Recall: - (Differential Primitive Element Theorem) Let (K, δ) be a differential field of characteristic 0 containing at least a nonconstant element. Assume $K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is differential algebraic over K. Then $\exists \xi \in K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ s.t. $K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle=K\langle\xi\rangle$. In particular, there exist $e_{i} \in K$ s.t. $K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle=K\left\langle\sum_{i=1}^{n} e_{i} \alpha_{i}\right\rangle$.

- Differential transcendence basis of L/K: a subset A of L satisfying 1) A is δ-algebraically independent over K and 2) L is δ-algebraic over $K\langle A\rangle$.

Existence: Every δ-generating set of $L \supseteq K$ contains a δ-transcendence basis of L over K. And any two δ-transcendence bases of L over K are of the same size.

- Differential transcendence degree of L / K : the size of a δ-transcendence basis of L over K, denoted by δ-tr.deg (L / K). We have
(1) δ - $\operatorname{tr} \cdot \operatorname{deg}(L / K)=\sup \left\{n \in \mathbb{N} \mid \exists a_{1}, \ldots, a_{n} \in L \delta\right.$-algebraically independent over $\left.K\right\}$.
(2) For $K \subseteq L \subseteq M, \delta$ - tr.deg $(M / K)=\delta$-tr.deg $(M / L)+\delta$-tr.deg (L / K).

4.4 Applications to differential varieties

Let (K, δ) be a δ-field of characteristic 0 and (\bar{K}, δ) a δ-closed field containing (K, δ).

4.4.1 Differential dimension polynomials of differential varieties

Let $V \subseteq \bar{K}^{n}$ be an irreducible δ-variety over K. Then $\mathbb{I}(V) \subset K\left\{y_{1}, \ldots, y_{n}\right\}$ is a prime differential ideal. The quotient ring $K\left\{y_{1}, \ldots, y_{n}\right\} / \mathbb{I}(V)$ is a differential domain, which we can write as $K\left\{\bar{y}_{1}, \ldots, \bar{y}_{n}\right\}$, where \bar{y}_{i} is the residue class of y_{i}. It is called the differential coordinate ring of V and denoted by $K\{V\}$, We can consider its elements with \bar{K}-valued functions on V and so we call them differential polynomial functions on V. The field of fractions of the differential coordinate ring is called the field of differential rational functions on V, and is denoted by $K\langle V\rangle=K\left\langle\bar{y}_{1}, \ldots, \bar{y}_{n}\right\rangle$. Naturally, $K\langle V\rangle$ is a δ-field extension of K. Clearly, $\left(\bar{y}_{1}, \ldots, \bar{y}_{n}\right) \in(K\langle V\rangle)^{n}$ is a generic point of V. Indeed, given $f \in K\left\{y_{1}, \ldots, y_{n}\right\}, f\left(\bar{y}_{1}, \ldots, \bar{y}_{n}\right)=0$ if and only if $f \in \mathbb{I}(V)$. Given any other generic point $\left(a_{1}, \ldots, a_{n}\right)$ of V, we have $K\langle V\rangle=K\left\langle\bar{y}_{1}, \ldots, \bar{y}_{n}\right\rangle \cong K\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $\bar{y}_{i} \leftrightarrow a_{i}$. In particular, δ-tr. $\operatorname{deg} K\left\langle\bar{y}_{1}, \ldots, \bar{y}_{n}\right\rangle / K=\delta$-tr.deg $K\left\langle a_{1}, \ldots, a_{n}\right\rangle / K$.

In order to measure the "size" of a differential variety (i.e., the solution set of algebraic differential equations), we introduce the notion of differential dimension:

Definition 4.4.1. Let $V \subseteq \mathbb{A}^{n}$ be an irreducible δ-variety over K. The differential dimension of V is defined as the δ-transcendence degree of the δ-field $K\langle V\rangle$ of δ-rational functions on V over K, denoted by $\delta-\operatorname{dim}(V)$. That is,

$$
\delta-\operatorname{dim}(V):=\delta-\operatorname{tr} \cdot \operatorname{deg} K\langle V\rangle / K
$$

For an arbitrary V with irreducible components V_{1}, \ldots, V_{m},

$$
\delta-\operatorname{dim}(V):=\max _{i} \delta-\operatorname{dim}\left(V_{i}\right) .
$$

An equivalent definition of differential dimension in the language of differential ideals is given by Ritt:

Definition 4.4.2. Let $P \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a prime δ-ideal. A-variable set $U \subseteq\left\{y_{1}, \ldots, y_{n}\right\}$ is called a δ-independent set modulo P if $P \cap K\{U\}=\{0\}$. A parametric set of P is a maximal δ-independent set modulo P. The δ-dimension of $P($ or $\mathbb{V}(P))$ is defined to be the cardinal number of its parametric set.

Exercise: Please show different parametric sets of a prime δ-ideal have the same cardinal number. And show Definition 4.4.1 and Definition 4.4.2 are equivalent for prime δ-ideals or irreducible δ varieties.

Lemma 4.4.3. Let V be a δ-variety and $W \subseteq V$ a δ-subvariety. Then δ - $\operatorname{dim}(W) \leq \delta-\operatorname{dim}(V)$.
Proof. First assume W and V are both irreducible. $W \subseteq V$ implies that $\mathbb{I}(W) \supseteq \mathbb{I}(V)$. Suppose δ - $\operatorname{dim}(W)=d$ and $\left\{y_{1}, \ldots, y_{d}\right\}$ is a parametric set of $\mathbb{I}(W)$. Clearly, $\mathbb{I}(V) \cap\left\{y_{1}, \ldots, y_{d}\right\}=\{0\}$ and $\left\{y_{1}, \ldots, y_{d}\right\}$ is a δ-independent set modulo $\mathbb{I}(V)$ which could be extended to a parametric set of $\mathbb{I}(V)$. Thus, $\delta-\operatorname{dim}(V)=\delta-\operatorname{dim}(\mathbb{I}(V)) \geq d$.

Now let V and W be arbitrary. Let W_{1} be an irreducible component of W with $\delta-\operatorname{dim}(W)=$ $\delta-\operatorname{dim}\left(W_{1}\right)$. Then W_{1} is contained in an irreducible component V_{1} of V. By the above,

$$
\delta-\operatorname{dim}(W)=\delta-\operatorname{dim}\left(W_{1}\right) \leq \delta-\operatorname{dim}\left(V_{1}\right) \leq \delta-\operatorname{dim}(V) .
$$

Exercise: Let $W \subseteq V$ be two irreducible δ-varieties with $\delta-\operatorname{dim}(W)=\delta-\operatorname{dim}(V)$. Is $W=V$?
It is true in the algebraic case but not valid in differential algebra:
Non-example: Let $W=\mathbb{V}\left(y^{\prime}\right) \subseteq \mathbb{A}^{1}$ and $V=\mathbb{V}\left(y^{\prime \prime}\right) \subseteq \mathbb{A}^{1}$. Then $W \subseteq V$ and δ - $\operatorname{dim}(W)=$ δ-dim(V. But $W \neq V$.

This example shows that the differential dimension is not a fine enough measure of size of differential varieties, thus we need a more discriminating measure: the differential dimension polynomial of an irreducible δ-variety V or $\mathbb{I}(V)$. The idea of Hilbert polynomial for homogeneous ideals suggests that it might be a way to consider the truncated coordinate ring by order: Let $P \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a prime δ-ideal. Denote $K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right]=K\left[y_{i}^{(j)}: j \leq t, i=1, \ldots, n\right]$ and let $P_{t}=P \cap K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right]$. Then P_{t} is a prime algebraic ideal with dimension $\operatorname{dim}\left(P_{t}\right)$.

Recall that a polynomial $f \in \mathbb{R}[t]$ is said to be numerical if $f(s) \in \mathbb{Z}$ for sufficiently big $s \in \mathbb{N}$. Any $f \in \mathbb{R}[t]$ can be writen as

$$
f=\sum_{k} a_{k}\binom{t+k}{k}
$$

where $a_{k} \in \mathbb{R}$ and $\binom{t+k}{k}=(t+1)(t+2) \cdots(t+k) / k!. f$ is numerical if and only if $a_{k} \in \mathbb{Z}$ for every k. We define $f \leqslant g$ to mean that $f(s) \leqslant g(s)$ for all sufficiently big $s \in \mathbb{N}$; this totally orders $\mathbb{R}[t]$ and well orders the set of all numerica polynomials which are ≥ 0.

Kolchin showed that for $t \gg 0, \operatorname{dim}\left(P_{t}\right)$ is a numerical polynomial. We state it with the language of δ-field extensions.

Theorem 4.4.4 (Kolchin). Let $P \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a prime δ-ideal. There exists a unique numerical polynomial $\omega_{P}(t) \in \mathbb{R}[t]$ such that $\operatorname{dim}\left(P_{t}\right)=\omega_{P}(t)$ for all sufficiently big $t \in \mathbb{N}$, with the following properties:

1) $\omega_{P}(t)=d(t+1)+s$ with $d=\delta-\operatorname{dim}(\mathbb{V}(P))$ and some $s \in \mathbb{N}$;
2) (Computation of $\omega_{P}(t)$) Let $\mathcal{A}=A_{1}, \ldots, A_{l}$ be a characteristic set of P w.r.t. some orderly ranking and suppose $\operatorname{ld}\left(A_{i}\right)=y_{\sigma(i)}^{\left(s_{i}\right)}$. Then $\omega_{P}(t)=(n-l)(t+1)+\sum_{i=1}^{l} s_{i}$.
3) $\omega_{P}(t)=n(t+1) \Leftrightarrow P=[0]$ (i.e., $\mathbb{V}(P)=\mathbb{A}^{n}$); $\omega_{P}(t)=0 \Leftrightarrow \mathbb{V}(P)$ is a finite set.

Proof. Let $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ be a generic point of P. Denote $\eta^{[t]}=\left(\eta_{1}, \ldots, \eta_{n}, \eta_{1}^{\prime}, \ldots, \eta_{n}^{\prime}, \ldots, \eta_{1}^{(t)}, \ldots, \eta_{n}^{(t)}\right)$. Clearly, $\eta^{[t]}$ is a generic point of $P_{t} \subseteq K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right]$. So $\operatorname{dim}\left(P_{t}\right)=\operatorname{tr} \cdot \operatorname{deg} K\left(\eta^{[t]}\right) / K$.

For each $A \in \mathcal{A}, A(\eta)=0$ and $\mathrm{I}_{A}(\eta) \neq 0$ imply that $u_{A}(\eta)$ is algebraic over $K\left(\eta_{j}^{(k)}: y_{j}^{(k)}<\right.$ $\left.u_{A}, j=1, \ldots, n\right)$. Repeated differentiation shows that if v is any derivative of u_{A}, then $v(\eta)$ is algebraic over $K\left(\eta_{j}^{(k)}: y_{j}^{(k)}<v, j=1, \ldots, n\right)$. Let M denote the set of all derivatives $y_{j}^{(k)}$ that are not derivatives of any $u_{A}(A \in \mathcal{A})$ and let $M(t)=M \cap\left\{y_{j}^{(k)}: k \leq t, j=1, \ldots, n\right\}$. So, for $t \geq \max \left\{s_{1}, \ldots, s_{l}\right\}$, we have that

$$
\begin{equation*}
K\left(\eta^{[t]}\right) \text { is algebraic over } K\left((v(\eta))_{v \in M(t)}\right) \cdot{ }^{3} \tag{*}
\end{equation*}
$$

Thus, $\operatorname{dim}\left(P_{t}\right)=\operatorname{tr} \cdot \operatorname{deg} K\left(\eta^{[t]}\right) / K=\operatorname{Card}(M(t))$. Since

$$
M(t)=\{\underbrace{y_{\sigma(i)}, y_{\sigma(i)}^{\prime}, \ldots, y_{\sigma(i)}^{\left(s_{i}-1\right)}: i=1, \ldots, l}_{\text {derivatives of leading variables }}\} \cup\{\underbrace{y_{j}, y_{j}^{\prime}, \ldots, y_{j}^{(t)}: j \neq \sigma(1), \ldots, \sigma(l)}_{\text {derivatives of parametric variables }}\},
$$

$\operatorname{Card}(M(t))=(n-l)(t+1)+\sum_{i=1}^{l} s_{i}$. So $\operatorname{dim}\left(P_{t}\right)=(n-l)(t+1)+\sum_{i=1}^{l} s_{i}$ for $t \geq \max \left\{s_{1}, \ldots, s_{l}\right\}$. Let $\omega_{P}(t)=(n-l)(t+1)+\sum_{i=1}^{l} s_{i}$, which is numerical and $\operatorname{dim}\left(P_{t}\right)=\omega_{P}(t)$ for $t \geq \max \left\{s_{1}, \ldots, s_{l}\right\}$. This finishes the proof of the existence of $\omega_{P}(t)$ and 2$)$.

To show 3), $\omega_{P}(t)=n(t+1) \Longleftrightarrow M(t)=\left\{y_{j}^{(k)}: k \leq t, j=1, \ldots, n\right\} \Longleftrightarrow P=[0]$; And $\omega_{P}(t)=0 \Longleftrightarrow M(t)=\emptyset \Longleftrightarrow \operatorname{ld}(\mathcal{A})=\left\{y_{1}, \ldots, y_{n}\right\} \Longleftrightarrow \mathbb{V}(P)$ is a finite set.

It remains to show $\delta-\operatorname{dim}(P)=n-l$ to complete the proof of 1$)$. Assume $d=\delta-\operatorname{dim}(P)=$ δ-tr. $\operatorname{deg} K\langle\eta\rangle / K$. W.L.O.G, let $\eta_{1}, \ldots, \eta_{d}$ be a differential transcendence basis of $K\langle\eta\rangle$ over K. Thus, $\omega_{P}(t)=\operatorname{tr} \cdot \operatorname{deg} K\left(\eta_{1}^{[t]}, \ldots, \eta_{n}^{[t]}\right) / K=(n-l)(t+1)+\sum_{i=1}^{l} s_{i} \geq \operatorname{tr} \cdot \operatorname{deg} K\left(\eta_{1}^{[t]}, \ldots, \eta_{d}^{[t]}\right) / K=d(t+1)$, and $n-l \geq d$ follows. Conversely, let $\left\{z_{1}, \ldots, z_{n-l}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \backslash\left\{y_{\sigma(1)}, \ldots, y_{\sigma(l)}\right\}$. Since any nonzero polynomial in $K\left\{z_{1}, \ldots, z_{n-l}\right\}$ is reduced w.r.t. \mathcal{A}, we have $K\left\{z_{1}, \ldots, z_{n-l}\right\} \cap P=\{0\}$. So $\left\{z_{1}, \ldots, z_{n-l}\right\}$ is an independent set modulo P and can be enlarged to be a parametric set of P. Thus, $n-l \leq \delta-\operatorname{dim}(P)=d$. Hence, $n-l=d=\delta-\operatorname{dim}(P)$.

Definition 4.4.5. Let $V \subseteq \mathbb{A}^{n}$ be an irreducible differential variety over K and $P=\mathbb{I}(V)$. The above $\omega_{P}(t)$ is defined as the differential dimension polynomial of P or V, also denoted by $\omega_{V}(t)$.

The δ-dimension polynomial of an irreducible δ-variety $V \subseteq \mathbb{A}^{n}$ is of the form

$$
\omega_{V}(t)=d(t+1)+s, \text { where } d=\delta-\operatorname{dim}(V) \text { and } s \in \mathbb{N} .
$$

The number s is defined as the order of V, denoted by $\operatorname{ord}(V)$. The order is the rigorous definition for the notion "the number of arbitrary constants" of the solution of algebraic differential equations.

For an autoreduced set $\mathcal{A}=A_{1}, \ldots, A_{p}$ under an arbitrary ranking, if $\operatorname{ld}\left(A_{i}\right)=y_{k_{i}}^{\left(s_{i}\right)}$, we define the order of \mathcal{A} as $\operatorname{ord}(\mathcal{A})=\sum_{i=1}^{p} s_{i}$. By the proof of the Theorem 4.4.4, we have

Corollary 4.4.6. Let $P \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a prime δ-ideal and $\mathcal{A}=A_{1}, \ldots, A_{l}$ be a characteristic set of P w.r.t. some orderly ranking. Then $\delta-\operatorname{dim}(P)=n-\operatorname{Card}(\mathcal{A})$ and $\operatorname{ord}(P)=\operatorname{ord}(\mathcal{A})$.

[^0]Remark: In the partial differential case, $\left(K,\left\{\delta_{1}, \ldots, \delta_{m}\right\}\right)$, the differential dimension polynomial of V has the form

$$
\omega_{V}(t)=a_{m}\binom{t+m}{m}+a_{m-1}\binom{t+m-1}{m-1}+\cdots+a_{1}(t+1)+a_{0}
$$

where $a_{m}=\delta-\operatorname{dim}(V)$. And the proof of the partial differential analogue of Theorem 4.4.4 is more complicated.

Example: Let $W=\mathbb{V}\left(y^{\prime}\right) \subseteq \mathbb{A}^{1}$ and $V=\mathbb{V}\left(y^{\prime \prime}\right) \subseteq \mathbb{A}^{1}$. $W \varsubsetneqq V$ but $\delta-\operatorname{dim}(W)=\delta-\operatorname{dim}(V)$. Note that $\omega_{W}(t)=1<\omega_{V}(t)=2$.

The next proposition shows that δ-dimension polynomial is a finer measure than δ-dimension.
Proposition 4.4.7. Let $W, V \subseteq \mathbb{A}^{n}$ be irreducible δ-varieties and $W \varsubsetneqq V$. Then $\omega_{W}(t)<\omega_{V}(t)$.
Proof. Let $P_{1}=\mathbb{I}(W)$ and $P_{2}=\mathbb{I}(V)$. Then $W \varsubsetneqq V$ implies that $P_{1} \supsetneqq P_{2}$. So for all sufficiently big $t, P_{1} \cap K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right] \supsetneqq P_{2} \cap K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right]$, consequently,

$$
\begin{aligned}
\omega_{W}(t) & =\operatorname{dim} P_{1} \cap K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right] \\
& <\operatorname{dim} P_{2} \cap K\left[y_{1}^{[t]}, \ldots, y_{n}^{[t]}\right] \\
& =\omega_{V}(t) \quad \text { for } t \gg 0 .
\end{aligned}
$$

4.4.2 Relative orders and differential resolvents

In this section, we will show that an irreducible δ-variety is differentially birationally equivalent to an irreducible δ-variety of codimension one.

Let $P \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a prime δ-ideal with a generic point $\left(\xi_{1}, \ldots, \xi_{n}\right)$. Let $U=\left\{y_{i_{1}}, \ldots, y_{i_{d}}\right\}$ be a parametric set of P. The relative order ${ }^{4}$ of P or $\mathbb{V}(P)$ w.r.t. U, denoted by $\operatorname{ord}_{U} P$, is defined as

$$
\operatorname{ord}_{U}(P)=\operatorname{tr} \cdot \operatorname{deg} K\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle / K\left\langle\xi_{i_{1}}, \ldots, \xi_{i_{d}}\right\rangle
$$

If \mathcal{A} is a characteristic set of P w.r.t. any elimination ranking and $U=\left\{y_{i_{1}}, \ldots, y_{i_{d}}\right\}$ is the set of non-leading variables of \mathcal{A}, then U is a parametric set of P and the relative order of P w.r.t. U is equal to $\operatorname{ord}(\mathcal{A})$.

Theorem 4.4.8. Suppose (K, δ) contains a nonconstant element. Let $P \subseteq K\left\{u_{1}, \ldots, u_{d}, y_{1}, \ldots, y_{n-d}\right\}$ be a prime δ-ideal with a parametric set $\left\{u_{1}, \ldots, u_{d}\right\}$. Then $\exists a_{1}, \ldots, a_{n-d} \in K$ s.t. $\left[P, \omega-a_{1} y_{1}-\right.$ $\left.\cdots-a_{n-d} y_{n-d}\right] \subseteq K\left\{u_{1}, \ldots, u_{d}, y_{1}, \ldots, y_{n-d}, \omega\right\}$ has a characteristic set of the form

$$
\begin{aligned}
& X\left(u_{1}, \ldots, u_{d}, \omega\right) \\
& I_{1}\left(u_{1}, \ldots, u_{d}, \omega\right) y_{1}-T_{1}\left(u_{1}, \ldots, u_{d}, \omega\right) \\
& \quad \vdots \\
& I_{n-d}\left(u_{1}, \ldots, u_{d}, \omega\right) y_{n-d}-T_{n-d}\left(u_{1}, \ldots, u_{d}, \omega\right)
\end{aligned}
$$

w.r.t. the elimination ranking $u_{1}<\cdots<u_{d}<\omega<y_{1}<\cdots<y_{n-d}$. Moreover, $\operatorname{ord}(X, \omega)=$ $\operatorname{ord}_{U}(P)$.

[^1]Proof. Let $\eta=\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, \bar{y}_{1}, \ldots, \bar{y}_{n-d}\right)$ be a generic point of P. Introduce $n-d$ new differential indeterminates $\lambda_{1}, \ldots, \lambda_{n-d}$ over $K\langle\eta\rangle$. Let

$$
J=\left[P, \omega-\lambda_{1} y_{1}-\cdots-\lambda_{n-d} y_{n-d}\right] \subseteq K\left\{u_{1}, \ldots, u_{d}, y_{1}, \ldots, y_{n-d}, \lambda_{1}, \ldots, \lambda_{n-d}, \omega\right\} .
$$

Then J is a prime δ-ideal with a generic point

$$
\xi=\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, \bar{y}_{1}, \ldots, \bar{y}_{n-d}, \lambda_{1}, \ldots, \lambda_{n-d}, \lambda_{1} \bar{y}_{1}+\cdots+\lambda_{n-d} \bar{y}_{n-d}\right) .
$$

Since δ - $\operatorname{dim}(P)=d, \delta-\operatorname{tr} \cdot \operatorname{deg} K\langle\eta\rangle / K=d$ and

$$
\begin{aligned}
\delta-\operatorname{tr} \cdot \operatorname{deg} K\langle\xi\rangle / K & =\delta-\operatorname{tr} \cdot \operatorname{deg} K\langle\eta\rangle / K+\delta-\operatorname{tr} \cdot \operatorname{deg} K\langle\eta\rangle\left\langle\lambda_{1}, \ldots, \lambda_{n-d}\right\rangle / K\langle\eta\rangle \\
& =d+n-d=n .
\end{aligned}
$$

So $J_{\lambda}=J \cap K\left\{u_{1}, \ldots, u_{d}, \lambda_{1}, \ldots, \lambda_{n-d}, \omega\right\} \neq[0]$ and $\left\{u_{1}, \ldots, u_{d}, \lambda_{1}, \ldots, \lambda_{n-d}\right\}$ is a parametric set of J_{λ}. Let $\left\{R\left(u_{1}, \ldots, u_{d}, \lambda_{1}, \ldots, \lambda_{n-d}, \omega\right)\right\}$ be a characteristic set of J_{λ} w.r.t. the elimination ranking $u_{1}<\cdots<u_{d}<\lambda_{1}<\cdots<\lambda_{n-d}<\omega$. Denote $s=\operatorname{ord}(R, \omega) \geq 0$. Since $R\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, \lambda_{1}, \ldots, \lambda_{n-d}, \lambda_{1} \bar{y}_{1}+\cdots+\lambda_{n-d} \bar{y}_{n-d}\right)=0$, for $j=1, \ldots, n-d$, take the partial derivative of this identity w.r.t. $\lambda_{j}^{(s)}$ on both sides, then we obtain

$$
\begin{equation*}
\overline{\frac{\partial R}{\partial \lambda_{j}^{(s)}}}+\overline{\frac{\partial R}{\partial \omega^{(s)}}} \cdot \bar{y}_{j}=0 \tag{4.1}
\end{equation*}
$$

where $\overline{\frac{\partial R}{\partial \lambda_{j}^{(s)}}}$ and $\frac{\overline{\partial R}}{\partial \omega^{(s)}}$ are obtained from $\frac{\partial R}{\partial \lambda_{j}^{(s)}}$ and $\frac{\partial R}{\partial \omega^{(s)}}$ by substituting $\left(u_{1}, \ldots, u_{d}, \lambda_{1}, \ldots, \lambda_{n-d}, \omega\right)=$ $\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, \lambda_{1}, \ldots, \lambda_{n-d}, \lambda_{1} \bar{y}_{1}+\cdots+\lambda_{n-d} \bar{y}_{n-d}\right)$. Note that $\frac{\partial R}{\partial \omega^{(s)}} \notin J_{\lambda}$, so $\overline{\frac{\partial R}{\partial \omega^{(s)}}} \neq 0$. As $\frac{\frac{\partial R}{\partial \omega^{(s)}} \in}{}$ $K\{\eta\}\left\{\lambda_{1}, \ldots, \lambda_{n-d}\right\}$ is nonzero, by the non-vanishing theorem of nonzero polynomials, $\exists a_{1} \ldots, a_{n-d} \in$ K s.t. $\left.\overline{\frac{\partial R}{\partial \omega^{(s)}}}\right|_{\lambda_{i}=a_{i}} \in K\{\eta\} \backslash\{0\}$. Let $I\left(u_{1}, \ldots, u_{d}, \omega\right)=\left.\frac{\partial R}{\partial \omega^{(s)}}\right|_{\lambda_{i}=a_{i}} \in K\left\{u_{1}, \ldots, u_{d}, \omega\right\}$. Then $I\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, a_{1} \bar{y}_{1}+\cdots+a_{n-d} \bar{y}_{n-d}\right)=\left.\overline{\frac{\partial R}{\partial \omega^{(s)}}}\right|_{\lambda_{i}=a_{i}} \neq 0$.

Let $J_{a}=\left[P, \omega-a_{1} y_{1}-\cdots-a_{n-d} y_{n-d}\right] \subseteq K\left\{u_{1}, \ldots, u_{d}, y_{1}, \ldots, y_{n-d}, \omega\right\}$. Then J_{a} is a prime δ-ideal with a generic point

$$
\xi_{a}=\left(\bar{u}_{1}, \ldots, \bar{u}_{d}, \bar{y}_{1}, \ldots, \bar{y}_{n-d}, a_{1} \bar{y}_{1}+\cdots+a_{n-d} \bar{y}_{n-d}\right) .
$$

Clearly, $I\left(u_{1}, \ldots, u_{d}, \omega\right) \notin J_{a}$. Let $T_{j}\left(u_{1}, \ldots, u_{d}, \omega\right)=-\left.\frac{\partial R}{\partial \lambda_{j}^{(s)}}\right|_{\lambda_{i}=a_{i}, i=1, \ldots, n-d} . \operatorname{By}$ (4.1),

$$
I\left(u_{1}, \ldots, u_{d}, \omega\right) y_{j}-T_{j}\left(u_{1}, \ldots, u_{d}, \omega\right) \in J_{a}
$$

Since δ - $\operatorname{tr} . \operatorname{deg} K\left\langle\xi_{a}\right\rangle / K=d, J_{a} \cap K\left\{u_{1}, \ldots, u_{d}, \omega\right\} \neq[0]$ with a parametric set $\left\{u_{1}, \ldots, u_{d}\right\}$. So its characteristic set consists of a single δ-polynomial. Let $X\left(u_{1}, \ldots, u_{d}, \omega\right)$ be an irreducible polynomial constituting a characteristic set of $J_{a} \cap K\left\{u_{1}, \ldots, u_{d}, \omega\right\}$ w.r.t the elimination ranking $\mathscr{R}: u_{1}<$ $\cdots<u_{d}<\omega$. For each j, take the differential remainder of $I y_{j}-T_{j}$ w.r.t X (under \mathscr{R}). Since $I \notin J_{a} \cap K\left\{u_{1}, \ldots, u_{d}, \omega\right\}, \delta-\operatorname{rem}\left(I y_{j}-T_{j}, X\right)$ is of the form $I_{j} y_{j}-\bar{T}_{j}$ where $I_{j}, \bar{T}_{j} \in K\left\{u_{1}, \ldots, u_{d}, \omega\right\}$, $I_{j} \notin J_{a}$.

Claim: $X\left(u_{1}, \ldots, u_{d}, \omega\right), I_{1} y_{1}-\bar{T}_{1}, \ldots, I_{n-d} y_{n-d}-\bar{T}_{n-d}$ is a characteristic set of J_{a} w.r.t. the elimination ranking $u_{1}<\cdots<u_{d}<\omega<y_{1}<\cdots<y_{n-d}$. Indeed, for all $f \in J_{a}$, first perform the Ritt-Kolchin reduction process for f w.r.t. $I_{1} y_{1}-\bar{T}_{1}, \ldots, I_{n-d} y_{n-d}-\bar{T}_{n-d}$, then we get $f_{0} \in$ $J_{a} \cap K\left\{u_{1}, \ldots, u_{d}, \omega\right\}$, thus f_{0} could be reduced to 0 by X. Thus, we have proved the claim.

It remains to show that $\operatorname{ord}(X, \omega)=\operatorname{ord}_{U}(P)$. Since $K\langle\eta\rangle=K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}, a_{1} \bar{y}_{1}+\cdots+a_{n-d} \bar{y}_{n-d}\right\rangle$,

$$
\begin{aligned}
\operatorname{ord}_{U}(P) & =\operatorname{tr} . \operatorname{deg} K\langle\eta\rangle / K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}\right\rangle \\
& =\operatorname{tr} . \operatorname{deg} K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}, a_{1} \bar{y}_{1}+\cdots+a_{n-d} \bar{y}_{n-d}\right\rangle / K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}\right\rangle \\
& =\operatorname{ord}(X, \omega) .
\end{aligned}
$$

Remark:

1) The above irreducible $X\left(u_{1}, \ldots, u_{d}, \omega\right)$ is called a differential resolvent of P or $\mathbb{V}(P)$.
2) With the obtained a_{1}, \ldots, a_{n-d}, we have $K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}, \bar{y}_{1}, \ldots, \bar{y}_{n-d}\right\rangle=K\left\langle\bar{u}_{1}, \ldots, \bar{u}_{d}, a_{1} \bar{y}_{1}+\right.$ $\left.\cdots+a_{n-d} \bar{y}_{n-d}\right\rangle$. (Proposition 4.2.14) In the case $d=0$, this is the differential primitive element theorem.

[^0]: ${ }^{3}$ Arrange $\left\{y_{j}^{(k)}: k \leq t, j=1, \ldots, n\right\} \backslash M(t)$ in increasing order: $u_{A_{1}}<\cdots$. From the above, $u_{A_{1}}$ is algebraic over $K\left((v(\eta))_{v \in M(t)}\right)$ and $(*)$ can be shown by induction.

[^1]: ${ }^{4}$ In Chapter 5, we shall show how relative order and differential dimension can read off a characteristic set under arbitry ranking.

