Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0 . Let x be an indeterminate over K. Then δ can be extended to a derivation δ_{0} on $K[x]$ s.t. $\delta_{0}(x)=0$ given by $\delta_{0}\left(\sum_{i=0}^{l} r_{i} x^{i}\right)=\sum_{i=0}^{l} \delta\left(r_{i}\right) x^{i}$. There is also a derivation on $K[x]$ s.t. $\frac{\mathrm{d}}{\mathrm{d} x}(K)=0$ and $\frac{\mathrm{d}}{\mathrm{d} x}(x)=1$ given by $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sum_{i=0}^{l} r_{i} x^{i}\right)=\sum_{i=1}^{l} i r_{i} x^{i-1}$. Of course, $\frac{\mathrm{d}}{\mathrm{d} x}$ does not extend δ.
Lemma 4.1.1. Any derivation δ_{1} on $K[x]$ which extends δ is given by

$$
\delta_{1}=\delta_{0}+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x} .
$$

Conversely, by defining $\delta_{1}(x)=p(x) \in K[x], \delta_{1}=\delta_{0}+p(x) \frac{\mathrm{d}}{\mathrm{d} x}$ is a derivation on $K[x]$ extending δ.
Proof. First suppose δ_{1} is a derivation on $K[x]$ extending δ. Then $\forall f=\sum_{i=0}^{r} r_{i} x^{i} \in K[x], \delta_{1}(f)=$ $\sum_{i=0}^{r} \delta\left(r_{i}\right) x^{i}+\sum_{i=1}^{r} i r_{i} x^{i-1} \delta_{1}(x)=\delta_{0}(f)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(f)$. So $\delta_{1}=\delta_{0}+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}$. Now let $\delta_{1}: K[x] \rightarrow K[x]$ be defined by $\delta_{1}(f)=\delta_{0}(f)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(f)$. Then $\forall a \in K, \delta_{1}(a)=\delta_{0}(a)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(a)=\delta(a)$;

$$
\begin{gathered}
\forall f, g \in K[x], \delta_{1}(f+g)=\delta_{0}(f+g)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x}(f+g)=\delta_{1}(f)+\delta_{1}(g), \\
\delta_{1}(f g)=\delta_{0}(f g)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x}(f g)=\delta_{1}(f) g+f \delta_{1}(g) .
\end{gathered}
$$

Thus, δ_{1} is a derivation which extends δ.
Theorem 4.1.2. Let $K \subseteq L$ be fields of characteristic 0 . Then any derivation on K could be extended to a derivation on L. This extension is unique if and only if L is algebraic over K.

Proof. Let δ be a derivation on K. We first consider the case that $L=K(\alpha)$ for some $\alpha \in L$. If α is transcendental over K, then by Lemma 4.1.1, there exists a derivation δ_{0} on $K[\alpha]$ extending δ on K, and by Lemma 1.1.2, δ_{0} can be extended to a derivation on $L=K(\alpha)$. Otherwise, let α be algebraic over K and suppose $F(x) \in K[x]$ is the minimal polynomial of α over $K . \delta$ can be extended to a derivation δ_{0} on $K[x]$ by setting $\delta_{0}(x)=0$. By Lemma 4.1.1, $\delta_{1}=\delta_{0}+g(x) \frac{\mathrm{d}}{\mathrm{d} x}$ is a derivation on $K[x]$ where $g(x) \in K[x]$ is a polynomial to be determined. We want to choose $g(x)$ s.t. δ_{1} maps the
ideal $(F)_{K[x]}$ to itself. The condition for this is that $\delta_{1}(F)(\alpha)=0$, ie., $\delta_{0}(F)(\alpha)+g(\alpha) \frac{\mathrm{d} F}{\mathrm{~d} x}(\alpha)=0$. Since $\frac{\mathrm{d} F}{\mathrm{~d} x}(\alpha) \neq 0$,

$$
g(\alpha)=-\frac{\delta_{0}(F)(\alpha)}{\frac{\mathrm{d} F}{\mathrm{~d} x}(\alpha)} \in K(\alpha)=K[\alpha] .
$$

So we can select a $g(x) \in K[x]$ with the desired property. With this $g(x), \delta_{1}$ maps $(F)_{K[x]}$ to itself, so it can induce a map

$$
\bar{\delta}_{1}: K[x] /(F)_{K[x]} \longrightarrow K[x] /(F)_{K[x]}
$$

with $\bar{\delta}_{1}\left(f(x)+(F)_{K[x]}\right)=\delta_{1}(f(x))+(F)_{K[x]}$ which is derivation on $K[x] /(F)_{K[x]}$. Since $K[\alpha] \cong$ $K[x] /(F)_{K[x]}$, by defining $\bar{\delta}_{1}(f(\alpha))=\delta_{1}(f)(\alpha)$ for each $f(\alpha) \in K[\alpha]$, $\bar{\delta}_{1}$ gives a derivation on $K(\alpha)=K[\alpha]$. (Note that $\bar{\delta}_{1}(\alpha)=g(\alpha)=-\delta_{0}(F)(\alpha) / F^{\prime}(\alpha)$.)

For the general case, let $U=\left\{\left(K_{1}, \delta_{1}\right): K \subseteq K_{1} \subseteq L\right.$ and $\left.\left.\delta_{1}\right|_{K}=\delta\right\}$. Then U is nonempty for $(K, \delta) \in U$. Let $\left(K_{1}, \delta_{1}\right) \subseteq\left(K_{2}, \delta_{2}\right) \subseteq \cdots \subseteq\left(K_{n}, \delta_{n}\right) \subseteq \cdots$ be an ascending chain in U. Then $\left(\bigcup K_{i}, D\right)$ with $\forall a \in K_{i}, D(a)=\delta_{i}(a)$ is in U. By Zorn's lemma, there exists a maximal element $\left(\stackrel{i}{M}, \delta_{M}\right)$ in U. Clearly, $M=L$.

Uniqueness If L is not algebraic over K, then $\exists \alpha \in L$ transcendental over K. By Lemma 4.1.1, for any $g(\alpha) \in K[\alpha], \delta_{1}=\delta_{0}+g(\alpha) \frac{\mathrm{d}}{\mathrm{d} \alpha}$ is a derivation on $K[\alpha]$ extending δ. So there will be more than one derivation on $L \supset K(\alpha)$ which extends δ. If L is algebraic over K, for each $\alpha \in L$, let $F(x)=\sum_{i=0}^{d} r_{i} x^{i} \in K[x]$ be the minimal polynomial of α over K. Suppose D is a derivation on L which extends δ on $K . F(\alpha)=0 \Rightarrow 0=D(F(\alpha))=D\left(\sum_{i=0}^{d} r_{i} \alpha^{i}\right)=\sum_{i=0}^{d} \delta\left(r_{i}\right) \alpha^{i}+\left(\sum_{i=1}^{d} i r_{i} \alpha^{i-1}\right) D(\alpha)$ $\Rightarrow D(\alpha)=-\left(\sum_{i=0}^{d} \delta\left(r_{i}\right) \alpha^{i}\right) /\left(\sum_{i=1}^{d} i r_{i} \alpha^{i-1}\right)$. Thus, D is the unique derivation on L which extends δ.

Corollary 4.1.3. If $K \subseteq L$ are fields of characteristic 0 and δ is a derivation on L s.t. $\delta(K) \subseteq K$. If $\alpha \in L$ is algebraic over K, then $\delta(\alpha) \in K(\alpha)$. In particular, if $\alpha \in L$ is algebraic over a constant subfield of L, then α is a constant.

Proof. Let $F(x)=\sum_{i=0}^{d} r_{i} x^{i} \in K[x]$ be the minimal polynomial of α over K. By the proof of Theorem 4.1.2, $\delta(\alpha)=-\left(\sum_{i=0}^{d} \delta\left(r_{i}\right) \alpha^{i}\right) /\left(\sum_{i=1}^{d} i r_{i} \alpha^{i-1}\right) \in K(\alpha)$. If $\delta\left(r_{i}\right)=0$ for $i=0, \ldots, d$, then $\delta(\alpha)=0$.

With the language of differential polynomials, Definition 2.1.1 can be restated as:
Definition 4.1.4. Let $K \subseteq L$ be differential field extensions and $\alpha \in L$. If there exists $p(y) \in$ $K\{y\} \backslash\{0\}$ s.t. $p(\alpha)=0$, then α is said to be differential algebraic over K. Otherwise, α is called differentially transcendental over K. Let $\alpha_{1}, \ldots, \alpha_{n} \in K$. We call $\alpha_{1}, \ldots, \alpha_{n}$ differentially algebraically dependent over K if there exists a nonzero $F\left(y_{1}, \ldots, y_{n}\right) \in K\left\{y_{1}, \ldots, y_{n}\right\}$ such that $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$. Otherwise, they are said to be differentially algebraically independent over K or a set of differential indeterminates over K.

Lemma 4.1.5. Let $K \subseteq L$ be differential fields of characteristic 0 and $\alpha \in L$. Then α is differential algebraic over $K \Leftrightarrow \operatorname{tr} . \operatorname{deg} K\langle\alpha\rangle / K<\infty$.

Proof. " \Rightarrow " Suppose α is differential algebraic over K. Let $A(y) \in K\{y\}$ be a characteristic set of $\mathbb{I}(\alpha) \subseteq K\{y\} .{ }^{1}$ Assume ord $(A)=n$. We claim that $\operatorname{tr} \cdot \operatorname{deg} K\langle\alpha\rangle / K=n$.

Clearly, $\alpha, \alpha^{\prime}, \ldots, \alpha^{(n-1)}$ are algebraically independent over K and $\alpha^{(n)}$ is algebraic over $K\left(\alpha, \alpha^{\prime}\right.$, $\left.\ldots, \alpha^{(n-1)}\right)$. And $A(\alpha)=0 \Rightarrow \mathrm{~S}_{A}(\alpha) \cdot \alpha^{(n+1)}+T_{A}(\alpha)=0$, where $T_{A}(\alpha) \in K\left(\alpha, \ldots, \alpha^{(n)}\right) \Rightarrow \alpha^{(n+1)}=$ $-\frac{T_{A}(\alpha)}{\mathrm{S}_{A}(\alpha)} \in K\left(\alpha, \alpha^{\prime}, \ldots, \alpha^{(n)}\right) . \Rightarrow \forall k \in \mathbb{N}, \alpha^{(n+k)} \in K\left(\alpha, \alpha^{\prime}, \ldots, \alpha^{(n)}\right)$. So $K\langle\alpha\rangle=K\left(\alpha, \alpha^{\prime}, \ldots, \alpha^{(n)}\right)$ and $\operatorname{tr} . \operatorname{deg} K\langle\alpha\rangle / K=n$.
" $\Leftarrow " n=\operatorname{tr} . \operatorname{deg} K\langle\alpha\rangle / K<\infty$ impies that $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(n)}$ are algebraically dependent over K. So α is differential algebraic over K.

Remark:

1) If α is differential algebraic over K and $f(y) \neq 0$ is a differential polynomial of minimal order which vanishes at α, then $\operatorname{tr} \cdot \operatorname{deg} K\langle\alpha\rangle / K=\operatorname{ord}(f)$.
2) The result " \Rightarrow " is false in the partial differential case ($K,\left\{\delta_{1}, \ldots, \delta_{m}\right\}$), where $\operatorname{tr} \cdot \operatorname{deg} K\langle\alpha\rangle / K$ might be infinity but the differential type ${ }^{2}$ of $K\langle\alpha\rangle$ is $\leq m-1$.

Example: $K=\left(\mathbb{R}(x), \frac{\mathrm{d}}{\mathrm{d} x}\right), L=\left(K\left\langle\mathrm{e}^{x}, \sin (x)\right\rangle, \frac{\mathrm{d}}{\mathrm{d} x}\right)$. Since $\frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x}$ and $\left(\frac{\mathrm{d}}{\mathrm{d} x}\right)^{2}(\sin (x))=$ $-\sin (x)$, both e^{x} and $\sin (x)$ are differentially algebraic over K. Note that $\operatorname{tr} \cdot \operatorname{deg} K\left\langle\mathrm{e}^{x}\right\rangle / K=1$, and $\operatorname{tr} . \operatorname{deg} K\langle\sin (x)\rangle / K=1$ (for $\mathbb{I}(\sin x)=\operatorname{sat}\left(\left(z^{\prime}\right)^{2}+z^{2}\right)$).

We say $L \supseteq K$ is differential algebraic over K, if each element $a \in L$ is differential algebraic over K. Note that every differential field extension with finite transcendence degree is differential algebraic over K. But the converse doesn't hold.

Lemma 4.1.6. Let $L \supseteq K$ be a differential field extension and $a, b \in L$. If a and b are differential algebraic over K, then $a+b, a b, \delta(a)$ and $a^{-1}(a \neq 0)$ are differential algebraic over K. In particular, a differential field extension generated by differential algebraic elements is differential algebraic over K and the set of all elements in L which are differential algebraic over K is a differential algebraic differential field extension of K.

Proof. Since $\operatorname{tr} . \operatorname{deg} K\langle a\rangle / K<\infty$ and $\operatorname{tr} . \operatorname{deg} K\langle b\rangle / K<\infty$, we have $\operatorname{tr} . \operatorname{deg} K\langle a, b\rangle / K=\operatorname{tr} . \operatorname{deg} K\langle a\rangle / K+$ $\operatorname{tr} . \operatorname{deg} K\langle a\rangle\langle b\rangle / K\langle a\rangle<\infty$. So $a+b, a b, \delta(a)$ and $a^{-1}(a \neq 0)$ are differential algebraic over K.

Lemma 4.1.7. Let $K \subseteq L \subseteq M$ be differential fields. Then M is differential algebraic over $K \Leftrightarrow$ M is differential algebraic over L and L is differential algebraic over K.

Proof. " \Rightarrow " Valid by definition.
" \Leftarrow " For any $a \in M, a$ is differential algebraic over L, so $\exists p(y) \in L\{y\} \backslash\{0\}$ s.t. $p(a)=$ 0 . Denote the coefficient set of $p(y)$ to be $\left\{b_{1}, \ldots, b_{t}\right\} \subseteq L$. Then $\operatorname{tr} \cdot \operatorname{deg} K\left\langle b_{1}, \ldots, b_{t}, a\right\rangle / K=$ $\operatorname{tr} . \operatorname{deg} K\left\langle b_{1}, \ldots, b_{t}\right\rangle / K+\operatorname{tr} . \operatorname{deg} K\left\langle b_{1}, \ldots, b_{t}, a\right\rangle / K\left\langle b_{1}, \ldots, b_{t}\right\rangle<\infty$. Thus, $\operatorname{tr} . \operatorname{deg} K\langle a\rangle / K<\infty$ and a is differential algebraic over K.

4.2 Differential primitive theorem

It is a well-known theorem of algebra that a finite algebraic extension of a field K of characteristic 0 has a primitive element ω :

$$
K\left(a_{1}, \ldots, a_{n}\right)=K(\omega) .
$$

[^0]In this section, we treat analogous problem for arbitrary differential field of characteristic 0 .
Note that $\mathbb{Q}\langle\pi, \mathrm{e}\rangle$ is a finitely generated differential extension field of $\mathbb{Q}(\delta(\pi)=\delta(\mathrm{e})=0)$. Clearly, $\mathbb{Q}\langle\pi, \mathrm{e}\rangle \neq \mathbb{Q}\langle\omega\rangle$ for any $\omega \in \mathbb{Q}\langle\pi, \mathrm{e}\rangle$. So to derive an analog of primitive element theorem in differential algebra, we need some restrictions. For the ordinary differential fields, the mild condition is that (K, δ) contains a non-constant element (i.e., $\exists \eta \in K$ s.t. $\eta^{\prime} \neq 0$).

We need two lemmas for preparation to state the main theorem. Throughout this section, (K, δ) is a fixed differential field of characteristic 0 containing a non-constant.

A set of elements $\eta_{1}, \ldots, \eta_{s}$ of K is called linearly dependent if there exists a relation

$$
c_{1} \eta_{1}+\cdots+c_{s} \eta_{s}=0
$$

where the c_{i} 's are constant elements in K, not all zero.
The Wronskian determinant of $\eta_{1}, \ldots, \eta_{s}$ is defined as

$$
\operatorname{wr}\left(\eta_{1}, \ldots, \eta_{s}\right)=\left|\begin{array}{ccc}
\eta_{1} & \cdots & \eta_{s} \\
\eta_{1}^{\prime} & \cdots & \eta_{s}^{\prime} \\
\cdots & \cdots & \cdots \\
\eta_{1}^{(s-1)} & \cdots & \eta_{s}^{(s-1)}
\end{array}\right|
$$

Lemma 4.2.1. A set of elements $\eta_{1}, \ldots, \eta_{s}$ of K is linearly dependent if and only if

$$
w r\left(\eta_{1}, \ldots, \eta_{s}\right)=\left|\begin{array}{ccc}
\eta_{1} & \cdots & \eta_{s} \tag{*}\\
\eta_{1}^{\prime} & \cdots & \eta_{s}^{\prime} \\
\cdots & \cdots & \cdots \\
\eta_{1}^{(s-1)} & \cdots & \eta_{s}^{(s-1)}
\end{array}\right|=0
$$

Proof. " \Rightarrow " Suppose $\eta_{1}, \ldots, \eta_{s}$ are linearly dependent. Then $\exists c_{1}, \ldots, c_{s}$, constants of K, not all zero s.t. $c_{1} \eta_{1}+\cdots+c_{s} \eta_{s}=0$. Differentiate the relation $s-1$ times, we get a system of linear equations for c 's:

$$
\left\{\begin{array}{l}
c_{1} \eta_{1}+\cdots+c_{s} \eta_{s}=0 \\
c_{1} \eta_{1}^{\prime}+\cdots+c_{s} \eta_{s}^{\prime}=0 \\
\cdots \cdots \\
c_{1} \eta_{1}^{(s-1)}+\cdots+c_{s} \eta_{s}^{(s-1)}=0
\end{array}\right.
$$

has a nonzero solution. So (*) holds.
" \Leftarrow " Suppose we have $(*)$. We now show $\eta_{1}, \ldots, \eta_{s}$ are linearly dependent by induction on s. If $s=1, \eta_{1}=0 \Rightarrow \eta_{1}$ is linearly dependent. Suppose it is valid for the case $\leq s-1$ and we treat for the case s. If $\operatorname{wr}\left(\eta_{1}, \ldots, \eta_{s-1}\right)=\left|\begin{array}{ccc}\eta_{1} & \cdots & \eta_{s-1} \\ \eta_{1}^{\prime} & \cdots & \eta_{s-1}^{\prime} \\ \cdots & \cdots & \cdots \\ \eta_{1}^{(s-2)} & \cdots & \eta_{s-1}^{(s-2)}\end{array}\right|=0$, by the induction hypothesis, $\eta_{1}, \ldots, \eta_{s-1}$ are linearly dependent, so $\eta_{1}, \ldots, \eta_{s}$ are linearly dependent too.

So it suffices to consider the case $\operatorname{wr}\left(\eta_{1}, \ldots, \eta_{s-1}\right) \neq 0$. $\operatorname{By}(*), \exists c_{1}, \ldots, c_{s} \in K$, not all zero s.t.

$$
c_{1} \eta_{1}^{(j)}+\cdots+c_{s} \eta_{s}^{(j)}=0 \quad(* *) \quad \text { for } j=0, \ldots, s-1
$$

Since $\operatorname{wr}\left(\eta_{1}, \ldots, \eta_{s-1}\right) \neq 0, c_{s} \neq 0$. By dividing c_{s} on both sides when necessary, we can take $c_{s}=1$. For $j=0, \ldots, s-2$, differentiate $(* *)_{j}$ and then subtract the equation $(* *)_{j+1}$, then we have

$$
c_{1}^{\prime} \eta_{1}^{(j)}+\cdots+c_{s-1}^{\prime} \eta_{s-1}^{(j)}=0 \text { for } j=0, \ldots, s-2 .
$$

Since $\operatorname{wr}\left(\eta_{1}, \ldots, \eta_{s-1}\right) \neq 0$, we have $c_{i}^{\prime}=0$ for $i=1, \ldots, s-1$. Thus, $\eta_{1}, \ldots, \eta_{s}$ are linearly dependent.

Lemma 4.2.2. Let K be a nonconstant differential field of characteristic 0 . If G is a nonzero differential polynomial in $K\left\{y_{1}, \ldots, y_{n}\right\}$, there exist elements $\eta_{1}, \ldots, \eta_{n}$ in K such that $G\left(\eta_{1}, \ldots, \eta_{n}\right) \neq 0$.

Proof. It suffices to treat a differential polynomial in a single indeterminate y (the case $n=1$). Take a nonconstant $\xi \in K$. Fix any $r \in \mathbb{N}$.

Claim: If $G \in K\{y\}$ is a nonzero differential polynomial of order $\leq r$, there exists

$$
\eta=c_{0}+c_{1} \xi+\cdots+c_{r} \xi^{r}
$$

where all the c_{i} 's are constants in K, satisfying $G(\eta) \neq 0$.
Suppose the claim is false and let H be a nonzero differential polynomial of lowest rank which vanishes for every element $c_{0}+c_{1} \xi+\cdots+c_{r} \xi^{r}\left(c_{i}\right.$ are constants from $\left.K\right)$. Let ord $(H, y)=s$. Then $0<s \leq r$. Introduce algebraic indeterminates z_{0}, \ldots, z_{r} with $z_{i}^{\prime}=0$. Then $\bar{H}=H\left(z_{0}+z_{1} \xi+\cdots+z_{r} \xi^{r}\right) \in$ $K\left[z_{0}, \ldots, z_{r}\right]$ is the zero polynomial. Take the partial derivative of \bar{H} w.r.t. z_{0}, \ldots, z_{s}, then

$$
\begin{cases}\frac{\partial \bar{H}}{\partial z_{0}}=\frac{\overline{\partial H}}{\partial y} & =0 \\ \frac{\partial \bar{H}}{\partial z_{1}}=\frac{\overline{\partial H}}{\partial y} \xi+\overline{\frac{\partial H}{\partial y^{\prime}} \xi^{\prime}+\cdots+\frac{\overline{\partial H}}{\partial y^{(s)}} \xi^{(s)}} & =0 \\ \cdots \cdots & \\ \frac{\partial \bar{H}}{\partial z_{s}}=\frac{\overline{\partial H}}{\partial y} \xi^{s}+\overline{\frac{\partial H}{\partial y^{\prime}}}\left(\xi^{s}\right)^{\prime}+\cdots+\overline{\frac{\partial H}{\partial y^{(s)}}}\left(\xi^{s}\right)^{(s)} & =0\end{cases}
$$

where $\overline{\frac{\partial H}{\partial y^{(j)}}}=\frac{\partial H}{\partial y^{(j)}}\left(z_{0}+\cdots+z_{r} \xi^{r}\right)$. So

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\xi & \xi^{\prime} & \cdots & \xi^{(s)} \\
\cdots & \cdots & \cdots & \cdots \\
\xi^{s} & \left(\xi^{s}\right)^{\prime} & \cdots & \left(\xi^{s}\right)^{(s)}
\end{array}\right)\left(\begin{array}{c}
\frac{\overline{\partial H}}{\partial y} \\
\frac{\partial H}{\partial y^{\prime}} \\
\vdots \\
\frac{\partial H}{\partial y^{(s)}}
\end{array}\right)=0
$$

$$
\left|\begin{array}{cccc}
\xi^{\prime} & \left(\xi^{2}\right)^{\prime} & \cdots & \left(\xi^{s}\right)^{\prime} \\
\xi^{\prime \prime} & \left(\xi^{2}\right)^{\prime \prime} & \cdots & \left(\xi^{s}\right)^{\prime \prime} \\
\cdots & \cdots & \cdots & \cdots \\
\xi^{(s)} & \left(\xi^{2}\right)^{(s)} & \cdots & \left(\xi^{s}\right)^{(s)}
\end{array}\right|=\operatorname{wr}\left(\xi^{\prime},\left(\xi^{2}\right)^{\prime}, \ldots,\left(\xi^{s}\right)^{\prime}\right)=0
$$

So $\exists c_{1}, \ldots, c_{s}$ constants of K, not all zero s.t. $c_{1} \xi^{\prime}+c_{2}\left(\xi^{2}\right)^{\prime}+\cdots+c_{s}\left(\xi^{s}\right)^{\prime}=0$. Then $c_{1} \xi+c_{2} \xi^{2}+$ $\cdots+c_{s} \xi^{s}=c_{0}$ with c_{0} a constant. Thus ξ is algebraic over the constant field of K. By Corollary 4.1.3, $\xi^{\prime}=0$, a contradiction to the hypothesis $\xi^{\prime} \neq 0$. So we can find some $\eta=c_{0}+c_{1} \xi+\cdots+c_{r} \xi^{r}$ with c_{i} constants s.t. $G(\eta) \neq 0$.

Remark:

1) Lemma 4.2 .2 is false without the restriction that (K, δ) contains at least a nonconstant element. A non-example: $K=\mathbb{Q}, G(y)=y^{\prime}$.
2) For the partial differential case $\left(K,\left\{\delta_{1}, \ldots, \delta_{m}\right\}\right)$, the condition that " $\exists \xi \in K$ s.t. $\xi^{\prime}=0$ " should be replaced by

$$
" \exists \xi_{1}, \ldots, \xi_{m} \in K \text { s.t. }\left|\begin{array}{ccc}
\delta_{1}\left(\xi_{1}\right) & \cdots & \delta_{1}\left(\xi_{m}\right) \\
\delta_{2}\left(\xi_{1}\right) & \cdots & \delta_{2}\left(\xi_{m}\right) \\
\cdots & \cdots & \cdots \\
\delta_{m}\left(\xi_{1}\right) & \cdots & \delta_{m}\left(\xi_{m}\right)
\end{array}\right| \neq 0 \text {. " }
$$

The lemma is called " non-vanishing of differential polynomials ".
3) Lemma 4.2.2 is the differential analog of the following result in Algebra:
" Let K be an infinite field. Then for any nonzero polynomial $f \in K\left[y_{1}, \ldots, y_{n}\right]$, there exists $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ s.t. $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$. "

[^0]: ${ }^{1} A(y)$ is of minimal order and minimal degree under the desired order.
 ${ }^{2}$ Differential type is the degree of differential dimension polynomial of $\mathbb{I}(\alpha)$

