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PREFACE

Differential algebra is easily described: it is (99 per cent or more)
the work of Ritt and Kolchin.

I have written this little book to make the subject more easily
accessible to the mathematical community. Ritt was at heart an
analyst; but the subject is algebra. As a result he wrote in a style
that often makes the road rough for both analysts and algebraists.

Kolchin’s basic paper [3] on the Picard-Vessiot theory is admirably
clear and elegant. However it is not entirely self-contained. In
particular, there is a crucial reference to an earlier paper [2], which in
turn makes use of the Ritt theory. Certain needed facts from alge-
braic geometry are also likely to be troublesome to the average reader.

I have sought to make the exposition as self-contained and elemen-
tary as possible. In addition to standard algebra (say the contents
of Birkhoff and Mac Lane’s Survey of Modern Algebra), a prospecti\}e
reader needs only the Hilbert basis theorem, the Hilbert Nullstel-
lensatz, the rudiments of the theory of transcendence degrees, and a
smattering of point set topology. A discerning reader will notice
several places where proofs can be shortened by the use of more sophis-
ticated techniques (Kronecker products, linear disjointness, methods
from algebraic geometry).

There are two main novelties.

(1) The Picard-Vessiot theory is developed without the use of the
Ritt-Raudenbush basis theorem.

As a result the book really contains two introductions : Chapters 1-v1
are an introduction to Kolchin’s papers, while Chapters 1 and vir can
serve as an introduction to Ritt’s two books and his numerous papers.
(Chapter vir can be read directly after Chapter 1).

(2) The necessary theory of algebraic matrix groups is developed
entirely within the framework of point set topology. Chapter 1v gives
just the minimum needed in the next two chapters. But in the
appendix (Chapter viir) I have inserted the natural analytic conti-
nuation of these ideas.
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There are in addition two minor points to which I would like to
call attention.

(3) A brisk account of classical Galois theory, slightly generalized,
occurs at the beginning of Chapter 111. I am indebted to Mr. George
Morgan for straightening me out on the proof of Lemma 3.2.

(4) In Chapter vi a « concrete » example of an equation (y" + xy=0)
not solvable by quadratures is carried through in full. Investigations
of this kind can be found scattered in the older literature, going back to
Liouville. Pertinent references can be located in the extensive biblio-
graphy given by Kolchin in [3].

I gratefully acknowledge the aid of the Office of Ordnance Research.
Work on this book was done in part with the support of a contract
with that agency.



CHAPTER 1

GENERALITIES
CONCERNING DIFFERENTIAL RINGS

1. DeEeRrivaTions. — A derivation of a ring A is an additive mapping
a->a' of A into itself satisfying

(ab) = a'b + ab'.

We write a’, d”, ..., a™ for the successive derivatives. By induction
one proves Leibnitz’s rule:

(@a)y®=a®b+ ...+ ,Ca®Db®4 ... 4 ab®,

If a’ commutes with a, we have (a¢")) = na*~! a’. If A has a unit
element, its derivative is necessarily O. If ais regular (has a twosided
inverse a—1) we find by differentiating aa—! = 1 that

(@) =—a"1ldaL
Theorem 1.1. — A derivation of an integral domain has a unique
extension to the quotient field.

Proof. The uniqueness is clear. In order to extend the deriva-
tion to the quotient field we define

(i)' _ ba'—ab’
b) b?

We verify that this rule gives the same result for ac/bc, and so is a
valid definition. To check additivity of the proposed derivation,
we bring a/b and c/d to the common denominator bd, and then we
use the linearity in a of the definition of (a/b)’. The proof of the
product law involves a slightly longer computation.

2. DirFrereNTIAL RINGS. — A differential ring is a commutative
ring with unit together with a distinguished derivation.

Examples. — 1. Any commutative ring with unit may be converted
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into a differential ring by imposing the trivial derivation (the deri-
vation sending everything into 0). In this way we may say that
ordinary ring theory is covered as a special case of differential ring
theory.

Note that on the ring of integers or the field of rational numbers
the only possible derivation is the trivial one.

2. The ring of all infinitely differentiable functions on the real
line, with the customary derivative. (Note that one must take infi-
nitely differentiable functions in order to have a system closed under
differentiation).

3. The ring of entire functions, with the usual derivative. Note
that, unlike the preceding example, there are no divisors of-0, and
hence there is a quotient field (the field of meromorphic functions).
More generally, we may take the functions analytic in a domain of
the complex plane.

4. Let A be any differential ring. We use the customary notation
AJx] for the ring of all polynomials, with coefficients in A, in an (ordi-
nary) indeterminate. If A is a field, A(x) denotes the field of rational
functions in x. The derivation in A may be extended to a derivation
of A[x] by assigning «' arbitrarily, defining (z")’ = nz"~'2’, and
extending by linearity. We have similar freedom in making A(x)
into a differential field (see Theorem 1.1).

5. Again let A be any differential ring. This time we form the
ring Afz;] of polynomials in an infinite number of ordinary indeter-
minates x,, T;, Zy... A unique derivation of Afxz;] is determined by
assigning z;., as the derivative of x;. Change notation so that

Ty =T, Tn = ™.

We call this procedure the adjunction of a differential indeferminate,
and we use the notation Aﬁx% for the resulting differential ring.
The elements of A % a:; are called differential polynomials in x (= ordi-
nary polynomials in x and its derivatives).

Suppose that A is a differential field. Then Af{z{ is a differential
integral domain, and its derivation extends uniquely to the quotient
field (Theorem 1.1). We write A <<z > for this quotient field;
its elements are differential rational functions of x (quotients of diffe-
rential polynomials).

The notation g g and < > will also be used when the elements
adjoined are not differential indeterminates, but rather elements of
a larger differential ring or field.
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In any differential ring A the elements with derivative 0 form a
subring C, called the ring of constants. If A is a field, so is C. Note
that C contains the subring generated by the unit element of A.

Let I be an ideal in a differential ring. A. We say that I is a diffe-
rential ideal if a < I implies a’ « I, or more briefly, if I' ¢ I. In the
ring A/l we introduce a differential structure by defining the
derivative of the coset a + Ito be a’ + I; this is independent of the
choice of representative in the coset, and actually defines a derivation in
A/l

Let A and B be differential rings. A differential homomorphism
from A to B is a homomorphism (purely algebraically) which further-
more commutes with derivative. If I is a differential ideal in A, the
natural homomorphism from A to A/I is differential. The terms

differential isomorphism and differential automorphism are self-expla-
natory.

Theorem 1.2. Let 1 be the kernel of a differential homomorphism
defined on a differential ring A. Then 1 is a differential ideal in A,
and A/l is differential-isomorphic to the image.

The proof is straightforward and is omitted.

3. RabicaL iDEALS. — As in ordinary commutative ring theory we
define an ideal I to be a radical ideal if a®e I implies ae L.

Lemma 1.3. — If ab lies in a radical differential ideal 1, then ab'el
and a'b 1.

Proof. — We have (ab) = a'b + ab’'e 1. Multiplying by ab’ we
obtain (ab’)®e I and hence ab’e .

Lemma 1.4. — Let 1 be a radical differential ideal in a differential
ring A, and let S be any subset of A. Define T to be the set of all x in
A withxScl. Then T is a radical differential ideal in A.

Proof. — T is an ideal by ordinary ring theory, and a differential
ideal by Lemma 1.3. Suppose finally that 2"eT. Then for any sin S
we have x*s"e I. Since I is a radical ideal, xse I, xeT.

In any commutative ring the intersection of any collection of radical
ideals is again a radical ideal. In a differential ring the intersection
of any set of differential ideals is a differential ideal; hence the inter-
section of any set of radical differential ideals is a radical differential
ideal. Therefore : for any set S in a differential ring there is a unique
smallest radical differential ideal containing S; we write it §S§ .
(This is to be carefully distinguished from the use of braces for diffe-
rential ring adjunction.)
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Lemma 1.5. — Let a be any element and S any subset of a differential
ring. Then a{S} c {aS}.

Proof. The set of all x with ax e gasg is, by Lemma 1.4, a radical
differential ideal. It contains S and hence contains%S % .

Lemma 1.6. — Let S and T be any subsets of a differential ring. Then
{S§{ {Tt < §sTi.

Proof. The set of all x with a:gT § c §ST§ contains S by Lemma
1.5, is a radical differential ideal by Lemma 1.4, and hence containsg st.

4. Rirt ALGEBRAS. — The radical of an ideal is defined to be the
set of all elements with some power in the ideal; it is a radical ideal.
For the purposes of differential ring theory we need to supplement this
with the result that the radical of a differential ideal is a differential
ideal. But this is not true without a suitable additional hypothesis.

Example. — Over a field of characteristic 2, let A be the two-dimen-
sional algebra with basis 1, x where 22 = 0 and 1 is a unit element.
By setting 1’ = 0, ' = 1 we define a derivation of A. The radical
of the zero ideal is generated by x, and is not a differential ideal.

Definition. — A Ritt algebra is a differential ring containing the
field of rational numbers (which is necessarily a subfield of the ring of
constants). A Ritt algebra is actually an algebra over the rational
numbers in the usual sense, infinite-dimensional in general.

Lemma 1.7. — Let 1 be a differential ideal in a Ritt algebra, and let
a be an element with a"e 1. Then (a')**1el.

Proof. We have (a")) = na*'a’el. Since I admits multiplication
by 1/n, a*'a’ e I. This isthe case k = 1 of the statement a"*(a’)2*1e I
which we assume by induction. Differentiate : )

(n—ka " Y ad")?*1 + 2k — Da"—*(a")?*2d"e 1.

After multiplying by a’ we see that the second term lies in I. We can
cancel the factor n — k in the first term and we find a"*(a')* e,
which is the case k + 1 of the statement we are proving inductively.
Finally we arrive at k = n, which gives us (a')**'e I.

Lemma 1.8. — In a Ritt algebra the radical of a differential ideal is a
differential ideal.

This is an immediate consequence of LLemma 1.7.



CHAPTER II

EXTENSION OF ISOMORPHISMS

5. KruLL's THEOREM. — It Is a standard theorem of ordinary com-
mutative ring theory that any radical ideal is an intersection of prim‘é
ideals. It is a fact that the word « differential » can be inserted in both
the hypothesis and conclusion of this theorem. The technique of the
proof rests on the following lemma.

Lemma. — Lel T be a multiplicatively closed subset of a differential
ring A. Let Q be a radical differential ideal maximal with respect to

the exclusion of 'T. Then Q is prime.

~ Proof. — Suppose on the contrary that abeQ, a ¢ Q, b ¢ Q. Then
gQ, a % and g Q,bf are radical differential ideals properly larger than Q;
hence they contain elements of T, say ¢, and {,, We have

tt,e $Q,a}§Q,b{cQ
by Lemma 1.6, a contradiction.

Theorem 2.1. — Lel 1 be a radical differential ideal in a differential
ring A. Then 1 is an intersection of prime differential ideals.

Proof. — Given an element x not in I, we have to produce a prime
differential ideal containing I but not containing x. Take T to be the
set of powers of x; by Zorn's lemma, select a radical differential ideal
Q containing I and maximal with respect to the exclusion of T. The

lemma asserts that Q is prime.

6. EXTENSION OF PRIME IDEALS. — We now contemplate the follo-
wing situation: A is a differential ring contained in B (which includes
the tacit assumption that they have the same unit element), P is a
prime differential ideal in A, and I is a radical differential ideal in B
which contracts to P (thats is, InA = P). We ask two questions:

(1) Can I be enlarged to a prime differential ideal which also con-

tracts to P?
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(2) Is I even the intersection of prime differential ideals contracting
to P ?
The answer to the first question is an easy unconditional affirmative.

Theorem 2.2. — Let B be a differential ring with a differential subring
A. Let I be a radical differential ideal in B such that P =1 n A is a
prime differential ideal in A. Then 1 can be enlarged to a prime diffe-
rential ideal in B which also contracts to P.

Proof. — T is taken to be the complement of P in A and the lemma is
applied.

To answer the second question affirmatively requires the additional
hypothesis that abe I, ae A, be B implies a or b in I. The hypothesis
is inescapable since any ideal I satisfying the conclusion of the theo-
rem has this property.

Theorem 2.3. — Let B be a differential ring with a differential subring
A. Let1bearadical differential ideal in B suchthat abel,ae A, be B
implies that a or b is in 1. (Note that P = 1 n A is consequently a prime
differential ideal in A). Then I can be expressed as an intersection of
prime differential ideals in B each of which also confracts to P.

Proof. — Let x be an element in B but notin I. We must construct
a prime differential ideal in B which contains I, contracts to P, and fails
to contain x. Take T to be the set of all elements ax” where a is in A
but not in P. Then T is multiplicatively closed, and it follows from
our hypothesis that it is disjoint from I. The lemma then provides
us with a prime differential ideal ) which contains I and is disjoint from
T. TheelementxisnotinQ,sincexeT. Finally,toseethatQn A=P,
let aeQnA. Then are(), and this is a contradiction unless ae P.
(I am indebted to Robert Macrae for this brief proof of Theorem 2.3.)

7. A LEMMA ON POLYNOMIAL RINGS. — For convenience we separate
out in this section an elementary (non-differential) lemma.

Lemma 2.4. — Let K and L be fields with K< L. Let B be the ring
obtained by adjoining a (possibly infinite) set of indeterminates to L.,
A the ring obtained by adjoining the same indeferminates to K. Let P
be an ideal in A, J the ideal in B generated by P, and 1 the radical of J.
Then: (a) If P is a radical ideal, I n A = P. (b) Suppose that P is a
prime ideal and that ab € 1with ae A, beB. Then either a is in P
or b is in 1. (c) Suppose that the characteristic is O and that P # A
(P need not be a radical ideal). Let y be one of the indeterminates and s
an element which is in L but not in K. Then y — s is not in 1.

Proof. — Welook at L for the moment as merecly a vector space over
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K, and select a vector space basis u., « ranging over an index set. We
write u,, u, for two typical basis elements (although there is no sugges-
tion that the index set is countable and of course no need to well order
it). In particular we choose u; = 1. Every element of B has a unique
expressionXa.u, where a, is in A; and such an element lies in A only
in case all coefficients except a; vanish. Now J evidently consists
exactly of all elements Zp.u., p.eP. It follows (for arbitrary P)
that J n A =P.

a) We assume that P is a radical ideal and that b liesin I n A. Then
a suitable power b" lies in J n A = P. Since P is a radical ideal,
beP. ThusI n A =P.

b) Suppose further that P is prime and that abel, ae A, beB.
Then a"b"eJ. Say b".= Ba.u.. We find 2(aa.)u,eJ, whence
each a*a.e P. Either aeP, or else every a,eP, in which case bre J,
bel.

¢) We shall assume that y — s does lie in I and reach a contradiction.
Some power (y — s)™ lies in J. Let I, denote the set of all polyno-
mials in y (coeflicients in L) which lie in J. I, is a principal ideal
whose generator divides (y — s)™. This generator cannot be a cons-
tant (i.e. a non-zero element of L) for then J would be all of B, and

= J n A would be all of A, contradicting our hypothesis. Thus the
generator is of the form (y — s)" with r=1. We now invoke again
the vector space basis u,, taking u; = 1, u, =s. When (y —s)" is
expressed as a linear combination of the u's, each separate coefficient
must be in P and hence in J. In particular this is true for the coeffi-
cient of u;, a polynomial beginning with y" and then having no term
in y"~1.  This polynomial must coincide with (y — s)" = y~ — rsy™1. ..
Because of characteristic 0, this is impossible.

Remark. — Part (¢) can be sharpened to the statement that (for
characteristic O) J is a radical ideal whenever P is. We shall not need
this refined result for our later purposes.

8. ADMISSIBLE ISOMORPHISMS. — An isomorphism between two
fields K and L will be called admissible if there exists a field M contai-
ning both K and L.

Admissible isomorphisms are going to play the role of temporary
substitutes for automorphisms; that is, in suitable contexts we shall be
able to prove that admissible isomorphisms are indeed automorphisms.
Classical Galois theory can be developed in this way: if N is a finite-
dimensional separable extension of K, then N is normal over K if and
only if every admissible isomorphism of N, leaving K elementwise
fixed, is an automorphism. In the usual modern treatment of Galois
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theory, admissible isomorphisms are not mentioned; but they seem to
be indispensable for differential Galois theory.

We shall now prove two basic theorems concerning the extension
and existence of admissible isomorphisms. The reader may find it
instructive to compare these theorems with their (much easier) ana-
logues in ordinary field theory.

Theorem 2.5. — Let M be a differential field of characteristic O, K and
L differential subfields, and let there be given a differential isomorphism S
of K onto L.. Then S can be extended o an admissible difJerential iso-
morphism defined on M.

Proof. — By transfinite induction we reduce the problem to the
following : given an element u in M but not in K, we seek to define an
extension ot the isomorphism S to u, the image of u lying in a suitable
extension of M. Let K}u{ be the differential integral domain obtai-
ned by adjoining u to K, and let K%yg be the differential integral
domain obtained by adjoining the differential indeterminate y. Let
P, be the kernel of the differential homomosphism from K% y§ onto
K{u% defined by sending y into u; P; is a prime differential ideal
in K%y% (P, is the differential substitute for the irreducible poly-
nomial for u, which would be used at this point in ordinary field theory).
Via the isomorphism S we transfer P, to a prime differential ideal P
in Lgyg, Let J be the ideal in M§y§ generated by P. Since J
consists of all finite sums Xp;m; with p;eP, miengg, it is plain
that J is a differential ideal. Let Ibetheradical of J. By Lemmal.8,
I is a (radical) differential ideal in M§y§ By part (a) of Lemma
24,In L§y§ = P. (The K and L of Lemma 2.4 are to be replaced
by L. and M. Note that, from the point of view of ordinary algebra,
M g yg is obtained by adjoining a countable number of ordinary
indeterminates to M). By Theorem 2.2, I can be enlarged to a
prime differential ideal () in Mg y} satisfying Q n L§y§ = P.

Write v for the image of y in the natural homomorphism from
ngé onto ngg/Q. Next we define a differential homomorphism
from K{y{ onto L{y} in two steps: K{y{ to Liy{ via S, then
L§y§ to L§y§ by sending y into ». The kernel of the second map-
ping is Q n Lgyg = P. Hence the kernel of the product mapping
is P;.  Thus we get a differential isomorphism between the differential
integral domains Kguf and L{vf, extending S. By Theorem 1.1,
the isomorphism extends uniquely to a differential isomorphism
between the quotient fields. This concludes the prof of Theorem 2.5.

Theorem 2.6. — Let K be a differential field of characteristic O. Let s
be an element in a larger differential field 1.,s &« K. Then there exists an
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admissible differential isomorphism on L which actually moves s and is the
identity on K.

Proof. — The fundamental procedure is the same as that used in
proving Theorem 2.5. For a differential indeterminate y, we let P be
the kernel of the homomorphism from Kgyg onto K§s§ Of course,
P # Kgyg, for s 4 0. Let J be the ideal in L§y§ generated by P,
where L. = K <{s >. Let I be the radical of J. Then I is a radical
differential ideal in L§y§ which contracts in K §y§ to P. Suppose
that I has been expanded to a prime differential ideal Q in Lgyg
which also contracts in K{ y§ to P. Write f for the image of y in the
homomorphism of L g y§ onto L § y % /Q. Then we can build an admis-
sible differential isomorphism of K <s > onto K <t >, sending s
into £. When is { equal to s ? Answer: only if y —se Q.

Now part (b) of Lemma 2.4 tells us that the hypotheses of Theorem 2.3
are fulfilled (with Kg y§ and L g y% playing the roles of A and B
respectively). Consequently the intersection of Q’s such as the above
is I. If, therefore, we always find y — s € Q, it would follow thaty — s
isin I. But this contradicts part (c¢) of Lemma 2.4.

We have thus constructed a differential isomorphism of K <<s >
into L. << > which moves s. By Theorem 2.5 we may extend this
to an admissible differential isomorphism defined on all of L.
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PRELIMINARY GALOIS THEORY

9. THE DIFFERENTIAL GaLois Group. — Let M be a differential
field, K a differential subfield of M. We define the differential Galois
group G of M/K to be the group of all differential automorphisms of
M leaving K elementwise fixed. For any intermediate differential
field L. define L.’ to be the subgroup of G consisting of all automor-
phisms leaving L. elementwise fixed (in other words, L’ is the differential
Galois group of M/L)). For any subgroup H of G define H' to be the set
of all elements in M left fixed by H; H' is automatically a differential
field lying between K and M. We have (obviously) L" o L, L; o L,
implies L,;" ¢ L/, and similar statements apply to subgroups. From
just these facts one deduces H" = H', L” = L'. Call a field or
group closed if it is equal to its double prime. Then: any primed
object is closed, and priming sets up a one-one correspondence between
closed subgroups and closed intermediate differential fields. This of
course leaves completely untouched the really important question:
which subgroups or subfields are closed?

Classical Galois theory can be slightly sharpened by showing that
the property of closure, of fields or of groups, is stable under « finite
increases ». (From this discussion we shall actually use only the fact
that the subgroup corresponding to a finite-dimensional extension is
of finite index).

Lemma 3.1. — Let N be a differential field with differential sub,
field K. Let L. and M be intermediate differential fields with M > L-
[M:L] =n. LetL' and M’ be the corresponding subgroups of the diffe-
rential Galois group of N over K. Then: the index of M’ in L' is at
most n.

Proof. — Since relative degrees of fields and relative indices of
groups are both multiplicative, it is enough to prove the lemma for the
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case of a simple extension. Say M = L (u). Then the right cosets
of L' mod M’ correspond exactly to the possible images of u (in auto-
morphisms keeping L. fixed). There are at most n such images, namely
the roots of the irreducible polynomial for u over L.

Lemma 3.2. — Let G be the differential Galois group of a differential
field extension M of K. Lef H and J be subgroups of G withH > J and J
of index n in H. Let H' and J' be the corresponding infermediate diffe-
rential fields. Then [J': H'] < n.

Proof. — Suppose on the contrary that u,,.. ., u.,, are elements of
J’ linearly independent over H'. Let S;, S,,..., S, be any represen_
tatives of the right cosetsof H mod J. We cansuppose for convenience
that S; = I. Form the equations

n—+1
(* Mas)y=0 (=1, - n).
i—=1
Since these are n linear homogeneous equations in n 4 1 variables,
there exist non-trivial solutions in M. Among all such solutions pick
one with a maximum number of zeros. Say this solution consists of
the non-zero elements qay,..., a. followed by O's. We can suppose
that q; = 1. It is not possible that all the a’s lie in H’, for then the
first of the equations (*) contradicts the linear independence of the
u's.  Suppose for definiteness that a, is not in H'. Then some auto-
morphism in H actually moves a,; say this automorphism lies in the
coset JS,. Itis harmless to make a changein the choice of a represen-
tative of the coset, for the u’s are invariant under J. Thus we can
suppose a,Sx # a.. Apply S to the equations (*) and then subtract.
The result is a shorter solution of the equations, a contradiction.
By combining these two lemmas we obtain:

Lemma 3.3. — Let G be the differential Galois group of a differential
field extension M of K. Then any finite-dimensional extension of a
closed intermediate differential field is closed. Also any subgroup of G
having a closed subgroup of finite index is itself closed.

Something can be said concerning the meaning of normality of
subgroups even in this very general context.

Theorem 3.4. — Let M be a differential field, K a differential subfield,
G the differential Galois group of M/K. (a) If H is a normal subgroup
of G, then any differential automorphism of M/K sends H' onto itself.
(b) If L is an intermediate differential field with the property that any
differential automorphism of M/K sends L onto itself, then L' is a normal
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subgroup of G, and G[L' is the group of all differential automorphisms of
L/K which can be extended to M.

Proof. — a) Let S be a differential automorphism of M/K, xe H'.
We show that xfSe H’. For this we need ST = zS for T in H, i.e.,
xSTS1= x. Since STS-1eH, this is true. We have thus shown
that S sends H' into itself. Since the same is true for S—1, S actually
sends H' onto itself.

b) Proving that L’ is normal is the same computation as in (a),
read backwards. There is a natural homomorphism of G into the
differential Galois group of L/K, obtained by restricting the auto-
morphisms to L.. The kernel is L/, and the image consists of those
differential automorphisms of L/K which can be extended to M.

One corollary of Theorem 3.4 1s worth noting : the closure of a normal
subgroup is normal.

We define M to be normal over K if any element in M but not in K
can be actually moved by a differential automorphism of M/K; in the
notation above, normality means that K” = K and that K is closed.

A subfield L. that corresponds to a normal subgroup is normal
over K, as one easily sees. The converse is not true. For later use
we shall prove Lemma 3.6, a case where the converse holds because of
additional hypotheses.

Lemma 3.5. — Let L be a closed subfield, H the corresponding subgroup.
Then the normalizer of H (the set of all S in G with SHS—! = H) consists
of all S in G that map L onfo itself.

The proof is by a computation like that in Theorem 3.4.

Lemma 3.6. — Let L be a closed subfield of M, L. normal over K. Lel
H be the subgroup corresponding to L.. Assume that the normalizer H,
of H is closed and that every differential automorphism of L over K can be
extended to M. Then H is normal and moreover G|H is the full diffe-
rential Galois group of L. over K.

Proof. — In order to prove H normal, we have to show that H; = G.
If L, is the field corresponding to H, it is equivalent (since H, is closed)
to prove L, = K. Now by Lemma 3.5, H; consists of just those S in
G that map L onto itself. Among these we find all the differential
automorphisms of L/K, for by hypothesis they can be extended to M.
Since, further, L is assumed to be normal over K, it follows that no
elements of L. other than K are fixed under H;,. But this means that
L, = K, as desired. The final statement of the lemma follows from
the last portion of Theorem 3.4.
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10. THE WronskI1AN. — The Wronskian of n elements y,, ys,. . . U, in
a differential ring is defined as the determinant

U1 Yo =+ Yn

/

!{i yéy’n

yl("'—l) y2("—1) ..o yn(n—l)

Theorem 3.7. — Let F be a differential field with field of constants C.
Then n elements of F are linearly dependent over C if and only if their
Wronskian vanishes.

Proof. Suppose y,,..., Y. are linearly dependent over C, Zc;y; = 0.
On differentiating this equation n — 1 times we get n linear homoge-
neous equations for ¢,,..., ¢,.. Since the ¢’s are not all 0, the determi-
nant must vanish.

Conversely suppose the Wronskian of y,,. .., y. vanishes. Then we
can find in F a non-trivial solution ¢, ..., ¢, of the equations Z¢;y 9 = 0,
j=0,...,n—1. We may assume that ¢, = 1 and that the Wrons-
kian of y,, ..., y. does not vanish. Differentiating the first n — 1 of
our equations and then cancelling the appropriate original equations,
we arrive at n — 1 linear homogeneous equations in ¢/, ..., ¢’ with
determinant the Wronskian of y,, ..., y». Hencec, = ... =¢,’ = 0,
and the c¢'s are constants.

Because of Theorem 3.1 we shall be able to use the phrase « linearly
dependent over constants » unambiguously; it does not matter which
differential field we think we are in, for the vanishing of the Wronskian
is independent of the choice of field.

11. PicAarD-VEssioT EXTENSIONS. — Consider a linear homogeneous
differential equation
(*) L) =y +a P+ + @y + ay =0

with coefficients in a differential field K. Let u,, ..., u.,, be solutions
of the equation in a certain (possibly) larger differential field. We
claim that 1wy, ..., .., are linearly dependent over constants; for the
equations L(u;) = 0 show that the final row of the Wronskian of uy,.. .,
Un., is a linear combination of the preceding rows.
Definition. — Let (*) be a linear homogeneous differential equation
with coefficients in a differential field K. We say that a differential
field M containing K is a Picard-Vessiot extension of K [for the equa-
tion (*)] if,

1) M=K<u,...,u > where u,, ..., u,are n solutions of (*)
linearly independent over constants,
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(2) M has the same field of constants as K.

If K is of characteristic O and has an algebraically closed field of
constants, the basic existence question has an affirmative answer : there
exists a Picard-Vessiot extension for any linear homogeneous diffe-
rential equation over K. The difficult part of the proof is to maintain
the field of constants — see [4]. The same ideas can be exploited to
prove the uniqueness (up to differential isomorphism) of a Picard-

Vessiot extension for a given equation (communication to the author
from Kolchin).

Examples of Picard-Vessiot extensions. — 1. Two simple types
(the adjunction of an integral and the adjunction of an exponential of
an integral) are discussed in the next section.

2. If K is the field of all functions meromorphic in a domain of the
complex plane, classical existence theorems reveal that a Picard-Ves-
siot extension exists corresponding to any linear homogeneous diffe-
rential equation over K.

3. If we are free to select both the top and bottom fields, we can
easily exhibit a Picard-Vessiot extension whose differential Galois
group is the full linear group. Let K, be any differential field.
Let M =K, < x;, ..., %, > be the field obtained by adjoining n
differential indeterminates to K,. Let T be any non-singular linear
transformations on the x's with coefficients in the constant field C of K, :

.’EiT = EC,‘j.'L'j, Cij € C.
We define T on all of M by agreeing that for any derivative
.’Ili(m)T = EC,-J'.’Ej(m).

Then T is a differential automorphism of M. Let K be the fixed field
of M under all the T's. Define

L(y) = W(y, T1s ot x")/W(xl’ Tty CC,,)

where W denotes the Wronskian. Then L (y) = 0 is a linear homo-
geneous differential equation in y with coefficients in K; x;, ..., x, are
linearly independent solutions; M is a Picard-Vessiot extension of K
for the equation L (y) = 0; and the differential Galois group is the full
linear group.

When the Galois theory is completed in Chapter v, we shall be able
to amplify this example: by taking M over a suitable intermediate
differential field we exhibit any algebraic matrix group as a Galois
group.

Let M be a Picard-Vessiot extension of K, and S a differential auto-
morphism of M over K. Then u;S is necessarily a linear combination
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of the u's with coefficients in the constant field C:uS = Z¢;u;.
The matrix ¢;; is non-singular since the inverse automorphism gives
rise to the inverse matrix. Thus the differential Galois group is
isomorphic to a multiplicative group of nnn-singular matrices over C.
The discovery of which matrix groups are eligible is one of the main
questions on the agenda.

Lemma 3.8. — Let K c¢ L ¢ M be differential fields. Suppose
that L is a Picard-Vessiot extension of K, and that M has the same field of
constants as K. Then any differential automorphism of M over K sends L.
onto itself.

The proof is immediate.

12. Two sPEcIAL cases. — We proceed to study two important types
of building blocks for larger extensions. The first is the process of
adjoining an integral. Naturally, we do this only for elements not yet
possessing an integral; otherwise we would merely be adjoining a new
constant.

Lemma 3.9. — Let K be a differential field of characteristic O. Let u
be an element of a larger differential field with u' = aeK, where a is
not a derivative in K. Then u is transcendental over K, K << u> is a
Picard-Vessiot extension of K, and its differential Galois group is iso-
morphic to the additive group of constants in K.

Proof. — If u satisfies a polynomial equation over K, take the irre-
ducible equation, say

u* 4+ bur—1 4+ ... =0.
Differentiating, we get

nu*"la -+ bu—14+...=0.

Hence na = — b’ and a is the derivative of — b/n in K, a contra-
diction.

Next we show that K <C u > contains no new constants. First
suppose that a polynomial bu* 4 byu*! 4 ...is a constant. On
differentiating we find

biu® + (nbya + by)ur—1 4 ... =0,

Hence b, = nbja + by’ = 0, a is the derivative of — b,/nb,. Suppose
that the rational function f(u)/g(u) is a constant, where this fraction is
in lowest terms, ¢ actually contains u, and its leading cefficient is 1.
We find that f/g = f'/¢g’, where ¢’ is a non-zero polynomial of lower
degree than g. This contradicts our assumption that f/g is in lowest
terms.
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We observe that 1 and u are solutions of y' — (a’/a)y = 0, linearly
independent over constants. Hence K < u > is a Picard-Vessiot
extension of K.

In a differential automorphism of K < u > over K, u must go into
another element with derivative a. That is, u must be sent into
u + c¢ with c in the constant field C. The mapping u - u + ¢ induces
an automorphism of K < u > over K, at least in the purely algebraic
sense. We verify directly that it is a differential automorphism of
K << u >, and it is enough to do this on a polynomial Z\u’. The
latter is sent into Z\; (u + c¢)* with derivative ’

B[in(u + ¢)~ta 4 M (u 4+ ¢).

But this is the image of the derivative Z(i; u/~'a + A\,/u).
The second type of extension we refer to as the adjunction of the
exponential of an integral. 'We prove a somewhat weaker result.

Lemma 3.10. — Let K be a differential field, u an element satisfying
the equation y' — ay = 0, ae K. Suppose that K << u > has the same
field of constants as K. Then K << u > is a Picard-Vessiot extension
of K, and its differential Galois group is isomorphic to a subgroup of the
multiplicative group of non-zero constants in K.

Proof. — It is evident from the definition that K << u > is a Picard-
Vessiot extension of K. If v is any other solution of y' — ay = O we

find (v/u)’ =0, so v = cu with c a constant. Thus every differential
automorphism is of the form u - cu.

13. LiouviLLE EXTENSIONS. — We define M to be a Liouville
extension of K if there exists a chain of intermediate differential fields
K=K, cK,c ... c K, = Msuch that each K;,; is an extension
of K; by an integral or an exponential of an integral.

Theorem 3.11. — Let M be a Liouville extension of the differential
field K, having the same field of constants as K. Then the differential
Galois group G of M over K is solvable.

Proof. — It follows from Lemmas 3.9, 3.10, and 3.8 that every
differential automorphism of M over K automatically sends K, onto
itself. Let G, be the subgroup of G corresponding to K, in the Galois
correspondence. By Theorem 3.4, H, is a normal subgroup of G.
Since G/H, is a subgroup of the differential Galois group of K,/K
(Theorem 3.4), and the latter is abelian, G/H, is abelian. In this way
we see that G is solvable.

This result has two defects.  First, it is desirable to prove a theo-
rem of this kind for fields which are embedded in a Liouville extension.
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‘Second, we ought to allow algebraic extensions as a further type of
building block. It will require a lot more theory to cover these two
objections.

14. TriANGULAR AUTOMORPHISMS. — Theorem 3.12 is a prelimi-
nary step toward a converse of Theorem 3.11. We insert it at this
point to emphasize that its proof does not require any of the deeper
theory yet to be developed.

Theorem 3.12. — Let the differential field M be normal over its di fferen-
tial subfield K. Suppose that u,, ... u,e M are elements such that for
every differential automorphism ¢ of M we have

(*) uie = Qul; + Qi i+ qUivq + -+ - ~+ Qiplln (i =1, n) :

with the a's constants in M (depending on ¢). Then K << uy, ..., u, >
is a Liouville extension of K.

Proof. — The last of the equations (*) reads u,s = a,.u,. Diffe-
rentiating and dividing, we find that u,'/u, is invariant under ¢ (we
can suppose u,70 for otherwise u, could simply be suppressed). By the
normality of M over K, u,'/u,e K. Hence the adjunction of u, to K
is the adjunction of an exponential of an integral. Next divide each
of the n — 1 preceding equations by the equation u,6¢ = a,.u,., and
differentiate. The result is

. ! . . ! . !
<ll’>c:fl‘_‘<li> _;_..._'_a’v"—l(u"—l).
un ann un ann un
This is a set of equations of the same form in the elements (u;/u,)’
(i=1,...,n—1). By induction on n, the adjunction of (u;/u.)'to K

yields a Liouville extension. Then adjoining u;/u, themselves means
adjoining integrals.




CHAPTER 1V

ALGEBRAIC MATRIX GROUPS
AND THE ZARISKI TOPOLOGY

15. Z-spaces. — Let I be any field. Let V be an n-dimensional
vector space over I, 1.e., the set of all n-ples with elements in IF'. Let
F [z, ..., z:] be the polynomial ring in n indeterminates over F. By
an algebraic manifold in V we mean the set of all zeros of a collection
of polynomials in F[z;, x,, ..., x,]. It is equivalent to say that an
algebraic manifold is the set of zeros of an ideal in F[z,, ..., x.]. By
the Hilbert basis theorem the ideals in F[z, ..., x,] satisfy the ascen-
ding chain condition. Hence the algebraic manifolds in V satisfy
the descending chain condition.

One knows that the union of a finite number or the intersection of
any number of algebraic manifolds is again an algebraic manifold. We
are therefore able to use the algebraic manifolds as closed sets to define
a T,-topology on V, called the Zariski topology.

With this as motivation, we define a Z-space to be a Tj-space
satisfying the descending chain condition on closed sets (or équiva-
lently, the ascending chain condition on open sets).

Lemma 4.1. — a) Every subspace of a Z-space is a Z-space.
b) If a T,-space is a continuous image of a Z-space, it is itself a
Z-space. ¢) A Hausdorff Z-space is finite.

The first two parts of the lemma are immediate, whil_e the third is
a consequence of the known fact that an infinite Hausdorff space has
an infinite number of disjoint open sets.

Lemma 4.2. — A Z-space is the union of a finite number of disjoint
open and closed connected subsels.

Proof. — Let the Z-space be X. If X is not connected, it is the
union of two disjoint open and closed sets. If either of these two
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sets is disconnected, it may be similarly split. The descending chain
condition on closed sets makes this process terminate in a finite number
of steps, and we reach an open and closed connected component of X.
In the complement of this we extract a second open and closed compo-
nent, etc. The ascending chain condition on open sets causes this
procedure also to terminate in a finite number of steps.

16. T;-grouPs AND Z-GrRoups. — The group G of all non-singular n
by n matrices over a field F is a subset of n>-dimensional space and, as
such, carries the Zariski topology. The nextlemma tells us that in this
« topological group » multiplication is separately continuous in its
variables, and that the inverse is continuous. Multiplication is not
however jointly continuous in its variables (unless F is finite); for one
knows that joint continuity would make G Hausdorff, and even
completely regular. But Lemma 4.1 (c¢) says that a Hausdorff Z-space
is finite.

The group G X G is a subset of 2n?-dimensional space and thus
admits the Zariski topology induced by that space, a topology which is
stronger than the Cartesian product of the individual Zariski topologies.
Multiplication in G would indeed be jointly continuous if we used the
Zariski product topology instead of the Cartesian product topology;
but this would not fit our program of studying G as much as possible
in the spirit of abstract topological groups.

Lemma 4.3. — Let V and W be m-dimensional and n-dimensional
spaces over I, taken in the Zariski topology. Let ry, ..., r. be rational
functions in m variables x,, ..., xn. Let S be the set where the denomi-
nators of ry, ..., r, vanish, and let T be the complement of S in V-
Then the mapping from T to W, defined by (x;, ..., Tm) > Y1 - - -» Yn)
with y; = rx,, ..., Tm), is continuous.

Proof. — We have to show that the inverse image of a closed set is a
closed set. A closed set in W consists of the zeros of a set of polyno-
mials gi(y;, ..., y.). The inverse image consists of all zeros in T of
the rational functions ¢;(r;, ..., r»), which is the same as the zeros
of their numerators. This is a closed set in the Zariski topology
for T.

The example of matrix groups under the Zariski topology motivates
the next definition.

Definition. — We say that G is a T;-group if it is a group and a
T, space in such a way that the inverse is continuous and multiplication
1s separately continuous in its variables. Equivalently, we may say
that left multiplication, right multiplication and inversion are homeo-
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morphisms of G onto itself. A Z-group is a T,-group whose space is a
Z-space.
The theory of the component of the identity works in any T,-group.

Lemma 4.4. — The component of the identity in a T,-group is a closed
normal subgroup.

Proof. Let C be the component of the identity in the Tj-group G.
C~1is connected (being the continuous image of a connected set) and
contains 1; hence C1 ¢ C. For ce C we have that ¢ C is connected
and shares the element ¢ with C; hence ¢ C =« C. Thus C is a subgroup.
Since for any x in G, x~'Cx is connected and contains 1, x "1Cx < C
and C is normal. |

Putting together LLemmas 4.2 and 4.4 we obtain :

Lemma 4.5. — The component of the identity in a Z-group is a closed
normal subgroup of finite indezx.

17. C-croups. — In a T;j-group, or even a Z-group, it may not be
true that the center is closed. Further: the closure of an abelian
subgroup need not be abelian. Most alarming for our immediate
purposes is the fact that the commutator subgroup of a connected
group need not be connected. Here is a method for constructing
appropriate examples. Let G be an arbitrary group. Topologize G by
declaring that the only closed sets are the finite ones and all of G.
(Since this is the weakest possible T;-topology on G, it is often referred
to as the minimal T;-topology). Then G is a Z-group. To get an
example where, for instance, the center is not closed, we merely have
to arrange that the center of G is infinite but not all of G (examples of
such groups abound).

To get the results we require, we need not go all the way to a topo-
logical group. A weaker axiom will suffice.

Definition. — A C-group is a T;-group in which the mapping a =—a—ra
( fixed) is continuous.

Matrices under the Zariski topology form a C-group. For let X be
a fixed matrix. The entries of the matrix A-*X A are rational func-
tions of the entries in the matrix A. By Lemma 4.3 the mapping
A — A-1XA is continuous. More generally the mapping sending A
into any « word » in A and other fixed matrices in continuous, but we
shall not make use of any word except A-1XA.

Lemma 4.6. — Let G be a C-group whose component of the identity has
finite index k. Then any finite conjugate class of G has at most k elements.

Proof. — Suppose on the contrary that there exists an element x
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with a finite conjugate class, the number of elements in the class excee-
ding k. The mapping a - a~'za is continuous. The inverse image of
each conjugate is open and closed. This yields a decomposition of G
into more than k open and closed sets, a contradiction.

For later use, we note a special case of Lemma 4.6 :

Lemma 4.7. — In a connected C-group any non-central element has an
infinite conjugale class.

Theorem 4.8. — If G is a connected C-group, the commutator subgroup
G' is again connected.

Proof. — Write D, for the set of all productes of k commutators
in G. ThenD,; ¢ D, c¢ ... and the union of all the D’s is G’. It will
suffice for us to prove that each D, is connected. Consider the map-
ping

a, > artbila;baz bz azbs - - - artbitagby,
all elements other than a; being held fixed. The mapping is conti-
nuous and hence the image is connected. The image has a point in
common with D,_,, obtained when a; = b,. Now let a; vary over G.
As a result we express D, as a union of connected sets, each having a
point in common with the (connected by induction) set D,—,. Hence D,
is connected.

We insert at this point two further results, to be used in Chapter v.

Lemma 4.9. — Let G be a C-group, H a closed subgroup of G. Sup-
pose that either (1) H is of finite index in G, or (2) H is normal and G/H
abelian. Suppose further that the component of the identity in H is
solvable. Then the component of the identity in G is solvable.

Proof. — In case (1) the two components of the identity coincide.

Case (2). — Write K, K, for the components of the identity in G
and H respectively. Write G, K’ for the commutator subgroups
of G and K respectively. Then H contains G’ and therefore K'. By
Theorem 4.8, K'is connected. Hence K’ ¢ K,. By hypothesis K, is
solvable, whence K’ is solvable and K is solvable.

Lemma 4.10. — In a C-group the normalizer of a closed subgroup is
closed.
Proof. — Let S be the closed subgroup. For fixed s in S, consider

the mapping a = a s a!. The inverse image of S is closed and consists
of all a with as a1eS. Take the intersection of these closed sets for
all sin S; we see that the set of a with a S a1 < Sis closed. Likewise
the set of a with a*Sac S is closed. The intersection of these two
closed sets is the normalizer of S.
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18. SOLVABLE CONNECTED MATRIX GROUPS. — We proceed to prove
a theorem wich plays a key role in the Picard-Vessiot theory.

Theorem 4.11. — Let G be a solvable multiplicative group of non-
singular matrices over an algebraically closed field. Suppose that G is
connected in the Zariski topology. Then G can be put in simultaneous
friangular form.

Remarks. — 1. Lie's theorem in the theory of Lie groups says the
same thing except that the field is the field of complex numbers, and
connectedness is taken in the ordinary Euclidean topology. But the
Zariski topology is weaker than the Euclidean topology, so that Eucli-
dean connectedness implies Zariski connectedness. Thus Theorem 4.11
is stronger than Lie’s theorem and extends it to any algebraically closed
field.

2. Sometimes people mean by Lie’s theorem the infinitesimal ana-
logue : a solvable Lie algebra of matrices over an algebraically closed
field admits simultaneous triangular form. This theorem is true for
characteristic O but false for characteristic p. We have here an illu-
minating example of how groups sometimes behave better than Lie
algebras.

3. If G is a commutative set (not necessarily a group) of matrices
over an algebraically closed field it is a standard theorem that G can be
put into simultaneous triangular form; connectedness is irrelevant.
At the appropriate moment in the proof of Theorem 4.11 we shall use
this fact.

4. However, connectedness cannot be dropped from the hypothesis
of Theorem 4.11. For instance, any finite solvable group can be
faithfully represented by unitary matrices, and a set of unitary matrices
admits simultaneous triangular form only if it is commutative.

5. The appearance of the word « connected » in Theorem 4.11 is a
blemish, in view of the highly algebraic nature of the subject. It is
worth noting that we can state a purely algebraic corollary : any sol-
vable multiplicative group of matrices over an algebraically closed field
has a normal subgroup of finite index which admits simultaneous trian-
gular form. If we wish to drop the hypothesis of algebraic closure,
we can salvage the following fact: if G is a solvable group of matrices
over any field, then G has a normal subgroup of finite index whose com-
mutator subgroup is nilpotent.

Proof of Theorem 4.11. — We divide the proof into six sleps.

(1) Suppose that G is reducible, i.e. that the vector space (say V)
admits a non-trivial invariant subspace W. Take a basis of W and
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expand it to a basis of V. Relative to this basis the matrices A; of G

take the form
B; O
A, =
% Ci

The mapping A; - B;is a homomorphism which, by Lemma 4.3, is
continuous. Hence B; is a connected solvable matrix group. By induc-
tion on the size of the matrices, B; can be put in triangular form. A
similar argument applies to C;, and the result is that G reaches trian-
gular form. Consequently we may assume that G is irreducible.

(2) By Theorem 4.8 the commutator subgroup G’ of G is connected.
By an induction on the length of the derived series, we may assume
that G’ is in triangular form.

(3) Let W be the subspace of V spanned by all joint characteristic
vectors of G'. W s£ O since the triangular form of G’ yields at least one
joint characteristic vector. W is invariant under G. For let « be a
joint characteristic vector of G': «T = ¢(T)a for TeG'. Then for
any S in G we have STS-1eG’, aSTS! = ¢(STS)a, so that aST is a
scalar multiple of «S and aS is a joint characteristic vector of G'.
Since G is irreducible, W = V. This means that we can suppose that
G’ is in diagonal form.

(4) Any element in G’ is now a diagonal matrix. Its conjugates
in G are again in G’ and hence also diagonal. The only possible conju-
gates are thus obtained by permuting the characteristic roots. Hence
each element of G’ has a finite conjugate class in G. By Lemma 4.7,
G’ lies in the center of G.

() Suppose there is a matrix T in G’ which is not a scalar. Let c
be a characteristic root of T, and define W to be the set of all « in V
with «T = ca. Since T commutes with all of G we find that W is

invariant under G. Hence W =YV, T = c¢l. This contradiction
proves that all the matrices of G’ are scalar.

(6) Since G’ is the commutator subgroup of G, its elements have
determinant 1. Hence the entries down the diagonal must be n — th
roots of 1. There are only a finite number of these, so that G’ is finite.
But by Theorem 4.8, G' is connected. Hence G' = 1, G is commuta-
tive. But in the commutative case the theorem is known. This
completes the proof of Theorem 4.11.

19. A speciaL REsuLT. — For use in Chapter vi we insert at this
point another result concerning solvable matrix groups.

Theorem 4.12. — Let G be a group of 2 X 2 matrices with determi-
nant 1, over an algebraically closed field. Assume that G is an algebraic
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group, i.e. is closed in the Zariski topology, and that K, the component of
the identity in G, is solvable. Then at least one of the following state-
ments holds :

(1) G is finite,

(2) K can be put in diagonal form and [G :K]| = 2,

(3) G can be put in simultaneous triangular form.

Proof. — First we study the case where K can be put in diagonal
form. Then K consists of certain matrices

(6 o)

Since K is closed in G, K is an algebraic group. Thus K consists of all
matrices for which a satisfies a certain polynomial equation. There
are just two possibilities: either K is finite (whence G is finite) or K
consists of all the above matrices. As in part (3) of the proof of
Theorem 4.11, joint characteristic vectors of K are carried by G into
joint characteristic vectors of K. Thus any element of G either leaves
fixed or interchange the one-dimensional subspaces given by the two
basis vectors. Hence the index of Kin Gis 1 or 2.

There remains the possibility that K does not admit diagonal form.
By Theorem 4.11 it admits triangular form. Hence K must have just
one characteristic vector. This must also be invariant under G, and
so G admits triangular form.



CHAPTER V

THE GALOIS THEORY

20. THREE LEMMAS. — In this section we assemble for convenience
three preliminary lemmas.

Lemma 5.1. — Let K be a differential field with algebraically closed
constant field C. Let L be a differential field extension of K, with constant
field D. Let f., g be polynomials in a finite number of ordinary indeter-
minates over K, « ranging over a (possibly infinite) index set. Then: if
the equations and inequality f. = 0, ¢ = 0 have a solution in D they
have a solution in C.

Proof. — Take a vector space basis u; of K over C. Each f, has a
unique expression f, = Zh,sus, where h,s is a polynomial with coeffi-
cients in C. The independence of the u's over constants survives in L.
Therefore in a constant solution of f, = O we must have each h,; = 0.
So the equations h.s = 0 have a solution in D. By the Hilbert
Nullstellensatz they already have a solution in C.

We now show further that some solution fails to annul g. Write ¢
in its expansion 3f,u,. If every solution of h,; = 0 is also a solution of ¢
(and hence a solution of each t,) we have, again by the Nullstellensatz,
t,ve I, where r, is a suitable integer and I is the ideal generated by
the h’s. But then every solution of f. = 0 in D would annihilate g, a
contradiction.

A similar argument leads to the next lemma.

Lemma 5.2. — Let K be a differential field with constant field C.
Let ki, ..., k. be constants in some differential field extension of K. Then:
if ky, ..., k. are algebraically dependent over K they are algebraically
dependent over C.

Proof. — We have a polynomial relation f(ky, ..., k;) = 0 with coefli-
cients in K. Again, let u; be a basis of K over €, and write f = Zhyu..
3
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Then hs(ky, ..., kr) = 0, showing that the k’s are algebraically dependent
over C.

Lemma 5.3. — Let F be any field, 1 an integral domain over F with
finite franscendence degree over ¥. Let P be a prime ideal in 1, P £ 0
or 1. Then the transcendence degree of 1/P over ¥ is strictly less than
that of 1 over F.

Proof. — Take any non-zero element u in P. It is impossible for
u to be algebraic over F, for then the constant term in the equation
for u would be in P, P would contain 1. So we may take u as the first
element u; of a transcendence basis uy, ..., u, of I. These elements
map into O, v, ..., v, in I/P. We claim that any element x in I/P is
algebraically dependent on v,, ..., v.. Take y in I mapping on x. Then
y satisfies a polynomial equation with coefficients polynomials in the
u's. Let.

f(@) = rx* + 2"+ nx 41

be a polynomial in x, with coeflicients polynomials in the u's, selected
so that f(x) is of minimal degree among polynomials lying in P. Map-
ping modulo P we get y to be dependent on the »'s unless all the r's
are in P. But then

(=1 4 rp_x* =24 --- +r1))x

lies in P, x does not, and we get a polynomial of lower degree in P.

21. NorMALITY OF PicARD-VEssIoT EXTENSIONS. — Let M = K << u,,
..., U, > be a Picard-Vessiot extension of K. ILet ¢ be an admissible
differential isomorphism of M over K; that is, ¢ is a differential iso-
morphism, leaving K elementwise fixed, of M onto another subfield of
a given larger differential field N. Each wu;¢ is again a solution of the
underlying differential equation and so must be of the form 2k;;u; with k;;
constants in N. Thus each ¢ gives rise to a non-singular matrix of
constants. We now prove that the eligible matrices are determined
by a set of polynomial equations.

Lemma 5.4, — Let X be « differential field with constant field
C,M =K< uy,..., u, > a Picard-Vessiot extension of K. There exists
a set S of polynomials (in n* ordinary indeterminates) with coefficients
in C such that:

(1) Every admissible differential isomorphism of M over K gives rise
fo a matrix of constants satisfying S;

(2) Given a differential fleld extension N of M, and a non-sinqular
matrix k;; of constants of N satisfying S, there exists an admissible difje-
rential isomorphism of M/K into N sending u; info Zk;u,.
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Proof. — Let yy, ..., y» be differential indeterminates over K.
Define a differential homomorphism of K { y,, ..., y. | into M by keeping K
fixed and sending y; into u;. The kernel I'' is a prime. differential ideal
in K{yy, ..., Un}.

Let ¢i(i,j = 1, ..., n) be a set of n® ordinary indeterminates over M.
Via the mapping yi - 3c;u; we define a differential homomorphism
of K{yy-..., yn} into M[c;]. Let A be the image of T' in this mapping.
Thus A is an ideal of (ordinary) polynomials with coefficients in the
field M. Let w. be a vector space basis of M over C. Write each
polynomial in A as a linear combination of w’'s with coefficients poly-
nomials over C. The collection S of all these polynomials over C is
our candidate to fulfil the requirements of the lemma.

(1) Suppose that u; - Xk;u; in an admissible differential isomor-
phism ¢ of M/K. Perform the homomorphism from Kiy,, ..., ya.}
into K{u, ... ,u,} followed by s. In the product homomorphism I'
gets sent into O. Again take the mapping given by y; - Zc u;
followed by ¢;; - k;;. The product is the same as before, and this
time I' goes into A evaluated at c¢; = k;;. Hence all polynomials
of A vanish at k;; after expression in terms of the basis w. we see
that the polynomials of S vanish at k;;.

(2) Let us be given N and a non-singular matrix k; of constants
in N satisfying S.  We may define a homomorphism of K iy, ...,J.}
into Nbyy; — Zkju; in the two stepsy; — Zcjyujandc; — ki
The kernel contains I' and so we get a homomorphism ¢ of K{u, ..., u,}
onto K{us, ..., u.e}, uiec = Zk;u;. If we only knew that ¢ is one-
one we could extend it to the quotient fields and the proof would be
finished. Using Lemma 5,3 we shall argue that ¢ is one-one; assuming
the contrary we have

*) 0K ( Uy ooy ) [K > 0K ( s, ..., Ups ) K

where 0 denotes the transcendence degree (note that these transcen-
dence degrees are finite since each u; satisfies a differential equation).
Let us abbreviate the notation by writing K (u ) for K { u,..., u, )
etc. From (*) we get, by the additivity of transcendence degrees

0K (uus ) [K{u) <K uus) [K {us).

We have
K (u,us) [K{(u) =0K (k) [ K{u)

= 0C(k)/C,
the last step by Lemma 5.2. Similarly.
OK (u,us ) [K (us ) = oC' (k)/C |
where C’ is the field of constants in K (‘us ). Obviously 0C’ (k)/C" <
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0C(k)/C and we have a contradiction. This completes the proof of
Lemma 5.4.

The main results of the Galois theory are now readily within our
reach. The first is merely a special case of Lemma 5.4.

Theorem 5.5. — The differential Galois group of a Picard-Vessiot
extension is an algebraic matrix group over the field of constants.

Lemma 5.6. — Let K be a differential field with an algebraically
closed field of constants. Let M be a Picard-Vessiot extension of K.
Suppose that we are given an element z and two subsets x, and y. of M,
« ranging over a (possibly infinite) index set. Suppose that there exists
an admissible differential isomorphism of M over K sending x. info y.
and moving z. Then there exists a differential automorphism of M over
K sending z. info y. and moving z.

Proof. — Let ¢ be the given differential isomorphism. Say
uc —= Ek,-juj,

the k’s being constants in the larger field. Consider any two elements
x, y in M; each is a ratio of two differential polynomials in the u's,
say x = P(u)/Q(u), y = R(u)/S(u). The condition that y = xs can be
written
S(u)P(us) = R(u)Q(uo).

Putting in u;6 = 2k;u;, we get a polynomial equation in the k’s with
coefficients in M. We have one such equation for each «, saying that
z.6 = J.. Combine these equations with the equations given by
Lemma 5.4. Also we can combine the inequality given by

Z6 F# z with |kij| £ 0

into a single inequality. There is a constant solution in the larger
field; hence, by Lemma 5.1 there is a constant solution in C. This
gives us the differential automorphism we are seeking.

Theorem 5.7. — Let K be a differential field of characteristic zero
with an algebraically closed constant field. Then any Picard-Vessiot
extension of K is normal.

Proof. — We have to prove that for any z in M but not in K there
exists a differential automorphism of M/K moving z. By Theorems 2.6
and 2.5 there exists an admissible differential isomorphism of M/K
moving z. We then apply Lemma 5.6.

Theorem 5.8. — Let K be a differential field of characteristic O with
an algebraically closed constant field. Let M be a Picard-Vessiot exten-
sion of K. Then any differential isomorphism over K befween two inler-
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mediate differential fields can be extended to a differential autormorphism
of M. In particular any differential aufomorphism over K of an inter-
mediate differential field can be so extended.

Proof. — The given differential isomorphism is first extended to an
admissible differential isomorphismn defined on all of M, using Theo-
rem 2.5. The theorem then follows from Lemma 5.6.

22. CoMPLETION OF THE Garois THEORY. — Let us see where we
stand. Let M be a Picard-Vessiot extension of K (characteristic O,
algebraically closed constant field). If L is any intermediate diffe-
rential field, M is also a Picard-Vessiot extension of L.. By Theorem
5.7, M is normal over L. In the language of the Galois theory of
Chapter 11 all intermediate differential fields are closed.

Again, let H be a normal subgroup of the differential Galois group G,
and let L = H' be the corresponding differential field. Suppose that H
is closed in the sense of Galois theory. By Theorem 5.8 all differential
automorphisms of /K are extendible to M. It follows from Theo-
rem 3.4 that G/H is the full differential Galois group of L/K. Again
(by Lemmas 3.6 and 4.10) if L is closed and normal over K, the corres-
ponding subgroup is normal.

By Theorem 5.6, G is an algebraic matrix group, and so are all the
subgroups corresponding to intermediate differential fields. Only
one point remains to be settled : that the algebraic subgroups of G are
Galois-closed.

The problem comes to this: given a subgroup H in G we must show
that H is Zariski-dense in H”. If not, there exists a polynomial f
(in n2 variables, coefficients in C) which vanishes on H but not on H".
We now perform a construction which is adequately illustrated in the
case n = 2. Say M = K << u,v>. The matrix

()
(¢ »)

be its inverse. Let y and z be differential indeterminates over M. We
define a differential polynomial F by

F(y,z) = f(Ay + By', Az + BZ', Cy + Dy’, Cz 4 DZ').

In F we set y = us, z = ve where ¢ belongs to H. Since

uec Uc) u D kyy k~2|>
u's s —(u’ v' <k12 ks

is non-singular. Let
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where k;; is the matrix for s, we have

A B (LIO' QG ki ks,
C D us v'e B kvlg k22

Hence F(us, vs) = O for ¢ in H but not for all ¢ in H”. Among all
differential polynomials in M {y, z{ wi th this property, pick one, say E,
with the smallest possible number of terms (when written out as a sum
of monomials). We may assume that one of the coefficients of E is L.
For = in H write E. for the polynomial obtained by replacing each
coefficient by its image under . Then

E-(us, vs) = [E(ust, verY)]r

which is O for every ¢ in H. The polynomial E — E:isshorter than E.
Consequently it must vanish for every us, vo with ¢ in H”. If E —E:
is not identically O we can find an element yin M such that E—y(E —E.)
is shorter than E. Since E — y(E — E.) shares with E the property
of vanishing at us, ve for all ¢ in H but not all ¢ in H”, we have a
contradiction unless E — E.=0. This means that every coefficient
of E lies in H’, the differential field corresponding to H, and is left
invariant by H”. But then E(us, vs) = 0 for all ¢ in H”, a contra-
diction.
We summarize our results in a single theorem.

Theorem 5.9. — Let K be a differential field of characteristic O with an
algebraically closed constant field. Let M be a Picard-Vessiotl extension
of K. Then the Galois theory implements a one-one correspondence
between the intermediate differential fields and the algebraic subgroups of
the differential Galois group G. A closed subgroup H is normal if and
only if the corresponding field L. is normal over K and G/H is then the full
differential Galois group of L over K.

23. LiouvILLE EXTENSIONS. — As in ordinary Galois theory, it is
important to study the effect on the differential Galois group of an
enlargement of the base field.

Lemma 5.10. — Let M be a Picard-Vessiot extension of K (charac-
teristic O, algebraically closed constant field). Let N =M <z > be
an extension of M with no new constants. Write 1. = K <z>. Then
N is a Picard-Vessiot extension of L., and its differential Galois group is
isomorphic to an algebraic subgroup of the differential Galois group of
M over K, namely the subgroup leaving M n L. fixed.

Proof. — It is immediate that N is a Picard-Vessiot extension of L,
for they have the same constant field and N is generated over L by the
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same solutions (of the underlying differential equation) that generate M
over K. Any differential automorphism of N over K automatically
sends M onto itself (Lemma 3.8). Thus we get a homomorphism of the
differential Galois group of N/L. onto a subgroup (say (,) of the diffe-
rential Galois group of M/K. Any automorphism in the kernel leaves
fixed both M and L and hence also their union. The homomorphism
is therefore an isomorphism, and the image G; is therefore an algebraic
group of matrices (Theorem 5.5). Its fixed field is exactly MnL. By
Theorem 5.9, G, is the whole group of differential automorphisms of M
leaving M n L fixed.

We now obtain the two main results concerning solvability of diffe-
rential equations by quadratures.

Theorem 5.11. — Let M be a Picard-Vessiot extension of K (characte-
ristic O, algebraically closed constant field). Suppose that the differential
Galois group of M over K has a solvable component of the identity. Then
M can be oblained from K by a finite-dimensional normal extension,
followed by a Liouville extension.

Proof. — Let G be the differential Galois group, C its component of
the identity. Let L be the intermediate differential field correspon-
ding to C. Then L is a finite-dimensional normal extension of K,
and C is the differential Galois group of M over .. That M is a Liou-
ville extension of L follows at once from Theorem 4.11 and 3.12.

We say that a differential field N is a generalized Liouville extension
of K if N can be obtained from K by a finite number of steps, each of
which is a finite algebraic extension, or the adjunction of an integral,
or the adjunction of an exponential of an integral.

Theorem 5.12. — Let M be a Picard-Vessiot extension of K (characte-
ristic O, algebraically closed constant field). Suppose that M can be
embedded in a differential field N which is a generalized Liouville exten-
sion of K, with no new constants. Then the component of the identity in
the differential Galois group G of M over K is solvable (whence by Theo-
rem 5.11, M can be obtained from K by a finite-dimensional normal
extension followed by a Liouville extension).

Proof. — We make an induction on the number of steps in the chain
from K to N. Let K <<z > be the first step. Then by induction the
differential Galois group of M <<z > over K <z > has a solvable
component of the identity. By Lemma 5.10 this group is isomorphic
to the subgroup (say H) of G corresponding to M n K < z>. Suppose
that z is algebraic over K. Then, by Lemma 3.1, H has finite
index in G. Suppose on the other hand that z is either an integral or
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an exponential of an integral. By Lemma 3.9 or Lemma 3.10, K << z>
is a Picard-Vessiot extension of K with abelian Galois group. Thus
all differential fields between K and K <C z > are normal over K.

In particular M n K < z > is normal over K with an abelian diffe-
rential Galois group. Thus H is normal in G with G/H abelian. In
either case Lemma 4.9 tells us that the component of the identity
in G is solvable.

To conclude this chapter we shall mention (with appropriate refe-
rences to Kolchin's papers) several refinements of the theory.

1. One can detect from the Galois group the possibility of solving a
linear homogeneous differential equation by integrals alone, or by
exponentials of integrals alone. If we ignore the complications caused
by the possible disconnectedness of the Galois group, the facts are as
follows : solvability by integrals alone corresponds to the Galois group
admitting special triangular form (1’s on the diagonal and O’s below);
solvability by exponentials of integrals alone corresponds to the Galois
group admitting diagonal form. See [3].

2. Reducibility of the Galois group (or rather of the vector space on
which it acts) is equivalent to an appropriate kind of factorisation of the
differential equation ([3], § 22).

3. If an equation has a non-solvable Galois group, then it cannot be
solved by quadratures even if one allows new constants [4].

4. The theory can be extended to partial differential fields, where
one assumes from the start several commuting derivations [6].

5. A final touch can be added to Theorem 5.9: a normal inter-
mediate field is again a Picard-Vessiot extension of the base field

[8, p. 891].

6. Substantially the entire theory can be carried through for more
general extensions which Kolchin calls strongly normal ([7], [8]). The
generalisation corresponds exactly to replacing algebraic matrix
groups by algebraic group varieties.



CHAPTER VI

EQUATIONS OF ORDER TWO

24. THE WronskiaN. — Let M = K < u,, ..., u, > be a Picard-
Vessiot extension and write W for the Wronskian of u,, ..., u,. :

Lemma 6.1. — Let ¢ be a differential automorphism of M over K, with
corresponding matriz c¢;;j. Then We = |c¢;| W.

Proof. — We have u;c = 2¢;u;. It follows that the Wronskian
matrix of the u's, multiplied by the matrix c¢;, yields the Wronskian
matrix of the us’s. On taking determinants we get the result stated
in the lemma.

Lemma 6.2. — The field K << W > corresponds to the unimodular
subgroup of the differential Galois group.

Proof. — By Lemma 6.1, W is fixed under ¢ if and only if |¢;| = 1.

Lemma 6.3. If the underlying differential equation reads

y® + ay"D + ... =0,

then W' = — a W.

Proof. — Differentiate the determinant W by rows: the result is
merely to differentiate the last row, converting it into ™, ..., u,™.
On substituting in the differential equation we get W' = —a W.

Corollary. — If a = 0 then W is a constant and the differential Galois
group consists only of unimodular matrices.

We note finally the classical method of removing the term ay®-?, at
the expense of an exponential of an integral. Let w be a solution
of nw' + aw = 0, and set y = wz. The resulting equation in z has no
term in z»-D,

Thus in studying solvability of differential equations by quadra-
tures, there is no loss of generality in supposing the coefficient of
Yy to be O. The general equation of the second order can be
taken as y" + ay = 0.
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25. CONNECTION WITH A RICCATI EQUATION.

Theorem 6.4. — Let K be a differential field of characteristic O with an
algebraically closed constant field, and let a be an element of K. Let M
be a Picard-Vessiot extension of K for the equation y" 4 ay = 0.
Suppose that M is a generalized Liouville extension of K but is not finite-
dimensional over K. Then the equation t' = t* + a has a solution in a
quadratic extension of K.

Proof. — By the corollary to Lemma 6.3, the differential Galois
group G of M over K is an algebraic group of two by two matrices of
determinant 1. By Theorem 5.12 the component of the identity in G
is solvable. 'We are now able to apply Theorem 4.12. The case where
G is finite has been ruled out. In each of the two remaining cases we
can assert the following: there is a quadratic extension L. of K such
that the differential Galois group of M over L can be put in triangular
form. This means there is a non-zero solution u of y” 4+ ay =0
which is carried into a constant multiple of itself by every differential
automorphism of M over L, and this in turn means u'/ueL. Set
l =—u'[u. Then u' = —utl,u" = —u't— ut’' = u(t> — ') whereas
u" = —au. Hence t' = + a.

We push the computation one step further.

Lemma 6.5. — Let K be a differential field, a an element in K, and t
an element satisfying t' = > + a, and having  + rt 4 s = O as ils
irreducible equation over K. Then

r’" + 3rr' + r® + 4ar + 2a’' = 0.
Proof. — Differentiate 2 + rt 4 s = 0, using ¢’ = + a. We find
28 - rt> + (2a + rt + ar + s' = 0.
Multiply £ + rt 4+ s = 0 by 2t and subtract:
2 + 2s—2a—r)—ar—s' = 0.

This yields 2s — 2a —r' = r%, — ar — s’ = rs.
Hence 2s' = 2a’ + r” + 2rr. Substituting for

2s and 2s’ in 2rs - 2s’ 4 2ar = 0,

we get the result stated in the lemma.

26. An example. — Let us take the case y” -+ xy = 0, done in clas-
sical style with base field the field K of all rational functions of x with
complex coefficients. The solutions are entire functions and we get a
well defined Picard-Vessiot extension M inside the field of functions
meromorphic in the whole plane. It is not the case that [M:K] is
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finite, for then the solutions would be algebraic; but an algebraic entire
function is a polynomial and there are no polynomial solutions of

y" +xy = 0.

We proceed to examine the possibility that # = #2 + x has a solution
in K. Say t = f/g is the representation of { with f and ¢ relatively
prime polynomials. Then

gf' — 19" — PP.= gx.
If the degree of f is larger than the degree of g, f2 is the unique leading
term in this equation and cannot be cancelled. If degree of g = degree
of f, ¢?xr is the unique leading term.

There remains the case that = 2 + x has a solution in a quadratic
extension of K but not in K. We quote Lemma 6.5. This time we

shall use the partial fraction expansion. Let 2 ¢ (x— a)~" be the

i=1
portion of r occuring for the linear factor t — a. Then in order for
the equation
r" +3rr' +1r® +4xr -2 =0

to hold we must have equality among the two highest of the numbers
n + 2, 2n 4+ 1 and 3n, which happens only for n = 1. Thus there
can be no repeated linear factors. From a term c/(z-a)we get 2¢/(z-a)?,
— 3c%/(x-a)® and c3/(xz-a)® from r”, 3rr’ and r® respectively. Hence
2c—3c¢24c32=0, c=1or2.

This being settled, we switch to the representation r = f/g. Brin-
ging everything to the common denominator g4, we find the following
terms in the numerator :

s 19°9", ¢*1'q’s 19(9% 11'9% 1299’5 P9, fg?, g*.
If f and ¢ have the same degree, the term zf¢g® cannot be cancelled.
If the degree of [ is strictly the larger of the two, f3¢ is the unique
highest term. But if the degree of ¢ is the larger of the two the two
leading terms xf¢® and ¢* can cancel, provided the degree of f is smaller
by just one.

Returning to the partial fraction decomposition, we see that r must
have the form X¢;/(x — a;) with ¢; =1 or 2, and no polynomial
component. Thus we have, say, g(x) =¥ + ..., f(x) = az*! + ...
with « a positive integer. But then the cancellation between the
terms xfg® and ¢4, arising from the terms 4xzr and 2 will not occur:

4o + 2 is not 0.
In summary :

Theorem 6.6, — The solutions of the equation y" 4 zy = 0 cannot be
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obtained from the field of rational functions of x by any sequence of finite
algebraic extensions, adjunctions of integrals, and adjunctions of expo-
nentials of integrals.

By supplementary considerations it can be established that the
Galois group of this equation is the full unimodular group of two by
two matrices. This follows, for instance, from the fact that any proper
algebraic subgroup has a solvable component of the identity.



CHAPTER VII

THE BASIS THEOREM AND APPLICATIONS

27. THE Basis THEOREM. — The Hilbert basis theorem asserts that
if R is a commutative ring with unit, satisfying the ascending chain
condition on ideals, the same is true of the result R[x] of adjoining an
indeterminate.

In proposing an analogue for differential rings, one’s first impulse
would probably be to impose on R the ascending chain condition on
differential ideals, and seek to prove that this is inherited by the
ring R{z} obtained by adjoining a differential indeterminate. Ho-
wever in this version the proposed analogue is false, even when R is
a field: it can be shown that the differential ideals generated
by 22, z% and (2')?, 2%, (z')? and (z")% etc. form a properly ascending
chain.

The proper result, just as adequate for applications, is:

Theorem 7.1. — Let R be a Rilt algebra satisfying the ascending chain
condition on radical differential ideals. Then the same is true for the
result R{zxz} of adjoining a differential indeterminate. (Ritt-Rau-
denbush basis theorem.)

Remark. — There are two sources of difficulty in the proof. First,
there are the « differential » difficulties which in particular force us to
assume that R is a Ritt algebra and not a mere differential ring.
Second there are the complications arising from the fact that radical
ideals occur in the hypothesis and conclusion of the theorem. The
reader might find it helpful to study the second difficulty by
itself by extracting, from the proof below, a proof of the following
theorem : if R is a commutative ring with unit satisfying the ascending
chain condition on radical ideals, then the same is true of R [z].

The proof requires various préparatory remarks and two lemmas
We begin with a definition.
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Definition. — A radical differential ideal I in a differential ring is of
finite type if there exists a finite subset aj, ..., a, of I such thatl = {a,,
.wss @y}, i.e. such that I is the smallest radical differential ideal contai-
ning day, ..., dx.

Lemma 7.2. — Let S be a subsel of a Ritt algebra A. Lel a be an
element of S such that {a,S} is of finite type. Then there exist elements
by, ..., b in S such that

ga, S}zga, byy -y b,f.

Proof. Let I be the differential ideal generated by a and S, and
let J be the radical of I. By Lemma 1.8, J is a radical differential
ideal, and consequently is equal to {a,S}. Say {a,S} = {c, ..., ¢;i.
For each ¢; we have that some power of it is expressible as a linear
combination (with coefficients in A) of a, elements of S, and their deri-
vatives. Take for b,..., b, all the elements of S that show up in this
way.

Given a differential ring R, we refer to the elements of R{x} as
differential polynomials in x. For any such differential polynomial A
there will be a highest derivative z® which actually occurs in A; we
call r the order of A. The degree of A in z will be referred to as the
degree of A itself. Given a second differential polynomial A; we say
that A, is below A if its order is smaller, or, in the event that A and A,
have the same order, if the degree of A, is smaller.

We may write

A =B@®)? 4+ C
where B is free of 2(” and C has lower degree than A in 2. We call B
the leading coefficient of A.

We write S = 0A/ox® and call S the separant of A. (In taking this
partial derivative one treats as constants the elements of R as well as
the lower derivatives of z, including z itself if r > 0).

Note that both the separant and the leading coefficient of A are
below A.

Lemma 7.3. — Let A be a differential polynomial in x over a Ritt alge-
bra R. Let I be the differential ideal in R {x} generated by A. LetB
and S be the leading coefficient and separant of A. Let F be any diffe-
rential polynomial in x. Then we can find integers m,n and a diffe-
rential polynomial G below A such that

B"S"F = G (mod I).
Proof. Differentiating A we find
A" = S+ 4+ Ty
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where T; has order strictly less than r 4+ 1; and after k successive
differentiations we similarly find

A® — Spr+b T, (order of T, << r + k).

Thus if F has order greater than r (say order r + k), a suitable power
of S multiplied by F will have the property that subtraction of A®
depresses the order. By repeated steps of this kind we reach the case
where F has order r. Then if the degree of F is d or more (where d is
the degree of A), a suitable power of B times F will admit the ordinary
division algorithm relative to A, and we depress the degree below d.

Proof of Theorem 7.1. It is equivalent for us to prove that every
radical differential ideal in R{x}is of finite type. Suppose the
contrary. Then by Zorn's lemma we may pick a radical differential
ideal I which is maximal among those not of finite type. We claim
that I is prime. Suppose that abel, a¢ I, be& I. Then {ILa} and
{ b} are larger radical differential ideals and hence of finite type.
By Lemma 7.1.

§I, agzga, Cis =" " c,;
VL bd=1{b,d,, -+, d.}

where the ¢'s and d's are in I. By Lemma 1.6
L al {1, b} cfab, -+, cdt c L.

Now if z is any element of I, z2 lies in}{I, a} {I, b}, hence in {a b,
..., ¢ds}.  Therefore z lies inja b, ..., c.d.}, the latter is equal to I,
I is of finite type, a contradiction. Hence I is prime.

Now InR is a radical differential ideal in R, and hence by hypo-
thesis it is of finite type. Let J denote the radical differential ideal
in R{z} generated by InR; then J is also of finite type. If J =1
we have a contradiction and so J is properly contained in I. Take a
differential polynomial A in I but not in J, of smallest possible order,
and of smallest degree for that order. Let B the leading coeffi-
cient of A :

A = B@")* + C.
B cannot be in 1. If it were, it would be in J, since it is below A. But
then C would be I but not in J, a contradiction since C is also below A.
Let S be the separant of A. S cannot be in I. If it were, it would be
in J since S is below A. But then

1 o
A dx(b

would be in I but not in J, a contradiction since it is below A. (Note
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that the hypothesis that R is a Ritt algebra is used crucially here).
Since I is prime, the product BSis not in I. Thus {BS, I} is a radical
differential ideal properly larger than I and consequently is of finite
type. By Lemma 7.2, {BS, 1} = {BS,(,,...,C,} where the (s
are in I ‘

Let F be any element of I. By Lemma 7.3 we can find integers m, n
and a differential polynomial G below A such that B™S"F — G lies
in the differential ideal generated by A, and all the more so lies in I.
Thus G is an element of I and is below A; hence GeJ. It follows
that BSF lies in {J, A}]. This being true for all Fel, we have
BSIci{J, A}l. We now find

I c I{BS, I{
c {BSL ICy, -- , IC,{ by Lemma 1.6
ciJ, A, Cpy oo, Gyt € L

From this we argue (as above) that I = {J, A, C,, ..., C;}, a contra-
diction since I is not of finite type.

Corollary. — If R is a Ritt algebra satisfying the ascending chain
condition on radical differential ideals, so is the result R {x,, ..., T.} of
adjoining a finite number of differential indeterminates.

The most important instance of this corollary is the case where
R is a differential field of characteristic zero.

28. SYSTEMS OF DIFFERENTIAL EQUATIONS. — An algebraic diffe-
rential equation (over a differential field F) is the result of equating to
O a differential polynomial with coefficients in F. A solution is a set
of values (possibly in a differential extension field of F) satisfying
the equation. The following theorem is a fairly immediate corollary
of Theorem 7.1.

Theorem 7.4. — Let F be a differential field of characteristic O. Let S
be an infinite set of algebraic differential equations over F in a finite
number of differential indeterminates. Then there exists a finite subset
of S with the same solutions as S.

29. THE DECcoMPOSITION THEOREM. — The following theorem should
be compared with Theorem 2.1. At the expense of a stronger hypo-
thesis we achieve a better conclusion (a finite intersection of prime
ideals).

Theorem 7. 5. — In a differential ring satisfying the ascending chain
condition on radical differential ideals, any radical differential ideal is
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expressible as the intersection of a finite number of prime differential
ideals. In particular this is frue for the ring F {x,, ..., .} obtained by

adjoining a finite number of differential indeterminates to a differential
field of characteristic O.

Proof. — Suppose the contrary. Then (by the ascending chain
condition, not by Zorn's lemma!) we can find a radical differential
ideal I maximal with respect to the property that it is not an intersec-
tion of a finite number of prime differential ideals. Evidently I
itself 1s not prime. Thus there exist elements a and b with abel,
a¢l,be 1. The properly larger radical differential ideals {I,a}
and { I,b} are expressible as intersections of a finite number of prime
differential ideals. We shall achieve a contradiction by showing
that I = {L,a} n {,b}. By Lemma 1.6

Lal$St, blciab, 1! cl.
tLoaf {1, bfcfab, 1

If ¢ is any element in {I, a} n {I, b} we have c2e {1, a} {I, b} c],
cel. Hence{l,a}n{l, b} cl, and the reverse inclusion is trivial.

The uniqueness of the decomposition in Theorem 7.5 is a matter of
non-differential algebra. Call a representation of I as an intersection of
ideals irredundant if none of the ideals can be omitted.

Theorem 7.6. — Let 1 be an ideal in a commulative ring with unit.
Suppose that I can be expressed in two ways as an irredundant intersection
of prime ideals: 1 =P;n...nP, =Q;n...n Q.. Then r=s and, after
perhaps renumbering, P; = Q.

Proof. — We have P, n...nP,cQ,, hence P, ... P.c Q,, hence one of
the P’s is contained in Q,. We can suppose P,cQ,. Similarly one
of the Q’s is contained in P;. By the irredundancy, this must be Q,,

and we have Q; = P;. Similarly each Q; gets equated to a unique
P;, and vice versa.

30. STUDY OF A SINGLE DIFFERENTIAL POLYNOMIAL. — In this section
we shall observe how the theory obtained in the preceding sections
works out in the special case of the radical differential ideal gene-
rated by a single polynomial.

Let A be a differential polynomial in one differential indeterminate y.
Let A have order r, and let S be the separant: S = 0A/oy("). Define J
to be the set of all B with BSc{A}. By Lemma 1.4, J is a radical

differential ideal. We shall adhere to this notation in the succeeding
discussion.

Lemma 7.7. — {A} = {A, S{nJ.
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Proof. That { A} is contained in both { A, S} and J is clear.
Conversely suppose C lies in Jn { A, S}. Then

C2eC{A, St ciCA, CS{ciAl,
whence Ce {Al.

From this point on we must assume that the underlying differential
field has characteristic O.

Lemma 7.8. — Suppose that A is irreducible (in the ordinary algebraic
sense, as a polynomial in an infinile number of indelerminates y,y',y"...).
Suppose that G lies in the differential ideal generated by A, and that order
of G < order of A.  Then A divides G.

Proof. — We have an equation of the form
(*) G = CoA + C;A" 4 -+ + C,A®,

Further, A® = Syt+> + T,,; for i = 1,2, ..., where the order of T,;;
is less than r 4 i. We look at (*) as an identity in the indeterminates
U, y',y", .... The element y“+% may occur in the C’s but it does not
occur in G. We may replace y«+® by — T,;«/S in (*) and the result
is still an identity (note that S is non-zero because of characteristic
zero). After multiplying by a suitable power of S, the result is
an equation of the form

SIG = DyA + DA’ oo - Dy AG—D,

By induction on k we conclude that A divides SYG. Bul A does not
divide S (S is below A). Hence A divides G. (Note that from the
point of view of ordinary algebra we are working in the integral domain
obtained by adjoining a countable number of indeterminates to a
field, and this is a unique factorization domain).

Lemma 7.9. — Assume again that A is irreducible. Then J is prime.

Proof. — Suppose that FGe J; we shall prove that I or G is in J.
Let I be the differential ideal generated by A. We can find integers m, n
and differential polynomials F;, G; with order at most the order of A
such that

S*F = F, S"G = (mod I).

(This portion of Lemma 7.3 is implicit inits proof). Wehave SFGe{A/
by the definition of J. By Lemma 1.8, {A} is the radical of I. We
therefore have (SFG)*e I for a suitable integer k. After multiplying
by Smkinrk—k  we find (S"F)*(S*"G)*el. Hence (F,G))*el. By
Lemma 7.8, A divides (FF;G,)*. Since A is irreducible, A must divide
F; or G4, say F;. This means S"Fel, S"If"e I, SFe {A}{, FeJ.
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Therorem 7.10. — Lel I¥ be a differential field of characteristic O. Lel
A be an irreducible differential polynomial in one indeterminate over F.
Let S be the separant of A, and J the set of all differential polynomials
B with BSe {A}. Then J is a prime differential ideal. If {A, S}
= P;n...nP, is the irredundant representation of {A,S}{ as an
intersection of prime differential ideals, then the irredundant represen-
tation of { A} has the form J n (some of the P's).

Proof. — Only the last sentence awaits proof. By Lemma 7.7,
{A} =JnP;n...nP,. If it were possible to delete J from this repre-
sentation we would have

JnPin---nP,=P;n---nP,

whence Jo {S, A}, SeJ, S2e {A}, S to some power lies in the
differential ideal generated by A, A divides S by Lemma 7.8, a contra-
diction.

The component J in the expression of A is called the general solution
ideal, the other components being singular solution ideals.

31. ExampPLES. —a) A = (y')? —4y. HereS = 2y'. Then S, A}
is the ideal generated by y and all its derivatives; it is a maximal ideal.
A" =2y (y" —2). Nowy'isnotin J; if it were, it would be in {A}
since y' e {S, A{. This means some power of y' lies in the differential
ideal generated by A and, by Lemma 7.8, is divisible by A. But A
cannot be a factor of a power of y'. Hence y’ ¢ J, and it follows, since J
is prime, that y” — 2eJ. Thus J contains K =} (y")? — 4y, y"—21.
Now the ordinary ideal generated by (y')? — 4y, y" — 2, y’, ... is already
a differential ideal. Moreover it is prime; for on mapping modulo it we

suppress the variables y”, y”, ... and then map modulo the irreducible
polynomial (y')? — 4y. Hence K is prime. We have the equation

fA} =Jn {S, A} n K.

If J were properly larger than K we could delete J from this equation,
contradicting Theorem 7.10. Hence J = K. We have thus iden-
tified the decomposition of {A}.

Let us find the solutions of (y')2—4y = 0. 1If ¢ is a solution,
'@ —2)=0. Eithert' =0ort" = 2.

In the first case £ = 0. In the second (#'/2)' = 1. If we write x for
a specific element witha' = 1,thent'/2 =z + ¢, t = ({'/2)? = (x + ¢)%,
where c is a constant. Classically, the solutions break into a family of
parabolas, the solutions of J above, and their envelope, the line y = 0,
which is the singular solution.

() A = (y')? —4y3. Again S = 2y’ and {A, S} is the ideal gene-
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rated by y and its derivatives. As above we argue that J is the ideal
generated by (y')*> —4y3, y” — 6y? and the derivatives of the latter.
But then Jc {A, S}. Hence {A} = J and is already prime.

The solutions arey =0,y = (x + ¢)~2

An individual solution of A is said to be singular if it annuls the

separant S of A. The above example (b) is one where the general solu-
tion contains a singular solution.



CHAPTER VIII

APPENDIX : MORE ON MATRIX GROUPS
AND THEIR ABSTRACTION

32. SovLvaBiLITY. — We begin by noting a result valid even in
T,-groups.
Theorem 8.1. — In a T,-group the closure of a subgroup is a

subgroup; the closure of a normal subgroup is a normal subgroup.

Proof. Let G be the group, S the subgroup, S, the closure of S. For
se S, the mapping * — sz is a homeomorphism of G onto itself.
Hence theinverse image of S, isclosed.  Since thisinverse image contains
S, it contains S,. Thus sS;cS,. Again take f in S;, and look for the
inverse image of S; under the mapping x - zf. We conclude that
S;S;€8S,. Since S;7! = S; by the continuity of the inverse, S; is a
subgroup.

For fixed a in G the mapping * - axa~! is a homeomorphism of
G onto itself. Hence aS;a! is closed. Assume now that S is normal.
Then aS;a! contains S and hence contains S;. Thus a-'S;acS,;, and
S, is normal.

In a T,-group it need not be true that the closure of an abelian
subgroup is abelian-see § 17 for remarks on the construction of a
counter-example. However this is true in a C-group. We prove a
result slightly more general.

Theorem 8.2. — Let G be a C—gfoup, S and T subgroups with SoT.
Suppose that T contains the commutator subgroup of S. Then the clo-
sure T, of T contains the commutator subgroup of the closure S; of S.

Proof. — For fixed b in S the mapping a - aba='b~! is conti-
nuous. The inverse image of T, contains S and therefore contains S;.
Next fix a in S;. The mapping b - aba-1b'is continuous. The
inverse image of T, again contains S and therefore contains S;. Hence T,
contains all commutators of elements of S,.
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Corollary 1. — In a C-group the closure of an abelian subgroup is
abelian.

Proof. — Take T = 1 in Theorem 8.2.

Corollary 2. — In a C-group the closure of a solvable subgroup is
solvable.

Proof. — Let H be a solvable subgroup of a C-group, K its closure
Let H = H;>...o0H, = 1 be the derived series of H, and let K; be the
closure of H;. By Theorem 8.2, K;;, contains the commutator sub-
group of K;. Hence each K;/K;;, is abelian and K is solvable.

We close this section with a result proved by Kolchin [5] for matrix
groups in the Zariski topology.

Call a Ti;-group G topologically solvable if there exists a chain
G=G;2Gy2...0G, =1 of closed subgroups, each normal in its
predecessor, and such that each G;/G;, is abelian. Of course any
topologically solvable group is solvable. For C-groups we prove the
converse.

Theorem 8.3. — A solvable C-group G is topologically solvable.

Proof. We argue by induction on the length of the derived series
of G. Suppose it ends with G, = 1. Then G,_, is an abelian normal
subgroup of G. Its closure H is abelian normal by Theorem 8.1 and
Cor. 1 of Theorem 8.2. The group G/H is again a C-group and its
derived series is shorter than that of G. By induction G/H is topolo-
gically solvable. Hence G is topologically solvable.

33. CZ-groups. — Any group is capable is being a C-group: take
it in the discrete topology. Any group is capable of being a Z-group :
take it in the minimal T;-topology. But not every group can be a
CZ-group. By Lemmas 4.5 and 4.6 :

Theorem 8.4. — In a CZ-group, and in particular in any multi-
plicative group of matrices, there is a finite upper bound to the size of the
finite conjugate classes.

A more useful result follows from the descending chain condition on
closed sets, when we recall that any centralizer in a C-group is
closed.

Theorem 8.5. — 'In a CZ-group, and in particular in any multipli-

cative group of malrices, the centralizers of subsets satisfy the descending
chain condition.

The group of finite even permutations on an infinite set rather
obviously violates the descending chain condition on centralizers.
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Moreover it is simple, so that any non-trivial matrix représentation
must be faithful. Hence:

Theorem 8.6. — The group of finite even permutations on an infinite
set admits no matrix representations whatever (any field, any size of
matrix) other than the representation sending every element into the
identity matrizx.

The existence of a group with this property does not seem to have
been previously noted in the literature.

34. IRREDUCIBLE SETS; THE ASCENDING CHAIN CONDITION. — In
the theory of Chapter 1v a major role was played by the concept of
connectedness. But in algebraic geometry it is not connectedness
that is important but rather irreducibility.

Definition. — A topological space X is irreducible if it cannot be
expressed as the union of two proper closed subsets. A subset of X is
irreducible if, in the induced topology, it is an irreducible topological

space.

Remark. — 1t is easy to see that an irreducible Hausdorff space
contains at most one point.

We collect in the next lemma some of the relevant facts; the proofs
are easy and we omit them. (For a related exposition see [11]).

Lemma 8.7. — a) A continuous image of an irreducible space is
irreducible. b) The closure of an irreducible set is irreducible. c) Any
Z-space can be expressed as a finite union S;u S, U ... U S, of closed irre-
ducible subsets. If the expression is irredundant (i.e. if no S; can be
omiltted), then it is unique. 4

In Chapter 1v we needed only to consider connected sets because for.
groups connectedness and irreducibility coincide.

Lemma 8.8. — Let G be a Z-group, C its component of the idendity
Then the unique irredundant decomposition of G into closed irreducible
sels is obtained by resolving G into its cosets modulo C.

Proof. — Let G = S;uS,u...u S, be the decomposition. We begin
by proving that the S's are disjoin.t. Suppose ae S;nS,. Any homeo-
morphism of G merely permutes the S’s (because of the uniqueness of
the decomposition). For any element b in G there is a homeomorphism
(for instance, a right multiplication) carrying a into b. Hence b lies
in two distinct S’s. In particular any element of S, lies in at least
one S with i >1. Thus

S;=@E;nS) u---u(SynS)).
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Since each S;nS; is closed and properly smaller than S,, we have
contradicted the irreducibility of S;. Therefore the S's are disjoint.
Let S; be the one containing the identity of G. For any a in S,,
S;a intersects S; and is also one of the S’s; hence S;a = S;. Likewise
S;1 = S,;. Hence S, is a subgroup. Of course S, is connected; it
must be the component of the identity, and the other S’s are its cosets.

Corollary. — A connected Z-group is irreducible.

Consider again an arbitrary field I and an n-dimensional vector
space V over F, endowed with the Zariski topology. Then V satisfies
the ascending chain condition on its irreducible closed subsets; this
follows from the fact that each such irreducible closed subset has a
dimension bounded by n, and the dimension is properly increasing.
Moreover this ascending chain condition is inherited by the subsets of
V. Hence: any matrix group is the Zariski topology satisfies the
ascending chain condition on closed irreducible subsets and in parti-
cular (Corollary to Lemma 8.9) on closed connected subgroups. We
can draw an interesting consequence from this.

Theorem 8.9. — Let G| be a connected CZ-group satisfying the
ascending chain condition on closed connected normal subgroups. Then G
has a unique largest connected solvable normal subgroup M; M is auto-
matically closed. If Z|/M is the center of G/M then Z/M is finite and
Z is the unique largest solvable normal subgroup in G.

Proof. — By the ascending chain condition we first pick M to be a
maximal closed connected solvable normal subgroup of G. If H is
any connected solvable normal subgroup, then HM is solvable normal
by standard algebra and connected by easy point set topology. The
closure of HM is solvable (Cor. 2 of Theorem 8.2), normal and connec-
ted. Hence HcM.

The group G/M (it is again a CZ-group) has no connected solvable
normal subgroup. Hence any solvable normal subgroup is finite and
therefore (Lemma 4.7) central. Thus Z/M is finite and Z is the unique
largest solvable normal subgroup in G.

Lemma 8.11. — Let G be a group with a normal subgroup H.  If
both H and G/H possess a unique largest solvable normal subgroup, the
same is true of G.

We leave the proof to the reader. As a corollary of Theorem 8.10
and Lemma 8.11 we have:

Theorem 8.12. — Let G be a CZ-group satisfying the ascending
chain condition on closed connected normal subgroups. In particular, G
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can be any matrix group (in the Zariski topology). Then G has a unique
largest solvable normal subgroup.

For matrix groups this result was proved by Zassenhaus [12] in a
different way.

35. IMAGES OF IRREDUCIBLE SETS. — Everything treated in Chap-
ter rv and thus far in Chapter viir applied to any matrix group, not
necessarily algebraic. Naturally then we are not in a position to prove
any result concerning matrix groups which actually requires the group
to be algebraic. In this final section we shall invoke an additional
axiom which makes possible some further progress.

Definition. — Let X be a topological space, S a subset with closure S,.
We say that S is semi-closed if S contains a subset T which is dense in S,
and open in the relative topology of S;. (Motivation from algebraic
geometry : S is an algebraic manifold with a portion of a manifold of
lower dimension deleted).

Lemma 8.13. — Let |G be a connected Z-group and U a semi-closed
dense subset of G. Then UU = G.

Proof. — We have U>V with V an open dense subset of G. We
shall prove VV = G. For any z in G, V and V-1 x are non-void open
sets. Since G is irreducible (Cor. to Lemma 8.8), V n V-1x is non-void.
Hence xe VV.

By a word in a group, in variables z,, ..., ., we mean a product of
powers (positive or negative) of the z's and of other fixed group ele-
ments.

We now state the proposed axiom, labelling it (D).

(D). Let G be a T,-group. We say that G satisfies axiom (D) if
the following is true : for any closed irreducible sets C,, ..., C. and any
word f(z,, ..., ,), the range of f as z; runs over C;(i = 1, ..., r) is a semi-
closed irreducible set. :

That algebraic matrix groups under the Zariski topology (over an
algebraically closed field) satisfy axiom (D) is implicit in Chevalley's
volume on algebraic groups [1]. A brief proof from scratch can be
given via elimination theory.

Theorem 8.14. — Let G be a Z-group salisfying the ascending chain
condition on closed irreducible sets and axiom (D). Let S,, ..., S, be clo-
sed connected subgroups of G. Let f;(x,, ...,x.), 1 =1, ..., k, be words
each having the property that for some value of the variables x;eS;, f;
takes the value 1. Let H be the subgroup generated by all elements
[1(@1s evs Zb)y ooy fu(Zys ooes ) as x; ranges over S;. Then: H is closed.
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Moreover there exists an integer n such that every element of H is a pro-
duct of at most n of the f's and their inverses.

Proof. — It is harmless to adjoin to the f’s the further polynomials
fi™% ..o fi’t. 'We suppose that this has already been done. Then H
is merely the set of all products of f's.

Let m,, ..., m; be any sequence of integers, each in the range 1 to k.
By C (m,, ..., m;) we denote the set of all elements [, ... fu, the argu-
ments x,, ..., z. of the f's of course ranging over S, ..., S,.

Let D(m,, ..., m,) be the closure of C(m,, ..., m)). By axiom (D) we
have that D(m,, ..., m;) is irreducible. From the fact that the f's
take the value 1 for suitable values of the arguments, we see that
C(my, ..., m_,) ¢ C(m,, ...,m;) and the same relation consequently
holds for the D's.

Let H, be the union of all the D’s. From the ascending chain condi-
tion on closed irreducible sets, plus a simple combinatorial argument,
we deduce the existence of an integer p such that H, is already the
union of those D(m,;, ..., m)) with { < p. Hence H, is closed. Since H
1s dense in H;, H; is simply the closure of H, and therefore it is
a subgroup of G. Next, denote by H, the wunion of all
C(m,, ..., my) with t < p. By axiom (D), H, is semi-closed (with clo-
sure H,). By Lemma 8.13, HoH, = H,. This proves that H = H, is
closed, and that n = 2p fulfils the requirements of the theorem.

We conclude by noting four special cases of Theorem 8.14.

Theorem 8.15. — Let G be a Z-group satisfying the ascending chain
condition on closed irreducible subsets and axriom (D). Let S,, ..., S, be
closed connected subgroups of G. Then the union of the subgroups
Sys «ees S is closed. Moreover in forming this union we need only pro-
ducts of length <_ n for a cerfain integer n.

Proof. — Apply Theorem 8.14 to the one polynomial z,z, ... z..

Easy examples show that we cannot in Theorem 8.15 drop the hypo-
thesis that the S’s are connected. However this is possible if all
but one of them is normal.

Theorem 8.16. — Let G be a Z-group safisfying the ascending chain
condition on closed irreducible subsets and axiom (D). Let S, T be
closed subgroups of G with S normal. Then ST is closed.

Proof. — Let So, T, be the components of the identity in S, T. Then
SoTo is closed by Theorem 8.15. Since it is of finite index in ST, the
latter is closed.

Theorem 8.17. — Let G be a connected Z-group satisfying the ascen-
ding chain condition on closed irreducible subsets and axiom (D). Let
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G, be the subgroup'of G generated by all r-th powers. Then G, is closed.
Moreover in forming G. we -need only¥products of r-th powers of
length < n for a certain infeger n.

Proof. — Apply Theorem 8.14 to the one polynomial z..

T do not know whether one must assume in Theorem 8.17 that G is
connected. For the next theorem, however, connectedness is not
needed. (For connected algebraic matrix groups the theorem is due
to Chevalley [1]; I am indebted to M. Rosenlicht for the present proof.)

Theorem 8.18. — Let G be a Z-group satisfying the ascending chain
condition on closed irreducible subsels and axiom (D). Let G’ be the commu-
tator subgroup of G. Then G’ is closed. Moreover in forming G’
we need only products of commutators of length "n for a certain inte-
ger n.

Proof. — Let C be the component of the identity, and let z,, ..., z; be
representatives of the cosets of G modulo C. Define f{z,y) to be the
commutatorof zzand y (1 < i < h). Notethatf; = 1 whenz =y = 1.
Apply Theorem 8.14 to these h polynomials, with x and y ranging
over C. The resulting subgroup (call it H) is closed, and moreover there
is a bound on the length of the products of commutators needed in
forming H. We note that C/H is central in G/H. The proof of the
theorem is thereby reduced to the following purely group-theoretic
theorem discovered independently by Baer, Neumann and Witt.

Theorem 8.19. — If the center of a group G is of finite index, then the
commutator subgroup of G is finife.

The following proof of Theorem 8.19 is due to Donald Ornstein.
Let q,, ..., a, be representatives of the cosets of G modulo its center.
Any commutator in G is then of the form a7 a;7! a;a;, and there are at
most m? of them. QOur problem is to put a bound on the length of the
products of commutators. Now in a sufficiently long product some
commutator will get repeated m times. We can bring these m ele-
ments together; this harmlessly replaces some of the other commuta-
tors by conjugates. The following lemma then completes the proof.

Lemma 8.20. — If (ab)™ lies in the center of a group, then (a=* b= ab)”
can be expressed as a product of m — 1 commutators.

Let us prove, for any integer r, that (a='b—1ab)" can be written as the
product of (a1 b1y (ab)” and r — 1 commutators. Assuming this for
r — 1, we have

(a-—lb—lab)r — a-—-—~1b—Iqb(a—lb—l)r—l(ab)r—Ic'_____2 ~++ Cpy
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the ¢’s being commutators. Commutate ab past (a1 b—1)-1; this intro-
duces a new commutator which can be placed just before c,_,, by
switching it to a conjugate. 'We have proved the statement for r, and
we proceed to apply it with r = m. Note that (ba)™ is a conjugate
of (ab)™ and so is equal to it. Hence (a!b')*(ab)™ =1, and the
lemma is proved.



GLOSSARY

The following is an informal list of the more important definitions, given
(more or less) in the order in which they occur in the text.

Derivation. An additive mapping satisfying the product law for deri-
vatives.

Differential ring. A commutative ring with unit and a distinguished
derivation.

Differential ideal. An ideal closed under derivation.

Differential homomorphism (isomorphism, automorphism). A homo-
morphism (isomorphism, automorphism) commuting with derivative.

Constant. An element with derivative O.

Radical of an ideal. The set of all elements with some power in the
ideal.

Radical ideal. An ideal equal to its own radical.

Ritt algebra. A differential ring containing the rational numbers.

Admissible isomorphism. An isomorphism between two fields when
there is a superfield containing both.

Differential Galois group. The group of all differential automorphisms
of the top field, leaving the bottom one elementwise fixed.

Wronskian of n elements. The n by n determinant having in its i-th
row the (i — 1)-is derivatives of the elements.

Picard-Vessiot extension. An extension with no new constants, géné-
tared by n linearly independent solutions of an n — th order linear homo-
geneous equation.

Adjunction of an infegral. Adjunction of an element u with v’ in
the base field.

Adjunction of an exponential of an integral. Adjunction of an element
u with u//u in the base field.

Liouville extension. End result of a finite number of extensions, each
the adjunction of an integral or an exponential of an integral.

Generalized Liouville extension. End result of a finite number of
extensions, each the adjunction of an integral, the adjunction of an
exponential of an integral, or a finite algebraic extension.

Zariski topology. The closed sets are the algebraic manifolds.

Algebraic matrix group. Group consisting of all non-singular matrices
satisfying a set of polynomial equations (i.e.a closed subgroup of the
full linear group in the Zariski topology).

Z-space. T,-space with the descending chain condition on closed
sets.

T,-group. A group and a T;-space, with the inverse continuous and
multiplication separately continuous.

Z-group. A T;-group which is a Z-space.
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C-group. A T,-group where the mapping a - a—'xa (x fixed) is conti-
nuous.

CZ-group. A T,-group which is both Z and C.

Differential polynomial. A polynomial in an element (say y) and its
derivatives. The order is the highest derivative y (" that actually occurs.
The degree is the power d to which y ™ is raised. The leading coefficient
is the coefficient of [y ™]¢. The separant is the partial derivative of the
polynomial with respect to y®.

Irreducible topological space. A space which cannot be expressed as
the union of two proper closed subsets.

Notation for adjunction. Four kinds of adjunction occur, each with
its own notation. We use [ | for ordinary ring adjunction, ( ) for
ordinary field adjunction, { g for differential ring adjunction, < > for
differential field adjunction. The braces are also used to denote the
smallest radical differential ideal containing a set; the context should
make it clear which meaning is intended.
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