Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0. Let x be an indeterminate over K. Then δ can be extended to a derivation δ_0 on K[x] s.t. $\delta_0(x) = 0$ given by $\delta_0(\sum_{i=0}^l r_i x^i) = \sum_{i=0}^l \delta(r_i) x^i$. There is also a derivation on K[x] s.t. $\frac{d}{dx}(K) = 0$ and $\frac{d}{dx}(x) = 1$ given by $\frac{d}{dx}(\sum_{i=0}^l r_i x^i) = \sum_{i=1}^l ir_i x^{i-1}$. Of course, $\frac{d}{dx}$ does not extend δ .

Lemma 4.1.1. Any derivation δ_1 on K[x] which extends δ is given by

$$\delta_1 = \delta_0 + \delta_1(x) \frac{\mathrm{d}}{\mathrm{d}x}.$$

Conversely, by defining $\delta_1(x) = p(x) \in K[x]$, $\delta_1 = \delta_0 + p(x) \frac{\mathrm{d}}{\mathrm{d}x}$ is a derivation on K[x] extending δ .

Proof. First suppose δ_1 is a derivation on K[x] extending δ . Then $\forall f = \sum_{i=0}^r r_i x^i \in K[x], \ \delta_1(f) = \sum_{i=0}^r \delta(r_i)x^i + \sum_{i=1}^r ir_i x^{i-1}\delta_1(x) = \delta_0(f) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(f)$. So $\delta_1 = \delta_0 + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}$. Now let $\delta_1 : K[x] \to K[x]$ be defined by $\delta_1(f) = \delta_0(f) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(f)$. Then $\forall a \in K, \ \delta_1(a) = \delta_0(a) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(a) = \delta(a)$;

$$\forall f,g \in K[x], \ \delta_1(f+g) = \delta_0(f+g) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(f+g) = \delta_1(f) + \delta_1(g),$$
$$\delta_1(fg) = \delta_0(fg) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(fg) = \delta_1(f)g + f\delta_1(g).$$

Thus, δ_1 is a derivation which extends δ .

Theorem 4.1.2. Let $K \subseteq L$ be fields of characteristic 0. Then any derivation on K could be extended to a derivation on L. This extension is unique if and only if L is algebraic over K.

Proof. Let δ be a derivation on K. We first consider the case that $L = K(\alpha)$ for some $\alpha \in L$. If α is transcendental over K, then by Lemma 4.1.1, there exists a derivation δ_0 on $K[\alpha]$ extending δ on K, and by Lemma 1.1.2, δ_0 can be extended to a derivation on $L = K(\alpha)$. Otherwise, let α be algebraic over K and suppose $F(x) \in K[x]$ is the minimal polynomial of α over K. δ can be extended to a derivation δ_0 on K[x] by setting $\delta_0(x) = 0$. By Lemma 4.1.1, $\delta_1 = \delta_0 + g(x) \frac{d}{dx}$ is a derivation on K[x] where $g(x) \in K[x]$ is a polynomial to be determined. We want to choose g(x) s.t. δ_1 maps the

ideal $(F)_{K[x]}$ to itself. The condition for this is that $\delta_1(F)(\alpha) = 0$, i.e., $\delta_0(F)(\alpha) + g(\alpha)\frac{dF}{dx}(\alpha) = 0$. Since $\frac{dF}{dx}(\alpha) \neq 0$,

$$g(\alpha) = -\frac{\delta_0(F)(\alpha)}{\frac{\mathrm{d}F}{\mathrm{d}x}(\alpha)} \in K(\alpha) = K[\alpha].$$

So we can select a $g(x) \in K[x]$ with the desired property. With this g(x), δ_1 maps $(F)_{K[x]}$ to itself, so it can induce a map

$$\delta_1: K[x]/(F)_{K[x]} \longrightarrow K[x]/(F)_{K[x]}$$

with $\bar{\delta_1}(f(x) + (F)_{K[x]}) = \delta_1(f(x)) + (F)_{K[x]}$ which is derivation on $K[x]/(F)_{K[x]}$. Since $K[\alpha] \cong K[x]/(F)_{K[x]}$, by defining $\bar{\delta_1}(f(\alpha)) = \delta_1(f)(\alpha)$ for each $f(\alpha) \in K[\alpha]$, $\bar{\delta_1}$ gives a derivation on $K(\alpha) = K[\alpha]$. (Note that $\bar{\delta_1}(\alpha) = g(\alpha) = -\delta_0(F)(\alpha)/F'(\alpha)$.)

For the general case, let $U = \{(K_1, \delta_1) : K \subseteq K_1 \subseteq L \text{ and } \delta_1 \mid_K = \delta\}$. Then U is nonempty for $(K, \delta) \in U$. Let $(K_1, \delta_1) \subseteq (K_2, \delta_2) \subseteq \cdots \subseteq (K_n, \delta_n) \subseteq \cdots$ be an ascending chain in U. Then $(\bigcup_i K_i, D)$ with $\forall a \in K_i, D(a) = \delta_i(a)$ is in U. By Zorn's lemma, there exists a maximal element (M, δ_M) in U. Clearly, M = L.

Uniqueness If L is not algebraic over K, then $\exists \alpha \in L$ transcendental over K. By Lemma 4.1.1, for any $g(\alpha) \in K[\alpha]$, $\delta_1 = \delta_0 + g(\alpha) \frac{d}{d\alpha}$ is a derivation on $K[\alpha]$ extending δ . So there will be more than one derivation on $L \supset K(\alpha)$ which extends δ . If L is algebraic over K, for each $\alpha \in L$, let $F(x) = \sum_{i=0}^{d} r_i x^i \in K[x]$ be the minimal polynomial of α over K. Suppose D is a derivation on L which extends δ on K. $F(\alpha) = 0 \Rightarrow 0 = D(F(\alpha)) = D(\sum_{i=0}^{d} r_i \alpha^i) = \sum_{i=0}^{d} \delta(r_i) \alpha^i + (\sum_{i=1}^{d} ir_i \alpha^{i-1})D(\alpha) \Rightarrow D(\alpha) = -(\sum_{i=0}^{d} \delta(r_i) \alpha^i)/(\sum_{i=1}^{d} ir_i \alpha^{i-1})$. Thus, D is the unique derivation on L which extends δ . \Box

Corollary 4.1.3. If $K \subseteq L$ are fields of characteristic 0 and δ is a derivation on L s.t. $\delta(K) \subseteq K$. If $\alpha \in L$ is algebraic over K, then $\delta(\alpha) \in K(\alpha)$. In particular, if $\alpha \in L$ is algebraic over a constant subfield of L, then α is a constant.

Proof. Let $F(x) = \sum_{i=0}^{d} r_i x^i \in K[x]$ be the minimal polynomial of α over K. By the proof of Theorem 4.1.2, $\delta(\alpha) = -(\sum_{i=0}^{d} \delta(r_i)\alpha^i)/(\sum_{i=1}^{d} ir_i\alpha^{i-1}) \in K(\alpha)$. If $\delta(r_i) = 0$ for $i = 0, \ldots, d$, then $\delta(\alpha) = 0$. \Box

With the language of differential polynomials, Definition 2.1.1 can be restated as:

Definition 4.1.4. Let $K \subseteq L$ be differential field extensions and $\alpha \in L$. If there exists $p(y) \in K\{y\}\setminus\{0\}$ s.t. $p(\alpha) = 0$, then α is said to be differential algebraic over K. Otherwise, α is called differentially transcendental over K. Let $\alpha_1, \ldots, \alpha_n \in K$. We call $\alpha_1, \ldots, \alpha_n$ differentially algebraically dependent over K if there exists a nonzero $F(y_1, \ldots, y_n) \in K\{y_1, \ldots, y_n\}$ such that $F(\alpha_1, \ldots, \alpha_n) = 0$. Otherwise, they are said to be differentially algebraically independent over K.

Lemma 4.1.5. Let $K \subseteq L$ be differential fields of characteristic 0 and $\alpha \in L$. Then α is differential algebraic over $K \Leftrightarrow \operatorname{tr.deg} K\langle \alpha \rangle / K < \infty$.

Proof. " \Rightarrow " Suppose α is differential algebraic over K. Let $A(y) \in K\{y\}$ be a characteristic set of $\mathbb{I}(\alpha) \subseteq K\{y\}$.¹ Assume $\operatorname{ord}(A) = n$. We claim that $\operatorname{tr.deg} K\langle \alpha \rangle / K = n$.

Clearly, $\alpha, \alpha', \ldots, \alpha^{(n-1)}$ are algebraically independent over K and $\alpha^{(n)}$ is algebraic over $K(\alpha, \alpha', \ldots, \alpha^{(n-1)})$. And $A(\alpha) = 0 \Rightarrow S_A(\alpha) \cdot \alpha^{(n+1)} + T_A(\alpha) = 0$, where $T_A(\alpha) \in K(\alpha, \ldots, \alpha^{(n)}) \Rightarrow \alpha^{(n+1)} = -\frac{T_A(\alpha)}{S_A(\alpha)} \in K(\alpha, \alpha', \ldots, \alpha^{(n)})$. $\Rightarrow \forall k \in \mathbb{N}, \ \alpha^{(n+k)} \in K(\alpha, \alpha', \ldots, \alpha^{(n)})$. So $K\langle \alpha \rangle = K(\alpha, \alpha', \ldots, \alpha^{(n)})$ and tr.deg $K\langle \alpha \rangle/K = n$.

"⇐" $n = \text{tr.deg}K\langle\alpha\rangle/K < \infty$ implies that $\alpha, \alpha', \alpha'', \ldots, \alpha^{(n)}$ are algebraically dependent over K. So α is differential algebraic over K.

Remark:

- 1) If α is differential algebraic over K and $f(y) \neq 0$ is a differential polynomial of minimal order which vanishes at α , then tr.deg $K\langle \alpha \rangle/K = \operatorname{ord}(f)$.
- 2) The result " \Rightarrow " is false in the partial differential case $(K, \{\delta_1, \ldots, \delta_m\})$, where tr.deg $K\langle \alpha \rangle / K$ might be infinity but the differential type² of $K\langle \alpha \rangle$ is $\leq m-1$.

Example: $K = (\mathbb{R}(x), \frac{d}{dx}), L = (K\langle e^x, \sin(x) \rangle, \frac{d}{dx}).$ Since $\frac{d}{dx}(e^x) = e^x$ and $(\frac{d}{dx})^2(\sin(x)) = -\sin(x)$, both e^x and $\sin(x)$ are differentially algebraic over K. Note that $\operatorname{tr.deg} K\langle e^x \rangle/K = 1$, and $\operatorname{tr.deg} K\langle \sin(x) \rangle/K = 1$ (for $\mathbb{I}(\sin x) = \operatorname{sat}((z')^2 + z^2)$).

We say $L \supseteq K$ is differential algebraic over K, if each element $a \in L$ is differential algebraic over K. Note that every differential field extension with finite transcendence degree is differential algebraic over K. But the converse doesn't hold.

Lemma 4.1.6. Let $L \supseteq K$ be a differential field extension and $a, b \in L$. If a and b are differential algebraic over K, then a+b, ab, $\delta(a)$ and a^{-1} ($a \neq 0$) are differential algebraic over K. In particular, a differential field extension generated by differential algebraic elements is differential algebraic over K and the set of all elements in L which are differential algebraic over K is a differential algebraic differential algebraic differential algebraic over K is a differential algebraic differential field extension of K.

Proof. Since tr.deg $K\langle a \rangle/K < \infty$ and tr.deg $K\langle b \rangle/K < \infty$, we have tr.deg $K\langle a, b \rangle/K = \text{tr.deg}K\langle a \rangle/K + \text{tr.deg}K\langle a \rangle\langle b \rangle/K\langle a \rangle < \infty$. So $a + b, ab, \delta(a)$ and a^{-1} ($a \neq 0$) are differential algebraic over K. \Box

Lemma 4.1.7. Let $K \subseteq L \subseteq M$ be differential fields. Then M is differential algebraic over $K \Leftrightarrow M$ is differential algebraic over L and L is differential algebraic over K.

Proof. " \Rightarrow " Valid by definition.

"⇐" For any $a \in M$, a is differential algebraic over L, so $\exists p(y) \in L\{y\} \setminus \{0\}$ s.t. p(a) = 0. Denote the coefficient set of p(y) to be $\{b_1, \ldots, b_t\} \subseteq L$. Then $\operatorname{tr.deg} K\langle b_1, \ldots, b_t, a \rangle / K = \operatorname{tr.deg} K\langle b_1, \ldots, b_t \rangle / K + \operatorname{tr.deg} K\langle b_1, \ldots, b_t, a \rangle / K\langle b_1, \ldots, b_t \rangle < \infty$. Thus, $\operatorname{tr.deg} K\langle a \rangle / K < \infty$ and a is differential algebraic over K.

4.2 Differential primitive theorem

It is a well-known theorem of algebra that a finite algebraic extension of a field K of characteristic 0 has a primitive element ω :

$$K(a_1,\ldots,a_n)=K(\omega).$$

 $^{{}^{1}}A(y)$ is of minimal order and minimal degree under the desired order.

²Differential type is the degree of differential dimension polynomial of $\mathbb{I}(\alpha)$

In this section, we treat analogous problem for arbitrary differential field of characteristic 0.

Note that $\mathbb{Q}\langle \pi, \mathbf{e} \rangle$ is a finitely generated differential extension field of \mathbb{Q} ($\delta(\pi) = \delta(\mathbf{e}) = 0$). Clearly, $\mathbb{Q}\langle \pi, \mathbf{e} \rangle \neq \mathbb{Q}\langle \omega \rangle$ for any $\omega \in \mathbb{Q}\langle \pi, \mathbf{e} \rangle$. So to derive an analog of primitive element theorem in differential algebra, we need some restrictions. For the ordinary differential fields, the mild condition is that (K, δ) contains a non-constant element (i.e., $\exists \eta \in K$ s.t. $\eta' \neq 0$).

We need two lemmas for preparation to state the main theorem. Throughout this section, (K, δ) is a fixed differential field of characteristic 0 containing a non-constant.

A set of elements η_1, \ldots, η_s of K is called **linearly dependent** if there exists a relation

$$c_1\eta_1 + \dots + c_s\eta_s = 0,$$

where the c_i 's are constant elements in K, not all zero.

The **Wronskian determinant** of η_1, \ldots, η_s is defined as

$$\operatorname{wr}(\eta_1,\ldots,\eta_s) = \begin{vmatrix} \eta_1 & \cdots & \eta_s \\ \eta_1' & \cdots & \eta_s' \\ \cdots & \cdots & \cdots \\ \eta_1^{(s-1)} & \cdots & \eta_s^{(s-1)} \end{vmatrix}.$$

Lemma 4.2.1. A set of elements η_1, \ldots, η_s of K is linearly dependent if and only if

$$wr(\eta_1, \dots, \eta_s) = \begin{vmatrix} \eta_1 & \cdots & \eta_s \\ \eta'_1 & \cdots & \eta'_s \\ \cdots & \cdots & \cdots \\ \eta_1^{(s-1)} & \cdots & \eta_s^{(s-1)} \end{vmatrix} = 0 \qquad (*)$$

Proof. " \Rightarrow " Suppose η_1, \ldots, η_s are linearly dependent. Then $\exists c_1, \ldots, c_s$, constants of K, not all zero s.t. $c_1\eta_1 + \cdots + c_s\eta_s = 0$. Differentiate the relation s - 1 times, we get a system of linear equations for c's:

$$\begin{cases} c_1\eta_1 + \dots + c_s\eta_s = 0\\ c_1\eta'_1 + \dots + c_s\eta'_s = 0\\ \dots \\ c_1\eta_1^{(s-1)} + \dots + c_s\eta_s^{(s-1)} = 0 \end{cases}$$

has a nonzero solution. So (*) holds.

" \Leftarrow " Suppose we have (*). We now show η_1, \ldots, η_s are linearly dependent by induction on s. If $s = 1, \eta_1 = 0 \Rightarrow \eta_1$ is linearly dependent. Suppose it is valid for the case $\leq s - 1$ and we treat for the case s. If $wr(\eta_1, \ldots, \eta_{s-1}) = \begin{vmatrix} \eta_1 & \cdots & \eta_{s-1} \\ \eta'_1 & \cdots & \eta'_{s-1} \\ \cdots & \cdots & \cdots \\ \eta_1^{(s-2)} & \cdots & \eta_{s-1}^{(s-2)} \end{vmatrix} = 0$, by the induction hypothesis, $\eta_1, \ldots, \eta_{s-1}$

are linearly dependent, so η_1, \ldots, η_s are linearly dependent too.

So it suffices to consider the case $wr(\eta_1, \ldots, \eta_{s-1}) \neq 0$. By $(*), \exists c_1, \ldots, c_s \in K$, not all zero s.t.

 $c_1 \eta_1^{(j)} + \dots + c_s \eta_s^{(j)} = 0$ (**) for $j = 0, \dots, s - 1$.

Since wr $(\eta_1, \ldots, \eta_{s-1}) \neq 0$, $c_s \neq 0$. By dividing c_s on both sides when necessary, we can take $c_s = 1$. For $j = 0, \ldots, s - 2$, differentiate $(**)_j$ and then subtract the equation $(**)_{j+1}$, then we have

$$c'_1 \eta_1^{(j)} + \dots + c'_{s-1} \eta_{s-1}^{(j)} = 0$$
 for $j = 0, \dots, s-2$.

Since $wr(\eta_1, \ldots, \eta_{s-1}) \neq 0$, we have $c'_i = 0$ for $i = 1, \ldots, s-1$. Thus, η_1, \ldots, η_s are linearly dependent.

Lemma 4.2.2. Let K be a nonconstant differential field of characteristic 0. If G is a nonzero differential polynomial in $K\{y_1, \ldots, y_n\}$, there exist elements η_1, \ldots, η_n in K such that $G(\eta_1, \ldots, \eta_n) \neq 0$.

Proof. It suffices to treat a differential polynomial in a single indeterminate y (the case n = 1). Take a nonconstant $\xi \in K$. Fix any $r \in \mathbb{N}$.

<u>Claim</u>: If $G \in K\{y\}$ is a nonzero differential polynomial of order $\leq r$, there exists

$$\eta = c_0 + c_1 \xi + \dots + c_r \xi^r$$

where all the c_i 's are constants in K, satisfying $G(\eta) \neq 0$.

Suppose the claim is false and let H be a nonzero differential polynomial of lowest rank which vanishes for every element $c_0 + c_1\xi + \cdots + c_r\xi^r$ (c_i are constants from K). Let $\operatorname{ord}(H, y) = s$. Then $0 < s \leq r$. Introduce algebraic indeterminates z_0, \ldots, z_r with $z'_i = 0$. Then $\overline{H} = H(z_0 + z_1\xi + \cdots + z_r\xi^r) \in K[z_0, \ldots, z_r]$ is the zero polynomial. Take the partial derivative of \overline{H} w.r.t. z_0, \ldots, z_s , then

$$\begin{cases} \frac{\partial \overline{H}}{\partial z_0} = \overline{\frac{\partial H}{\partial y}} = 0 \\ \frac{\partial \overline{H}}{\partial z_1} = \overline{\frac{\partial H}{\partial y}} \xi + \overline{\frac{\partial H}{\partial y'}} \xi' + \dots + \overline{\frac{\partial H}{\partial y^{(s)}}} \xi^{(s)} = 0 \\ \dots \\ \frac{\partial \overline{H}}{\partial z_s} = \overline{\frac{\partial H}{\partial y}} \xi^s + \overline{\frac{\partial H}{\partial y'}} (\xi^s)' + \dots + \overline{\frac{\partial H}{\partial y^{(s)}}} (\xi^s)^{(s)} = 0, \end{cases}$$

where $\overline{\frac{\partial H}{\partial y^{(j)}}} = \frac{\partial H}{\partial y^{(j)}}(z_0 + \dots + z_r \xi^r)$. So

$$\begin{pmatrix} 1 & 0 & \cdots & 0\\ \xi & \xi' & \cdots & \xi^{(s)}\\ \cdots & \cdots & \cdots \\ \xi^s & (\xi^s)' & \cdots & (\xi^s)^{(s)} \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial y}\\ \frac{\partial H}{\partial y'}\\ \vdots\\ \frac{\partial H}{\partial y^{(s)}} \end{pmatrix} = 0$$

Since $\frac{\partial H}{\partial y^{(s)}}$ is of lower rank than $H, \overline{\frac{\partial H}{\partial y^{(s)}}} \neq 0$. Thus,

$$\begin{vmatrix} \xi' & (\xi^2)' & \cdots & (\xi^s)' \\ \xi'' & (\xi^2)'' & \cdots & (\xi^s)'' \\ \cdots & \cdots & \cdots \\ \xi^{(s)} & (\xi^2)^{(s)} & \cdots & (\xi^s)^{(s)} \end{vmatrix} = \operatorname{wr}(\xi', (\xi^2)', \dots, (\xi^s)') = 0.$$

So $\exists c_1, \ldots, c_s$ constants of K, not all zero s.t. $c_1\xi' + c_2(\xi^2)' + \cdots + c_s(\xi^s)' = 0$. Then $c_1\xi + c_2\xi^2 + \cdots + c_s\xi^s = c_0$ with c_0 a constant. Thus ξ is algebraic over the constant field of K. By Corollary 4.1.3, $\xi' = 0$, a contradiction to the hypothesis $\xi' \neq 0$. So we can find some $\eta = c_0 + c_1\xi + \cdots + c_r\xi^r$ with c_i constants s.t. $G(\eta) \neq 0$.

Remark:

1) Lemma 4.2.2 is false without the restriction that (K, δ) contains at least a nonconstant element. A non-example: $K = \mathbb{Q}, G(y) = y'$. 2) For the partial differential case $(K, \{\delta_1, \ldots, \delta_m\})$, the condition that " $\exists \xi \in K$ s.t. $\xi' = 0$ " should be replaced by

"
$$\exists \xi_1, \dots, \xi_m \in K \text{ s.t.} \begin{vmatrix} \delta_1(\xi_1) & \cdots & \delta_1(\xi_m) \\ \delta_2(\xi_1) & \cdots & \delta_2(\xi_m) \\ \cdots & \cdots & \cdots \\ \delta_m(\xi_1) & \cdots & \delta_m(\xi_m) \end{vmatrix} \neq 0.$$
"

The lemma is called " non-vanishing of differential polynomials ".

3) Lemma 4.2.2 is the differential analog of the following result in Algebra: " Let K be an infinite field. Then for any nonzero polynomial $f \in K[y_1, \ldots, y_n]$, there exists $(a_1, \ldots, a_n) \in K^n$ s.t. $f(a_1, \ldots, a_n) \neq 0$."