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Recall: • Let (K, δ) ⊂ L. Then δ could be extended to a derivation on L. And the extension is
unique iff L is algebraic over K. (If α ∈ (L,′ ) is algebraic over the constant field of K, then α′ = 0)

• Let K ⊆ L ⊆ M be differential fields. Then M is differential algebraic over K ⇔ M is
differential algebraic over L and L is differential algebraic over K.

• Nonvanishing theorem of differential polynomials: Let K be a non-constant differential field
of characteristic 0. If G is a nonzero differential polynomial in K{y1, . . . , yn}, there exist elements
η1, . . . , ηn in K such that G(η1, . . . , ηn) ̸= 0. In particular, if 0 ̸= G ∈ K{y} is of order r and ξ ∈ K
is a nonconstant, there exists

η = c0 + c1ξ + · · ·+ crξ
r

where all the ci’s are constants in K, satisfying G(η) ̸= 0.

Now, we are ready to show that when (K, δ) is a nonconstant differential field, every finitely
generated differential algebraic extension field of K is generated by a single element.

Theorem 4.2.3 (Differential Primitive Element Theorem). Let (K, δ) be a non-constant differen-
tial field of characteristic 0 (i.e., ∃ b ∈ K, δ(b) ̸= 0). Assume K⟨α1, . . . , αn⟩ is differential algebraic
over K. Then ∃ ξ ∈ K⟨α1, . . . , αn⟩ s.t. K⟨α1, . . . , αn⟩ = K⟨ξ⟩.

Proof. It suffices to show that if γ, β are differential algebraic over K, then ∃ e ∈ K s.t.

K⟨γ, β⟩ = K⟨γ + eβ⟩.

Introduce a new differential indeterminate t over K⟨γ, β⟩ and consider γ + tβ ∈ K⟨t⟩⟨γ, β⟩. By
Lemma 4.1.6, γ + tβ is differential algebraic over K⟨t⟩. Consider the prime differential ideal I(γ +
tβ) ⊆ K⟨t⟩{y} and suppose A(y) ∈ K⟨t⟩{y} is a characteristic set of I(γ + tβ). Then A(γ + tβ) = 0
but SA(γ + tβ) ̸= 0. Assume ord(A) = s. Clearing denominators when necessary, we can take
A ∈ K{t, y} and write A(t, y) for convenience.

Now we have A(t, γ + tβ) = 0 but ∂A
∂y(s)

(t, γ + tβ) ̸= 0. Note that

∂((γ + tβ)(k))

∂t(s)
=

{
0, k < s

β, k = s
for k ≤ s.

Take the partial derivative of A(t, γ + tβ) = 0 w.r.t. t(s), we have
∂A
∂t(s)

(t, γ + tβ) + β · ∂A
∂y(s)

(t, γ + tβ) = 0.

Since ∂A
∂y(s)

(t, γ+tβ) ̸= 0 belongs to K⟨γ, β⟩{t}, by the proof of Lemma 4.2.2, ∃ e ∈ K s.t. ∂A
∂y(s)

(e, γ+

eβ) ̸= 0. Thus, β = −
∂A

∂t(s)
(e,γ+eβ)

∂A

∂y(s)
(e,γ+eβ)

∈ K⟨γ + eβ⟩ and K⟨γ, β⟩ = K⟨γ + eβ⟩ follows.

Corollary 4.2.4. Let (K, δ) be a non-constant differential field. Let K⟨η1, . . . , ηn⟩ be a differential
algebraic extension field of K. Then ∃ e1, . . . , en ∈ K s.t. K⟨η1, . . . , ηn⟩ = K⟨e1η1 + · · ·+ enηn⟩.

Remark: G. Pogudin proved the differential primitive theorem for the case{
1○K ′ = {0};
2○K⟨η1, . . . , ηn⟩ has a nonconstant

.

(“The primitive element theorem for differential fields with zero derivation on the ground field. J.
Pure Appl. Algebra, 4035-4041, 2015.”)
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4.3 Differential transcendence bases

Let R be a differential ring. Elements α1, . . . , αn in a differential over-ring S of R are called dif-
ferentially algebraically dependent over R if there exists a nonzero G ∈ R{y1, . . . , yn} s.t.
G(α1, . . . , αn) = 0. Otherwise, α1, . . . , αn are called differentially (δ-) algebraically independent
over R. A subset of S is called δ-algebraically independent over R if all its subsets are δ-
algebraically independent over R.

Definition 4.3.1. Let K ⊆ L be differential fields and A ⊆ L. An element b ∈ L is called δ-
algebraically dependent on A (over K) if b is δ-algebraic over K⟨A⟩. A subset B of L is called
δ-algebraically dependent on A (over K) if every element of B is δ-algebraically dependent on A.

Since K is our fixed base differential field, for simplicity, we usually omit “over K”.

Lemma 4.3.2. Let K ⊆ L be an extension of δ-fields, A ⊆ L and b ∈ L. Then b is δ-algebraically
dependent on A if and only if ∃ f ∈ K{y1, . . . , yn, z} and a1, . . . , an ∈ A such that f(a1, . . . , an, z) ̸= 0
and f(a1, . . . , an, b) = 0.

Proof. Assume b is δ-algebraically dependent on A. Then by definition, b is δ-algebraic over K⟨A⟩,
so ∃ a nonzero g ∈ K⟨A⟩{z} s.t. g(b) = 0. Let {a1, . . . , an} ⊆ A be the subset appearing effectively
in the coefficients of g. After multiplying g by an appropriate element from K{a1, . . . , an}, we can
assume g ∈ K{a1, . . . , an, z}. Thus, this g(y1, . . . , yn, z) satisfies the desired property. The converse
is obvious.

Lemma 4.3.3. Let K ⊆ L be an extension of δ-fields and A be a subset of L which is δ-algebraically
independent over K. Let b ∈ L. If A, b are δ-algebraically dependent over K, then b is δ-algebraic
over K⟨A⟩.

Proof. Since A, b are δ-algebraically dependent over K, then there exists a nonzero differential poly-
nomial f ∈ K{y1, . . . , yn, z} s.t. f(a1, . . . , an, b) = 0 for some a1, . . . , an ∈ A. Since a1, . . . , an are
δ-algebraically independent over K, f(a1, . . . , an, z) ̸= 0. Thus, b is δ-algebraic over K⟨A⟩.

Lemma 4.3.4 (Transitivity of δ-algebraic dependence). Let (K, δ) ⊆ (L, δ) and A,B,C ⊆ L. If A
is δ-algebraically dependent on B and B is δ-algebraically dependent on C, then A is δ-algebraically
dependent on C.

Proof. By the assumption, K⟨B⟩⟨A⟩ is δ-algebraic overK⟨B⟩ andK⟨C⟩⟨B⟩ is δ-algebraic overK⟨C⟩.
By Lemma 4.1.7, K⟨C,B,A⟩ is δ-algebraic over K⟨C⟩. Thus, each element of A is δ-algebraic over
K⟨C⟩.

Lemma 4.3.5 (The exchange property). Let a1, . . . , an, b be elements from a δ-extension field of
K. If b is δ-algebraically dependent on a1, . . . , an but not on a1, . . . , an−1, then an is δ-algebraically
dependent on a1, . . . , an−1, b.

Proof. Since b is δ-algebraically dependent on a1, . . . , an, by Lemma 4.3.2, there exists a nonzero
g ∈ K{y1, . . . , yn, z} s.t. g(a1, . . . , an, z) ̸= 0 and g(a1, . . . , an, b) = 0. Regard g as a univariate
δ-polynomial in yn with coefficients from K{y1, . . . , yn−1, z}, i.e., g =

∑
i gi(y1, . . . , yn−1, z)Mi(yn)

where the Mi(yn) are distinct δ-monomials. Then there exists i0 s.t. gi0(a1, . . . , an−1, z) ̸= 0,
for otherwise, we would get g(a1, . . . , an−1, an, z) = 0. Since b is not δ-algebraically dependent
on a1, . . . , an−1, gi0(a1, . . . , an−1, b) ̸= 0. So g(a1, . . . , an−1, yn, b) ̸= 0 and consequently, an is δ-
algebraically dependent on a1, . . . , an−1, b.
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Proposition 4.3.6. Let K ⊆ L be an extension of δ-fields and A = {a1, . . . , an}, B = {b1, . . . , bm} be
two subsets of L. Assume that 1) A is δ-algebraically independent over K and 2) A is δ-algebraically
dependent on B. Then n ≤ m.

Proof. Let r = |A ∩ B|. If r = n, i.e., A ⊆ B, then we are done. Now assume r < n and
write B = a1, . . . , ar, br+1, . . . , bm. Since ar+1 is δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bm
but not on a1, . . . , ar, there will be a bj (r + 1 ≤ j ≤ m) s.t. ar+1 is δ-algebraically dependent
on a1, . . . , ar, br+1, . . . , bj but not δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bj−1. Bt the
exchange property (Lemma 4.3.5), bj is δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bj−1, ar+1,
and thus δ-algebraically dependent on B1 := (B\{bj}) ∪ {ar+1}. Therefore, B is δ-algebraically
dependent on B1. Since A is δ-algebraically dependent on B, by Lemma 4.2.4, A is δ-algebraically
dependent on B1. Note that |B1| = m and |A ∩ B1| = r + 1. Continuing in this way, we will
eventually get some Bn−r with |A ∩Bn−r| = n, i.e., A ⊆ Bn−r. So n ≤ m.

Definition 4.3.7. Let (K, δ) ⊆ (L, δ). A subset A of L is called a δ-transcendence basis of L
over K if 1) A is δ-algebraically independent over K and 2) L is δ-algebraic over K⟨A⟩.

By the size of a set, we mean its cardinality if the set is finite, and ∞ otherwise.

Theorem 4.3.8. Let (K, δ) ⊆ (L, δ). Then every δ-generating set of L ⊇ K contains a δ-
transcendence basis of L over K. In particular, there exists a δ-transcendence basis of L over K.
Moreover, any two δ-transcendence bases of L over K are of the same size.

Proof. Let M be a δ-generating set of L over K, i.e., L = K⟨M⟩. Let

N = {S ⊆M | S is δ-algebraically independent over K}.

Then ∅ ∈ N ̸= ∅. Clearly, the union of every chain of elements in N is again in N . So by Zorn’s
lemma, there exists a maximal element A in N .

Claim: A is a δ-transcendence basis of L over K.
We now show the claim. For any a ∈M , a,A are δ-algebraically dependent over K. By Lemma

4.3.3, a is δ-algebraic over K⟨A⟩, so M is δ-algebraic over K⟨A⟩. And by Lemma 4.1.6, L = K⟨M⟩
is δ-algebraic over K⟨A⟩. Thus, A ⊆M is a δ-transcendence basis of L over K.

Now suppose A and B are both δ-transcendence bases of L over K. By symmetry, it suffices
to show that the size of A ≥ the size of B. If A is an infinite set, it is automatically valid. So we
may assume A is finite. Let B1 be any finite subset of B. Since A is a δ-transcendence basis of L
over K, each element of B1 is δ-algebraic over K⟨A⟩, and B1 is δ-algebraically dependent on A. By
Proposition 4.3.6, |B1| ≤ |A|. Thus, |B| ≤ |A|.

Corollary 4.3.9. Let (K, δ) ⊆ (L, δ) and L = K⟨M⟩. If A is a maximal δ-algebraically independent
subset of M , then A is a δ-transcendence basis of L over K.

Theorem 4.3.8 guarantees we can make the following definition:

Definition 4.3.10. Let (K, δ) ⊆ (L, δ). The size of a δ-transcendence basis of L over K is called
the δ-transcendence degree of L over K. It is denoted by δ-tr.deg(L/K).

Corollary 4.3.11. Let (K, δ) ⊆ (L, δ) and L = K⟨a1, . . . , an⟩. Then δ-tr.deg(L/K) ≤ n, and the
δ-transcendence degree of a finitely δ-generated δ-field extension is finite.

Proof. It is clear from Corollary 4.3.9.
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Corollary 4.3.12. Let (K, δ) ⊆ (L, δ). If L contains n number of δ-independent elements, then
n ≤ δ-tr.deg(L/K). In fact,

δ-tr.deg(L/K) = sup{n ∈ N | ∃ a1, . . . , an ∈ L differentially algebraically independent over K}.

Proof. Let a1, . . . , an ∈ L be δ-algebraically independent over K. We can enlarge {a1, . . . , an} to
a δ-generating set B of L over K. Then {a1, . . . , an} is contained in a maximal δ-algebraically
independent subset A′ ⊆ B. By Corollary 4.3.9, A′ is a δ-transcendence basis of L over K. Thus,
n ≤ δ-tr.deg(L/K) and also

sup{n ∈ N | ∃ a1, . . . , an ∈ L that are δ-algebraically independent over K} ≤ δ-tr.deg(L/K).

The reverse estimate is clear, for a δ-transcendence basis is δ-algebraically independent over K.

Theorem 4.3.13. Let K ⊆ L ⊆M be δ-fields. Then

δ-tr.deg(M/K) = δ-tr.deg(M/L) + δ-tr.deg(L/K).

(Here, ∞+ a(∞) =∞).

Proof. Let A be a transcendence basis of L over K and B a δ-transcendence basis of M over L.
Claim: A ∪B is a δ-transcendence basis of M over K.

First, since B is δ-algebraically independent over K⟨A⟩ (⊆ L), A∪B is δ-algebraically independent
over K. It remains to show M is δ-algebraic over K⟨A,B⟩. Since each element of M is δ-algebraic
over L⟨B⟩ and each element of L is δ-algebraic over K⟨A⟩, M is δ-algebraic over K⟨A,B⟩. Thus,
A ∪ B is a δ-transcendence basis of M over K and A ∩ B = ∅ implies that δ-tr.deg(M/K) =
δ-tr.deg(M/L) + δ-tr.deg(L/K).

Adjoining the differential primitive element theorem, we have

Proposition 4.3.14. Let L = K⟨a1, . . . , an⟩ and suppose K contains a nonconstant element in the
case d = δ-tr.deg(L/K) = 0. Then L is δ-generated by no more than d+ 1 elements.

Proof. In the case d = 0, this is the differential primitive element theorem. Assume d > 0. Then
∃ {ξ1, . . . , ξd} ⊆ {a1, . . . , an} s.t. ξ1, . . . , ξd is a δ-transcendence basis of L over K, and denote
the others by ξd+1, . . . , ξn. Then by the differential primitive element theorem, there exist ai ∈
K⟨ξ1, . . . , ξd⟩ s.t. L = K⟨ξ1, . . . , ξd⟩⟨ξd+1, . . . , ξn⟩ = K⟨ξ1, . . . , ξd⟩⟨ad+1ξd+1 + · · ·+ anξn⟩. (d > 0⇒
K⟨ξ1, . . . , ξd⟩ is a non-constant δ-field).


