Recall: - Let $(K, \delta) \subset L$. Then δ could be extended to a derivation on L. And the extension is unique iff L is algebraic over K. (If $\alpha \in\left(L,{ }^{\prime}\right)$ is algebraic over the constant field of K, then $\alpha^{\prime}=0$)

- Let $K \subseteq L \subseteq M$ be differential fields. Then M is differential algebraic over $K \Leftrightarrow M$ is differential algebraic over L and L is differential algebraic over K.
- Nonvanishing theorem of differential polynomials: Let K be a non-constant differential field of characteristic 0 . If G is a nonzero differential polynomial in $K\left\{y_{1}, \ldots, y_{n}\right\}$, there exist elements $\eta_{1}, \ldots, \eta_{n}$ in K such that $G\left(\eta_{1}, \ldots, \eta_{n}\right) \neq 0$. In particular, if $0 \neq G \in K\{y\}$ is of order r and $\xi \in K$ is a nonconstant, there exists

$$
\eta=c_{0}+c_{1} \xi+\cdots+c_{r} \xi^{r}
$$

where all the c_{i} 's are constants in K, satisfying $G(\eta) \neq 0$.

Now, we are ready to show that when (K, δ) is a nonconstant differential field, every finitely generated differential algebraic extension field of K is generated by a single element.
Theorem 4.2.3 (Differential Primitive Element Theorem). Let (K, δ) be a non-constant differential field of characteristic 0 (i.e., $\exists b \in K, \delta(b) \neq 0)$. Assume $K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is differential algebraic over K. Then $\exists \xi \in K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ s.t. $K\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle=K\langle\xi\rangle$.

Proof. It suffices to show that if γ, β are differential algebraic over K, then $\exists e \in K$ s.t.

$$
K\langle\gamma, \beta\rangle=K\langle\gamma+e \beta\rangle .
$$

Introduce a new differential indeterminate t over $K\langle\gamma, \beta\rangle$ and consider $\gamma+t \beta \in K\langle t\rangle\langle\gamma, \beta\rangle$. By Lemma 4.1.6, $\gamma+t \beta$ is differential algebraic over $K\langle t\rangle$. Consider the prime differential ideal $\mathbb{I}(\gamma+$ $t \beta) \subseteq K\langle t\rangle\{y\}$ and suppose $A(y) \in K\langle t\rangle\{y\}$ is a characteristic set of $\mathbb{I}(\gamma+t \beta)$. Then $A(\gamma+t \beta)=0$ but $\mathrm{S}_{A}(\gamma+t \beta) \neq 0$. Assume $\operatorname{ord}(A)=s$. Clearing denominators when necessary, we can take $A \in K\{t, y\}$ and write $A(t, y)$ for convenience.

Now we have $A(t, \gamma+t \beta)=0$ but $\frac{\partial A}{\partial y^{(s)}}(t, \gamma+t \beta) \neq 0$. Note that

$$
\frac{\partial\left((\gamma+t \beta)^{(k)}\right)}{\partial t^{(s)}}=\left\{\begin{array}{ll}
0, & k<s \\
\beta, & k=s
\end{array} \quad \text { for } k \leq s .\right.
$$

Take the partial derivative of $A(t, \gamma+t \beta)=0$ w.r.t. $t^{(s)}$, we have

$$
\frac{\partial A}{\partial t^{(s)}}(t, \gamma+t \beta)+\beta \cdot \frac{\partial A}{\partial y^{(s)}}(t, \gamma+t \beta)=0 .
$$

Since $\frac{\partial A}{\partial y^{(s)}}(t, \gamma+t \beta) \neq 0$ belongs to $K\langle\gamma, \beta\rangle\{t\}$, by the proof of Lemma 4.2.2, $\exists e \in K$ s.t. $\frac{\partial A}{\partial y^{(s)}}(e, \gamma+$ $e \beta) \neq 0$. Thus, $\beta=-\frac{\frac{\partial A}{\partial A(s)}(e, \gamma+e \beta)}{\partial \partial^{\partial}(s)}(e, \gamma+e \beta) \quad \in K\langle\gamma+e \beta\rangle$ and $K\langle\gamma, \beta\rangle=K\langle\gamma+e \beta\rangle$ follows.

Corollary 4.2.4. Let (K, δ) be a non-constant differential field. Let $K\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle$ be a differential algebraic extension field of K. Then $\exists e_{1}, \ldots, e_{n} \in K$ s.t. $K\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle=K\left\langle e_{1} \eta_{1}+\cdots+e_{n} \eta_{n}\right\rangle$.

Remark: G. Pogudin proved the differential primitive theorem for the case

$$
\left\{\begin{array}{l}
(1) K^{\prime}=\{0\} ; \\
(2) K\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \text { has a nonconstant }
\end{array} .\right.
$$

("The primitive element theorem for differential fields with zero derivation on the ground field. J. Pure Appl. Algebra, 4035-4041, 2015.")

4.3 Differential transcendence bases

Let R be a differential ring. Elements $\alpha_{1}, \ldots, \alpha_{n}$ in a differential over-ring S of R are called differentially algebraically dependent over R if there exists a nonzero $G \in R\left\{y_{1}, \ldots, y_{n}\right\}$ s.t. $G\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$. Otherwise, $\alpha_{1}, \ldots, \alpha_{n}$ are called differentially (δ-) algebraically independent over R. A subset of S is called δ-algebraically independent over R if all its subsets are δ algebraically independent over R.

Definition 4.3.1. Let $K \subseteq L$ be differential fields and $A \subseteq L$. An element $b \in L$ is called δ algebraically dependent on A (over K) if b is δ-algebraic over $K\langle A\rangle$. A subset B of L is called δ-algebraically dependent on A (over K) if every element of B is δ-algebraically dependent on A.

Since K is our fixed base differential field, for simplicity, we usually omit "over K ".
Lemma 4.3.2. Let $K \subseteq L$ be an extension of δ-fields, $A \subseteq L$ and $b \in L$. Then b is δ-algebraically dependent on A if and only if $\exists f \in K\left\{y_{1}, \ldots, y_{n}, z\right\}$ and $a_{1}, \ldots, a_{n} \in A$ such that $f\left(a_{1}, \ldots, a_{n}, z\right) \neq 0$ and $f\left(a_{1}, \ldots, a_{n}, b\right)=0$.

Proof. Assume b is δ-algebraically dependent on A. Then by definition, b is δ-algebraic over $K\langle A\rangle$, so \exists a nonzero $g \in K\langle A\rangle\{z\}$ s.t. $g(b)=0$. Let $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A$ be the subset appearing effectively in the coefficients of g. After multiplying g by an appropriate element from $K\left\{a_{1}, \ldots, a_{n}\right\}$, we can assume $g \in K\left\{a_{1}, \ldots, a_{n}, z\right\}$. Thus, this $g\left(y_{1}, \ldots, y_{n}, z\right)$ satisfies the desired property. The converse is obvious.

Lemma 4.3.3. Let $K \subseteq L$ be an extension of δ-fields and A be a subset of L which is δ-algebraically independent over K. Let $b \in L$. If A, b are δ-algebraically dependent over K, then b is δ-algebraic over $K\langle A\rangle$.

Proof. Since A, b are δ-algebraically dependent over K, then there exists a nonzero differential polynomial $f \in K\left\{y_{1}, \ldots, y_{n}, z\right\}$ s.t. $f\left(a_{1}, \ldots, a_{n}, b\right)=0$ for some $a_{1}, \ldots, a_{n} \in A$. Since a_{1}, \ldots, a_{n} are δ-algebraically independent over $K, f\left(a_{1}, \ldots, a_{n}, z\right) \neq 0$. Thus, b is δ-algebraic over $K\langle A\rangle$.

Lemma 4.3.4 (Transitivity of δ-algebraic dependence). Let $(K, \delta) \subseteq(L, \delta)$ and $A, B, C \subseteq L$. If A is δ-algebraically dependent on B and B is δ-algebraically dependent on C, then A is δ-algebraically dependent on C.

Proof. By the assumption, $K\langle B\rangle\langle A\rangle$ is δ-algebraic over $K\langle B\rangle$ and $K\langle C\rangle\langle B\rangle$ is δ-algebraic over $K\langle C\rangle$. By Lemma 4.1.7, $K\langle C, B, A\rangle$ is δ-algebraic over $K\langle C\rangle$. Thus, each element of A is δ-algebraic over $K\langle C\rangle$.

Lemma 4.3.5 (The exchange property). Let a_{1}, \ldots, a_{n}, b be elements from a δ-extension field of K. If b is δ-algebraically dependent on a_{1}, \ldots, a_{n} but not on a_{1}, \ldots, a_{n-1}, then a_{n} is δ-algebraically dependent on $a_{1}, \ldots, a_{n-1}, b$.

Proof. Since b is δ-algebraically dependent on a_{1}, \ldots, a_{n}, by Lemma 4.3.2, there exists a nonzero $g \in K\left\{y_{1}, \ldots, y_{n}, z\right\}$ s.t. $g\left(a_{1}, \ldots, a_{n}, z\right) \neq 0$ and $g\left(a_{1}, \ldots, a_{n}, b\right)=0$. Regard g as a univariate δ-polynomial in y_{n} with coefficients from $K\left\{y_{1}, \ldots, y_{n-1}, z\right\}$, i.e., $g=\sum_{i} g_{i}\left(y_{1}, \ldots, y_{n-1}, z\right) M_{i}\left(y_{n}\right)$ where the $M_{i}\left(y_{n}\right)$ are distinct δ-monomials. Then there exists i_{0} s.t. $g_{i_{0}}\left(a_{1}, \ldots, a_{n-1}, z\right) \neq 0$, for otherwise, we would get $g\left(a_{1}, \ldots, a_{n-1}, a_{n}, z\right)=0$. Since b is not δ-algebraically dependent on $a_{1}, \ldots, a_{n-1}, g_{i_{0}}\left(a_{1}, \ldots, a_{n-1}, b\right) \neq 0$. So $g\left(a_{1}, \ldots, a_{n-1}, y_{n}, b\right) \neq 0$ and consequently, a_{n} is δ algebraically dependent on $a_{1}, \ldots, a_{n-1}, b$.

Proposition 4.3.6. Let $K \subseteq L$ be an extension of δ-fields and $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}$ be two subsets of L. Assume that 1) A is δ-algebraically independent over K and 2) A is δ-algebraically dependent on B. Then $n \leq m$.

Proof. Let $r=|A \cap B|$. If $r=n$, i.e., $A \subseteq B$, then we are done. Now assume $r<n$ and write $B=a_{1}, \ldots, a_{r}, b_{r+1}, \ldots, b_{m}$. Since a_{r+1} is δ-algebraically dependent on $a_{1}, \ldots, a_{r}, b_{r+1}, \ldots, b_{m}$ but not on a_{1}, \ldots, a_{r}, there will be a $b_{j}(r+1 \leq j \leq m)$ s.t. a_{r+1} is δ-algebraically dependent on $a_{1}, \ldots, a_{r}, b_{r+1}, \ldots, b_{j}$ but not δ-algebraically dependent on $a_{1}, \ldots, a_{r}, b_{r+1}, \ldots, b_{j-1}$. Bt the exchange property (Lemma 4.3.5), b_{j} is δ-algebraically dependent on $a_{1}, \ldots, a_{r}, b_{r+1}, \ldots, b_{j-1}, a_{r+1}$, and thus δ-algebraically dependent on $B_{1}:=\left(B \backslash\left\{b_{j}\right\}\right) \cup\left\{a_{r+1}\right\}$. Therefore, B is δ-algebraically dependent on B_{1}. Since A is δ-algebraically dependent on B, by Lemma 4.2.4, A is δ-algebraically dependent on B_{1}. Note that $\left|B_{1}\right|=m$ and $\left|A \cap B_{1}\right|=r+1$. Continuing in this way, we will eventually get some B_{n-r} with $\left|A \cap B_{n-r}\right|=n$, i.e., $A \subseteq B_{n-r}$. So $n \leq m$.

Definition 4.3.7. Let $(K, \delta) \subseteq(L, \delta)$. A subset A of L is called a δ-transcendence basis of L over K if 1) A is δ-algebraically independent over K and 2) L is δ-algebraic over $K\langle A\rangle$.

By the size of a set, we mean its cardinality if the set is finite, and ∞ otherwise.
Theorem 4.3.8. Let $(K, \delta) \subseteq(L, \delta)$. Then every δ-generating set of $L \supseteq K$ contains a δ transcendence basis of L over K. In particular, there exists a δ-transcendence basis of L over K. Moreover, any two δ-transcendence bases of L over K are of the same size.

Proof. Let M be a δ-generating set of L over K, i.e., $L=K\langle M\rangle$. Let

$$
N=\{S \subseteq M \mid S \text { is } \delta \text {-algebraically independent over } K\} \text {. }
$$

Then $\emptyset \in N \neq \emptyset$. Clearly, the union of every chain of elements in N is again in N. So by Zorn's lemma, there exists a maximal element A in N.

Claim: A is a δ-transcendence basis of L over K.
We now show the claim. For any $a \in M, a, A$ are δ-algebraically dependent over K. By Lemma 4.3.3, a is δ-algebraic over $K\langle A\rangle$, so M is δ-algebraic over $K\langle A\rangle$. And by Lemma 4.1.6, $L=K\langle M\rangle$ is δ-algebraic over $K\langle A\rangle$. Thus, $A \subseteq M$ is a δ-transcendence basis of L over K.

Now suppose A and B are both δ-transcendence bases of L over K. By symmetry, it suffices to show that the size of $A \geq$ the size of B. If A is an infinite set, it is automatically valid. So we may assume A is finite. Let B_{1} be any finite subset of B. Since A is a δ-transcendence basis of L over K, each element of B_{1} is δ-algebraic over $K\langle A\rangle$, and B_{1} is δ-algebraically dependent on A. By Proposition 4.3.6, $\left|B_{1}\right| \leq|A|$. Thus, $|B| \leq|A|$.

Corollary 4.3.9. Let $(K, \delta) \subseteq(L, \delta)$ and $L=K\langle M\rangle$. If A is a maximal δ-algebraically independent subset of M, then A is a δ-transcendence basis of L over K.

Theorem 4.3.8 guarantees we can make the following definition:
Definition 4.3.10. Let $(K, \delta) \subseteq(L, \delta)$. The size of a δ-transcendence basis of L over K is called the δ-transcendence degree of L over K. It is denoted by δ - $\operatorname{tr} \cdot \operatorname{deg}(L / K)$.

Corollary 4.3.11. Let $(K, \delta) \subseteq(L, \delta)$ and $L=K\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Then $\delta-\operatorname{tr} \cdot \operatorname{deg}(L / K) \leq n$, and the δ-transcendence degree of a finitely δ-generated δ-field extension is finite.

Proof. It is clear from Corollary 4.3.9.

Corollary 4.3.12. Let $(K, \delta) \subseteq(L, \delta)$. If L contains n number of δ-independent elements, then $n \leq \delta$-tr.deg (L / K). In fact,

$$
\delta-\operatorname{tr} \cdot \operatorname{deg}(L / K)=\sup \left\{n \in \mathbb{N} \mid \exists a_{1}, \ldots, a_{n} \in L \text { differentially algebraically independent over } K\right\} .
$$

Proof. Let $a_{1}, \ldots, a_{n} \in L$ be δ-algebraically independent over K. We can enlarge $\left\{a_{1}, \ldots, a_{n}\right\}$ to a δ-generating set B of L over K. Then $\left\{a_{1}, \ldots, a_{n}\right\}$ is contained in a maximal δ-algebraically independent subset $A^{\prime} \subseteq B$. By Corollary 4.3.9, A^{\prime} is a δ-transcendence basis of L over K. Thus, $n \leq \delta$-tr.deg (L / K) and also
$\sup \left\{n \in \mathbb{N} \mid \exists a_{1}, \ldots, a_{n} \in L\right.$ that are δ-algebraically independent over $\left.K\right\} \leq \delta$ - $\operatorname{tr} \cdot \operatorname{deg}(L / K)$.
The reverse estimate is clear, for a δ-transcendence basis is δ-algebraically independent over K.
Theorem 4.3.13. Let $K \subseteq L \subseteq M$ be δ-fields. Then

$$
\delta-\operatorname{tr} \cdot \operatorname{deg}(M / K)=\delta-\operatorname{tr} \cdot \operatorname{deg}(M / L)+\delta-\operatorname{tr} \cdot \operatorname{deg}(L / K)
$$

(Here, $\infty+a(\infty)=\infty)$.
Proof. Let A be a transcendence basis of L over K and B a δ-transcendence basis of M over L.
Claim: $A \cup B$ is a δ-transcendence basis of M over K.
First, since B is δ-algebraically independent over $K\langle A\rangle(\subseteq L), A \cup B$ is δ-algebraically independent over K. It remains to show M is δ-algebraic over $K\langle A, B\rangle$. Since each element of M is δ-algebraic over $L\langle B\rangle$ and each element of L is δ-algebraic over $K\langle A\rangle, M$ is δ-algebraic over $K\langle A, B\rangle$. Thus, $A \cup B$ is a δ-transcendence basis of M over K and $A \cap B=\emptyset$ implies that δ-tr.deg $(M / K)=$ δ-tr.deg $(M / L)+\delta$-tr.deg (L / K).

Adjoining the differential primitive element theorem, we have
Proposition 4.3.14. Let $L=K\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and suppose K contains a nonconstant element in the case $d=\delta-\operatorname{tr} \cdot \operatorname{deg}(L / K)=0$. Then L is δ-generated by no more than $d+1$ elements.

Proof. In the case $d=0$, this is the differential primitive element theorem. Assume $d>0$. Then $\exists\left\{\xi_{1}, \ldots, \xi_{d}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$ s.t. ξ_{1}, \ldots, ξ_{d} is a δ-transcendence basis of L over K, and denote the others by $\xi_{d+1}, \ldots, \xi_{n}$. Then by the differential primitive element theorem, there exist $a_{i} \in$ $K\left\langle\xi_{1}, \ldots, \xi_{d}\right\rangle$ s.t. $L=K\left\langle\xi_{1}, \ldots, \xi_{d}\right\rangle\left\langle\xi_{d+1}, \ldots, \xi_{n}\right\rangle=K\left\langle\xi_{1}, \ldots, \xi_{d}\right\rangle\left\langle a_{d+1} \xi_{d+1}+\cdots+a_{n} \xi_{n}\right\rangle .(d>0 \Rightarrow$ $K\left\langle\xi_{1}, \ldots, \xi_{d}\right\rangle$ is a non-constant δ-field).

