
Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0. Let x be an indeterminate over K. Then δ can

be extended to a derivation δ0 on K[x] s.t. δ0(x) = 0 given by δ0(
l∑

i=0
rix

i) =
l∑

i=0
δ(ri)x

i. There is

also a derivation on K[x] s.t. d
dx(K) = 0 and d

dx(x) = 1 given by d
dx(

l∑
i=0

rix
i) =

l∑
i=1

irix
i−1. Of

course, d
dx does not extend δ.

Lemma 4.1.1. Any derivation δ1 on K[x] which extends δ is given by

δ1 = δ0 + δ1(x)
d
dx .

Conversely, by defining δ1(x) = p(x) ∈ K[x], δ1 = δ0 + p(x) d
dx is a derivation on K[x] extending δ.

Proof. First suppose δ1 is a derivation on K[x] extending δ. Then ∀ f =
r∑

i=0
rix

i ∈ K[x], δ1(f) =

r∑
i=0

δ(ri)x
i +

r∑
i=1

irix
i−1δ1(x) = δ0(f) + δ1(x)

d
dx(f). So δ1 = δ0 + δ1(x)

d
dx . Now let δ1 : K[x]→ K[x]

be defined by δ1(f) = δ0(f) + δ1(x)
d
dx(f). Then ∀ a ∈ K, δ1(a) = δ0(a) + δ1(x)

d
dx(a) = δ(a);

∀ f, g ∈ K[x], δ1(f + g) = δ0(f + g) + δ1(x)
d

dx
(f + g) = δ1(f) + δ1(g),

δ1(fg) = δ0(fg) + δ1(x)
d

dx
(fg) = δ1(f)g + fδ1(g).

Thus, δ1 is a derivation which extends δ.

Theorem 4.1.2. Let K ⊆ L be fields of characteristic 0. Then any derivation on K could be
extended to a derivation on L. This extension is unique if and only if L is algebraic over K.

Proof. Let δ be a derivation on K. We first consider the case that L = K(α) for some α ∈ L. If α is
transcendental over K, then by Lemma 4.1.1, there exists a derivation δ0 on K[α] extending δ on K,
and by Lemma 1.1.2, δ0 can be extended to a derivation on L = K(α). Otherwise, let α be algebraic
over K and suppose F (x) ∈ K[x] is the minimal polynomial of α over K. δ can be extended to a
derivation δ0 on K[x] by setting δ0(x) = 0. By Lemma 4.1.1, δ1 = δ0 + g(x) d

dx is a derivation on
K[x] where g(x) ∈ K[x] is a polynomial to be determined. We want to choose g(x) s.t. δ1 maps the
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ideal (F )K[x] to itself. The condition for this is that δ1(F )(α) = 0, ie., δ0(F )(α) + g(α)dFdx (α) = 0.
Since dF

dx (α) ̸= 0,

g(α) = −δ0(F )(α)
dF
dx (α)

∈ K(α) = K[α].

So we can select a g(x) ∈ K[x] with the desired property. With this g(x), δ1 maps (F )K[x] to itself,
so it can induce a map

δ̄1 : K[x]/(F )K[x] −→ K[x]/(F )K[x]

with δ̄1(f(x) + (F )K[x]) = δ1(f(x)) + (F )K[x] which is derivation on K[x]/(F )K[x]. Since K[α] ∼=
K[x]/(F )K[x], by defining δ̄1(f(α)) = δ1(f)(α) for each f(α) ∈ K[α], δ̄1 gives a derivation on
K(α) = K[α]. (Note that δ̄1(α) = g(α) = −δ0(F )(α)/F ′(α).)

For the general case, let U = {(K1, δ1) : K ⊆ K1 ⊆ L and δ1 |K= δ}. Then U is nonempty
for (K, δ) ∈ U . Let (K1, δ1) ⊆ (K2, δ2) ⊆ · · · ⊆ (Kn, δn) ⊆ · · · be an ascending chain in U . Then(⋃

i
Ki, D

)
with ∀ a ∈ Ki, D(a) = δi(a) is in U . By Zorn’s lemma, there exists a maximal element

(M, δM ) in U . Clearly, M = L.

Uniqueness If L is not algebraic over K, then ∃α ∈ L transcendental over K. By Lemma 4.1.1,
for any g(α) ∈ K[α], δ1 = δ0 + g(α) d

dα is a derivation on K[α] extending δ. So there will be more
than one derivation on L ⊃ K(α) which extends δ. If L is algebraic over K, for each α ∈ L, let

F (x) =
d∑

i=0
rix

i ∈ K[x] be the minimal polynomial of α over K. Suppose D is a derivation on L

which extends δ on K. F (α) = 0 ⇒ 0 = D(F (α)) = D(
d∑

i=0
riα

i) =
d∑

i=0
δ(ri)α

i + (
d∑

i=1
iriα

i−1)D(α)

⇒ D(α) = −(
d∑

i=0
δ(ri)α

i)/(
d∑

i=1
iriα

i−1). Thus, D is the unique derivation on L which extends δ.

Corollary 4.1.3. If K ⊆ L are fields of characteristic 0 and δ is a derivation on L s.t. δ(K) ⊆ K.
If α ∈ L is algebraic over K, then δ(α) ∈ K(α). In particular, if α ∈ L is algebraic over a constant
subfield of L, then α is a constant.

Proof. Let F (x) =
d∑

i=0
rix

i ∈ K[x] be the minimal polynomial of α over K. By the proof of Theorem

4.1.2, δ(α) = −(
d∑

i=0
δ(ri)α

i)/(
d∑

i=1
iriα

i−1) ∈ K(α). If δ(ri) = 0 for i = 0, . . . , d, then δ(α) = 0.

With the language of differential polynomials, Definition 2.1.1 can be restated as:

Definition 4.1.4. Let K ⊆ L be differential field extensions and α ∈ L. If there exists p(y) ∈
K{y}\{0} s.t. p(α) = 0, then α is said to be differential algebraic over K. Otherwise, α is called
differentially transcendental over K. Let α1, . . . , αn ∈ K. We call α1, . . . , αn differentially
algebraically dependent over K if there exists a nonzero F (y1, . . . , yn) ∈ K{y1, . . . , yn} such that
F (α1, . . . , αn) = 0. Otherwise, they are said to be differentially algebraically independent over
K or a set of differential indeterminates over K.

Lemma 4.1.5. Let K ⊆ L be differential fields of characteristic 0 and α ∈ L. Then α is differential
algebraic over K ⇔ tr.degK⟨α⟩/K <∞.
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Proof. “⇒” Suppose α is differential algebraic over K. Let A(y) ∈ K{y} be a characteristic set of
I(α) ⊆ K{y}.1 Assume ord(A) = n. We claim that tr.degK⟨α⟩/K = n.

Clearly, α, α′, . . . , α(n−1) are algebraically independent over K and α(n) is algebraic over K(α, α′,
. . . , α(n−1)). And A(α) = 0⇒ SA(α)·α(n+1)+TA(α) = 0, where TA(α) ∈ K(α, . . . , α(n))⇒ α(n+1) =

− TA(α)

SA(α)
∈ K(α, α′, . . . , α(n)). ⇒ ∀ k ∈ N, α(n+k) ∈ K(α, α′, . . . , α(n)). So K⟨α⟩ = K(α, α′, . . . , α(n))

and tr.degK⟨α⟩/K = n.

“⇐” n = tr.degK⟨α⟩/K <∞ impies that α, α′, α′′, . . . , α(n) are algebraically dependent over K.
So α is differential algebraic over K.

Remark:

1) If α is differential algebraic over K and f(y) ̸= 0 is a differential polynomial of minimal order
which vanishes at α, then tr.degK⟨α⟩/K = ord(f).

2) The result “⇒” is false in the partial differential case (K, {δ1, . . . , δm}), where tr.degK⟨α⟩/K
might be infinity but the differential type2 of K⟨α⟩ is ≤ m− 1.

Example: K = (R(x), d
dx), L = (K⟨ex, sin(x)⟩, d

dx). Since d
dx(e

x) = ex and ( d
dx)

2(sin(x)) =
− sin(x), both ex and sin(x) are differentially algebraic over K. Note that tr.degK⟨ex⟩/K = 1, and
tr.degK⟨sin(x)⟩/K = 1 (for I

(
sinx) = sat((z′)2 + z2

)
).

We say L ⊇ K is differential algebraic over K, if each element a ∈ L is differential algebraic
over K. Note that every differential field extension with finite transcendence degree is differential
algebraic over K. But the converse doesn’t hold.

Lemma 4.1.6. Let L ⊇ K be a differential field extension and a, b ∈ L. If a and b are differential
algebraic over K, then a+b, ab, δ(a) and a−1 (a ̸= 0) are differential algebraic over K. In particular,
a differential field extension generated by differential algebraic elements is differential algebraic over
K and the set of all elements in L which are differential algebraic over K is a differential algebraic
differential field extension of K.

Proof. Since tr.degK⟨a⟩/K <∞ and tr.degK⟨b⟩/K <∞, we have tr.degK⟨a, b⟩/K = tr.degK⟨a⟩/K+
tr.degK⟨a⟩⟨b⟩/K⟨a⟩ <∞. So a+ b, ab, δ(a) and a−1 (a ̸= 0) are differential algebraic over K.

Lemma 4.1.7. Let K ⊆ L ⊆ M be differential fields. Then M is differential algebraic over K ⇔
M is differential algebraic over L and L is differential algebraic over K.

Proof. “⇒” Valid by definition.
“⇐” For any a ∈ M , a is differential algebraic over L, so ∃ p(y) ∈ L{y}\{0} s.t. p(a) =

0. Denote the coefficient set of p(y) to be {b1, . . . , bt} ⊆ L. Then tr.degK⟨b1, . . . , bt, a⟩/K =
tr.degK⟨b1, . . . , bt⟩/K + tr.degK⟨b1, . . . , bt, a⟩/K⟨b1, . . . , bt⟩ <∞. Thus, tr.degK⟨a⟩/K <∞ and a
is differential algebraic over K.

4.2 Differential primitive theorem

It is a well-known theorem of algebra that a finite algebraic extension of a field K of characteristic
0 has a primitive element ω:

K(a1, . . . , an) = K(ω).
1A(y) is of minimal order and minimal degree under the desired order.
2Differential type is the degree of differential dimension polynomial of I(α)
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In this section, we treat analogous problem for arbitrary differential field of characteristic 0.
Note that Q⟨π, e⟩ is a finitely generated differential extension field of Q (δ(π) = δ(e) = 0).

Clearly, Q⟨π, e⟩ ≠ Q⟨ω⟩ for any ω ∈ Q⟨π, e⟩. So to derive an analog of primitive element theorem in
differential algebra, we need some restrictions. For the ordinary differential fields, the mild condition
is that (K, δ) contains a non-constant element (i.e., ∃ η ∈ K s.t. η′ ̸= 0).

We need two lemmas for preparation to state the main theorem. Throughout this section, (K, δ)
is a fixed differential field of characteristic 0 containing a non-constant.

A set of elements η1, . . . , ηs of K is called linearly dependent if there exists a relation

c1η1 + · · ·+ csηs = 0,

where the ci’s are constant elements in K, not all zero.

The Wronskian determinant of η1, . . . , ηs is defined as

wr(η1, . . . , ηs) =

∣∣∣∣∣∣∣∣
η1 · · · ηs
η′1 · · · η′s
· · · · · · · · ·
η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣ .
Lemma 4.2.1. A set of elements η1, . . . , ηs of K is linearly dependent if and only if

wr(η1, . . . , ηs) =

∣∣∣∣∣∣∣∣
η1 · · · ηs
η′1 · · · η′s
· · · · · · · · ·
η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣ = 0 (∗)

Proof. “⇒” Suppose η1, . . . , ηs are linearly dependent. Then ∃ c1, . . . , cs, constants of K, not all zero
s.t. c1η1 + · · ·+ csηs = 0. Differentiate the relation s− 1 times, we get a system of linear equations
for c’s: 

c1η1 + · · ·+ csηs = 0

c1η
′
1 + · · ·+ csη

′
s = 0

· · · · · ·

c1η
(s−1)
1 + · · ·+ csη

(s−1)
s = 0

has a nonzero solution. So (∗) holds.
“⇐” Suppose we have (∗). We now show η1, . . . , ηs are linearly dependent by induction on s. If

s = 1, η1 = 0 ⇒ η1 is linearly dependent. Suppose it is valid for the case ≤ s − 1 and we treat for

the case s. If wr(η1, . . . , ηs−1) =

∣∣∣∣∣∣∣∣
η1 · · · ηs−1

η′1 · · · η′s−1

· · · · · · · · ·
η
(s−2)
1 · · · η

(s−2)
s−1

∣∣∣∣∣∣∣∣ = 0, by the induction hypothesis, η1, . . . , ηs−1

are linearly dependent, so η1, . . . , ηs are linearly dependent too.
So it suffices to consider the case wr(η1, . . . , ηs−1) ̸= 0. By (∗), ∃ c1, . . . , cs ∈ K, not all zero s.t.

c1η
(j)
1 + · · ·+ csη

(j)
s = 0 (∗∗) for j = 0, . . . , s− 1.

Since wr(η1, . . . , ηs−1) ̸= 0, cs ̸= 0. By dividing cs on both sides when necessary, we can take cs = 1.
For j = 0, . . . , s− 2, differentiate (∗∗)j and then subtract the equation (∗∗)j+1, then we have

c′1η
(j)
1 + · · ·+ c′s−1η

(j)
s−1 = 0 for j = 0, . . . , s− 2.
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Since wr(η1, . . . , ηs−1) ̸= 0, we have c′i = 0 for i = 1, . . . , s − 1. Thus, η1, . . . , ηs are linearly
dependent.

Lemma 4.2.2. Let K be a nonconstant differential field of characteristic 0. If G is a nonzero differ-
ential polynomial in K{y1, . . . , yn}, there exist elements η1, . . . , ηn in K such that G(η1, . . . , ηn) ̸= 0.

Proof. It suffices to treat a differential polynomial in a single indeterminate y (the case n = 1). Take
a nonconstant ξ ∈ K. Fix any r ∈ N.

Claim: If G ∈ K{y} is a nonzero differential polynomial of order ≤ r, there exists

η = c0 + c1ξ + · · ·+ crξ
r

where all the ci’s are constants in K, satisfying G(η) ̸= 0.
Suppose the claim is false and letH be a nonzero differential polynomial of lowest rank which vanishes
for every element c0+ c1ξ+ · · ·+ crξr (ci are constants from K). Let ord(H, y) = s. Then 0 < s ≤ r.
Introduce algebraic indeterminates z0, . . . , zr with z′i = 0. Then H = H(z0 + z1ξ + · · · + zrξ

r) ∈
K[z0, . . . , zr] is the zero polynomial. Take the partial derivative of H w.r.t. z0, . . . , zs, then

∂H

∂z0
=
∂H

∂y
= 0

∂H

∂z1
=
∂H

∂y
ξ +

∂H

∂y′
ξ′ + · · ·+ ∂H

∂y(s)
ξ(s) = 0

· · · · · ·
∂H

∂zs
=
∂H

∂y
ξs +

∂H

∂y′
(ξs)′ + · · ·+ ∂H

∂y(s)
(ξs)(s) = 0,

where ∂H
∂y(j)

= ∂H
∂y(j)

(z0 + · · ·+ zrξ
r). So


1 0 · · · 0

ξ ξ′ · · · ξ(s)

· · · · · · · · · · · ·
ξs (ξs)′ · · · (ξs)(s)




∂H
∂y
∂H
∂y′

...
∂H
∂y(s)

 = 0

Since ∂H
∂y(s)

is of lower rank than H, ∂H
∂y(s)

̸= 0. Thus,∣∣∣∣∣∣∣∣
ξ′ (ξ2)′ · · · (ξs)′

ξ′′ (ξ2)′′ · · · (ξs)′′

· · · · · · · · · · · ·
ξ(s) (ξ2)(s) · · · (ξs)(s)

∣∣∣∣∣∣∣∣ = wr(ξ′, (ξ2)′, . . . , (ξs)′) = 0.

So ∃ c1, . . . , cs constants of K, not all zero s.t. c1ξ′ + c2(ξ
2)′ + · · ·+ cs(ξ

s)′ = 0. Then c1ξ + c2ξ
2 +

· · · + csξ
s = c0 with c0 a constant. Thus ξ is algebraic over the constant field of K. By Corollary

4.1.3, ξ′ = 0, a contradiction to the hypothesis ξ′ ̸= 0. So we can find some η = c0 + c1ξ+ · · ·+ crξ
r

with ci constants s.t. G(η) ̸= 0.

Remark:

1) Lemma 4.2.2 is false without the restriction that (K, δ) contains at least a nonconstant element.
A non-example: K = Q, G(y) = y′.
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2) For the partial differential case (K, {δ1, . . . , δm}), the condition that “∃ ξ ∈ K s.t. ξ′ = 0”
should be replaced by

“ ∃ ξ1, . . . , ξm ∈ K s.t.

∣∣∣∣∣∣∣∣
δ1(ξ1) · · · δ1(ξm)
δ2(ξ1) · · · δ2(ξm)
· · · · · · · · ·

δm(ξ1) · · · δm(ξm)

∣∣∣∣∣∣∣∣ ̸= 0. ”

The lemma is called “ non-vanishing of differential polynomials ”.

3) Lemma 4.2.2 is the differential analog of the following result in Algebra:

“ Let K be an infinite field. Then for any nonzero polynomial f ∈ K[y1, . . . , yn], there exists
(a1, . . . , an) ∈ Kn s.t. f(a1, . . . , an) ̸= 0. ”


