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Recall: • (Differential Primitive Element Theorem) Let (K, δ) be a differential field of
characteristic 0 containing at least a nonconstant element. Assume K⟨α1, . . . , αn⟩ is differential
algebraic over K. Then ∃ ξ ∈ K⟨α1, . . . , αn⟩ s.t. K⟨α1, . . . , αn⟩ = K⟨ξ⟩. In particular, there exist
ei ∈ K s.t. K⟨α1, . . . , αn⟩ = K⟨

∑n
i=1 eiαi⟩.

• Differential transcendence basis of L/K: a subset A of L satisfying 1) A is δ-algebraically
independent over K and 2) L is δ-algebraic over K⟨A⟩.

Existence: Every δ-generating set of L ⊇ K contains a δ-transcendence basis of L over K. And
any two δ-transcendence bases of L over K are of the same size.

• Differential transcendence degree of L/K: the size of a δ-transcendence basis of L over K,
denoted by δ-tr.deg(L/K). We have

(1) δ-tr.deg(L/K) = sup{n ∈ N | ∃ a1, . . . , an ∈ L δ-algebraically independent over K}.
(2) For K ⊆ L ⊆M , δ-tr.deg(M/K) = δ-tr.deg(M/L) + δ-tr.deg(L/K).

4.4 Applications to differential varieties

Let (K, δ) be a δ-field of characteristic 0 and (K̄, δ) a δ-closed field containing (K, δ).

4.4.1 Differential dimension polynomials of differential varieties

Let V ⊆ K̄n be an irreducible δ-variety over K. Then I(V ) ⊂ K{y1, . . . , yn} is a prime differen-
tial ideal. The quotient ring K{y1, . . . , yn}/I(V ) is a differential domain, which we can write as
K{ȳ1, . . . , ȳn}, where ȳi is the residue class of yi. It is called the differential coordinate ring
of V and denoted by K{V }, We can consider its elements with K̄-valued functions on V and so
we call them differential polynomial functions on V . The field of fractions of the differential co-
ordinate ring is called the field of differential rational functions on V , and is denoted by
K⟨V ⟩ = K⟨ȳ1, . . . , ȳn⟩. Naturally, K⟨V ⟩ is a δ-field extension of K. Clearly, (ȳ1, . . . , ȳn) ∈ (K⟨V ⟩)n
is a generic point of V . Indeed, given f ∈ K{y1, . . . , yn}, f(ȳ1, . . . , ȳn) = 0 if and only if f ∈ I(V ).
Given any other generic point (a1, . . . , an) of V , we have K⟨V ⟩ = K⟨ȳ1, . . . , ȳn⟩ ∼= K⟨a1, . . . , an⟩
with ȳi ↔ ai. In particular, δ-tr.degK⟨ȳ1, . . . , ȳn⟩/K = δ-tr.degK⟨a1, . . . , an⟩/K.

In order to measure the “size” of a differential variety (i.e., the solution set of algebraic differential
equations), we introduce the notion of differential dimension:

Definition 4.4.1. Let V ⊆ An be an irreducible δ-variety over K. The differential dimension of
V is defined as the δ-transcendence degree of the δ-field K⟨V ⟩ of δ-rational functions on V over K,
denoted by δ-dim(V ). That is,

δ-dim(V ) := δ-tr.degK⟨V ⟩/K.

For an arbitrary V with irreducible components V1, . . . , Vm,

δ-dim(V ) := maxi δ-dim(Vi).

An equivalent definition of differential dimension in the language of differential ideals is given by
Ritt:

Definition 4.4.2. Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal. A δ-variable set U ⊆ {y1, . . . , yn} is
called a δ-independent set modulo P if P ∩ K{U} = {0}. A parametric set of P is a maximal
δ-independent set modulo P . The δ-dimension of P (or V(P )) is defined to be the cardinal number
of its parametric set.
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Exercise: Please show different parametric sets of a prime δ-ideal have the same cardinal number.
And show Definition 4.4.1 and Definition 4.4.2 are equivalent for prime δ-ideals or irreducible δ-
varieties.

Lemma 4.4.3. Let V be a δ-variety and W ⊆ V a δ-subvariety. Then δ-dim(W ) ≤ δ-dim(V ).

Proof. First assume W and V are both irreducible. W ⊆ V implies that I(W ) ⊇ I(V ). Suppose
δ-dim(W ) = d and {y1, . . . , yd} is a parametric set of I(W ). Clearly, I(V ) ∩ {y1, . . . , yd} = {0} and
{y1, . . . , yd} is a δ-independent set modulo I(V ) which could be extended to a parametric set of I(V ).
Thus, δ-dim(V ) = δ-dim(I(V )) ≥ d.

Now let V and W be arbitrary. Let W1 be an irreducible component of W with δ-dim(W ) =
δ-dim(W1). Then W1 is contained in an irreducible component V1 of V . By the above,

δ-dim(W ) = δ-dim(W1) ≤ δ-dim(V1) ≤ δ-dim(V ).

Exercise: Let W ⊆ V be two irreducible δ-varieties with δ-dim(W ) = δ-dim(V ). Is W = V ?
It is true in the algebraic case but not valid in differential algebra:
Non-example: Let W = V(y′) ⊆ A1 and V = V(y′′) ⊆ A1. Then W ⊆ V and δ-dim(W ) =

δ-dim(V ). But W ̸= V .

This example shows that the differential dimension is not a fine enough measure of size of differ-
ential varieties, thus we need a more discriminating measure: the differential dimension polynomial
of an irreducible δ-variety V or I(V ). The idea of Hilbert polynomial for homogeneous ideals suggests
that it might be a way to consider the truncated coordinate ring by order: Let P ⊆ K{y1, . . . , yn} be
a prime δ-ideal. DenoteK[y

[t]
1 , . . . , y

[t]
n ] = K[y

(j)
i : j ≤ t, i = 1, . . . , n] and let Pt = P∩K[y

[t]
1 , . . . , y

[t]
n ].

Then Pt is a prime algebraic ideal with dimension dim(Pt).

Recall that a polynomial f ∈ R[t] is said to be numerical if f(s) ∈ Z for sufficiently big s ∈ N.
Any f ∈ R[t] can be writen as

f =
∑
k

ak

(
t+ k

k

)
where ak ∈ R and

(
t+k
k

)
= (t+ 1)(t+ 2) · · · (t+ k)/k!. f is numerical if and only if ak ∈ Z for every

k. We define f ⩽ g to mean that f(s) ⩽ g(s) for all sufficiently big s ∈ N; this totally orders R[t]
and well orders the set of all numerica polynomials which are ≥ 0.

Kolchin showed that for t≫ 0, dim(Pt) is a numerical polynomial. We state it with the language
of δ-field extensions.

Theorem 4.4.4 (Kolchin). Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal. There exists a unique
numerical polynomial ωP (t) ∈ R[t] such that dim(Pt) = ωP (t) for all sufficiently big t ∈ N, with the
following properties:

1) ωP (t) = d(t+ 1) + s with d = δ-dim(V(P )) and some s ∈ N;

2) (Computation of ωP (t)) Let A = A1, . . . , Al be a characteristic set of P w.r.t. some orderly

ranking and suppose ld(Ai) = y
(si)
σ(i). Then ωP (t) = (n− l)(t+ 1) +

l∑
i=1

si.

3) ωP (t) = n(t+ 1)⇔ P = [0] (i.e., V(P ) = An); ωP (t) = 0⇔ V(P ) is a finite set.
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Proof. Let η = (η1, . . . , ηn) be a generic point of P.Denote η[t] = (η1, . . . , ηn, η
′
1, . . . , η

′
n, . . . , η

(t)
1 , . . . , η

(t)
n ).

Clearly, η[t] is a generic point of Pt ⊆ K[y
[t]
1 , . . . , y

[t]
n ]. So dim(Pt) = tr.degK(η[t])/K.

For each A ∈ A, A(η) = 0 and IA(η) ̸= 0 imply that uA(η) is algebraic over K(η
(k)
j : y

(k)
j <

uA, j = 1, . . . , n). Repeated differentiation shows that if v is any derivative of uA, then v(η) is
algebraic over K(η

(k)
j : y

(k)
j < v, j = 1, . . . , n). Let M denote the set of all derivatives y(k)j that

are not derivatives of any uA (A ∈ A) and let M(t) = M ∩ {y(k)j : k ≤ t, j = 1, . . . , n}. So, for
t ≥ max{s1, . . . , sl}, we have that

K(η[t]) is algebraic over K
(
(v(η))v∈M(t)

)
.3 (∗)

Thus, dim(Pt) = tr.degK(η[t])/K = Card(M(t)). Since

M(t) = {yσ(i), y′σ(i), . . . , y
(si−1)
σ(i) : i = 1, . . . , l︸ ︷︷ ︸

derivatives of leading variables

} ∪ {yj , y′j , . . . , y
(t)
j : j ̸= σ(1), . . . , σ(l)︸ ︷︷ ︸

derivatives of parametric variables

},

Card(M(t)) = (n − l)(t + 1) +
l∑

i=1
si. So dim(Pt) = (n − l)(t + 1) +

l∑
i=1

si for t ≥ max{s1, . . . , sl}.

Let ωP (t) = (n− l)(t+ 1) +
l∑

i=1
si, which is numerical and dim(Pt) = ωP (t) for t ≥ max{s1, . . . , sl}.

This finishes the proof of the existence of ωP (t) and 2).
To show 3), ωP (t) = n(t + 1) ⇐⇒ M(t) = {y(k)j : k ≤ t, j = 1, . . . , n} ⇐⇒ P = [0]; And

ωP (t) = 0⇐⇒M(t) = ∅ ⇐⇒ ld(A) = {y1, . . . , yn} ⇐⇒ V(P ) is a finite set.

It remains to show δ-dim(P ) = n − l to complete the proof of 1). Assume d = δ-dim(P ) =
δ-tr.degK⟨η⟩/K. W.L.O.G, let η1, . . . , ηd be a differential transcendence basis of K⟨η⟩ over K. Thus,

ωP (t) = tr.degK(η
[t]
1 , . . . , η

[t]
n )/K = (n − l)(t + 1) +

l∑
i=1

si ≥ tr.degK(η
[t]
1 , . . . , η

[t]
d )/K = d(t + 1),

and n − l ≥ d follows. Conversely, let {z1, . . . , zn−l} = {y1, . . . , yn}\{yσ(1), . . . , yσ(l)}. Since any
nonzero polynomial in K{z1, . . . , zn−l} is reduced w.r.t. A, we have K{z1, . . . , zn−l} ∩ P = {0}. So
{z1, . . . , zn−l} is an independent set modulo P and can be enlarged to be a parametric set of P .
Thus, n− l ≤ δ-dim(P ) = d. Hence, n− l = d = δ-dim(P ).

Definition 4.4.5. Let V ⊆ An be an irreducible differential variety over K and P = I(V ). The
above ωP (t) is defined as the differential dimension polynomial of P or V , also denoted by
ωV (t).

The δ-dimension polynomial of an irreducible δ-variety V ⊆ An is of the form

ωV (t) = d(t+ 1) + s, where d = δ-dim(V ) and s ∈ N.

The number s is defined as the order of V , denoted by ord(V ). The order is the rigorous definition
for the notion “the number of arbitrary constants” of the solution of algebraic differential equations.

For an autoreduced set A = A1, . . . , Ap under an arbitrary ranking, if ld(Ai) = y
(si)
ki

, we define
the order of A as ord(A) =

∑p
i=1 si. By the proof of the Theorem 4.4.4, we have

Corollary 4.4.6. Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal and A = A1, . . . , Al be a characteristic
set of P w.r.t. some orderly ranking. Then δ-dim(P ) = n− Card(A) and ord(P ) = ord(A).

3Arrange {y(k)
j : k ≤ t, j = 1, . . . , n}\M(t) in increasing order: uA1 < · · · . From the above, uA1 is algebraic over

K
(
(v(η))v∈M(t)

)
and (∗) can be shown by induction.
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Remark: In the partial differential case, (K, {δ1, . . . , δm}), the differential dimension polynomial
of V has the form

ωV (t) = am

(
t+m

m

)
+ am−1

(
t+m− 1

m− 1

)
+ · · ·+ a1(t+ 1) + a0,

where am = δ-dim(V ). And the proof of the partial differential analogue of Theorem 4.4.4 is more
complicated.

Example: Let W = V(y′) ⊆ A1 and V = V(y′′) ⊆ A1. W ⫋ V but δ-dim(W ) = δ-dim(V ). Note
that ωW (t) = 1 < ωV (t) = 2.

The next proposition shows that δ-dimension polynomial is a finer measure than δ-dimension.

Proposition 4.4.7. Let W,V ⊆ An be irreducible δ-varieties and W ⫋ V . Then ωW (t) < ωV (t).

Proof. Let P1 = I(W ) and P2 = I(V ). Then W ⫋ V implies that P1 ⫌ P2. So for all sufficiently big
t, P1 ∩K[y

[t]
1 , . . . , y

[t]
n ] ⫌ P2 ∩K[y

[t]
1 , . . . , y

[t]
n ], consequently,

ωW (t) = dimP1 ∩K[y
[t]
1 , . . . , y

[t]
n ]

< dimP2 ∩K[y
[t]
1 , . . . , y

[t]
n ]

= ωV (t) for t≫ 0.

4.4.2 Relative orders and differential resolvents

In this section, we will show that an irreducible δ-variety is differentially birationally equivalent to
an irreducible δ-variety of codimension one.

Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal with a generic point (ξ1, . . . , ξn). Let U = {yi1 , . . . , yid}
be a parametric set of P . The relative order4 of P or V(P ) w.r.t. U , denoted by ordUP , is defined
as

ordU (P ) = tr.degK⟨ξ1, . . . , ξn⟩/K⟨ξi1 , . . . , ξid⟩.

If A is a characteristic set of P w.r.t. any elimination ranking and U = {yi1 , . . . , yid} is the set of
non-leading variables of A, then U is a parametric set of P and the relative order of P w.r.t.U is
equal to ord(A).

Theorem 4.4.8. Suppose (K, δ) contains a nonconstant element. Let P ⊆ K{u1, . . . , ud, y1, . . . , yn−d}
be a prime δ-ideal with a parametric set {u1, . . . , ud}. Then ∃ a1, . . . , an−d ∈ K s.t. [P, ω − a1y1 −
· · · − an−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, ω} has a characteristic set of the form

X(u1, . . . , ud, ω)

I1(u1, . . . , ud, ω)y1 − T1(u1, . . . , ud, ω)
...

In−d(u1, . . . , ud, ω)yn−d − Tn−d(u1, . . . , ud, ω)

w.r.t. the elimination ranking u1 < · · · < ud < ω < y1 < · · · < yn−d. Moreover, ord(X,ω) =
ordU (P ).

4In Chapter 5, we shall show how relative order and differential dimension can read off a characteristic set under
arbitry ranking.
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Proof. Let η = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d) be a generic point of P . Introduce n − d new differential
indeterminates λ1, . . . , λn−d over K⟨η⟩. Let

J = [P, ω − λ1y1 − · · · − λn−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, λ1, . . . , λn−d, ω}.

Then J is a prime δ-ideal with a generic point

ξ = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d, λ1, . . . , λn−d, λ1ȳ1 + · · ·+ λn−dȳn−d).

Since δ-dim(P ) = d, δ-tr.degK⟨η⟩/K = d and

δ-tr.degK⟨ξ⟩/K = δ-tr.degK⟨η⟩/K + δ-tr.degK⟨η⟩⟨λ1, . . . , λn−d⟩/K⟨η⟩
= d+ n− d = n.

So Jλ = J ∩ K{u1, . . . , ud, λ1, . . . , λn−d, ω} ≠ [0] and {u1, . . . , ud, λ1, . . . , λn−d} is a parametric
set of Jλ. Let {R(u1, . . . , ud, λ1, . . . , λn−d, ω)} be a characteristic set of Jλ w.r.t. the elimina-
tion ranking u1 < · · · < ud < λ1 < · · · < λn−d < ω. Denote s = ord(R,ω) ≥ 0. Since
R(ū1, . . . , ūd, λ1, . . . , λn−d, λ1ȳ1+· · ·+λn−dȳn−d) = 0, for j = 1, . . . , n−d, take the partial derivative
of this identity w.r.t. λ(s)j on both sides, then we obtain

∂R

∂λ
(s)
j

+
∂R

∂ω(s)
· ȳj = 0, (4.1)

where ∂R

∂λ
(s)
j

and ∂R
∂ω(s) are obtained from ∂R

∂λ
(s)
j

and ∂R
∂ω(s) by substituting (u1, . . . , ud, λ1, . . . , λn−d, ω) =

(ū1, . . . , ūd, λ1, . . . , λn−d, λ1ȳ1 + · · · + λn−dȳn−d). Note that ∂R
∂ω(s) /∈ Jλ, so ∂R

∂ω(s) ̸= 0. As ∂R
∂ω(s) ∈

K{η}{λ1, . . . , λn−d} is nonzero, by the non-vanishing theorem of nonzero polynomials, ∃ a1 . . . , an−d ∈
K s.t. ∂R

∂ω(s) |λi=ai ∈ K{η}\{0}. Let I(u1, . . . , ud, ω) = ∂R
∂ω(s) |λi=ai ∈ K{u1, . . . , ud, ω}. Then

I(ū1, . . . , ūd, a1ȳ1 + · · ·+ an−dȳn−d) =
∂R

∂ω(s) |λi=ai ̸= 0.
Let Ja = [P, ω − a1y1 − · · · − an−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, ω}. Then Ja is a prime

δ-ideal with a generic point

ξa = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d, a1ȳ1 + · · ·+ an−dȳn−d).

Clearly, I(u1, . . . , ud, ω) /∈ Ja. Let Tj(u1, . . . , ud, ω) = − ∂R

∂λ
(s)
j

∣∣
λi=ai,i=1,...,n−d

. By (4.1),

I(u1, . . . , ud, ω)yj − Tj(u1, . . . , ud, ω) ∈ Ja.

Since δ-tr.degK⟨ξa⟩/K = d, Ja ∩K{u1, . . . , ud, ω} ̸= [0] with a parametric set {u1, . . . , ud}. So its
characteristic set consists of a single δ-polynomial. Let X(u1, . . . , ud, ω) be an irreducible polynomial
constituting a characteristic set of Ja ∩ K{u1, . . . , ud, ω} w.r.t the elimination ranking R : u1 <
· · · < ud < ω. For each j, take the differential remainder of Iyj − Tj w.r.t X (under R). Since
I /∈ Ja∩K{u1, . . . , ud, ω}, δ-rem(Iyj−Tj , X) is of the form Ijyj−T̄j where Ij , T̄j ∈ K{u1, . . . , ud, ω},
Ij /∈ Ja.

Claim: X(u1, . . . , ud, ω), I1y1 − T̄1, . . . , In−dyn−d − T̄n−d is a characteristic set of Ja w.r.t. the
elimination ranking u1 < · · · < ud < ω < y1 < · · · < yn−d. Indeed, for all f ∈ Ja, first perform
the Ritt-Kolchin reduction process for f w.r.t. I1y1 − T̄1, . . . , In−dyn−d − T̄n−d, then we get f0 ∈
Ja ∩K{u1, . . . , ud, ω}, thus f0 could be reduced to 0 by X. Thus, we have proved the claim.
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It remains to show that ord(X,ω) = ordU (P ). SinceK⟨η⟩ = K⟨ū1, . . . , ūd, a1ȳ1+· · ·+an−dȳn−d⟩,

ordU (P ) = tr.degK⟨η⟩/K⟨ū1, . . . , ūd⟩
= tr.degK⟨ū1, . . . , ūd, a1ȳ1 + · · ·+ an−dȳn−d⟩/K⟨ū1, . . . , ūd⟩
= ord(X,ω).

Remark:

1) The above irreducible X(u1, . . . , ud, ω) is called a differential resolvent of P or V(P ).

2) With the obtained a1, . . . , an−d, we have K⟨ū1, . . . , ūd, ȳ1, . . . , ȳn−d⟩ = K⟨ū1, . . . , ūd, a1ȳ1 +
· · · + an−dȳn−d⟩. (Proposition 4.2.14) In the case d = 0, this is the differential primitive
element theorem.


