R be the remainder of B with respect to (1).

Let

T =RS -8,

with S; the separant of 4;.
Let A; be of order r; in y;. For every y.s with s > r; in a normal zero of (1),
we have an expression

E

(4) y;'. = F,
where E is a d.p. of class at most ¢ + ¢ and of order at most r;iny,,j =1, - -+, ¢;
F is a power product in the S. The d.p.
(5) Fyo, —-E
arein Z.

Let m be any integer greater than every ;. We adjoin to (1) all d.p. (5)
fori=1,---,p, with s £ m. We now consider the u;; and y,; as algebraic

indeterminates, so that the d.p. in (1) and (5) become s system @ of polynomials.
We use here all 4 and y with £ £ m and any other s which may occur in
(1), in (5) and in T.

We shall prove that the totality € of polynomials which vanish for those zeros
of ® for which no S vanishes is a prime p.i. Let GH vanish for the indicated
zeros. By (4) we have, for those zeros,

_E]‘

B, E,
-

H = 7
where E; and E, involve no y;, with j > r;. Then E,E; vanishes for the above
Zeros.

By V, §1, (1), regarded as a set of polynomials, is a characteristic set of a
prime p.i. The indeterminates which we use at this point are the y;; with
J £ r;and the u;;in ®. Then either E; vanishes for all zeros of the polynomials
(1) which annul no 8, or E; does. Suppose that E; does. Then @ vanishes for
all zeros of @ which annul no separant, so that Q is a prime p.i.

We shall prove that, given any zero of %, the u;, yi; appearing in &, obtained
from the zero, constitute a zero of ©. This is obvious for the normal zeros of (1).
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Then if @ is a polynomial in @, G, considered as a d.p., holds . This proves
our statement.

We consider the given zero (3) of . It annuls 7. Consider the corre-
sponding zero of . By IV, §39, there is, in B, an open region C of the follow-
ing description. Given any ¢ > 0, we can find a zero uu, y; of ©, analytic in C,
for which T is distinct from zero throughout C, such that, for every point a in C,

(6) lua(@) — da@) | <¢  |yn@ — gal@) | < ¢
i=1,---,q;j=1,-..’p;k=0,...,1n.

We refer to II, §10. TFor any point a in C, the u;(a) and y;x(a) in the zero
of 2 used in (6) furnish initial conditions for a normal zero of (1). Tt is a mat-
ter of constructing functions » with a certain number of given coefficients in
their Taylor expansions at a, and then using repeatedly the implicit function
theorem and the existence theorem for differential equations.? Thus, for every
a in C, there is a normal zero of (1), analytic at a, for which 7' is not zero at a
and which satisfies (6) with the given zero (3).

We repeat the above operation, using 2m and ¢/2 in place of m and e. We
find a region Cy, in C, every point @ of which can be used as above. For con-
venience we take C; bounded, with its boundary in C. Employing 4m and
¢/4, we find a region C; in C;. We continue, determining a sequence of regions
C;. There is at least one point a common to all of these regions. Given any
m and any ¢, there is a normal zero of (1), thus a zero of Z, analytic at a,
which does not annul B at a and for which (6) holds. As a is a point of contact
of the zero (8) with %, our theorem is proved.

4. The foregoing discussion shows that the points of contact of (3) with U
are dense in B. Thus, if a zero of B has a point of contact with U, it has a dense
set of points of contact.

A point which ig not a point of contact of (3) with ¥ will be said to be excep-
tional for (3) relative to B. That exceptional points may exist is seen from the
following example. Let Z be the prime ideal in F{y } whose manifold is
y = ¢/z with ¢ an arbitrary constant. Then y = 0 is the only zero which is
analytic at = 0. Thus, if B = y, the point z = 0 is an exceptional point.

Strodt has shown?® that, when B is given, the exceptional points of all zeros of
> which annul B lie on a fixed set which is vacuous, finite or countably infinite.
Without proving Strodt’s theorem, let us see that, for a particular zero , §
which annuls B, the set of exceptional points is at most countably infinite.

We refer to IV, §39, inquiring as to the conditions which must be put on a
point a of B so that a region C containing a may exist. We find that a must be
distinct from the poles of the coefficients of a finite number of polynomials and
must not be a zero of a, in (50). Then, the z; with j > ¢ will be bounded in a
region containing a and C can be taken so as to contain a. Thus for each m,

2 C is taken so that the coeflicients in the A are analytic throughout C.
3 Strodt, 44.
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in §3, we have to avoid, in selecting a, a set of isolated points. Such a set is
finite or countable. The points ¢ which cannot be used for all m thus form at
most a countable set.

5. If we take B as the product of the S, we see that the manifold of Z consists
of the normal zeros of (1) and of the zeros which adhere to the set of normal zeros.

We consider now an algebraically irreducible d.p. F in {1, -+, 9y }. In
the analytic case, a singular zero of ¥ which adheres to the set of nonsingular
zeros will be called an adherent singular zero. We see that the general solution
of an algebraically irreducible differential polynomial consists of the nonsingular
zeros and of the adherent singular zeros.

6. Sometimes a sequence of zeros u, ¥ exists whose Taylor expansions at a
point of contact approach those of 4, § in the manner indicated in (6), without
the u, y converging uniformly to the 4, 7 in a neighborhood of a. We give an
example, using F{ v }. Let

A = (yy: — 1) — 4yt

A is algebraically irreducible in the field of all constants because, when equated
to zero, it defines y; as a two-branched function of ¥ and . Equating A to

zero, we find, for y = 0, )
£(0)-+)"
—E)=2{%f) >
dz \y Y

the solutions of which are given by
7) y = bell

and y = b, with b and ¢ constants. The solution ¥ = 0, suppressed above, is
included among these.

The solutions (7) with b # 0 are normal zeros of A and thus belong to the
general solution of 4. Let b stay fixed in (7) at a value distinet from zero,
while ¢ approaches % through positive values. Then y approaches b, uniformly
in any bounded domain. It follows that the zeros y = b with b s« 0 adhere to
the set of normal zeros and are in the general solution. By taking ¢ as a small
negative number, we can make the second member of (7) and an arbitrarily
large number of its derivatives small at pleasure at z = 0. This shows that
y = 0 adheres to the normal zeros and is in the general solution.

Of course, if we take b small, and then ¢ large and positive, we get a sequence
of normal zeros converging uniformly to zero in any preassighed bounded do-
main. The discussion above, in which essential singularities were used to prove
adherence, shows what might conceivably happen in other examples.

All in all, it is not known whether a zero of B which adheres to 9 can be ap-
proximated uniformly in some area by zeros in . It is known? that such a
zero of B may fail to be embedded analytically among zeros in 9.

1 Ritt, 32.
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ANALYTIC TREATMENT OF LOW POWER THEOREM

7. The low power theorem was first proved for the analytic case.® The
necessity proof given was essentially that of Chapter III. We shall present
here the analytic sufficiency proof, which employs ideas essentially different
from those in Levi’s algebraic treatment.

We refer to 111, §17, and to ITI, §20. Let (25) of 111, §17, which we rewrite

(8) .1;1 C-”'ApiAtlli e Ai;' :l'liy

contain a term CrA™ which is of lower degree than every other term. We sup-
pose, for simplicity, that ¥ = 1. Let us imagine that the general solution It
of A is not a component of F, but rather a proper part of some component ¢/
of F. Then A does not hold IV.

Let A be the set of points of M’ which are not zeros of A. By §3, every point
of M adheres to A.

Let

(9) §1(@), + -+, Falw)

be a point of I which does not annul C;. We consider a point of contact a of
(9) with ¥, produced as in §3, for which the coefficients in 4, and in the C; of
(8), are analytic. We assume furthermore that C; is not annulled at a by the
funetions in (9).

A vpositive integer x and an e > 0 being taken, let us find, as in §3, a zero
i1, *++, G in U, analytic at a, such that

(]‘O) |gii(a)—?7ij(a)l<f, 'L'=1,---,n;j=0,...,y.
We denote by ¢ a positive real number which later will be made small. We
perform, upon the variable x, the transformation
z—a

(11) z p

For the § of (10), A becomes a function A (§, z) of z, analytic at a and distinet
from zero at a. (Note that we use a point of contact of the type produced in

§3.)
Let s be a positive integer which will be fixed later, and let
(12) w(z) = cA(F, 2),

where the z used in A is related to z as in (11). Then
wy = 2 F1A(G, 2), o Wm—r =T A, (F, ©)

where subscripts of w indicate differentiation with respect to z.
Let D;(2) = C;(#, ). The jth term in (8) goes over into

§ Ritt, 31.



ANALYTICAL CONSIDERATIONS 127

(13) ¢¥Dj(2) whwi « - - wh T
where
u; = sdj — ej,

d; being the degree of the jth term of (8) in A and the A4;, and e, its weight.
From the fact that d; > d; when § > 1, it follows that, if s is large, every u;
with j > 1 will exceed ui. Let s be fixed at a value large enough for this to
oceur.
As (8) vanishes for the §, we may write

(14) D™ + X ¢ " D) w - wn I = 0.
J=1

Let the Taylor expansion of 4 (f, x) at a be

(15) bo+bilx—a)+ -+ +bilz —a)i+ ---.

Then by % 0, but, if e and 1/u are small, a large number of the b, beginning with
be, will be small. This is because the § approximate to the 7 and the 7 annul A.
We now fix ¢ in such a way as to make the greatest of the quantities

| bic + 1], 1=0---,5s—1,

equal to unity. This is possible because by # 0.
Then ¢ tends towards zero with ¢ and 1/p.
For | z | small, we have, by (11), (12), (15),

(16) w(z) = 3 bt %
t=0
When p and 1/¢ increase, the coeflicient of z¢ in (16), for a fixed 7 exceeding
s — 1, will tend towards zero.
It follows that we can select a sequence of approximating zeros § for which
w(z) tends towards a nonzero polynomial of degree s — 1 at most. The con-
vergence occurs in the sense that each coefficient in (16) tends toward the

corresponding coefficient in the polynomial.? Let v (2) be such a polynomial.
Let, for |z — a | small, and for the particular point (9) of I,

Cs(#,9) = X bl = o) f=1,e
Then

05, 9) = £ By (@ — o,
where, for each 7, hj; approaches hy; as € and 1/u decrease. We have

¢ In this polynomial, the “coeflicient of 2"’ with ¢ > s is understood to be zero.
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D;i(2) = ¥ hycizi.
1=0

Turning now to (14) and remembering that the u; — u, with j > 1 are positive,
we recognize that

(17) hey™ = 0.

In short, if the first member of (17) did not have a vanishing expansion in
powers of z, the first member of (14) could not have a vanishing expansion when
¢ is small and w approximates to v. Because C1(F, ) does not vanish at a, we
have by ¥ 0. Then, by (17), ¥ = 0. This contradicts what precedes, so that
the sufficiency proof is completed. The theorems of III, §§22, 23 can be ob-
tained by modifying slightly the above procedure.

The transformation performed in (11) and (12) has the form of certain trans-
formations which were discovered by Painlevé and which were applied by him
to the study of differential equations whose solutions have fixed critical points.?

It might be proposed to treat the sufficiency question by making the substi-
tution A = a*, with h a positive integer, in the relation S‘F = 0. For & large,
the resulting relation could be divided through by &' = A™ and we would get a
relation which could not be satisfied by a sequence of § for which the coeflicients
of o at a tend to vanish. There is, however, no a priori agsurance that such a
sequence of § exists. The proof of its existence is complicated and involves the
use of the low power theorem.?

Poisson, in his study of singular solutions, used a transformation in which the
unknown is replaced by a power of itself. A similar transformation was used
by Darboux® in connection with the singular solutions of partial differential
equations.

8. We present another theorem concerning low powers.

THEOREM: Let
(18) yri'l'Fi; 1:':1:"'7”’

bed.p.inF {4y, -+ ,yn} with each p; a positive integer and with each F; either
identically zero or else composed of terms each of which is of total degree greater than
piin the yu. Thezeroy, = 0,1 =1, -+, n, of (18) is a component of the system
(18).

Let ;= 0,72 =1, ---,n, be a proper part of a component It of (18). To
fix our ideas, suppose that y, does not hold M. We use a point of contact a of
the type of §3. For every m and for every ¢ > 0, there is a point of I

(19) Yi = Zobi'i(x - a)j; 1= 1: R (7
i= .
7 Bulletin de la Société Mathématique de France, vol. 28 (1900), p. 201.

8 Ritt, 32, and Levi, 17.
? See Ritt, 41,
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with
(20) lbij|<6, 1:=1,---,n;j=0,...’m,

and with by # 0.

We use a positive integer s and a positive number ¢, both of which will be
fixed later. Considering a definite point (19), which corresponds to given m,
¢, we let

(21) wi(z) = c—’y.-(x), t=1,:-,m,

where z is related to z as in (11).
Each equation yi* + F; = 0 goes over into an equation

(22) wi + L MM ayBs = 0,
J=1

where the B are power products in the w and their derivatives with respect to z;
the u are positive integers and the » are nonnegative integers. Each o; is the
coefficient in F; of the power product which produces B; and we regard the o,
for any ¢, as functions of z. It is unnecessary to express the dependence on ¢
of X in (22).

Let s be fixed at a value large enough for every us — » to be positive.

We have, by (19),

(23) w;(z) = D¢t bz, i=1, - ,m.

j=0
We now fix ¢ in such a way that the greatest of the quantities
C_3+ilb"ily i=1,---,n;j=0,---,s—1,

equals unity. This is possible because by # 0. Then, if m = s — 1 and if €
is small, ¢ will be small.

It follows that, by decreasing 1/m and ¢, we can select a sequence of points
(19) which yields, for every 1, a sequence of w; which tends toward a polynomial
which is either identically zero or else of degree s — 1 at most. The selection
can be made in such a way that, for some 7, the w; converge to a polynomial dis-
tinct from zero; fixing our ideas, we assume that w; tends towards a nonzero
polynomial v (z).

We now consider (22) with 7 = 1. When ¢ is small and the w; are close to
their polynomial limits, the expansion of % in (22) will begin with a large num-
ber of small coefficients. This econtradicts the fact that v** # 0 and our theorem
is established.

DIFFERENTIAL POLYNOMIALS IN ONE INDETERMINATE, OF FIRST ORDER

9. Let A, in §{y }, be of the first order in y and algebraically irreducible.
Limiting ourselves to the analytic case, we shall show how to determine, in a
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finite number of steps, a finite system of d.p. whose manifold is the general
solution of 4.
Let A be of degree m in 1. We consider the system

(24) A7A17"';Am—1

where A; is the jth derivative of A. Let (24) be considered as a set of poly-
nomials and let it be resolved into finite systems, each equivalent to a prime
ideal and none holding any other. There will be precisely one system, A, which
is not held by 8, the separant of A (§3). Let the polynomials in A be con-
sidered now as d.p. and let T be the system of d.p. thus obtained.

We shall prove that the manifold of = is the general solution of A.

10. We know that the general solution I of 4 is contained in the manifold of
Z. We have to show that every zero of = is in 3.

We observe that A holds =. The zeros of A not in I are zeros of S. The
common zeros of A and S are zeros of the resultant of A and S with respect to
11, which is a nonzero d.p. B of order zero. It suffices then to show that if a
zero u of R is a zero of Z, u is contained in .

Let u; be the jth derivative of . Then A = 0 for ¥y = u, 3 = w;. There
exist an open region A, and an h > 0 such that, for

(25) rinAjand 0 < |y —u | < b,

every solution of the algebraic relation 4 = 0, for g, considered as a function
of y and «, is given by a series

(26) h=u+aly —wr 4 Fa, (y—u) et 4 ..

where the a are functions of x analytic in A; and where ¢ and s are integers, s
being positive. The particular series used in the second member of (26) de-
pends on the particular solution g used, but, for each series, we have s £ m.
We suppose that, in each series, ap does not vanish for every z.

The system of functions

27 U, Uz, * 0, Um

is a zero of A. In some region A, contained in A,, we can approximate to (27)
arbitrarily closely by a zero of A with B distinet from zero throughout 4,. We
understand that the coefficients in A are analytic throughout As,.

It follows that, if ¢ is any point in A, the differential equation 4 = 0 has
solutions analytic at £ with R + 0 at £ for which y, - - -, ya differ arbitrarily
slightly at & from u, - - -, 4n respectively.!

Any such solution satisfies (26), in the neighborhood of &, for an appropriate
choice of the series in (26).2 Hence there must be one of the series for which
(26) is satisfied by a zero of A with B s 0 and with y, - -- , y= as close as one

1 We are setting aside the trivial case of A = u (g1 — w) with pin &.

UTf R = 0at £ for a zero of A, then S # 0 at £,
IfTR = 0atf y — u £ 0 for a neighborhood of &.
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pleases at £ to %, +++ , Um. In what follows, we deal with such a series and as-
sume ¢ to be taken so that a4 = 0 at &.

We are going to prove that ¢ = s. We assume that s > ¢ and produce a
contradiction.

We see first that ¢ > 0 in (26). Otherwise 1 — w could not be small at £
if y — uis small at £, Then s > 1.

We show now that 2¢/s — 1 > 0. Differentiating (26), we find

qg+p
8

(28) Y2 = Ug + ap (y — w)(e+os=1(y, — uy)

day

+ Z iz (y —_ u)(41+17)la.
We replace y; in (28) by its expression in (26). As ¢ < s, (28) becomes
(29) y2 = Uz + %aﬁ (y —u)P =14 by —w)Pet D14 ..o,

where the b are analytic in A;. If we had 2¢/s — 1 £ 0, ys — us could not be
small at £ when ¥y — u ig small. Thus
2 _ 5
8
Then 2¢ = s + 1. It follows, since ¢ < s, that s > 2. If we differentiate
(29) and use (26), it follows as above that 3¢/s — 2 > 0. We find then that
3¢ = 2s + 1 and that s > 3. Continuing, we find that s exceeds m. Then
gz s
We are now able to show that u belongs to M. In (26), we replace y — u
by v*. Then (26) goes over into the differential equation

1
8

(30) s%=a000—8+1+...+apvq-l'p—s+1+___

Since the second member of (30) is analytic in » and z for » small and z close to
£, then, if we fix v as a small quantity at &, distinet from 0, (30) will have a solu-
tion analytic at £ not identically zero, with any desired finite number of deriva-
tives as small as one pleases® at £. Then y — u, which equals »*, while not zero
at ¢ will be small at £, together with as great a finite number of its derivatives
as one may choose to consider. Zeros of A4, close to u but distinct from u at £,
cannot annul E.
" Thus if v annuls S as well as R, u adheres to the nonsingular zeros of 4 and
belongs to M. If u does not annul S, u certainly belongs to .

SEQUENCES OF IRREDUCIBLE MANIFOLDS
11. Let
Sy, v, Zpy et

13 Equation (30) is satisfied by » = 0 and its solution is analytic in the constant of integra-
tion.
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be an infinite sequence of prime ideals in F{ g, -, y. }, each Z; a proper
divisor of Z; 1. The intersection of the =; is a prime ideal Z. Strodt has
investigated!* the relationship of the manifold I of = to the manifolds 9 of
the Ei.

Of course, M contains every M;. The dimension of M is shown to exceed
that of any M:. A point y1(x), - - - , ¥.(z) of I which is not in the union N of
the I%; adheres to M. TFor the y as just given, a point at which the y are ana-
lytic and which is not a point of contact with 9 is called an exceptional point.
The totality of exceptional points, for all zeros of = not in N, is at most count-
ably infinite. Such a countably infinite set of exceptional points may exist, and
may be dense in A. In fact, a given zero of £ may have a dense set of ex-
ceptional points.

OPERATIONS UPON MANIFOLDS

12. We use a single indeterminate y, and deal with the analytic case. Let
P and P, be manifolds. There exist d.p. which vanish for every sum y, + 3.
with 1 in % and g, in M,.®  The manifold of the totality of such d.p. is called
the sum'® of MMy and M, and is denoted by P& + Me.  The product of the two
manifolds is defined similarly. Let M be any manifold. TLet = be the totality
of those d.p. which vanish for the derivative of every y(z) in 2. The manifold
M of = is called the derivative of M.

A manifold I is said to be limited if either I consists of the single function
zero, or I contains nonzero functions and the function zero does not adhere to
the set of reciprocals of such functions. I is limited if and only if it is held by
a d.p. of the form y» + F, where F either is zero or else consists of terms of
degree less than p.

If 9% and M are general solutions of d.p. of the first order, and are limited,
P + My and P4, are limited.  If P and My, irreducible and of order more
than unity, are limited, their limited character may not be communicated to
their sum and produet. This is seen from examples based on the theory of the
elliptic functions. For the case of the product, the result just stated is equiv-
alent to the fact that the product of two manifolds may contain the function
zero, even if neither manifold does. The derivative of every limited manifold
is limited.

14 Strodt, 44.

15 We take y, and y; with the same domain of analyticity.
18 Ritt, 37.



CHAPTER VII
INTERSECTIONS OF ALGEBRAIC DIFFERENTIAL MANIFOLDS
DIMENSIONS OF COMPONENTS OF INTERSECTIONS

1. B.L. van der Waerden has shown! that if two irreducible algebraic mani-
folds in the space of 1, -« , ¥ have the respective dimensions p and g, every
component, of their intersection is of dimension at least p 4+ ¢ — n. For
algebraic differential manifolds, there is no such regularity. We shall exhibit,
for the case of n = 3, two irreducible manifolds of dimension 2 whose intersec-
tion consists of a single point.

2. Working with u, v, y, we let

F =45 — % 4 y(upy — vwy)?

We take & as the field of complex numbers. F is algebraically irreducible. We
ghall find its components. A component other than I, the general solution,
must be held by the coefficient of y, therefore by u® — ¢°. Let
Aj=u— ol Jj=1,--,5

where w = €%, As

uv;—-vu1=v1A,-——vA;, j=1,+-+,5,
it follows from the low power theorem that, for each j, the manifold of 4; is a
component of F. Thus F has six components, each of dimension 2.

The manifold MM of y is two-dimensional. We shall show that I and P’
have precisely one point in common, the point v = v = y = 0.

We show first that ¥ = v =y = 0 is in M. Let 4, 5, § be any point of M
which does not annul 45 — %, If ¢ is an arbitrary constant with respect to
§ <4, 7, >, it follows from the homogeneity of F and u® — 5 that ¢4, ¢3, cg
isin M. Then every d.p. which holds It vanishes for v = » = y = 0 and our
statement is proved.

Now let #, 7, 0 be a point of IN.

For each j, we write u® — 1° = A;B;. For every zero of F with y = 0, in
particular, for every point of 9t with y equal to zero, u* — %, and therefore some
Aj, vanishes. By III, §23, a zero of an A; which lies in I annuls By, and there-
fore annuls some A with & > 7. It follows that &# = 5 = 0.

The anomaly which we have just found has nothing to do with “points at in-
finity.” It would be futile to try to remove it by creating a ‘‘projective space.”

ORDERS OF COMPONENTS OF AN INTERSECTION

3. We consider, a8 in V, §27, a finite system ¥ of nonzero d.p.in g1, -+ , .
Let ; be involved in ¥ up to the order ;.

1 Mathematische Annalen, vol. 115 (1938), p. 330.
133
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Let M, the manifold of a prime ideal T, be a component of ¥ of dimension g.
We are interested in securing a bound for the order of ¢ when ¢ = 0, and a
bound for the order of I relative to any given parametric set when ¢ > 0
(11, §35). We shall secure a bound for the order, or for the relative order, in
terms of the m;.

The result which we shall obtain may be regarded as a counterpart, for sys-
tems of algebraic differential equations, of Bézout’s theorem on the number of
solutions of a system of algebraic equations.

4, Suppose first that ¢ = 0.

We consider the system & of d.p. in indeterminates u,;, »;, obtained from ¥
asinV, §27. Some prime ideal 2’ as in V, §26, goes over into I' by the substi-
tution? (29). X’ is contained in a prime ideal Z, described as in V, §20. We
wish to see that T is of dimension zero. Suppose that Z is of positive dimen-
sion; it will have a parametric set wy, - -+, u; vy, +++, 0. Suppose that v are
actually present in this set. Then v, corresponds to some y;in ¥. AsI'hasa
d.p. in y; alone, 2 has a d.p. in v, alone. Thus there are no parametric v.

Let us now consider w;.. It corresponds to some y;. I has a nonzero d.p.
N in y; alone. We assume N to be algebraically irreducible. Suppose that N
involves derivatives of y; of order less than s. Let y; be the lowest such deriva-
tive. Then some linear combination of N and its derivative is free of y;. Con-
tinuing, we find a nonzero d.p. P in I, involving y; alone, in which the deriva-
tives of y; are of orders at least s. To P, there corresponds in = a d.p. in
alone.

Thus 2 is of dimension zero. The set (18) thus becomes

’ !
uh-l-l,"',um; ul’...’uh; vyt Ure

We consider the system (20) which corresponds to =. The second members
are expressions In w4y, « - - , Up; W.

We seek a bound for 2. If y; occurs up to the order m; in ¥, y; yields m;
letters u. Thus

héml’!“l‘mn

Let @, + -+, Gm; By, -+, U;; 0 be a generic zero of =. Let { be a derivative
of any order of one of the quantities 4, #. Then { has an expression which is
rational in @, -+, d@; w. If { is one of the quantities just written, the expres-
sion is { itself. Otherwise, we use (20) and R = 0; a sufficient number of dif-
ferentiations and substitutions gives the desired expression for {. In particular,
proper derivatives of w which appear during the differentiations of the z are ob-
tained by differentiation from R = 0.

Let us consider now any h + 1 of the letters u,,, v;;; They furnish A + 1
quantities ¢, with expressions as just described. Using these & + 1 expressions,
and the relation B = 0 for 4y, - - -, 4s; W, we obtain, by an elimination, a non-

2 We use, at present, equation numbers of Chapter V. The u; of 2’ are the uy; of &.



INTERSECTIONS 135

zero polynomial in the & 4 1 letters us;, v; which is a d.p. in Z. It follows
that, given any & + 1 distinet y;, I' contains a nonzero d.p. which involves only
those y;;. This means, by II, §35, that the order of I' cannot exceed k.

We may thus state the following theorem:

TuroREM: Let ® be a finite system of nonzero d.p. in F{ w1, -+ ,yx.}. Letm;
be the mazimum of the orders of those derivatives of y; which appear in ®. If a
component M of ® is of dimension zero, the order of M is at most my + - - - + my.

5. We now suppose that ¢ > 0. We write the indeterminates as uy, -+« , ug;
Yy, **+ , Yp, With the u parametric for I'' Let 4y, -- -, A,, with A; of order r;
in y;, be a characteristic set for I'.  Let B;,7 = 1, - -+, p, be a nonzero d.p. in I
involving only y; and the u. Let C be a d.p. which is not in T and which holds
every component of ¥ other than It.

Let @, « -+, @4 41, *** , Up be a generic zero of I.  Let the 4 be substituted
for the win ¥. Then ¥ becomes a system ¥/ in gy, -+, yp OVer F<ady, » -+ , Ug>.
Each B; becomes a nonzero B; and C a nonzero C’.

Let the components of ¥ other than I be manifolds of prime ideals
[y, --+,T.. Then ¥ is equivalent to I, T, ---, T, each accented system
resulting from the corresponding unaccented one when the u are replaced by
the 7.

The totality of d.p. in F < 4, -+-,%, > { ¥, -, ¥p} which vanish for
91, - -, Up is a prime ideal A held by ¥'. Each I"; is held by C’, while Ais not.
Thus, the manifold of A is contained in a component 9’ of ¥’ which is held by
IV. M’ must be of dimension zero, since each B’ is in TV. Then A is of dimen-
sion zero and, by II, §36, its order h does not exceed the order of .

Now A contains no d.p. involving only y.; with j < r;; otherwise, there would
be a nonzero d.p. reduced with respect to Ai, ---, A, which vanishes for the
generic zero of I By II, §35, h = + --- + r,. By §4, if the highest
derivative of y; in ¥ is of order ms; the order of I’ does not exceed
my 4+ -+ + my. Thus

et Ty 2t o+ omy
We may thus formulate the following theorem:

THEOREM: Let ® be a finite set of d.p. in F{ Uy, -+ ,%q; Y1, ~-* ,Yp |, the u
being a parametric set for o component M of ®. Let myy ¢ =1, .-+, p, be the
mazimum of the orders of those derivatives of y; which appear in ®. Then the order
of M relative to wy, - - - , U, cannot exceed my 4 -+ + my,.

In what precedes, the condition that I be a component, of & is essential. For
instance, taking ® as y10 + 920, the manifold of g1, + 1, ym - %20, which is of
order 7, is, for every n, held by &.

6. Jacobl examined, from the heuristic standpoint, the problem of determin-
ing the number of arbitrary constants in the solution of a system of n dif-
ferential equations in #n unknowns.* Taking the system in the form

3 See Ritt, 29,
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(1) ui=0; Ii:l;'”)ny

where each % involves the unknowns ¥, - --, ¥4, a certain number of their
derivatives and the independent variable «, Jacobi considers the derivatives of
¥; appearing in %; and denotes the maximum of the orders of those derivatives
by ai;;. He forms all sums

(2 Ay o0 - an,

where ji, +++ ,J. is a permutation of 1, -+, n. He arrives at the conclusion
that the number of arbitrary consiants in the solution of (1) does not exceed the
greatest sum (2).

After our study of algebraic differential manifolds, it is unnecessary to insist
on the fact that the notion of the number of constants in the solution of a gen-
eral system never was a notion which was definite in advance. For algebraic
systems, the concept is made definite by the theory of orders of irreducible
manifolds which has been developed here. It is thus not surprising that
Jacobi’s work on this question, in spite of its daring and ingenious quality,
should not have firm logical structure.

One would be disposed to regard Jacobi’s work as conjectural and to expect
that his bound would be found valid in a rigorous theory. We shall see later
that Jacobi’s bound, like weaker ones given before his time, does not have the
broad applicability which one might anticipate for it. We shall treat now a
situation in which Jacobi’s bound is found to hold.

We deal with two nonzero d.p. A and Bin y and 2. We represent by ¢ and b
the respective orders of A in y and z; by ¢ and d the orders of Biny and z. Let

h = Max (@ + d, b 4 ¢).
We prove the following theorem:

TaeorEM: If IR, of dimension zero, is a component of the system A, B, the order
of M is at most* h.

We assume that IR is of order greater than h and produce a contradiction.
Fixing our ideas, we assume that b = d.

There exist nonzero d.p. C whose orders in ¥ and z do not exceed ¢ and d re-
spectively and which hold IR, such that the system A, C has no component of
dimension unity containing . B is such a d.p. From among all such d.p.
C, we select one which, for the order y, 2 of the indeterminates, is of a least rank.
The d.p. selected will be denoted by D.

We are going to prove that D is free of 2. We assume that z is present in D
and force a contradiction.

Let D be of order ¢ in y and of order fin 2. Let S be the separant of D.
There is a relation

4 A better bound can be given in the case in which one of y and z is absent from one of A and
B. For instance, if B is free of z, it can be shown as below that the order of M does not exceed

b+e
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S'A=E, [D]
where E has an order in z not exceeding f and an order in y not exceeding
Max (a, e + b — f).

Suppose that S does not hold M. Let I’ be a component of the system D,
E which contains . Then I is a component of 4, D and is thus of dimension
zero, Applying the theorem of §4 to D, E and using 11, §36, we find that the
order of I does not exceed®

Max (a,e +b — f) +f = Max (a + f, ¢ + b).
Asf £ dand ¢ = ¢, the order of I cannot exceed k.
Thus S holds M. If D is of degree ¢ in 24, then
(3) gD =28 + T,

where T, like S, is of lower rank than D in z. Also T holds 9.
By I, §29, we may assume that § has a nonconstant element.® We shall
prove the existence of an element g in ¥ such that all components of the system

@ A, S+ puT

which contain It are of dimension zero. As S + uT will be of lower rank than
D in z, our statement that D is free of z will be proved.
By (3), the system A, D holds the system

(5) A, 8, T.
Let « be an indeterminate. We consider the system
(6) A, S+ uT

iny, 2, u. Let the essential prime divisors of the perfect ideal determined by the
system (6) be =y, -+, =2, Let 2, -+, =, be those £ which are not held by
(5). We say that each of these ideals contains a nongero d.p. in ¥ and u
alone and a nonzero d.p. in z and % alone.

Suppose that =, contains no d.p. in ¥ and % alone. Then, if the indeter-
minates are taken in the order u, y, 2, =, has a characteristic set composed of
one d.p., so that the manifold of Z; is the general solution of a d.p. F' (11, §§18,
33). Now F cannot involve u, for F will continue to be a characteristic set for
2, if the indeterminates are taken in the order y, z, v, and A, which is in 2,
does not involve u. We take the remainder of S + «T with respect to F for
the order u, y, 2. We secure a relation

EAsb=zd=f,wehavee+b—f=e.

¢ Suppose that F consists purely of constants. Theideal { A, B } has essential prime divisors
2y, v+, 2 When an element z, of derivative unity, is adjoined to ¥, we secure a larger
{ A, B}. Its essential prime divisors can easily be shown to be the prime ideals generated
bytheZin§ < z >. The new prime ideals have the same characteristic sets as the old ones.
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J(S +ul) =0, [F],

with J a power product in the initial and separant of F. This means, since ¥
is free of u, that

JS=0, Jr=o0, [F]

It follows that each d.p. in (5) is in =;.

This proves that Z;, for ¢ £ s, contains a d.p. H;in y and % alone. Similarly
each such I; contains a d.p. K;in z and  alone. Let M be the product of the
d.p. H and N the product of the K. Let u be fixed as an element g in F so that
M goes over into a nonzero d.p. U in y alone, N into a nonzero d.p. V in z alone.

Then those zeros of

(M) 4, S 4 uT

which are not zeros of (5) must annul U and V. A fortiori, all zeros of (7)
which are not zeros of 4, D annul U and V.

This shows that a component of (7) which is not contained in a component
of A, D is held by U and V. Then every component of (7) which contains It
is of dimension zero. This proves that D is free of 2.

D must involve y effectively, since A, D has zeros. Denoting still by S the
separant of D, we secure a relation

Sd=L, [D]

where the orders of L in y and z do not exceed ¢ and b respectively. We reason
with D, L as with D, E, above, to show that S holds ?. Then we follow the
method above to find a system similar to (4), with S 4 uT of lower rank than
D. Thus it is not possible to choose a d.p. of least rank among the d.p. C.
This completes the proof that the order of I does not exceed h.

INTERSECTIONS OF GENERAL SOLUTIONS

7. By all the rules of play, the bound % of §6 should, when A and B are
algebraically irreducible, apply to the components of dimension zero in the
intersection of the general solutions of A and B. The general solution of a
d.p. F in y and 2 can be regarded as the solution of the differential equation ob-
tained by solving for the highest derivative of one of ¥ and z in the equation
F = 0. To be sure, we would then be dealing with irrational differential equa-
tions. However, as Jacobi’s considerations are detached from questions of the
theory of functions, one would not expect irrationality to have a bearing on the
problem. It might be suggested that Jacobi’s heuristic work, as well as pre-
vious work which yielded bounds like that of §4, was intended to apply to the
“general case.” If so, the heuristic history of differential equations has been
different from that of algebraic equations. Bézout’s work of the middle
eighteenth century, on the number of solutions of a system of algebraic equa-
tions, was entirely heuristic. His conjecture was validated, late in the nine-
teenth century, not for a “general case’” but for all systems,
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The actual situation is as follows. If the orders of A and B in each of ¥ and
z do not exceed unity, we get the bound of §6 for a component of the intersection
of the general solutions. For higher orders, that bound need not hold. We
shall show how to construct, for every n > 3, a d.p. of order n in y and in 2
whose general solution intersects the manifold of ¥ in an irreducible manifold of
dimension zero and order 2n — 3.

8. We consider A and B, as in §6, assuming them to be algebraically irreduci-
ble, with each of a, b, ¢, d not greater than unity. We prove the following
theorem.

TuaroreEM: If M, of dimension zero, is & component of the intersection of the
general solutions of A and B, the order of I does not exceed h.

Thus the order of M does not exceed 2.

We represent by 9t the intersection of the general solutions of A and B.

If a, b, ¢, d are all zero, the general solutions of A and B are their complete
manifolds and we have merely to apply the theorem of §4.

Suppose now that ¢ = b = 0 and that at least one of ¢ and d is 1. We con-
sider first the intersection I’ of the complete manifolds of A and B. Every
component of MM’ of dimension zero has an order not exceeding unity. By II,
§36, if I is not contained in a component of P’ of dimension unity, the order
of M does not exceed unity.

We have now to consider the case in which 9t is contained in a component
M of M’ of dimension unity. N’ is the general solution of a d.p. C. Because
A holds M, C must be of order zero in each of y and #z; this implies that I’ is
the manifold of A. Then I’ must be a component of the manifold of B.
Otherwise I’ would be contained in the general solution of B and I would
not be a component of 9.7

We suppose, as we may, that A involves z effectively. As I’ is a component
of B other than the general solution, we have d = 1 (III, §15). Let 8 be the
separant of A. We have, by the low power theorem, a relation

S!B = Cod? + C14%AY + --- + C.A%AY.

Here A, is the derivative of 4 and, for every ¢, p; + ¢: > p. The orders of the
C in z and in ¥ do not exceed 0 and 1 respectively, and no C is divisible by A.
By III, §23, as M is in the intersection of PV’ and the general solution of B, C,
must hold . The manifold of the system Co, A is a proper part of MM’ and
thus, by II, §36, has components which are all of dimension zero. By §6, the
order of such a component cannot exceed unity. Then the order of It does
not exceed unity; this is what was to be proved.

Suppose now that at least one of @ and b is unity and that at least one of ¢
and d is unity. We take up immediately the case in which 9 is contained in a
component M’ of M’ of dimension unity; when M is not so contained, it follows

7By III, §15, the':components of B other than its general solution are manifolds of d.p. of
orders zero in ¥ and z.
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from §6 that its order does not exceed h. As It is a component of N, M" is
not part of M. Let, then, M fail to be contained in the general solution of B.
Then some other component of B contains I’ and is thus identical with ",
By the case which precedes, the components of the intersection of 9" with the
general solution of B are of dimension zero and of order at most unity. This
completes the proof.

9. We are going to present a d.p. F in y and z, of order 4 in y and in 2, whose
general solution will be shown to intersect the manifold of y = 0 in an irreducible
manifold of dimension zero and order 5.

Through §13, K, will represent, for any d.p. K, the derivative of K. We let

® A =y — 2z,

)] B = At — yj,
(10) C = ysdy — 294,
(11) F =B — yfC2 = A* — ¢ — y°C

We use the field of rational numbers. Let us see first that F is algebraically
irreducible. If we consider the equation F = 0 as an algebraic equation for ys,
we secure a function y, of two branches. Thus, if F were factorable, it would
have a factor of positive degree free of y:. Such a factor would have to be a
factor of y°42. As F is not divisible by y or by A, F is algebraically irreducible.

Let us now determine the components of F other than the general solution.

Let M be such a component. As 3F/dy, = 4y*AC, N must be held by yC
or by A. Suppose that A holds NN. By (10) and (11), ys holds N. In every
case then, B holds 9.

Now B is the product of the four d.p.

(12) ED =y —zg? —jys, J==x1, £ (17

each of which is algebraically irreducible. For what follows, it is important to
know that the manifold of each E is irreducible. From the manner in which 2,
figures in (12), one sees that a component of E%@ other than the general solution
is held by . Such a component, being of dimension unity, must be the mani-
fold of y. But the low power theorem shows that the manifold of y is not a
component. This proves the irreducibility of the manifolds of the E.

We have, for every j,

C = y:EP — 29,E9.

Referring to (11), and applying the low power theorem, we see that the mani-
fold of each E is a component?® of F.

It will be proved that the intersection of the general solution of F with the
manifold of ¥ = 0 is the manifold of the system y = 0, z; = 0. The latter
manifold is of dimension zero and order 5.

3 For the order ¥, z of the indeterminates, F as it stands is in the form (25) of I1I, §17.
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10. We refer to I, §26. We use any positive integer p and any power product
P in y and its derivatives. The degree of P is denoted by d and its weight by w.
The second member of (31) of I, §26, will be represented by 6(p, w). Let
U = y». We shall prove that P has a representation as a homogeneous poly-
nomial in U and derivatives of U, whose coeflicients are homogeneous poly-
nomials® in ¥ and derivatives of ¥ of a common degree not greater than §(p, w).

If d £ 6(p, w), P itself is the representation sought. Otherwise, by I, §26,
P is a linear combination of U and its derivatives, with coeflicients all of degree
d — p and none of weight exceeding w. If d — p < §(p, w), we have the de-
sired representation. Otherwise, the coefficients of U and its derivatives will
be in [U]. Continuing, we have P expressed as in our statement.

11. Let T be an ideal of d.p. in ¥ and z; M a d.p. in ¥ and 2; @ a nonnegative
number. We shall say that M aedmits « as ¢ mulliplier with respect to Z if, for
every ¢ > 0, there exists an integer n,(¢) such that, for every n > ng (¢,

M~=P, (2),

where P is a d.p. depending on M and n which, arranged as a polynomial®® in
the y;, contains no term of degree less than n{a — ¢). P may be zero. If «
is a multiplier for M and if 0 £ v < «, v is also a multiplier.

We prove the following properties of multipliers:

(a) Let M and N admit « and 8, respectively, as multipliers with respect to
2. Let vy = Min (a, 8). Then M + N admits v as a multiplier.

(b) For M and N as in (a), MN admits « 4+ 8 as a multiplier.

(¢) Let M>, where p is a positive integer, admit « as a multiplier. Then M
admits «/7p.

(d) Let M admit « as a multiplier. Then M, the derivative of M, also
admits a.

(e) M = N, (2), M and N admit the same multipliers.

Proving (a), we take an e > 0. Let no(e/2) serve as above for both M and
N with respect to ¢/2. We consider (M + N)"foranyn = 1. Let B = M°N?
where ¢ 4- b = n. If a and b both exceed n¢(e/2), we have R = P, (Z), where
no term of P is of degree less than

ala — ¢/2) + b(B — €/2),

which quantity is not less than n(y — ¢/2). If b = no(e/2) < @, we have
R = P, (2), with no term of P of degree less than

[n — no(e/2)] (@ — €/2).

The last quantity, if n is large in comparison with no (¢/2), exceeds n(a — ¢).
The truth of (a) is now clear.
The proofs of (b), (¢), and (e) are trivial.

? Over the field of rational numbers.
1 When P is thus arranged, its coefficients are d.p. in z. The definition of multiplier thus
gives a special role to y.
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Proving (d), we take an ¢ > 0 and, relative to M, an no(e/2). Let m be a
fixed integer which exceeds n4(¢/2). We consider an n > 0 and use §(m, n) as
in §10. Then M7 is a polynomial in M= and its derivatives, with coefficients
which are d.p. in M of degree not greater than §(m,n). In this expression,
every power product in M™ and its derivatives is of degree not less than

(13) g = [n— 6(m,n)]/m.

Now if n is large, 8(m, n), as one sees from I, §26, is small in comparison with
7, 80 that ¢ is only slightly less than n/m. Each power product in M™ and its
derivatives is congruent to a d.p. whose terms have degrees in the y; not less
than gm(a — ¢/2). 1If n is large, this quantity exceeds n(a — €), q.e.d.

12. We return to F of §9, denoting the general solution of F by M. We
show now that a point in I with = 0 satisfies z; = 0. Later we shall prove
that every z with z; = 0 is admissible.

We determine first a d.p. G which holds 9, but no other component of F.

We have, by (9) and (10),

(14) AB, — 4A,B = 4yiC.
Thus, by (11) (first representation of F), we have when F = 0
(15) 4yiBl? = y3(AB, — 44.B).

Again, letting K = %C, we have by (11), when F = 0, the relation B? = K,
Thus, for F = 0, B = 0,

(16) B- 1/231 = 2K1

Substituting into (15) the expression which (16) furnishes for B;, we find, for
F=0,B =0,

a7 4yt + L = 0,
where
(18) L = — 4iAK, + y*A’K: — 4y°A%B.

We designate the first member of (17) by G. Then G holds M.

13. In what follows, all multipliers will operate with respect to [F, G1.

In (11), ¥3 and %°C? contain no terms of degree less than 8 in the y;. Thus
A* admits 8 as a multiplier so that, by (¢) of §11, A admits 2. Now z;y? admits
2. By (a) of §11, y; admits 2. Then, by (d), every y; with © = 1 admits 2.
From (10), using (a), (b), (d), we find that C admits 4. Referring to (11) and
using (e), we see now that A* admits 14 so that A admits 3. By (10), now, C
admits 5 and we find from (11) that A admits 4. We return to (10) and see
that C admits 6. Also, by (11), B admits 18. Finally, K of §12 admits 9.

By (18), L admits 30. By (17), ys admits 15/7. Now y2 — 24® — 225511,
which is 41, admits 4. As y, admits 2, y» — 2z admits 3. Then ys — z? —
22491 admits 3 so that y; — 2z® admits 3.  As y; admits 15/7, zsy? admits 15/7.
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We infer that [F, G] contains a d.p. of the type (zs¢»)™ 4+ M where every
term of M is of degree greater than 2m in the y;. It follows from III, §23, that
a point in I cannot have y = 0 unless 25 = 0.

14. Let (0, ) be a generic point in the manifold of y = 0, ;= 0. We shall
prove that I contains (0, ). This will imply that I contains the manifold
of y, zs, and our investigation of F will be completed.

Representing by ¢ an arbitrary constant with respect to § <a> and by v a
new indeterminate, we make in F' the substitution®

6
(19) y =3 clod ™!+ c.
i=1

We represent by A’, A/, B, €', F’ the expressions into which 4, 4;, B,C, F
are transformed when ¢ is replaced by « and y by the second member of (19).
We find from (19)

(20) A’ = ¢ty + P,
with P a polynomial in ay, as, ¢, ». Then we may write
(21) Af = ¢ + 7Q,
with @ a polynomial in o, as, ay, ¢, ¥, ¥1.

From (19), we have, remembering that as = 0,
(22) ys = 6Casas + +-; Y= 6caf + +--.
By (20), (21), (22), we have, putting 8 = 6asas and v = 1243,

C' = c*(Bve — yu) + c° R,

with R a polynomial in @z, e, as, ¢ and the v; with j < 4. We find thus
(23) F/ o= ¢ [v; — B — (Bnr — yo)*] + T,

with T of the type of E.

Let V represent the coefficient of ¢* in F’'. As 8 = 0, the differential equa-
tion ¥V = 0 for v is effectively of the second order. Let then v = § be a zero
(constructed by the abstract method) of V which does not annul v} — g5

‘We wish to show that F’ is annulled by a series

(24) v=F4 @ 4 @ + -

of the usual type, with p; > 0.

It will suffice to show that G = F’/c¢* is annulled by a series (24). If G
vanishes for » = &, then » = £ is an acceptable series (24). In what follows,
we assume that such vanishing does not occur. We put, in G, v = § + u,.
Then G goes over into an expression K’ in ¢ and w ‘

(25) K' = a'(c) + X b; (c) ugy -~ - it

11 Subscripts of « indicate differentiation.
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Here Y contains the terms of K’ which are not free of the uy; and 7 ranges from
unity to some positive integer. As to a’ and the ¥, they are polynomials in ¢
with coefficients in § <o, £>. Because £ does not annul G, o’ is not zero.
On the other hand, because G vanishes for » = §, ¢ = 0, the lowest power of ¢
in @' is positive. Because the bracketed terms in (23) contribute effectively to
3= in (25), certain of the b’ contain terms of zero power in c.

Let o’ be the lowest exponent of ¢ in a’ and o; the lowest exponent of ¢ in b;.
Let
o — o}

— gz
oo F v+ o

where 1 has the range which it has in 3. As ¢’ > 0 and certain o; equal 0,
p: > 0. We may now suppose ourselves to be working with K’ of III, §7.
We obtain the series (24).

We have shown, all in all, that F, for z = ¢, is annulled by a series

(26) y=c+cda+ -+ fag+ e+ E+ e,

where the unwritten terms have rational exponents greater than 6. The series
(26) does not annul B for 2 = «. Indeed,

B’ = c®(i — ) + -~

and the coefficient of ¢* does not vanish for v = &.

It follows that every d.p. which holds % vanishes for z = « and for y as in
(26). This means that y = 0, z = e is in T

15. If, in (8) to (11), we replace 25, ys, y« Wherever they occur by z,_;,
Yn -1, Yn, With n 2 4, we obtain a d.p. F with a general solution which inter-
sects the manifold of y = 0 in that of y = 0, 22, —s = 0; the proofs require
only the slightest changes.

In F of §9, if one replaces 2; by 2, one obtains a d.p. which is of the first order
in z and whose general solution intersects the manifold of ¥ = 0 in that of
y =0, zz=0. This, in itself, is sufficiently anomalous. However, if it is
desired to secure a d.p. F whose order in z cannot be reduced, it suffices to re-
place ys and ys, in (9), (10), (11), by zys and its derivative, respectively.

pz = Max

INTERSECTIONS OF COMPONENTS OF A DIFFERENTIAL POLYNOMIAL
16. Dealing with the analytic case, we prove the following theorem:

TaroreM: Let F be a d.p. tn y1, -+ ,Yn. A zero of F which is contained in
more than one component of F annuls 0F /dy;; for ¢ = 1, - -+, n and for every™ j.

Thus, in particular, if F vanishes for y; = 0,4 = 1, --- , n, and, considered
as a polynomial in the yy;, contains a term of the first degree, the zero y; = 0
belongs to only one component of F.

Let

(27) Jy -y Fn

12 The j for which this result is significant are those for which y:; appears effectively in F.
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be a zero for which some dF/dy;; fails to vanish. We shall prove that (27) is
contained in only one component of F.

We know that systems defining the components can be secured by choosing
a sufficiently large positive integer p and resolving the system of derivatives

(28) FyFI;"'pry

the F being considered as polynomials in the y,;, into prime p.i. none of which
holds any other. We shall show that, for any p = 1, (28) yields only one prime
p.i. whose polynomials vanish when each y;; in (28) is replaced by 7; as deter-
mined by (27). This will prove our theorem.

Reassigning the subscripts of the y; if necessary, we assume that one or more
0F /815 do not vanish for (27) and let m be the greatest value of j for which the
vanishing does not occur. Putting the polynomials in (28) equal to zero, we
secure a set of equations which we shall regard as equations to be solved for
those y1, m + 7 for which 0 < j < p, in terms of z and the other y,; in (28).

Let £ be a value of z at which the coefficients in F' and the functions in (27)
are analytic, and at which 9F/dy1. does not vanish for (27). Let [3] represent,
collectively, the values at £ of the 7i; in the zero of (28) derived from (27).

The polynomials in (28) vanish at the point £ [4] in the space of 2 and the
ys; in (28). We shall examine, at £ [5], the jacobian with respect to
Yim, *** , Y1, m+ p Of the polynomials in (28). In the first row of this jacobian,
which row we understand to consist of partial derivatives of F, only the first
term 8F/3y1m fails to vanish at £ [3]. To treat the other rows, let us imagine
the polynomials in (28) to be expanded in powers of the various differences
yij — Ji. The expansion of F will contain a term a(yim — 71m), where « is the
function of = to which 8F/dy1, reduces for (27). By the nature of m, F; must
contain the term a(¥1, m +1 — 71, m + 1) and can have no term 8(y1; — #i;) with
j > m + 1. Thus, in the second row of the jacobian, the value of the second
element at & [7] is that of dF/dyim, and the elements which follow have zero
values. Continuing, we find the value of the jacobian at £ [4] to be the
(p 4- 1)th power of the value of dF/dyim.

Thus, for the neighborhood of £ [7], ¥im ***, Y1 m + » are determined by
our equations as analytic functions fm, +* -, fm+ » of # and the remaining y,;.
By specializing the y;; in the f as functions of z, we can construct zeros of (28).
Indeed, we secure in this way all zeros of (28) which, in an area contained in a
small neighborhood of z = £, approximate closely to the zero of (28) derived
from (27).

Some prime p.i. in the decomposition of (28), call it Z, is such that all its
polynomials vanish when yim, -+, 41, m + » are replaced by their f. Then =
must admit the §i; as a zero. If a prime p.i. =’ which T does not hold van-
ishes for the §;, =’ has, by IV, §39, zeros which are not in the manifold of =
and which approximate closely to the §;. Thus, by what precedes, = is the
only prime p.i. in the decomposition of (28) which has the § as a zero. The
theorem is proved.

If one allows all the 8F /3y to vanish and requires the nonvanishing of one
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or more partial derivatives of the second order, there is no upper bound to the
number of components to which a zero of F may belong. We illustrate this by
an example in 5{ y }. Let

F=y§+£11[(x+j)y1—y],

where m is any integer greater than unity. Now (z 4+ j)in — v has (@ + f)y.
as derivative, and therefore has, for every j, a manifold which is a component
of . The zero y = 0 belongs to every such component.

ANALOGUE OF A THEOREM OF KKRONECKER

17. It is a theorem of Kronecker that, given any system of polynomials in n
indeterminates, there exists an equivalent system containing n 4 1 or fewer
polynomials.® We present an analogous theorem for d.p.

TurorREM: Let F contain a nonconstant element. Let
(29) Fy, ---, F,

be any finite system of d.p. in F{y, -+ ,Yn}. There exists a system composed
of n + 1 linear combinations of the F, with coefficients in &, whose manifold is
identical with that of (29).

We introduce r(n + 1) new indeterminates u”, i =1,---, n-+1;
j =1, --,rand consider the system A,
wPFi 4+ -+ + uPF,, i=1 - ,n41,
in the v and y.

Consider a zero of A for which F; # 0. For it, we have

W Fyt -+ udF,
— 7 ,
=1, ,n+ 1. If we differentiate the relations (30) often enough, the
u{ will be more numerous than the y;. By an elimination, we obtain a d.p.
K, in the u which is annulled by every zero of A for which F, = 0. We find,
similarly, a K for each F; with< > 1. We fix the ;" as elements u;; in ¥ which
do not annul the product of the K. Then the manifold of the n + 1 d.p.

paly + - 4 i, i=1 - ,n+1,

inyy, -, Y. is identical with that of (29).

The proof just given does not involve the notion of irreducible manifold.
It is considerably shorter than the proof given in A.D.E. However, the older
proof gives information on the degree to which one can approximate to the
representation of a manifold with a system of p equations with 1 < p < n -+ 1.

(30) ufd =

18 Koenig, Algebrasiche Gréossen, p. 234.



CHAPTER VIII

RIQUIER’S EXISTENCE THEOREM FOR ORTHONOMIC
SYSTEMS

1. In Chapter IX, we shall extend some of the main results of the preceding
chapters to systems of partial differential polynomials. In treating the ana-
lytic case, we shall use an important existence theorem due to Riquier. This
existence theorem will now be developed.

For §81-19 of Chapter IX, only §2 and §8 of the present chapter are neces-
sary.

MoNoMIALS
2. We deal with m independent variables, z1, -+, *w. By a monomial is
meant an expression z7 --- 27, where the ¢ are non-negative integers. If

a = vB, with «, 8, ¥ monomials, then « is called a multiple of 8. Given two
distinet monomials,

the first is said to be higher or lower than the second according as the first non-
zero difference 7 — Ji is positive or is negative.
The following theorem, due to Riquier, is used only in Chapter IX.

THEOREM: Let
(1) Qyy Ogy **°, Qgy *°°

be an infinile sequence of monomials. Then there is an a; which ts a multiple of
some o with j < 1.

Let 81 be one of those o for which the exponent of z; is a minimum. Consider
the monomials which come after 8; in (1). Let 8; be a monomial of this class
whose degree in x; does not exceed that of any other monomial of the class. Of
the monomials which follow g,, let 8; be one of minimum degree in z;. Con-
tinuing, we form an infinite sequence of monomials

(2) 61; ﬁE; 63; et

whose degrees in z; are nondecreasing. We extract similarly, from (2), a se-
quence in which the degrees in z» do not decrease. We arrive finally at an in-
finite subsequence of (1) in which each monomial is a multiple of all which
precede it.

147
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DissEcTION OF A TAYLOR SERIES

3. Let
a‘. o0 im ﬁ... tm
(3) Z 'il!l"'im,! Ay xin
be the Taylor expansion at
@ z; =0, i=1---,m,
of a function u of zy, + -+ , Z,, analytic at the point (4). Let [«] be any given

finite and nonvacuous set of distinct monomials. We are going to separate
(3), with respect to [«], into a set of components.
Let a be the greatest exponent of z; in the set [a]. We write

(5) U=fot zfi 4 oo 422" Yo + 2%,

where, for ¢ < @, zif; contains all terms in (3) in which the exponent of z; is
precisely 1. As to z1f,, it contains all terms divisible by zf. Thenfy, +++, fa—1
are series in &y, * -+ , £, while f, involves also ;.

We define sets of monomials [a],, A =0, ---, @, as follows. If [«] contains
monomials in which the exponent of z; does not exceed A, then [«], is to consist
of all such monomials in [a]. If there are no such monomials, then [a]y is to
be unity. Let [8]x be the set of monomials in @, - -+ , 2, obtained by putting
z1 = 1 in [a],. We now give to each f,, with respect to z,, the treatment ac-
corded to u, above, with respect to z;. For N < a, we get a representation of
the type

(6) In=Jro+ z2fa + -0+ T2fe

where b depends upon A, the fy; with ¢ < b involving 3, - - - , m, while fys in-
volves also 2. For A = g, each f,; involves z:. That is, in the dissection of f,
we treat z, like a3, <+ , T

We now operate on each f,, with respect to zs. We use a set of monomials
[¥]ae where, if [8], has monomials of degree not exceeding u in 3, [v],, is ob-
tained by putting x; = 1 in all such monomials, and where, otherwise, [yl is
unity.

Continuing, we find an expression for u,

M w= 22t Tnfi e i
the summation extending over a finite number of terms.
Example: Let u be a function of z, y, 2. Let [«] be
x2?, xy, xryz.
For z, we find
u = fo(y, 2) + zfi(y, 2) + 2*:(2, ¥, 2).

1 We consider every combination 4y, - -+, 7m to oceur in (3), using zero coeflicients if neces-
sary.
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We now treat each f; with respect to y, the set of monomials being that indi-
cated below:

fo (?/; Z) 1 H
fiy, 2) 2 Y;
f2 ((E, Y, Z) 22; Y, Yyz.

Hence

Joly,2) = foo(y, 2),

N2 = ful) + yfuly, 2),

2@, 9,2) = falz, 2) + yfulz, y, 2).
The final step is

Joo(y,2) = fooo(y, 2) 1;
f10(2) = fi00 + %N + 2%102(2) 2
Mm@, ) = fuly) + 2m(y) + iy, 2) L, 2%
Jeo(w,2) = fa00(x) + Zfonr(z) + 2%ene(z, 2) 2%;
fu(@, y,2) = fuo(z, ¥) + 2faulz, ) + ez, y, 2) 1,22

Thus the dissection of u is
u = fooo (¥, 2) + Tfr00 + x2fr + 22%102(2)
+ zyfno(y) + zyefiu(y) + 2y2’fue(y, 2)
+ 2%200(2) + 2%fo01(7) + 2%%f202(2, 2)
+ 2%Yfao(z, y) + 2Pyafan(z, y) + 2°yfue(z, ¥, 2).

4. Consider any monomial a = 2} --- 2/ in [a] and any monomial 8 in the
expansion of ¥ which is a multiple of @. Of course, 8 appears in one and in
only one of the terms in the second member of (7). Let it appear in z? - - 2’
fu-.tn. We shall prove that 2t --- z'7 is a multiple of «. For m = 1, this
result certainly holds. Let the result be true for m = r — 1. We shall prove
it for m = r. We observe first that in the resolution (5) of %, g appears in a
term zif;, with ¢, = ji.

Suppose first that 9, < ain (5). Then g/a} is free of ;. Among the mono-
mials used in the dissection of f;, will be 2 - - - 27 and 8/x} will be a multiple of
xf -+ z¥. As there are only r — 1 variables involved now, 8/z% will appear
in a term €fy ... in the dissection (7) of f, with e divisible by 2f ... 7,
Thus z¥ - - - z¥ is divisible by a.

Suppose now that ¢, = ¢. Then §/27 is contained in f,. Among the mo-
nomials used in the dissection of f, will be 2% - -+ 2". Now the formal scheme
in (7) of the dissection of f, can be obtained by taking a function g of 3, - - - , 2y,
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dissecting g with respect to the monomials associated with f, and then adjoining
z; to the variables in the series yielded by g. That is, the monomials z§ - - - 7
in the dissections, analogous to (7), of f, and g, will be the same. Let v result
from @ on putting z; = 1. Then v is found in the dissection of g with an
x «+ . z¥ divisible by zf - - 2¥. The same would therefore be true for g/z*
in the dissection of f,. This completes the proof.

Tt follows that every monomial in [«] is an 2% - -+ i in (7).

5. The set of monomials consisting of all 2} - -+ z% in (7) which are multiples
of monomials in [«] will be called the extended set arising from [«]. The set of
monomials 2% --- 2l in (7) not in the extended set will be called the set com-
plementary to [a].

If [o] is identical with the extended set arising from [a], then [a] will be
called complete.

Consider a set [«] which is not complete. We shall prove that it is possible
to form a complete set by adjoining to [«] multiples of monomials in [a].

Let p be the maximum of all exponents in all monomials in [a]. Then, in
(7), no i exceeds p.

Let [o]’ be the extended set arising from [a]. Then if [«]’ is not complete,
it is a proper subset of its extended set [«]” (§4). Since we can never get more
than (p + 1) monomials z¥ - -+ 2% in (7), this process of taking extended sets
must bring us eventually to a complete set.

6. In (7), the variables in an fy...,, will be called the multipliers of the
corresponding 2% - -+ 2% and all other variables will be called nonmultipliers
of 2% - .- a'». Of course, if f,...., iS a constant, z7 - -- 2%z has no multipliers.

Let 8 = 2% - - - 2 be a monomial in the extended set arising from [a]. Let
z; be a nonmultiplier of 3. Then Bz, as a multiple of some monomial in [«],
is the product of a monomial v in the extended set by unity or by multipliers of
v (§4).

We shall prove that v is higher than 8. Let v = af .- afr. If ji <4y, m
cannot be a multiplier for v since j; is certainly not the maximum of the degrees
in z; of the monomials in [«]. Hence j; = 7. It remains to examine the case
in which j; = %1. When we dissect f,,, we find that if j» < 4,, 2. cannot be a
multiplier for 22 - -+ /. Hence j» = 4, and we have to study the case in which
jo = 2. Continuing, we see that y is not lower than g8 so that, since v = 3,
« is higher than 8.

7. We associate with every monomial z{ - - - z7 the differential operator

gr+ - tim
ax-{l ves @ ”’;’

)

Then the product of two operators corresponds to the product of the correspond-
ing monomials.
Consider any monomial

) B=af - an
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in (7). Let the corresponding differentiation be performed upon u, and after
the differentiation, let the nonmultipliers of 8 be given zero values. Every term
in the expansion of 4 which is not divisible by 8 will disappear during the dif-
ferentiation. Any term divisible by 8 whose quotient by B contains non-
multipliers of 8 will disappear when the nonmultipliers are made zero. Hence
the above operation gives identical results when applied to u and to 8 f,.....

MAaRrks

8. Let y1, -+, y» be analytic functions of zi, - -+, .. Riquier effects an
ordering of the ¥ and their partial derivatives in the following wav.

Let s be any positive integer. We associate with each z; any ordered set of s
nonnegative integers

(10) Uity =+, Ugs.
With each y;, we associate any ordered set of nonnegative integers
(11) Uity *** , V4s

taking care that y; and y; with ¢ » j do not have identical sets (11). The jth
integer in (10) is called the jth mark of ;, and the jth integer in (11), the jth

mark of y..
If
ot st Em
(12) il S XL

we define the jth mark of w, 7 = 1, --- | s, to be v;; + kg + -+ + Flhems.
Consider all of the derivatives? of all ;. Let w; and w; be any two of these
derivatives. Let the marks of w; and w2 be

a1, * e, Qs bl,"',ba

respectively. Suppose that the two sets of marks are not identical. We shall
say that w; is higher than w. or is lower than w. according as the first nonzero
difference a; — b; is positive or is negative. If the two sets of marks are identi-
cal, no relation of order is established between w; and ws.

If w; is higher than w,, dw:/dx; is higher than dw,/dz,.

When the marks in (10) and (11) are such that a difference in order exists
between any two distinet derivatives, the derivatives of the y are said to be
completely ordered.

Suppose that the ordering is not complete. We shall show how to adjoin
new marks, after u:; and v, so as to effect a complete ordering. Clearly, the
adjunction of such new marks will not disturb any order relationships which
may already exist.

Let m additional marks be assigned, as in the following table:

2 Each y, will be considered as a derivative of zero order of itself.
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Ty X *** Ty Y2 s Yn
s+ 1 10 ---0 00 -0,
s+ 2 01 -0 00 -0,
s+m 00 ---1 00 ---0.

Now, let w; and w, be two derivatives with the same set of s 4 m marks. The
(s 4 9)th mark of wy or we, 2 = 1, - -+ , m, is the number of differentiations with
respect t0 z; in w; or we. Hence the same differentiations are effected in w; as
in we. From the definition of the marks of w, and w,, it follows now that the
functions of which w, and w, are derivatives have the same sets (11). Thus w,
and w; are identical, so that the new ordering is complete.

In everything which follows, we shall deal only with complete orderings.
Thus, with w as in (12), dw/dz; is higher than w.

9. Let &, -+, &n; §1, +++ , {n be variables. We associate with w, in (12), the
power product £ - - &t

Let wy, - - -, we be any finite number of distinet derivatives of the y. Let
the power product associated above with w;, ¢ = 1, --- , ¢, be a. Let g be any
positive number. We shall show how to assign, to the £, {, real values, not less
than unity, in such a way that, if w; is higher than w;, we have, for the assigned
values, a; > gy,

We introduce s new variables 2, «--,z,. With each £ we associate the
power product zi* - -+ z;" where the u;, are the marks of z;. With each {; we
associate 23" - - - z;" where the »;; are the marks of y;. Then each a; goes over
into a power product 8; = z1* - - - & with a; the jth mark of w;.

It will evidently suffice to prove that we can attribute to the z real values not
less than unity in such a way that 8; > gB; if w; is higher than w;.

Let r be the maximum of the degrees (total) of the 8. Let k be any positive
number, greater than unity and greater than g. We put

- Lrs+ e L
(13) zi=15k , i=1,---,s.
Then, if
Bi= 21 -2 e 2
By =2 AT A

with ar > br, we have, for (13),

. (rs + 1)~ 4
&2 Zh > k >k>g
BJ.—-(zh+l...zs)r—kr(s—h)(TS+1)""'l— '

ORTHONOMIC SYSTEMS

10. From this point on, we assume that the first mark of each z is unity.
Let 41, - -+, ¥» be unknown functions of zy, - - , z,,, whose derivatives have
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been completely ordered by marks. We consider a finite system o of differen-
tial equations,
it ocee +dmogp .
(14) H = G- etns
where

(a) in each equation, g is a function of z;, -+ , Tm and of a certain number of
derivatives of the y, every derivative in g being lower than the first member of the
equation;

(b) the first members of any two equations are distinct;

(c) if w is a first member of some equation, no derivative of w appears in the
second member of any equation;

(d) the functions g are all analytic at some point in the space of the arguments
involved in all of them.?

We do not assume that every y; appears in a first member.

Riquier calls such a system of equations orthonomic.

The derivatives of the y which are derivatives of first members in the ortho-
nomic system are called principal derivatives. All other derivatives are called
parametric derivatives.

11. Given an orthonomic system, o, we shall show how to obtain an ortho-
nomic system with the same solutions, in which, for each y; appearing in the
first members, the monomials corresponding as in §7 to those first members
which are derivatives of y; form a complete set (§5).

Let equations be adjoined to (14), by differentiating the equations in (14),
so that, for each ¥ which occurs in some first member, the monomials correspond-
ing to the enlarged set of first members constitute a complete set. By §5, this
can be done. We obtain thus a system o1 of equations. Certain first members
in oy may be obtainable from more than one of the first members in ¢. In that
case, we use any one of the first members in ¢ which is available.

Consider any one of the equations in ¢. Let w represent its first member,
and » the highest derivative in the second member. If we differentiate the
equation with respect to xz; the first member becomes dw/dz;. The highest
derivative in the new second member will be dv/dx;, which is lower than dw/dz;

8).

(§It is clear, on this basis, that o1 satisfies condition (a).

We attend now to (¢). Let C be an open region in the space of the argu-
ments in the second members in ¢ in which the second members are analytic.
We consider those solutions of ¢ for which the indicated arguments lie in C.

The second members in o; may involve derivatives not in the second mem-
bersin g. The second members in ¢; will be polynomials in the new derivatives,
with coefficients analytic in C.

8 Thus, in (d), derivatives not effectively present in & g may be regarded as arguments in

that g. This does not conflict with (a), in which the arguments considered are supposed to be
effectively present.
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Let w be the highest derivative present in a second member in ¢; which is a
derivative of a first member in ;. Then w is not present in any second member
in o, so that it appears rationally and integrally in the second members in 0.
Let w be a derivative of », the first member of the equation » = g in ;. Then
w can be replaced, in the second members in oy, by its expression obtained on
differentiating g. We obtain thus a system ¢» with the same solutions as o
(or ¢) and with the same first members as ¢;. The system o satisfies condition
(a). The derivatives higher than w which appear in the second members in oy
also appear in the second members in ;. Hence, if w;, present in the second
members in a3, is a derivative of a first member in ¢, then w; is lower than w.
We treat w; as w was treated. Since there cannot be an infinite sequence of
derivatives each lower than the preceding one, we must arrive, in a finite num-
ber of steps, at a system =, with the same solutions as o, which satisfies (a), (b),
(e), and which has complete sets of monomials corresponding to its first mem-
bers. The second members in 7 will be polynomials in any derivatives not
present in the second members of o. Hence assumption (d) is satisfied for C
and for any values of the new derivatives. Thus 7 is orthonomic and has the
same solutions as ¢.4

Of course, whether we employ ¢ or r, we get the same set of principal deriva-
tives and the same parametric derivatives.

12. We consider an orthonomic system, o, whose first members, as in §11,
vield complete sets of monomials. We are going to seek solutions of ¢, analytic
at some point, which, with no loss of generality, may be taken as z; = 0,
1=1,+--,m.

Consider any y;. Let numerical values be assigned to the parametric deriva-
tives of y;, at the origin, with the sole conditions that the second members in ¢
are analytic for the values given to the derivatives in them and that the series

Qi oo tm "

(15) P ﬁx{ - zhn

where the a are the values of the parametric derivatives, the subseripts indi-
cating the type of differentiation, converges in a neighborhood of the origin.
The series (15) is called the initial determination of y;. If y; does not appear in
a first member, (15) is a complete Taylor series.

In what follows, we suppose an initial determination to be given for each y;.
We shall then develop a process for calculating the values of the principal
derivatives at the origin. There will result analytic functions y; which satisfy
each equation of o on the spread obtained by equating to zero the nonmulti-
pliers of the monomial corresponding to the first member. Later we shall
obtain a condition for the y; to give an actual solution of ¢.

In the dissection (7) of each y; which we shall obtain,’ those terms whose
monomials are multiples of monomials in the complementary set will constitute

¢ With the values of the arguments in the second members in ¢ lying in C.
s This dissection is based on the complete set of monomials corresponding to ;.
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the initial determination of y;. Thus the initial determination of each y; is a
linear combination of a certain number of arbitrary functions, with monomials
for coefficients, the variables in the arbitrary funections being specified. This
deseription of the degree of generality of the solution of a system of equations is
one of the most important items of Riquier’s work.

We replace each y; which does not figure in any first member in ¢ by an
arbitrarily selected initial determination. Then ¢ becomes an orthonomic sys-
tem in the remaining y;, with the same principal derivatives as before for the
remaining y;. On this basis, we assume, with no loss of generality, that every
y; figures in a first member.

13. We use the symbol 6 to represent differential operators. Any principal
derivative, 8y;, which is not a first member in ¢, can be obtained from one and
only one first member in ¢ by differentiation with respect to multipliers of the
monomial corresponding to that first member. This is because the first mem-
bers yield complete sets. We have thus a unique expression for 8y;,

(16) 0y = ¢,

where the derivatives in ¢ are lower than &y,.

The infinite system obtained by adjoining all equations (16) to ¢ will be called
7. Let p be any nonnegative integer. The system of equations in r whose
first members have p for first mark will be called r,. Since the first mark of a
derivative is the sum of the order of the derivative and of the first mark of the
function differentiated, each 7, has only a finite number of equations.

Let @ be the minimum, and b the maximum, of the first marks in the first
members in ¢. For the values assigned, in §12, to the parametric derivatives,
the equations 74, 7441, -+ , 7» determine uniquely the values at the origin of
the principal derivatives whose first mark does not exceed b. In short, the
lowest, such derivative has an equation which determines it in terms of para-
metric derivatives; the principal derivative next in ascending order is deter-
mined in terms of parametric derivatives, and, perhaps, the first principal
derivative, and so on.

We subject the unknowns y; to the transformation

(17 yi=Tit e+ T et ok

where ¢; is the chosen initial determination of y; and where the ¢ are the prin-
cipal derivatives at the origin of y;, of first mark not exceeding b, found as
above.

Then ¢ goes over into a system ¢’ in the §;. In the new system, we transpose
the known terms in the first members (these come from the known terms in
(17)) to the right. The new system will be orthonomic in the 7;, with the same
monomials for its first members as in ¢. The second members will be analytic
when each z; and each parametric derivative is small,
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The system ’ for ¢/, analogous to 7 for ¢, is obtained by executing the trans-
formation (17) on the equations of .

Thus, if we give to the 7; in ¢’, initial determinations which are identically
zero, the principal derivatives at the origin, of first mark not exceeding b, will
be determined as zero by 75, -+ - , 75

On this account, we limit ourselves, without loss of generality, to the search
for solutions y1, - -+ , ¥, of o, with initial determinations identically zero, as-
suming that the system 74, - -+ , 75 yields zero values at the origin for the prin-
cipal derivatives whose first marks do not exceed b.

14. In the second members in 74 4 1, no derivatives appear whose first marks
exceed b + 1. Those derivatives whose first marks are b + 1 enter linearly,
because they come from the differentiation of derivatives of first mark b in 7.

We denote by 6&:y; the second member of (12). Then every equation in
Ts 4 1 18 of the form

(18) 0a = 2. Diaipdi¥p + Qias

where the 37y, are of first mark b 4+ 1 and where the p and ¢ involve the z; and
derivatives whose first marks are b or less.

In (18), we consider every derivative of first mark & + 1 which is lower than
64y, to be present in the second member. If necessary, we take 9,5 = 0.

Consider any 8, in (18). Suppose that there is a 8 such that yg has deriva-
tives of first mark & + 1 which are lower than 8.y, For every such 8, we let
Tiap Tepresent the number of derivatives of y;, of first mark b + 1, which are
lower than é;y,. For every other 8, we let 7,6 = 1, and we suppose that a
single derivative of y; of first mark b 4+ 1 appears in the second member of (18),
with a zero coefficient. We can thus not continue to say that every derivative
in the second member of (18) is lower than the first member, but no difficulty
will arise out of this; only a question of language is involved.

Let r be the maximum of the 7.

The p and ¢ in (18) are analytic for small values of their arguments. Let
the p and ¢ be expanded as series of powers of their arguments.

Let ¢ > 0 be such that each of the above series converges for values of its
arguments which all exceed e in modulus. Let 2 > 0 be such that each p and
each ¢ has a modulus less than % when the arguments do not exceed ¢ in modulus.

Let \ be any positive number less than 1/7.

Following §9, we determine positive numbers &;, {;, not less than unity such
that, if 4.y, and 8,y are of first mark b + 1, with 8.y, higher than &,y we have
’il tee Eimm g‘ a hr

19 o H T A
In what follows, we associate with each »; a new unknown function w..
Let

p=51I1+ "'-I-mem-{—Zﬁu*

€
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where ) ranges over all derivatives of uy, -, u, whose first mark does not
exceed b(8:u, is supposed to have the same marks as 3.y.,).
We consider the system of equations
Lo A H g, L hE g
—_——— 6 u ———— e
1—»p rm,gg{‘---gi;:;ﬁ’ﬂ—‘_

which has the general form of (18), with alterations of the form of the p and ¢.
The function

(20) 0 Ua =

1—0p

h
Tt Tt 3 ou

€

1 —

is a majorant for every p and every ¢. As each £; is at least unity, the same is
true of 2/ (1 — p).

Thus, in virtue of (19), wherever a 68,55 is lower than 64, in an equation in
(18), the coefficient of 8uz in the corresponding equation of (20) will be a
majorant for the coefficient of 6;y5. In the exceptional case where a d;5 is not
lower than &y, and thus has a zero coefficient, the corresponding coefficient in
(20) is ecertainly a majorant. Evidently the terms in (20) which correspond to
the ¢ in (18) are majorants of the g.

15. We shall show that (20) has a solution in which each u; is a function of

(21) a1+ -0+ B

Consider, in (20), all derivatives of a particular u, whose first marks are
b + 1. The first mark of any such derivative is the order (total) of the deriva-
tive, plus the first mark of u,. Hence all of the derivatives of u, which are of
first mark b 4+ 1 are of the same order, say g¢..

Let the u,, in what follows, represent functions of (21). Put u, = {,u. and
let u.; be the ith derivative of u, with respect to (21). Then with ¢ =
B et A Ty

it e Him

ozl -+ - oaly e T B eee 58 Sather

When the u, are functions of (21), p becomes a function o’ of (21) and of the

derivatives of the u, of order less than g,, @ = 1, -+, n. Equations (20) re-
duce to
= 1 h
o o L
(22) Uy, A ﬁgl 1— pl Usg g + 1— pl

There will be n equations in (22), one for each a. All equations in (20) in which
a given u, appears in the first member yield the same equation (22). We
write (22) as

n
(23) uf,,,a = p’uf,ga 4+ A le u:;gﬁ + 5.
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When (21) is zero and when the ua;, © = 0, -+ -, g, — 1, for each a, are given
zero values, the determinant of (22) with respect to the uf,,a is

1= =X e+, =X\
- 1—-% .-, -2
- -, R P \
This determinant is not zero. In short, the equations
(1—>\)21—')22—"'—>\Zn=61,
(24) B T ET R RE R PRRRPREPY ,
—Ayr— A — o+ (1= Nz = Ca,
imply

(1 —=—nNzi =ner+ o+ 4 cq) + (1 — 1N,

so that the determinant cannot vanish for A < 1/n.8
Then the uf,ga can be expressed as functions of the other quantities in (23),

analytic when the arguments are small. By the existence theorem for ordinary
differential equations, (23) has a solution with the Uy; zero, for ¢ < g,, when
(21) is zero. The functions in this solution will be analytic for (21) small.

16. We shall prove that, in the solution just found, all u,; with ¢ = g, are
positive for (21) zero. For (21) zero, we have

n
’ ’
Ugg, — N 2 Upgg = h.
Bm1

Referring to (24), we see that, since A < 1/n, the z; are positive if the ¢; are all
positive. Then the uf,,,a are positive for every c.

Differentiating (23), we find, for (21) zero,
u;.ﬂa +1 kﬁguﬁl.gﬁ +1 = kay

where the k, are positive. Again, the solution consists of positive numbers.
Continuing, we obtain our result.

What precedes shows that (20) has a solution, analytic at the origin, with
every derivative of first mark less than b + 1 equal to zero and every other
derivative positive, at the origin.

17. We now return to the system ¢. With the procedure employed, in §13,
for the determination, at the origin, of the principal derivatives of first mark
not greater than b, we determine the values of all principal derivatives at the

¢ For ¢ = 1, subtract each equation from the first, in succession, and substitute the results
nto the first.
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origin. We can ascend, step by step, through all the prineipal derivatives, be-
cause each 7, in §13 has only a finite number of equations.

We obtain thus a complete power series for each y;. We are going to prove
that these power series converge for small values of the x;.

Let 6. be any principal derivative. We shall prove that the modulus of
this derivative at the origin does not exceed the value at the origin found for
d:u, in §16.

For derivatives of first mark less than b 4+ 1, this is certainly true; those
derivatives have zero values. Let the result hold for all derivatives lower than
some 8y, of first mark greater than b. The equation in 7 for 8., is either in
(18) or is found by differentiating some equation in (18). Consider the corre-
sponding equation for é;u., which is either in (20), or obtained from (20) by
differentiation.

We shall consider the expressions for 8y, and &;u, as power series in the x;
and in the derivatives in terms of which é;y, and é,u., are expressed.

We see that, for every term in the series for d;,, there is a dominating term
in the series for 8,4, What is more, the series for é;u, may have other terms,
involving 8:u, itself, or even higher derivatives. This is because of the ex-
ceptional terms in (20), introduced in §14.7

Each term in é,u, which has a corresponding term in d:y, is at least as great
as the modulus of that term at the origin, for such terms involve only lower
derivatives than 6;y, or 6mu, Terms in §u, which have no corresponding
terms in §;y., are zero or positive at the origin. They will be positive if they
involve no ;, and contain only derivatives of first mark at least b + 1 (§16).
This proves that the value determined for each &y, by = has a modulus not
greater than the value at the origin of 8:u,.

Thus the series obtained for the y: converge in a neighborhood of the origin.

18. We shall now see to what extent the analytic functions y;, just obtained,
are solutions of ¢.

Consider any equation 6y; = g in ¢. This equation, and all equations ob-
tained from it by differentiation with respect to multipliers of the monomial
corresponding to the first member, are satisfied, at the origin, by the derivatives
of y1, -+, ¥ at the origin. Hence, if we substitute ¢, - -+, y, into 8y; — g,
we obtain a function k of 21, - - - , ., which vanishes at the origin, together with
its derivatives with respect to the above multipliers. Thus, in the expansion
of k, only nonmultipliers occur. Then k vanishes when the nonmultipliers are
Zero.

Hence 4y, -+ , Y Salisfy each equation of o on the spread obtained by equating
to zero the nonmulltpliers corresponding to the first member of the equation.

19. Let us return now to the most general orthonomic system o whose first
members give complete sets of monomials. We do not suppose that every y;
appears in some first member.

7 In our present language, all derivatives in a second member in (18) are lower than the first
member.
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We consider any point z; = a;, ¢ = 1, - -+, m, subject to obvious conditions
of analyticity. Let any values be given to the parametric derivatives of the y;
at @i, -+, &m, 50 a8 to yield convergent initial determinations. Then the prin-
cipal derivatives are determined unicquely by ¢ in such a way as to yield analytic
functions 4, - - - , ¥ which satisfy each equation in ¢ on the spread obtained by
equating to a; each nonmultiplier z; corresponding to the first member of the
equation.

This is an immediate consequence of the preceding sections.

PASSIVE ORTHONOMIC SYSTEMS

20. Let ¢ be an orthonomic system, described as in the preceding section.
Let the equations in ¢ be listed so that their first members form an ascending
sequence, and let them be written

(25) v‘i=0; i:l,...,t_

If v; is 6y; — g, we attribute to v; the s marks of 8y;. This establishes order
relations among the v, according to the convention of §8. To all of the deriva-
tives of v;, we attribute marks as in §8. Thus, the marks of év; will be the
marks of the highest derivative in év;. By the monomial corresponding to v;,
we mean the monomial corresponding to 8y;, We shall refer to 8y; as the first
term in v;. By the first term of a derivative of »;, we shall mean the correspond-
ing derivative of 8y;.

Consider a v whose corresponding monomial, «, has nonmultipliers. Let x;
be such a nonmultiplier. By §6, z,a is the product of a 8, in the same complete
set as « and higher than o, by unity or by multipliers of 8. Hence, there is a v,,
higher than », such that some &y, has the same first term as dv/dx;. Then, in
the expression

Bv' _
ax,-

(26) 8,
all derivatives effectively present are lower than the first term of dv/dz,.

It is clear that (26) is a polynomial in such principal derivatives as it may
involve. Let w be the highest such principal derivative. Then w is the first
term of some expression dv,, wWhere v, is lower than dv/dz;, We choose v, so
that w is obtained from it by differentiation with respect to multipliers of the
corresponding monomial. This makes v, unique. Let then, identically,

@7 w = dvg + k,

where the derivatives in & are all lower than w. We replace w in (26) by its
expression in (27) and find, identically,

ov
E = v, + (67)41 o '))

where hi is a polynomial in dv, whose coefficients involve no principal derivative
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as high as w. Let w; be the highest principal derivative in ;. We give it the
treatment accorded to w and find

v

Erol 8vp + he (8vg, 80yy + - 1),
where 7, is a polynomial in év,, é2,. Continuing, we find in a unique manner
an identity

(28) %;—Z = 80, + h (8vg, -+ -, 80.),

in which the coefficients in h involve only parametric derivatives. We now
write (28) in the form

o
(29) '%; = 0vp + v (8vg, - -+, O02) + n,
where u is the term of zero degree in A. Then u is an expression in the para-
metric derivatives alone. The expression y vanishes when 8v,, - -+, 8, are re-
placed by 0.

It is clear that, for any solution of ¢, we must have p = 0. The totality of
equations u = 0, obtained from all equations of ¢ for which the monomial corre-
sponding to the first member has nonmultipliers, all nonmultipliers being used,
are called the integrability conditions for o.

21. If every expression g is identically zero, the system ¢ is said to be passive.

We shall prove that, if ¢ is passive, the n functions y, - -+ , y», deseribed in
§19, which satisfy each equation in ¢ on a certain spread, constitute an actual
solution of ¢.

What we have to show is, that for these functions, every v; in (25) vanishes
identically.

When the y; above are substituted into v; we obtain a function u; of
T1, *** , ZTm. If v; has no nonmultipliers, u; = 0. Otherwise, u; vanishes when
the nonmultipliers of the monomial corresponding to v; are equated to their a.

If, in (29), where u is now identically zero, the parametric derivatives in vy
are replaced by their expressions as functions of the ;, found from the y; (29)
becomes a system ¢ of differential equations in the unknowns v;. Since (29)
consisted of identities, before these replacements, ¢ is satisfied by v; = u;,
1=1.--,t

We now attribute to each z; an additional mark 0, and to each »; an additional
mark { — 4. With this change, the derivatives of the v; will be completely ordered
and the first member in each equation in ¢ will be higher than every derivative
in the second member.

If the second members in ¢ contain derivatives of the first members, we can
get rid of such derivatives, step by step. Then ¢ goes over into an orthonomie
system ¢, with the same first members as ¢.

For our purposes, it is unnecessary to adjoin new equations to ¢ as in §11.
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Consider any unknown »; which appears in a first member. The derivatives of
v; in the first members will be taken with respect to certain variables

(30) Tay *** 5 Ta.

The variables (30), when equated to their a;, give a spread on which u; vanishes.

The parametric derivatives of v; will be the derivatives taken with respect to
the variables not in (30). For the corresponding u;, each of these parametric
derivatives is zero. Now we know that, for given values of the parametric

derivatives, there is at most one solution of . But v, =0,7 =1, --- ¢ isa
solution of ¢ for which all parametric derivatives vanish. Hence u; = 0,
t=1 .,

This proves that, given a passive orthonomic system, there is one and only one
solution of the system for any given initial determinations.



CHAPTER IX
PARTIAL DIFFERENTIAL ALGEBRA
PARTIAL DIFFERENTIAL POLYNOMIALS. IDEALS AND MANIFOLDS

1. We use an algebraic field F of characteristic zero which admits m operations
of differentiation. Fach element a of F has m partial derivatives da/dz;,
i=1,--,m. Inthis, the x are not necessarily variables. They may merely
be symbols which distinguish the derivatives. Each of the m operations satis-
fies (1) and (2) of I, §1. In addition,

9 (sa) _ & (3
327,' ax,- _3.’85 axj

for every 7 and j. We call F a partial differential field.
In our work below, definitions will usually be as for the case of one operation
and will be given, formally, only when there is some necessity for it.

2. We employ indeterminates i, ++:,y.. With each y; are associated
symbols
Jut ey,
m z

oz - .. Oxl?

where the 7; are any nonnegative integers; these are the partial derivatives® of y;.

F being given, we understand by a partial differential polynomial (p.d.p. or
d.p.), a polynomial in derivatives of the y with coefficients in &.

3. We understand marks to be attributed to the symbols z and y as in VIII,
§8, in such a way as to effect a complete ordering,.

By the leader of a p.d.p. A which actually involves indeterminates,? we shall
mean the highest of those derivatives of the y which are present in 4.

Let A1 and A4, be p.d.p. which actually involve indeterminates. If 4, has a
higher leader than A;, then A, will be said to be of higher rank than 4,. If A
and A, have the same leader, and if the degree of 4, In the common leader ex-
ceeds that of Ay, then again A, will be said to be of higher rank than 4,. A
d.p. which effectively involves indeterminates will be of higher rank than one
which does not. Two d.p. for which no difference in rank is created by what
precedes will be said to be of the same rank.

As in I, §3, we see that every aggregate of p.d.p. contains a d.p. which is not
higher than any other d.p. of the aggregate.

4. If A, involves indeterminates, 4, will be said to be reduced with respect to

1 When the ; are all zero, (1) represents y;.
2 We mean that A is not an element of §.
163
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A, if A, contains no proper derivative of the leader of A; and if A; is either
zero or of lower degree than A; in the leader of A;. A set of p.d.p.

(2) Al; "'7AT

will be called a chain if either

(a) r=1and 4, # 0, or

(b) r > 1, Ay involves indeterminates and, for j > i, Ay 18 of higher rank than
A; and reduced with respect to A,.

When (b) holds, the leader of 4; is higher than that of 4, for j > 1.

Relative rank for chains is defined exactly asin I, §4. If &, ®,, ®,, are chains
Wlth ‘1)1 > q’z a,nd q’z > @3, then q’l > @3.

We prove that, in every aggregate of chains, there is a chain which ts not higher
than any other chain of the aggregate. et « be the aggregate. We form a sub-
set oy of @, putting a chain ® into oy if the first d.p. of ® is not higher than the
first d.p. of any other chain in «. It may be that the chains in oy are merely
elements of &; if so, any of them is a chain of least rank in . Let us suppose
that the first d.p. in the chains of ¢, actually involve indeterminates. These
first d.p. will all have the same leader; we represent that leader by the symbol
p1.  If the chains in «; all consist of one d.p., any chain in &y meets our require-
ments. Suppose that there are chains in oy which have more than one d.p.
We form the subset e of them whose second d.p. are of a lowest rank and indi-
cate the common leaders of these second d.p. by p;. Now p; is not a proper
derivative of p1. As we saw above, p. is higher than p;. If the chains in oy
all have just two d.p., any of these chains serves our purpose. If not, we con-
tinue. Our result will hold unless there is an infinite sequence

lp11p27"'7p'11 te

of derivatives which increase steadily in rank, no p, being a derivative of a p;
with ¢ < ¢. The existence of such a sequence would contradiet Riquier’s
theorem of VIII, §2.

5. Let = be a system containing nonzero d.p. We define a characteristic set
of Z to be a chain in 2 of least rank.

If 4; in (2) involves indeterminates, a d.p. F will be said to be reduced with
respect to (2) if F is reduced with respect to 4,1 =1, ---, 7.

Let = be a system for which (2), with 4; not free of the indeterminates, is a
characteristic set. Then no nonzero d.p. in = can be reduced with respect to
(2). If a nonzero d.p., reduced with respect to (2), is adjoined to Z, the char-
acteristic sets of the resulting system are lower than (2).

6. In this section we deal with a chain (2) in which A4, involves indetermi-
nates.

If a d.p. G has a leader, p, we shall call the d.p. 8G/dp the separant of G. The
coefficient of the highest power of p in G will be called the initial of G.

Let S; and I; be, respectively, the separant and initial of 4; in (2).

We prove the following result.
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Let G be any d.p. There extst nonnegative inlegers s;, t;, 1 = 1, -+, r, such
that, when a suitable linear combination of the A and their derivatives is sublracted
from

ATl I Lo 3

the remainder, R, 1s reduced with respect to (2).

Let p: be the leader of A;. We limit ourselves, as we may, to the case in
which @ involves derivatives, proper or improper, of the p. Such derivatives
will be called p-dertvatives. Let the highest p-derivative in G be ¢ and let g be a
derivative of p;, TFor the sake of uniqueness, if there are several possibilities
for j, we use the largest j available. To fix our ideas, we assume ¢ higher than
pr. Then

8G = CA, + B

where A} is a derivative of A; with ¢ for leader and where B is free of q. Be-
cause A; and S; involve no derivative higher than ¢, B involves no p-derivative
which is as high as ¢. For uniqueness, we take ¢ as small as possible.

If B involves a p-derivative which is higher than p,, we give B the treatment
accorded to . After a finite number of steps, we reach a d.p. D which differs
by a linear combination of derivatives of the 4 from a d.p.

S 8@

D contains no p-derivative which is higher than p,.
We find then a relation
I'D = HA, + K,

where K is reduced with respect to 4,. K may involve p,. Aside from p,, the
only p-derivatives present in K are derivatives of py, - -+, pr 1. Such p-deriva-
tives are lower than p,. Let ¢1 be the highest of them.

Suppose that ¢1 is higher than p, _1. We give K the treatment received by
@, obtaining a unique d.p. L which differs from some

St SFoyIF-Y K

by a linear combination of A,_1 and proper derivatives of Ay, -+, 4, _1.
The d.p. L is reduced with respect to A, and 4, . Aside from p, and p, . ,,
the p-derivatives in L are derivatives of py, - - - , p, — 5, and all such p-derivatives
are lower than p, —.

Continuing, we determine, in a unique manner, a d.p. B as described in our
statement. We call R the remainder of G with respect.to (2).

7. Ideals of p.d.p. are defined as in I, §7. In (b) of I, §7, one requires that
the m partial derivatives of any d.p. in = belong to =.

We define basis as in I, §12. The basis theorem,? the decomposition theorem

8 In dealing with I, §10, one uses the fact that
dv Ju
Ww— =0, (w—}
) 2
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of I, §16, and the theorem on relatively prime ideals of I, §19, go over immedi-
ately to the case of several differentiations.

Manifolds are defined as in II, §1. The decomposition theorem of II, §3,
then carries over.

The analytic case is formulated as follows. & is a set of functions of m com-
plex variables z;, -+ , Zm. There is given an open region A in the space of the z.
The functions in § are meromorphic at each point of A. An analytic zero con-
sists of functions which are analytic in an open region contained in A.

To illustrate the decomposition theorem, we let

3) A=z— (pr+qy) + 0"+ ¢,

where p = 9z2/9z, ¢ = 9z/dy. Putting A = 0, and differentiating with respect
to z, we find

4) — (rz 4 sy) + 2(pr 4+ ¢s) = 0,
where r = 8%/9z?, 8 = 9%/02dy. Similarly,
)N — (s +ty) + 2(ps + ¢t) = 0,

where { = 6%/dy%. From (4) and (5) we obtain
(rt—8)(x—2p)=0; (t—3s)(y—2)=0.

Thus, either 7 — s* =0 or 2 = (2 + y?)/4. The latter zero of A does not
annul r£ — 2. Thus the manifold of 4 is reducible. The zero (z2 + y2)/4 is a
component of 4. As one will see later, there is one other component, the general
solution of A.

8. The question of generic zeros is treated as in I, §6. Given a prime ideal
2 of pdp. in ¥, -+, yn distinet from the unit ideal, one finds a zero
M, ++, 1. of 2 which annuls no d.p. not contained in =. The abstract
theorem of zeros of I, §7, then carries over. The analytic case will be treated
later.

The theoretical method of V, §28, for resolving a finite system of d.p. into
finite systems equivalent to prime ideals is seen to hold for p.d.p.

GENERAL SOLUTIONS

9. Let F be an algebraically irreducible p.d.p. and 8 its separant. We see
as in II, §12, that the totality Z; of those d.p. A which are such that

© S8A=0, ({F},
is an ideal. We shall prove that Z; is prime. Let p be the leader of F. Let
AB be in Z;. There exist relations

S°4d = R, S*B=T, [F],
where R and T involve no proper derivatives of p. Then SRT isin { F}. Let
then
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(SET)* = MF + M\F1 + -+ + M/F,,

where the F; are distinct partial derivatives of F. The leaders of the F; are
distinct. We may thus, and shall, assume that the F; increase in rank as their
subscripts inerease. Let p’ be the leader of #,, We have

Fq=Sp,+U7

where the leader of U is lower than p’. We replace p’ in F, and in the M by
—U/8. The proof is completed as in II, §12.

As in IT1, §13, we prove that =, consists of those d.p. which have zero re-
mainders with respect to* F. In particular, Z; does not contain S.

Asin TI, §§14, 15, we find that { F } has a decomposition into essential prime
divisors

N {F}=Z21NZN - N3,

in which Z; is the only divisor which does not contain S.

A change of marks may give F a new separant. Any such separant involves
only derivatives present in F' and is not divisible by . Hence, for the original
marks, such a separant has a remainder which is not zero. Thus, in (7), =
contains no separant of F, while Z,, - - -, Z, contain every separant.

We call the manifold of 2 the general solution of F.

COMPONENTS OF A PARTIAL DIFFERENTIAL POLYNOMIAL

10. Let F be a nonzero p.d.p. We shall prove that every essential prime
divisor of { F } has a characteristic set consisting of a single d.p. Such a d.p,,
call it A, can be taken as algebraically irreducible; the prime divisor consists of
those d.p. which have zero remainders with respect to A. It will follow that
every component of a nonzero p.d.p. is the general solution of some p.d.p.’

11. Let

(8) Al,"',Ar

be a chain with 4; not an element of . Let 4, have S; for separant and I; for
initial. Let G be any p.d.p. We shall prove that there exisis a power product J
of the 8 and I such that JG is @ polynomial in the A and their partial derivatives,
with coefficients which are d.p. reduced with respect to (8).

Let p; be the leader of A;. We limit ourselves, as we may, to the case in
which @ involves p-derivatives. Let the highest p-derivative in G be ¢ and
let ¢; be a derivative of p;. For uniqueness, we use the largest j available. To
fix our ideas, we assume ¢, higher than p,. For some partial derivative A; of 4;,
we have

A; = 01 + T)

4 We obtain B as in (12) of II, §13, with B free of proper derivatives of p.
5 The case of m > 1 is essentially different from that of m = 1. For instance, for m = 1,
every irreducible manifold in one indeterminate is a general solution. This is not so for p.d.p.
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where T involves no derivative as high as ¢.. Let G be of degree a in ¢;. Then
S%G can be written as a polynomial in A; — T, and hence as a polynomial in 4,
with coefficients in which all p-derivatives are lower than ¢;. Suppose that,
among the coefficients just mentioned, there are one or more which involve
p-derivatives higher than »,. Let ¢ be the highest such p-derivative. We
give the coeflicients which involve ¢, with respect to g., the treatment accorded
above to G with respeet to (. We see now that there is a power product J;
in one or two of the 8 such that J1G is a polynomial in two derivatives of the A,
with coefficients involving no p-derivative as high as ¢.. We reach ultimately
a J,@&, with J, a power product in the S, in the coefficients of which the p-deriva-
tives actually present are not higher than p,. Some I7J,G is a polynomial in 4,
and proper derivatives of the A with coefficients which are reduced with respect
to A, Aside from p, the only p-derivatives present in the coefficients are
derivatives of p1, **- , pr—1. How to complete the proof is now obvious.

Let us examine the expression found for JG. In our discussion, there ap-
peared a finite sequence of derivatives

(9) T, Q2 -, q:

with ¢; higher than ¢; y1,¢ =1, ---, { — 1, each ¢; being the Jeader of a deriva-
tive B;, proper or improper, of some A. JG is a polynomial in the B, with
coefficients reduced with respect to (8).

12. Let F be a nonzero d.p. and let (7) be a decomposition of { F } into essen-
tial prime divisors. Suppose that some 2; in (7) has a characteristic set con-
sisting of more than one d.p. We let A stand for such a Z; and consider a
characteristic set (8) of A.

Treating F as G was treated in §11, we obtain a J as in §11 and let H = JF.
Then H is a polynomial in the 4 and their partial derivatives.

Let m, +++ , 1. be a generic zero of A contained in an extension of Fo of &.
We make in H and in the 4 the substitution
(10) Yo = 1 + 2 'L.=1;"';n;

using the same marks for z; as for y.. Each A, goes over into a d.p. C; over F,.
Let us study C; as a polynomial in the z and their derivatives. C; admits the
zero 2; =0,j=1,---,n We examine the terms of the first degree in C..
To p;, the leader of A;, there corresponds a derivative r; of some z. The coeffi-
cient, of 7; in C; is what S; becomes when the 5 are substituted into it. Because
S;is not in A, S; does not vanish for the . Thus C; contains effectively terms
of the first degree. We represent the sum of these terms by D;. The leader of
D.‘ is 7. '

We now consider H. Let K represent what H becomes under (10). Our
object is to describe the terms of lowest degree in K considered as a polynomial
in the z and their derivatives.

Referring to the final remarks of §11, we consider H as a polynomial in the
B;,i=1,---,t Let L be the sum of those terms of H which are of a lowest



PARTIAL DIFFERENTIAL ALGEBRA 169

total degree in the B. Then every term of L is of the form MN with M re-
duced with respect to (8) and N a power product in the B. Under (10), let
M and N go over into P and @ respectively. Then P contains an effective term
which is in Fo, while the terms of @ which are of a lowest total degree in the z
and their derivatives constitute a product of powers of the D and their deriva-
tives. Let us select, from L, those terms which are of a highest degree in B.
From these latter terms we select those which are of a highest degree in B,.
Continuing, we are led to a definite term MN of L which goes over under (10)
into an expression PQ. Let

N = BiB{ .- B,

wherea < b < -+ <cand o, 8, : -, v are positive. If s; is allowed to repre-
sent that derivative of a z whose marks are those of ¢; in (9), we find that PQ
contains effectively a term in s& ¥ . .- s7. This term is one of the terms of low-

est degree in K.

Thus the leader of W, the sum of the terms of lowest degree in K, is a deriva-
tive, proper or improper, of the leader of some D.

13. Changing the notation if necessary, we assume that the leader of W is a
derivative of z. We decompose W into irreducible factors in &, and consider
an irreducible factor ¥V which effectively involves the leader of W.

Vis a d.p. over Fo. Let {3, -+, £« be a generic point in the general solution
of V, contained in an extension F; of F,.

Then W vanishes for the {. On the other hand, not every D; can so vanish.
Let us assume that Dy vanishes. We shall prove that D; does not. By the
final statement of §12, the leader of V is not lower than that of D;. If D had
a lower leader than V, D; would be reduced with respect to ¥V and would not
vanish for the ¢{. Thus D; has the same leader as V. Then D, is divisible by
V. As D, is linear, D; is the product of ¥V by an element of F,. Thus the gen-
eral solution of V is the general solution of D;. By §12, the leaders of 4; and
D; have the same marks for every 7. Thus the leader of D, is not a derivative
of that of D1. Then the remainder of D, with respect to D; is not zero so that
D3 does not vanish for the ¢.

14. We say that K is annulled by expressions

2z = {iC, t=2 0 ,m,
(11)
a=et+ ec” + o F o™+ -0,
with po > 1.
If K vanishes for z; = {i¢, ¢ = 1, -+, n, we have the desired expressions.
Let the vanishing fail to occur. We put in K

2; = {ic, 7:-‘-"2,"',7%; 21 = {1 4 wy,

where u; has the same marks as z;. The work of III, §§6-13, carries over with
very slight changes. Where, in Chapter I1I, one uses derivatives of an indeter-
minate up to a certain order, one employs here a set of partial derivatives.
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Leaders serve here as derivatives of highest order do in Chapter III. In treat-
ing (11) of IIL, §10, we represent the derivatives of %, appearing in K’ by
m, *++, v and the corresponding derivatives of us by wy, -+-, w,. Assuming
that, for certain I,

ght b Ll
Py -+ g

does not vanish for u, = ¢», we prove that w? - - - w¥ is present in K.
15. The series (11) being obtained, we find that H is annulled by expressions

Y = % + §i, 1=2,---,m,
n=m+fc+ e+ ---.

These expressions do not annul J, since the n do not. Thus F vanishes for (12).
Because the D of §12 do not all vanish for the {, the C do not all vanish for (11),
so that the 4 in the characteristic set (8) of A of §12 do not all vanish under
(12). Now some ZI; in (7) must admit (12) as a zero. Such a Z; is neces-
sarily distinet from A. On the other hand, such a X; must admit n, <+, 74
as a zero, and thus is contained in A. As this is impossible, it is established
that every prime ideal in the second member of (7) has a characteristic set con-
sisting of one d.p.

16. Suppose now that F of §10 is algebraically irreducible. Let Z; in (7)
be the prime ideal associated with the general solution of F. Consider any 2;
with 7 > 1. Its manifold is the general solution of a d.p. A. We say that
F effectively tnvolves some proper derivative of the leader of A.

If this were not true, F would be divisible by A, since F is in Z; and the re-
mainder of F with respect to A is zero.

Let y; be any indeterminate of which some derivative appears effectively in 4
and let r be the maximum of the orders of the derivatives of y; in A. Marks
can be chosen for which the leader of A is a derivative of y; of order r. Thus
F 1is of higher order than A in every indeterminale appearing in A.

(12)

THE LOW POWER THEOREM

17. Let F and 4 be two p.d.p. in F{ yy, - -+, ¥« }, neither an element of &.
Let S be the separant, and p the leader, of 4. Proceeding as in III, §17, and
as in IX, §11, one proves the existence of a nonnegative integer ¢ such that S'F
has a representation

1
(13) S CpAmAY - A
j=1
where the A; are distinet proper derivatives of A and no two sets ¢y, -+,

are identical; the C involve no proper derivative of p and are not divisible by 4.
If F involves no proper derivative of p, there are no 4; in (13); otherwise the
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leader of Ay is the highest of the derivatives of p which appearin F. For a given
admissible ¢, the representation (13) of S* F is unique.

In what follows, we assume A to be algebraically irreducible and we use the
smallest admissible {.

The low power theorem has the wording of ITI, §20, except that one uses the
representation in (13).

18. We use an indeterminate y and the field of rational numbers.® Let p be
any positive integer. We shall show that every power product of degree
2p — 1 in the dy/dz;, 2 =1, -- -, m, is in [y7].

We may assume that p > 1. We have, for every ¢, y? ~19y/dz; = 0, [y*].
Thus, for every ¢ and j,

oy _
ax]_ dz; = O; [yp]'

dy 9y
— p—22d ZJ p—1
-1y ax,-ax,-+y

We multiply by any dy/dzz. Then, for any 1, j, k,

_.0y 9y 9y _
P 2;.");1'3_1:;,'3_-15};:0, ly7].
Continuing, we verify our statement.

Let k& be any positive integer. We consider the derivatives of y of order £,
and form power products in those derivatives. We shall show that every such
power product which is of degree 2*m* —1 p is in [y?].

For kE =1, we observe that 2*n*—1p = 2p > 2p — 1, and use the result
proved above. We suppose the proof carried through for k¥ < ¢, where ¢ > 1,
and consider the case of k = q. Among 2%m?— p derivatives of order g, there
must be at least 29m?—2p which are derivatives of order ¢ — 1 of some one
dy/dx;. By the case of &k = ¢ — 1, a product of 29m?—?p derivatives as just
mentioned is in [(dy/8z;)?7], thus in [y7].

The weight of a product of powers of derivatives of y will be understood to
be the sum of the orders of the derivatives in the product.

Let a be a positive integer. Let

5@, p,m) = pla+ 1 EETZL

We shall show that a power product in y and its derivatives whose degree is
f(a, p, m) and whose weight does not exceed af(a, p, m) is in [y7].

Let P be a power product of degree f(a, p, m) which is not in [y?]. For each
nonnegative integer k, the product P, by what precedes, must involve fewer
than (2m)*p derivatives of order k.” Thus P involves fewer than

(Qm)a+1 -1 _f(ar D, m)
om—1 PT aF1

¢ In §§18, 19, we do not use marks; the order of a partial derivative is the only index of rank
which is employed.
7 We count each derivative of order %k as many times as it appears in P.
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derivatives of order not exceeding a. Therefore P has more than f — f/(a + 1)
derivatives of orders exceeding a. Then the weight of P exceeds af.?

19. We can now carry over the lemma of III, §21. Let r be the maximum
of the weights of the B. The cases of r = 0 and r = 1 are trivial. We there-
fore assume that » > 1 and put

d=f(r—1,p,m), t=d(r— 1.

Every power product in 2z and its derivatives which is of degree d and of weight
not more than ¢ is in [2?]. The work of III, §21, needs only minor changes.
Where one uses there the ith derivative of a d.p., one employs here appropriate
partial derivatives of order . The lemma having been extended, one finds the
theorems of III, §§22, 23, to hold for p.d.p.

20. The necessity proof can be conducted as follows. We assume that the
terms of lowest degree in (13) involve proper derivatives of 4. If we let 4
take the place of the chain (8), (13) is an expression for S'F like that of JG in
§10, with the difference that the C are not reduced with respect to A. For our
purposes, it is enough that the C do not hold the general solution of 4.

Welet g, -+ -, 9. be a generic zero in N, the general solution of A, and make
the substitution (10) in S*F and in A. Then A goes over into a d.p. E in the 2.
To p, the leader of A, there corresponds a derivative  of some 2. E has terms
of the first degree and their sum has r for leader.

The substitution (10) converts S*F into a d.p. K in the z. Considering
K as a polynomial in the z and their derivatives, we let W be the sum of the
terms of lowest degree in K. The leader of W is seen to be a proper derivative
of . We then proceed as in §§13, 14 and find expressions (12) which annul F
but neither S nor A. Those expressions furnish a zero in a component 0’ of F
which is not held by A. Then 41, -+, 9, is in I and P is not a component
of F.

CHARACTERISTIC SETS OF PRIME IDEALS

21. Let Z be a nontrivial prime ideal for which
(14) Ay Agy o004,

is a characteristic set. One shows, as in V, §1, that when the A are regarded
as ordinary polynomials in the symbols which they involve, (14) is a charac-
teristic set® for a prime p.i. A. One then proves as in V, §4, that every zero of the
p.d.p. (14) which annuls no separant is o zero of Z.

22. From this point on we limit ourselves to the consideration of the analytic
case. Through §25, it will be assumed that the first mark of each z is unity.

A being the region in which the functions in & are given, we represent by

8 The result is due to Kolchin,
° As we shall see below, we do not have in this a sufficient condition for (14) to be a charac-
teristic set of a prime ideal.
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£, -+, & or, more briefly, by £ a point in A at which the coefficients in (14)
are analytic. We use the symbol [4] to designate any set of numerical values
which one may choose to associate with the derivatives appearing in (14).

We wish to show that there are sets £, [4] which annul every 4 but none of
the separants of the A. If we consider the 4 as ordinary polynomials, Hilbert’s
theorem of zeros, as derived for the analytic case in IV, §14, holds for them.
As no power of the product of the separants is linear in the 4, we can find a
system of analytic functions of i, + + +, 2. which annul the A when substi-
tuted for the various derivatives, without annulling any separant. The exist-
ence of a set £, [n], described as above, follows. We shall deal with such a set.

Let p: be the leader of 4;. The equation A; = 0, treated as an algebraic
equation for p;, determines p; as a function of the z and the derivatives lower
than p; in A3, the function being analytic for z; close to £; and for the derivatives
lower than p; close to their values among the [#]. The value of the function p;
for the special arguments just mentioned will be the value for py in [7]. Let the
expression for p; be substituted into 4.. We can then solve 4, = 0 for p.,
expressing p: as a function of the x and of the derivatives other than p; and p,
appearing in 41 and 4A;. We substitute the expressions for p; and p; into 4;,
solve A3 = 0 for p;, and continue in this manner for all d.p. in (14).

We find thus a set of expressions for the p, each p being given as a function of
the x and of the derivatives other than py, - -+, p,in (14). We write

(15) P = g5, t=1 7

If the equations in (15) are considered as differential equations for the y, they
will form an orthonomic system. We shall prove that ¢f (15) 7s extended into an
orthonomic system whose first members give complete systems of monomials (VIII,
§11), the extended orthonomic system 1s passive.

We consider the prime p.i. A of §21. The parametric indeterminates in A
will be those which correspond to the parametric derivatives in (15). We form
a resolvent for A with

(16) w = blpl + R brpr;
where the b are integers. Let the resolvent be
a7 Bw*+ +++ 4+ B, =0,

and let the expressions for the p be

E; Ei -1
(18) P = 0+ +D 1w .

Suppose that, in (16), the p are replaced by the g of (15). Then w in (16)
becomes a function of the arguments in the g, analytic at & [1]. We wish to
see that the functions ¢; and w satisfy (17) and (18). We can form a zero of the
characteristic set (14) of A, in which the leaders of the A are put equal to the ¢
and in which the other letters in the A are represented by the complex variables
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of which the ¢ are functions. This zero of (14) annuls no separant; it is thus a
zero of A. This is enough to show that the g and w satisfy (17) and (18).

We consider each g in (15) to be expressed by the second member of (18),
where w is a function of the z and the parametric derivatives, analytic when the
arguments are close to their values® in ¢, [4].

Let us show how an orthonomic extension ¢ of (15), described as in VIII, §11,
is formed. We can calculate each 9p;/dz; from (18). In this calculation
dw/dx; appears, and can be found from (17). Higher derivatives of the p are
calculated similarly. If principal derivatives appear in an expression for a
dp, we can get rid of them step by step. We secure in this way the desired ex-
tension ¢. Its equations will be of the form (IV, §14)

_Fo+ -+ F !

= T ,

where T involves only parametric derivatives. There may be, in the second
members of (19), parametric derivatives which do not appear in (15). Such
derivatives enter rationally and integrally. We shall allow these derivatives to
vary in the neighborhood of any set of numerical values [{].

If we refer now to VIII, §20, we see that every p has an expression like the
second member of (19). To establish the passivity of ¢ for the neighborhood of
£, [4], [f], we have to show that every g, as a function of the z and of the para-
metric derivatives, is identically zero.

Consider some g, say w. Let Z be the numerator in the expression for
and let P represent the first member of (17). Suppose that Z is not identically
zero. Then the resultant W of P and Z with respect to w is not zero. If we
can show that W is in 2, we will have a contradiction. Working in the ab-
stract, let us form a generic zero of 2; with it is associated a quantity w as in
(16). The generie zero and w satisfy (19) and thus annul Z. Then the generic
zero annuls W. Hence Z is identically zero and ¢ is passive at £ [9], [¢].

23. Let (14), with 4, not a function in &, be a chain. We shall find necessary
and sufficient conditions for (14) to be a characteristic set of a prime ideal.

As a first necessary condition, we have the condition that (14), when regarded
as a set of polynomials, be a characteristic set for a prime p.i. This implies the
existence of r functions ¢;, as in (15), which annul the 4 when substituted for
the p, without annulling any separant.

Let £, [4] be some set of values as above, for which no separant vanishes. A
second necessary condition is that the extended system (19) be passive for the
neighborhood of £, [1], [¢].

We shall prove that, if (14), considered as a set of polynomials, is a character-
1stic set of a prime p.i., and if, for some set & [n], [], (19) is passive, then (14)
18 a characteristic set of a prime ideal.

Let (14) satisfy the stated conditions. As the expressions for the p vanish

(19) 8y

10 Tt may be that D vanishes at £, [7], but this is not a matter for concern.
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identically, (19) developed for any values at all £ [n] which annul no separant
will be passive.

The passivity of (19) implies that (14) has zeros which annul no separant.
We shall prove that the system = of d.p. which vanish for all zeros of (14)
annulling no separant is a prime ideal for which (14) is a characteristic set.

Let GH be in 2. Let J.G = Gy, J.[I = Hy, [A4, ---, A,], where the J are
power products in the separants and G,, H, involve no proper derivatives of the
p. There may be, in Gy and Hi, parametric derivatives not present in (14).
But (14), considered as a set of polynomials, will be a characteristic set for a
prime p.i. A, even after the adjunction of the new parametric derivatives to the
indeterminates in (14).

Let us consider any zero of A which annuls no separant in (14). By the pas-
sivity of (19) for arbitrary sets £ [4], [¢], the mentioned zero furnishes, at a
point free to vary in a region in A, initial conditions for a zero g1, ---, 9, of
the d.p. in (14) which annuls no separant. 2 admits #, ++-, 9. as a zero.
It follows that the zero of A annuls G4H;. Then G:H,, considered as a poly-
nomial, isin A. Suppose then that G1isin A. ThenG isin Z. Thus Z, which
we know to be an ideal, is prime. To prove that (14) is a characteristic set for
2, it suffices to show that 2 contains no nonzero d.p. reduced with respect to
(14); such a d.p., by what precedes, would, considered as a polynomial, belong
to A.

24. Given a set (14) which satisfies the first condition in §23, we can deter-
mine, with a finite number of rational operations and differentiations, whether
or not (19) is passive. If (19) is not passive, we secure a d.p. involving only
parametric derivatives which vanishes for all zeros of (14) which annul no
separant.!!

ALGORITEM FOR DECOMPOSITION

25. Let ® be any finite system of p.d.p., not all zero. As in Chapter V, we
can obtain, by a finite number of differentiations, rational operations and factor-
izations, a set, equivalent to &, of finite systems Aj, - - -, A, which have the fol-
lowing properties:

(a) The characteristic sets of the A; are not higher than those of ®.

(b) If the characteristic set of a A; involves indeterminates, the remainder of
any d.p. of A; with respect to the characteristic set is zero.

(¢) The characteristic set of a A;, considered as a set of polynomials, is a
characteristic set of a prime p.i.

Suppose that A; has a characteristic set (14) with 4, not in &. If (19) is not
passive, A; is equivalent to

A1+G, A1+S1, s ,A1+Sr;
where the S are the separants, and G, involving only parametric derivatives,

11Tn (19) and in the analogous expressions for the #, we may use a single 7. 1f Z of §22
does not vanish, TW will serve our purpose.
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vanighes for every zero of (14) which annuls no S. Now all of the systems just
obtained have characteristic sets lower than (14). If (19) proves passive, A;
is equivalent to

A+ S, o, M+ S,

where X is the prime ideal for which (14) is a characteristic set.

It is clear that, by this process, we arrive in a finite number of steps at a finite
number of chains which are characteristic sets of a set of prime ideals equivalent
to &.

The above constitutes an elimination theory for systems of algebraic partial
differential equations.

26. The assumption that the first mark of each z is unity prevents us from
using, in the case of one independent variable, the ordering employed in the
earlier chapters. Thus, when the first mark is unity, no derivative of y. will be
higher than every derivative of 1. Now, in the case of m = 1, no two p in
(15) are derivatives of the same y. Thus, with any marks, when m = 1, the
equations (15) are a set of ordinary differential equations for which the stand-
ard existence theorem can be used. We see that, when m = 1, (14) will be a
characteristic set of a prime ideal if it is a characteristic set of a prime p.i.; one
may use any marks which effect a complete ordering. In this way, the theory
of characteristic sets of prime ideals is so framed as to include, in the case of
m = 1, our earlier considerations.

THE THEOREM OF ZEROS

27. We treat the theorem of zeros in the analytic case. Let there be given
p.d.p. Fy, - -+, Fp, and a G which vanishes for every analytic zero of the F. We
have to show that G is contained in { Fy, -+, F,}. Let Z be an essential
prime divisor of the perfect ideal. Suppose that = does not contain G. Let
(14) be a characteristic set for Z. Let R be the remainder of G with respect to
(14) and let K = RS; --- S,. Then K, as a polynomial, is not in A of §21. A
zero of A which does not annul K furnishes initial conditions for a zero of (14)
which is a zero of T and does not annul G.



APPENDIX. QUESTIONS FOR INVESTIGATION
InEALS

1. Levi’s work shows the nonexistence of a theory of ideals of d.p. possessing
the scope of the Lasker-Noether theory of p.i. For d.p., it will be necessary
either to use special types of ideals or to use other combinations than intersec-
tions and products.

2. Given a finite set of d.p., F4, -+ -, F,, and a d.p. G, is it possible to deter-
mine whether G is contained in [Fy, -, F,]? The methods of Chapter V
permit one to decide whether some power of G isin [Fy, --- , F,]. Ttisthusa
question of determining a smallest admissible exponent.

3. Kolehin’s theory of exponents should admit of extension in several diree-
tions. The chief problem examined by Kolchin is that of the exponent of { 4 }
relative to [A], where A is a d.p. in y of the first order. In the theorems ob-
tained by XKolchin, the relative exponents are 1, 2, «. For instance, if
A = y? + 4%, the exponent is ©. Now

(4] = [v]- 2,

with p a positive integer and Z an ideal whose manifold is the general solution
of A. One may inquire as to the exponent of { £} relative to =. That ex-
ponent may easily be finite. This problem ean, of course, be formulated for
d.p. A admitting many singular zeros.

The problem of exponents may be examined for d.p. of order higher than
the first and for p.d.p.

4. For F = y» + y{, in F{ y }, with ¢ > p, what is the smallest integer r
such that

yG@=0, [F],

where @ does not vanish for y = 0?7 This problem can be extended to general
classes of d.p.

5. For p > 0, 7 > 0, what is the least ¢ such that y{ = 0, [y?]? Fori = 1,
it is not hard to show that ¢ = 2p — 1. In §{ u, v }, what is the least power
of u»; which is contained in [uw ]?

6. The ideals generated by various differential expressions may be examined.
One may study the wronskian, the jacobian, the expression EG — F? of dif-
ferential geometry, ete.

7. One may study d.p. over a field of characteristic p.

THE DECOMPOSITION PROBLEM

8. The basic problem has been met in Chapter V. It is that of determining

the number of times which the d.p. in a finite system ® must be differentiated
177
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before eliminations will produce finite systems whose manifolds are the com-
ponents of . One would hope to secure a bound which depends on the number
of d.p. in ®, their orders and degrees.

9. Attached to the decomposition problem is the first problem of Laplace,
mentioned in III, §37. Let F and A be algebraically irreducible and let F
hold the general solution of A. It is required to determine whether the general
solution of A is contained in that of F. The author has shown how to settle
this question for d.p. F of the second order.! The methods can perhaps be ex-
tended to cover the case in which F, in §{ y }, is of order n, and A of order
n — 2. One might perhaps undertake to develop a test for the presence of
y = 0 in the general solution of a d.p. of the third order. Other problems of
this type will readily suggest themselves.

INTERSECTIONS

10. One can see from Chapter VII that if there is regularity in the theory of
intersections of algebraic differential manifolds, that regularity is not immedi-
ately visible. In VII, §1, an anomaly is found in the dimension of the inter-
section of a general solution with a second irreducible manifold. One might
try to use complete manifolds of d.p. rather than general solutions. Thus, let
Fy,--+,F.be dp.in {4, -+ ,yn}. Suppose that r <n. Is every com-
ponent of the system 7y, -+, F, of dimension at least n — 7? For r = 1, we
see from ITI, §1, that the answer is affirmative.

11. One may seek to extend the result of VII, §6, on Jacobi’s bound to sys-
tems of n d.p. in n indeterminates.

The anomaly met in connection with the order of a component of the inter-
gection of two general solutions raises the following problem. Let A and B be
algebraically irreducible d.p. in y and 2. Let I be a component of dimension
zero in the intersection of the general solutions of A and B. It is required to
find a bound for the order of I in terms of the orders of A and B in y and 2.
It is conceivable, of course, that no bound exists.

12. One may generalize the problem of III, §1, as follows. Let Z be a non-

trivial prime ideal in &F{ wuy, « -+, Uqg; Y1, -+, Yp } With the u parametric and
with
(1) Ay +er, 4y

a characteristic set. Let =, be the prime p.i. for which (1), with the A con-
sidered as polynomials, is a characteristic set. Let 2’ be the system of d.p.
obtained from X, when the polynomials in =4 are regarded as d.p. What are
the dimensions of the components of =’? Does the low power theorem have a
generalization for this situation?

DIFFERENTIAL POWER SERIES
13. This subject has been mentioned in ITI, §39. Only one paper has been
1 Ritt, 31. In connection with §65 of this paper, see the final remarks of §51 of Ritt, 32.
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written on it. The entire program awaits development, both for ordinary dif-
ferential equations and for partial. In the analytic case, the procedure will
depend on whether one works in the neighborhood of a point in the space of the
independent variables or in the neighborhood of a set of functions constituting a
point of a manifold.

BIRATIONAL TRANSFORMATIONS

14. The theory of the resolvent furnishes an instance of the birational equiv-
alence of two irreducible manifolds. The general problem is that of finding
conditions for such equivalence. The results of algebraic geometry should be
a guide.

In studying birational transformations, one will meet differential Cremona
transformations. For instance, let

d [z d
vz 2-ex()

d (Z d (7
y—de(?)» Z-Z(%(?)'

Is there a theorem on the structure of such transformations of ¥ and z similar
to M. Noether’s theorem on ordinary Cremona transformations?

The analogue of Liiroth’s theorem presented in Chapter II may have an ex-
tension to fields formed by the adjunction of two indeterminates.

We find

SINGULAR SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

15. For simplicity, we use two independent variables, z and y. Let F be an
algebraically irreducible d.p. in { z }, of order n in 2. Let the components of
F be M, My, ---, P, with I the general solution. Each M; is the general
solution of a d.p. F;. Suppose that, for some ¢, F; is of ordern — 1inz. Con-
sidering Hamburger’s results for ordinary differential equations, one would ex-
pect the functions in I; to be envelopes, with a contact of some natural order,
of functions in M. For n = 1, this question has been studied by the author.?
For n > 1, the matter should be more difficult, since there is no theory of char-
acteristics.

DIFFERENCE ALGEBRA

16. This subject has been treated in papers of J. L. Doob, W. C. Strodt, F.
Herzog, H. W. Raudenbush, Richard Cohn and the author.? The theory is
open for cultivation.

2 Ritt, 41.
3 See bibliography.



BIBLIOGRAPHY

1. ConN, R. M. On the analog for differential equations of the Hilbert-Netto theorem, Bulle-
tin of the American Mathematical Society, vol. 47 (1941), pp. 268-270.

2., ————— Manifolds of difference polynomials, Transactions of the American Mathe-
matical Society, vol. 64 (1948), pp. 133-172,

3. Doos, J. L., and Rrrr, J. F.  Systems of algebraic difference equations, American Journal
of Mathematics, vol. 55 (1933), pp. 505-514.

4, DracH, J. Essat sur la théorie générale de Dintégration et sur la classification des tran-
scendantes, Annales de I’Ecole Normale Supérieure, (3), vol. 15 (1898), pp. 245-384.

5. GouriN, B. On irreducible systems of algebraic differential equations, Bulletin of the
American Mathematical Society, vol. 39 (1933), pp. 593-595.

6. HamBURGER, M. Ueber die singuldren Lisungen der algebraischen Differenzialgleichungen
erster Ordnung, Journal fir die reine und angewandte Mathematik, vol. 112 (1893), pp. 205-
246. See also ibid., vol. 121 (1899), p. 265, and vol. 122 (1900), p. 322.

7. Herzog, F. Systems of mized difference equations, Transactions of the American Mathe-
matical Society, vol. 37 (1935), pp. 286-300.

8. Korcuiy, E. R., and Rirr, J. F.  On certain ideals of differential polynomials, Bulletin
of the American Mathematical Society, vol. 45 (1939), pp. 895-898.

9. KorcuiN, E. R. On the basis theorem for infinite systems of differential polynomials,
Bulletin of the American Mathematical Society, vol. 45 (1939), pp. 923-926.

10. ————— On the exponents of differential ideals, Annals of Mathematics, vol. 42 (1941),
pp. 740-777 ’
11. —————— On the basis theorem for differential systems, Transactions of the American

Mathematical Society, vol. 52 (1942), pp. 115-127.

12. ——— Eatensions of differential fields, I, II, Annals of Mathematics, vol. 43 (1942),
pp- 724-729; vol. 45 (1945), pp. 358-361.

13. —————— Eaxtensions of differential fields, 111, Bulletin of the American Mathematical
Society, vol. 53 (1947), pp. 397-401.

14, ———— Algebraic matric groups and the Picard-Vessiot theory of homogeneous ordinary
linear differential equations, Annals of Mathematics, vol. 49 (1948), pp. 1-42.

15. LaGraNGE, J. L. Sur les solutions particulidres des équations différentielles, Oeuvres
Complétes, vol. 4, pp. 5-108.

16. Larrace, P. 8. Mémoire sur les solutions particulitres des équations différentielles et sur
les inégalités séculaires des plandtes, Oeuvres Complétes, vol. 8, pp. 326-365.

17. Luvi, H. On the structure of differential polynomials and on their theory of ideals, Trans-
actions of the American Mathematical Society, vol. 51 (1942), pp. 532-568.

18. —————— The low power theorem for partial differential polynomials, Annals of Mathe-
matics, vol. 46 (1945), pp. 113-119.

19, PorssoN, S. D. Sur les solutions particuliéres des équations différentielles et des équations
auz différences, Journal de I’Ecole Polytechnique, vol. 6, no. 13 (1806), pp. 60-125.

20. RavpeNBusH, H. W. Differential ficlds and ideals of differeniial forms, Annals of
Mathematics, vol. 34 (1933), pp. 509-517.

91, ——— Ideal theory and algebraic differential equations, Transactions of the American
Mathematical Society, vol. 36 (1934), pp. 361-368.

22, ———— Hypertranscendental adjunctions to partial differential fields, Bulletin of the
American Mathematical Society, vol. 40 (1934), pp. 714-720.

23. —— On the analog for differential equations of the Hilbert-Netto theorem, Bulletin of
the American Mathematical Society, vol. 42 (1936), pp. 371-373.

180



BIBLIOGRAPHY 181

24. Ravoensusy, H. W., and Rrrr, J. F.  Ideal theory and algebraic difference equations,
Transactions of the American Mathematical Society, vol. 46 (1939), pp. 445-453.

25. Rirr, J. ¥, Manifolds of functions defined by systems of algebraic differential equations,
Transactions of the American Mathematical Society, vol. 32 (1930), pp. 369-398.

26. ————— Differential equations from the algebraic standpoini, American Mathematical
Society Colloquium Publications, vol. 14, New York, 1932,

27. ———— Algebraic difference equations, Bulletin of the American Mathematical Society,
vol. 40 (1934), pp. 303-308.

28. ——— Systems of algebraic differential equations, Annals of Mathematics, vol. 36
(1935), pp. 293-302.

29. ——— Jacobi's problem on the order of a system of differential equations, Annals of
Mathematics, vol. 36 (1935), pp. 303-312.

30. Indeterminate expressions involving an analylic function and its derivatives,
Monatshefte fiir Mathematik, vol. 43 (1936), pp. 97-104.

31. ————— On the singular solutions of algebraic differential equations, Annals of Mathe-
matics, vol. 37 (1936), pp. 552-617.

32. ————— On certain points in the theory of algebraic differential equations, American
Journal of Mathematics, vol. 60 (1938), pp. 1-43.

33. ———— Systems of differential equations, 1. Theory of ideals, American Journal of
Mathematics, vol. 60 (1938), pp. 535-548.

34, ———— On ideals of differential polynomials, Proceedings of the National Academy of
Sciences of the U. 8. A., vol. 25 (1939), pp. 90-91.

35. ———— On the intersections of algebraic differential manifolds, Proceedings of the Na-
tional Academy of Sciences of the U. 8. A., vol. 25 (1939), pp. 214-215.

36. ———— On the infersections of irreducible components in the manifold of a differential

polynomial, Proceedings of the National Academy of Sciences of the U. 8. A., vol. 26 (1940),
Pp. 354-356.

37, ———— On a type of algebraic differential manifold, Transactions of the American
Mathematical Society, vol. 48 (1940), pp. 542-552.

38, ————— Complete difference ideals, American Journal of Mathematics, vol. 63 (1941),
pp. 681-690,

89. ———— Bézout’s theorem and algebraic differential equations, Transactions of the Amer-
ican Mathematical Society, vol. 53 (1943), pp. 74-82.

40, ——— On the manifolds of partial differential polynomials, Annals of Mathematics,
vol. 46 (1945), pp. 102-112,

41. ———— Analytic theory of singular solutions of partial differential equations of the first
order, Annals of Mathematics, vol. 46 (1945), pp. 120-143.

42, ———— On the singular solutions of certain differential equations of the second order,

Proceedings of the National Academy of Sciences of the U. 8. A., vol. 32 (1946), pp. 255-258.
43. Stropr, W. C. Systems of algebraic partial difference equations, Unpublished master’s
essay, Columbia University, 1937.
44, —— Irreducible systems of algebraic differential equations, Transactions of the
American Mathematical Society, vol. 45 (1939), pp. 276-297.



Adberence

adjunction of indeterminates
adjunctions to fields

algebraic differential manifold
algebraically irreducible d.p.
algebraic manifold

analytic case

approximation theorems

Basis
, strong
—, weak

Chain
characteristic set
class

complete set
component
——, restricted
constant

, arbitrary

INDEX

The numbers refer to pages.

122

18

20, 52
21

30

82

23, 166
103, 122

9, 165
11
11

3, 164
5

2

150
23

24

1

57

Decomposition of finite systems 109, 118, 175

decomposition of ideals
decomposition of manifolds

13, 14, 166

22, 23, 117, 118, 165

differential field
differential polynomial
over a field
differential power series
differentiation

dimension

dimension of intersection
divisor

, essential prime

Elimination theory
embedded manifolds
equivalence

essential prime divisor
exponents of ideals
exceptional point
extended set
extensions of fields

1, 163
2

2

78

1, 163
44, 87
133
13, 81
14, 82

109, 112, 176
49

95

14, 82

78

124

150

1, 19, 50, 52

Field, algebraic
——, differential
fields, extensions of
fields of constants
finite systems

General solution
, restricted
generic point
generic zero

Ideal generated by a system
ideal, nontrivial prime

ideal of d.p.

ideal of polynomials

ideal, perfect

ideal, prime

ideals, decomposition of

, product of

, relatively prime
indeterminate, differential
indeterminates, adjunction of
, parametric

initial

intersection of general solutions

Jacobi’s bound
Kronecker’s theorem

Lagrange

Laplace

leader

low power theorem
Liiroth’s theorem

Manifold, algebraic

, algebraic differential

, irreducible

, reducible

, restricted

manifolds, decomposition of

1
1, 163

1, 19, 50, 52
20

109, 118, 175

30, 166

32

27

26, 83, 166

7

25

7

81

7

7

13, 14, 166
11

14

2

18
34, 84
5, 164
138

135
146

33
77
163
64, 126, 170
52

82
21
21, 83
21, 83
23

22, 23, 117, 118, 165

, operations on
——, sequences of

183

132
131



184

mark
mounomial
multiple
multiplier

Normal zero

Order of irreducible manifold
—— of resolvent

orders of components
orthonomic system

Painlevé’s transformation
parametric derivative
indeterminates
passive system

point of contact

of manifold

Poisson

polynomial ideal
principal derivative
product of ideals

INDEX
151  Relatively prime ideals 14
147  remainder 7
147 , clags 26
150 resolvent 34, 83
, order of 45
122 , construction of 110
restricted manifold 23
49 Separant 5, 164
45 singular zero 32
133 singular solution 32, 75
152 solution 21
, general 30, 166

128
153 Theorem of zeros 27, 28, 87, 111, 166, 176
34, 84

160  Zero 21, 81
122 , analytic 23
21 ——, generic 26, 83, 166
7 , normal 122
81 , regular 26
153 , singular 32
11  zeros, theorem of 27, 28, 87, 111, 166, 176



