Recall the concept of differential variety and the differential Nullstellensatz theorem:
Let (K, δ) be a differential field of characteristic 0 and $(E, \delta) \supset(K, \delta)$ is a differentially closed field. Consider the differental polynomial ring $K\{\mathbb{Y}\}=K\left\{y_{1}, \ldots, y_{n}\right\}$ and the affine space E^{n}.

- A differential variety V is the set of differential zeros of some differential polynomial set $\Sigma \subset$ $K\{\mathbb{Y}\}$ rational over E. That is, $V=\mathbb{V}(\Sigma) \triangleq\left\{\eta \in E^{n} \mid f(\eta)=0, \forall f \in \Sigma\right\}$.

Basic operations: $\mathbb{V}\left(\Sigma_{1} \cdot \Sigma_{2}\right)=\mathbb{V}\left(\Sigma_{1}\right) \cup \mathbb{V}\left(\Sigma_{2}\right) ; \mathbb{V}(I \cdot J)=\mathbb{V}(I) \cup \mathbb{V}(J)=\mathbb{V}(I \cap J)$; $\mathbb{I}\left(V_{1} \cup V_{2}\right)=\mathbb{I}\left(V_{1}\right) \cap \mathbb{I}\left(V_{2}\right)$

- The Ritt-Raudenbush basis theorem guarantees that each differential variety can be defined by a finite set of differential polynomials. (Indeed, $\exists f_{1}, \ldots, f_{s} \in \Sigma$ s.t. $\{\Sigma\}=\left\{f_{1}, \ldots, f_{s}\right\}$. So $V=\mathbb{V}(\Sigma)=\mathbb{V}(\{\Sigma\})=\mathbb{V}\left(\left\{f_{1}, \ldots, f_{s}\right\}\right)=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$.

We have two maps between the set of δ - K-varieties and the set of radical δ-ideals in $K\{Y\}$:

and

$$
\mathbb{V}:\{\text { radical } \delta \text {-ideals in } K\{Y\}\} \longrightarrow \begin{gathered}
\left\{\delta \text {-varieties in } E^{n} \text { over } K\right\} \\
J
\end{gathered}
$$

- Differential Nullstellensatz: $\mathbb{I}(\mathbb{V}(F))=\{F\}$. In particular, $\mathbb{V}(F)=\emptyset \Longleftrightarrow 1 \in[F]$.

Consequently, \mathbb{I} and \mathbb{V} are inclusion reversing bijective maps.

3.3 Irreducible decomposition of differential varieties

A differential variety $V \subseteq E^{n}$ is said to be irreducible if V is not the union of two proper differential subvarieties. Otherwise, it is said to be reducible.

Lemma 3.3.1. A differential variety V is irreducible $\Leftrightarrow \mathbb{I}(V) \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ is prime.
Proof. " \Rightarrow " For any $f, g \in K\{Y\}, f g \in \mathbb{I}(V)$, we have

$$
V=\mathbb{V}(\mathbb{I}(V), f g)=\mathbb{V}(\mathbb{I}(V), f) \cup \mathbb{V}(\mathbb{I}(V), g)
$$

V is irreducible $\Rightarrow \mathbb{V}(\mathbb{I}(V), f)=V$ or $\mathbb{V}(\mathbb{I}(V), g)=V$. Equivalently, $f \in \mathbb{I}(V)$, or $g \in \mathbb{I}(V)$. So $\mathbb{I}(V)$ is prime.
" \Leftarrow " If $V=V_{1} \cup V_{2}$, then $\mathbb{I}(V)=\mathbb{I}\left(V_{1}\right) \cap \mathbb{I}\left(V_{2}\right)$. Since $\mathbb{I}(V)$ is prime, $\mathbb{I}\left(V_{1}\right) \subseteq \mathbb{I}(V)$ or $\mathbb{I}\left(V_{2}\right) \subseteq$ $\mathbb{I}(V)$, for otherwise, $\exists f_{i} \in \mathbb{I}\left(V_{i}\right) \backslash \mathbb{I}(V), i=1,2$, but $f_{1} f_{2} \in \mathbb{I}\left(V_{1}\right) \cap \mathbb{I}\left(V_{2}\right)=\mathbb{I}(V)$, which yields a contradiction. If $\mathbb{I}\left(V_{1}\right) \subseteq \mathbb{I}(V)$, then $V=V_{1}$; and in the other case, $V=V_{2}$.

Theorem 3.3.2. Any differential variety V is a finite union of irreducible differential varieties, i.e., $V=\bigcup_{i=1}^{l} V_{i}$ with V_{i} irreducible differential subvariety of V. Call $V=\bigcup_{i=1}^{l} V_{i}$ an irreducible decomposition of V. If $V=\bigcup_{i=1}^{l} V_{i}$ is an irredundant/minimal irreducible decomposition (in the sense $\left.V_{i} \nsubseteq \bigcup_{j \neq i} V_{j}, \forall i\right)$, then the set $\left\{V_{1}, \ldots, V_{l}\right\}$ is unique for V.

Proof. By Theorem 2.3.5 and Corollary 2.3.6,

$$
\mathbb{I}(V)=\bigcap_{j=1}^{l} P_{j} \text { for } P_{j} \text { prime differential ideals. }
$$

So $V=\mathbb{V}(\mathbb{I}(V))=\mathbb{V}\left(\bigcap_{j=1}^{l} P_{j}\right)=\bigcup_{j=1}^{l} \mathbb{V}\left(P_{j}\right)$ is an irreducible decomposition of V.
Uniqueness: If $V=\bigcup_{i=1}^{l} V_{i}$ and $V=\bigcup_{j=1}^{m} W_{j}$ are two irredundant irreducible decomposition of V, then we have two irredundant prime decomposition for $\mathbb{I}(V)$, i.e.,

$$
\mathbb{I}(V)=\bigcap_{i=1}^{l} \mathbb{I}\left(V_{i}\right) \text { and } \mathbb{I}(V)=\bigcap_{j=1}^{m} \mathbb{I}\left(W_{j}\right) .
$$

By Theorem 2.2.4, $l=m$ and $\exists \sigma \in S_{l}$ s.t. $\mathbb{I}\left(V_{i}\right)=\mathbb{I}\left(W_{\sigma(i)}\right)$. Hence, $V_{i}=W_{\sigma(i)}$ for $i=1, \ldots, l$.
Remark: Each irreducible differential variety V_{i} in the irredundant irreducible decomposition $V=$ $\bigcup_{i=1}^{l} V_{i}$ is called an irreducible component of V. These V_{1}, \ldots, V_{l} are maximal irreducible differential subvarieties contained in V.

Irreducible components of a single Algebraic differential equation

Let $A \in K\{Y\} \backslash K$ be algebraically irreducible (i.e., not the product of two differential polynomials in $K\{Y\} \backslash K)$. Unlike the algebraic case, $\mathbb{V}(A)$ might be a reducible differential variety:
Example: (1) Let $A=\left(y^{\prime}\right)^{2}-4 y \in K\{y\}$. Note that $A^{\prime}=2 y^{\prime}\left(y^{\prime \prime}-2\right)$. So $\mathbb{V}(A)=\mathbb{V}(y) \cup \mathbb{V}\left(A, y^{\prime \prime}-2\right)$.
(2) Let $A=y^{\prime \prime 2}-y \in K\{y\}$. Then $A^{\prime}=2 y^{\prime \prime} y^{(3)}-y^{\prime}, A^{\prime \prime}=2 y^{\prime \prime} y^{(4)}+2\left(y^{(3)}\right)^{2}-y^{\prime \prime}, A^{(3)}=$ $2 y^{\prime \prime} y^{(5)}+6 y^{(3)} y^{(4)}-y^{(3)}$. An easy calculation shows that

$$
2 y^{(3)} A^{(3)}+A^{\prime \prime}-6 y^{(4)} A^{\prime \prime}=y^{\prime \prime}\left(4 y^{(3)} y^{(5)}-12\left(y^{(4)}\right)^{2}+8 y^{(4)}-1\right)
$$

So $\mathbb{V}(A)=\mathbb{V}\left(A, y^{\prime \prime}\right) \cup \mathbb{V}\left(A, 4 y^{(3)} y^{(5)}-12\left(y^{(4)}\right)^{2}+8 y^{(4)}-1\right)$.
In the following, we study the prime decomposition of the radical differential ideal $\{A\}$ (or equivalently, the irreducible decomposition of the variety $\mathbb{V}(A))$.

Fix an arbitrary differential ranking \mathscr{R} on $\Theta(Y)$. Let $\operatorname{ld}(A)=y_{p}^{(h)}$ for some $p \in\{1, \ldots, n\}$ and $h \in \mathbb{N}$, and take the separant S_{A} of A under \mathscr{R}.
Definition. The order of A in y_{i} is defined to be $\operatorname{ord}\left(A, y_{i}\right)=\max \left\{k \mid \operatorname{deg}\left(A, y_{i}^{(k)}\right) \geq 1\right\}$. The order of A is defined to be $\operatorname{ord}(A)=\max _{i}\left\{\operatorname{ord}\left(A, y_{i}\right)\right\}$.

Lemma 3.3.3. Let $P_{1}=\{A\}: \mathrm{S}_{A}=\left\{f \in K\{Y\} \mid \mathrm{S}_{A} f \in\{A\}\right\}$. Then

1) P_{1} is prime.
2) For a differential polynomial $F \in K\{Y\}$, we have $F \in P_{1}$ if and only if $\delta-\operatorname{rem}(F, A)=0$. In particular, if $F \in P_{1}$ and $\operatorname{ord}\left(F, y_{p}\right) \leq \operatorname{ord}\left(A, y_{p}\right)=h$, then F is divisible by A.

Proof. 1) Let $f, g \in K\{Y\}$ with $f g \in P_{1}$. Let f_{1} and g_{1} be the partial remainder of f and g w.r.t. A. Then $\exists a, b \in \mathbb{N}$ s.t.

$$
\mathrm{S}_{A}^{a} f \equiv f_{1} \bmod [A], \quad \mathrm{S}_{A}^{b} g \equiv g_{1} \bmod [A] .
$$

So $\mathrm{S}_{A}^{a+b+1} f g \equiv S_{A} f_{1} g_{1} \bmod [A]$. Since $f g \in P_{1}=\{A\}: \mathrm{S}_{A}, \mathrm{~S}_{A} f_{1} g_{1} \in\{A\}$. Thus, $\exists l, q \in \mathbb{N}$ s.t.

$$
\begin{equation*}
\left(\mathrm{S}_{A} f_{1} g_{1}\right)^{l}=M A+M_{1} A^{\prime}+M_{2} A^{\prime \prime}+\cdots+M_{q} A^{(q)} \tag{*}
\end{equation*}
$$

We now show q can be taken 0 in (*). Assume $q>0$. Recall that for $k \geq 1, A^{(k)}=\mathrm{S}_{A} y_{p}^{(h+k)}+T_{k}$ with T_{k} free of $y_{p}^{(h+k)}$. Note that $\mathrm{S}_{A}, f_{1}, g_{1}$ are free from $y_{p}^{(h+1)}, \ldots, y_{p}^{(h+q)}$. If $q>0$, by replacing $y_{p}^{(h+k)}$ by $-\frac{T_{k}}{\mathrm{~S}_{A}}$ for $k=1, \ldots, q$ at both sides of $(*)$, we have

$$
\left(\mathrm{S}_{A} f_{1} g_{1}\right)^{l}=\bar{M} \cdot A \text {, where } \bar{M}=\left.M\right|_{y_{p}^{(h+k)}=-\frac{T_{A}}{\mathrm{~S}_{A}}, k=1, \ldots, q^{\dot{ }}}
$$

Clearing fractions by multiplying a power of S_{A}, we have

$$
\mathrm{S}_{A}^{t}\left(f_{1} g_{1}\right)^{l}=N \cdot A
$$

for some $N \in K\{Y\}$. Since A is irreducible and $A \nmid \mathrm{~S}_{A}, A \mid\left(f_{1} g_{1}\right)$ and thus $A \mid f_{1}$ or $A \mid g_{1}$. Suppose that $A \mid f_{1}$. Then $\mathrm{S}_{A}^{a} f \in\{A\}$ and it follows that $f \in\{A\}: \mathrm{S}_{A}=P_{1}$. Thus, P_{1} is prime.
2) If $\delta-\operatorname{rem}(F, A)=0$, then $F \in \operatorname{sat}(A)=[A]: \mathrm{S}_{A}^{\infty} \subseteq\{A\}: \mathrm{S}_{A}=P_{1}$.

Conversely, let $F \in P_{1}$, then $\mathrm{S}_{A} F \in\{A\}$. Let R be the partial remainder of F w.r.t. A, then $\mathrm{S}_{A}^{m} F \equiv R \bmod [A] . \mathrm{S}_{A} F \in\{A\} \Rightarrow \mathrm{S}_{A} R \in\{A\} \Rightarrow \exists l \in \mathbb{N}$ s.t. $\left(\mathrm{S}_{A} R\right)^{l}=M A+M_{1} A^{\prime}+\cdots+M_{t} A^{(t)}$, By the procedure in 1), we can show R is divisible by A. So $\delta-\operatorname{rem}(F, A)=0$.

Remark. By Lemma 3.3.4, $P_{1}=\{A\}: \mathrm{S}_{A}=\operatorname{sat}(A)=[A]: \mathrm{S}_{A}^{\infty}$ and A is a characteristic set of P_{1} under the ranking \mathscr{R}.

Proposition 3.3.4. $\{A\}=P_{1} \cap\left\{A, S_{A}\right\}$.
Proof. Clearly, $\{A\} \subseteq P_{1} \cap\left\{A, \mathrm{~S}_{A}\right\}$. Suppose $f \in P_{1} \cap\left\{A, \mathrm{~S}_{A}\right\}$, we need to show $f \in\{A\}$. Since $f \in\left\{A, \mathrm{~S}_{A}\right\}, \exists l \in \mathbb{N}, f^{l}=T_{1}+T_{2}$ for $T_{1} \in[A], T_{2} \in\left[\mathrm{~S}_{A}\right] . f \in P_{1} \Rightarrow \mathrm{~S}_{A} f \in\{A\} \Rightarrow \delta^{k}\left(\mathrm{~S}_{A}\right) f \in\{A\}$ for each $k \in \mathbb{N}$. So $f^{l+1} \in\{A\}$ and $f \in\{A\}$ follows.

Let $\left\{A, \mathrm{~S}_{A}\right\}=Q_{1} \cap \cdots \cap Q_{t}$ be the minimal prime decomposition of $\left\{A, \mathrm{~S}_{A}\right\}$. Then $\{A\}=$ $P_{1} \cap Q_{1} \cap Q_{1} \cap \cdots \cap Q_{t}$. Suppressing those Q_{i} with $P_{1} \subseteq Q_{i}$ and denote the left Q_{i} 's by P_{2}, \ldots, P_{r}. Then $\{A\}=P_{1} \cap \cdots \cap P_{r}$ is the minimal prime decomposition of $\{A\}$.

Claim For each separant S of A under any arbitrary ranking, $\mathrm{S} \notin P_{1}=\{A\}: \mathrm{S}_{A}$ and $\mathrm{S} \in$ P_{2}, \ldots, P_{r}.

Proof. $\mathrm{S} \notin P_{1}$ follows from Lemma 3.3.3 and the fact $A \nmid \mathrm{~S}$. Since $\left\{A, \mathrm{~S}_{A}\right\} \subseteq P_{2}, \ldots, P_{r}, \mathrm{~S}_{A} \in$ $P_{2}, \ldots, P_{r} . \mathrm{S} \in P_{2}, \ldots, P_{r}$ follows from the fact that $\left\{P_{1}, \ldots, P_{r}\right\}$ are the unique irreducible components of $\{A\}$.

Remark: A is a differential characteristic set of $P_{1}=\{A\}: \mathrm{S}_{A}=\{A\}: \mathrm{S}=\operatorname{sat}(A)$ (S is the separant of A under some other ranking). P_{1} or $\mathbb{V}\left(P_{1}\right)$ is called the general component of $A=0$. P_{2}, \ldots, P_{r} are called singular components of $A=0$.

Example: Let $n=1$ and $A=\left(y^{\prime}\right)^{2}-4 y$. Clearly, $\mathrm{S}_{A}=2 y^{\prime}$ and $\left\{A, \mathrm{~S}_{A}\right\}=\left\{\left(y^{\prime}\right)^{2}-4 y, 2 y^{\prime}\right\}=[y]$. Since $A^{\prime}=2 y^{\prime}\left(y^{\prime \prime}-2\right), y^{\prime \prime}-2 \in\{A\}: \mathrm{S}_{A}$ and $y^{\prime \prime}-2 \notin[y]$. Note that for each $f \in\{A\}: \mathrm{S}_{A}$, if $f_{1}=\delta-\operatorname{rem}\left(f, y^{\prime \prime}-2\right)$, then $f_{1} \in\{A\}: \mathrm{S}_{A}$ and $A \mid f_{1}$ follows. Thus, $\{A\}: \mathrm{S}_{A}=\left[\left(y^{\prime}\right)^{2}-4 y, y^{\prime \prime}-2\right]$ is the general component of A and $[y]$ is the singular component of A.

Let us solve $\left(y^{\prime}\right)^{2}-4 y=0$ over $K=\left(\mathbb{R}(x), \frac{\mathrm{d}}{\mathrm{d} x}\right)$: Note that $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm 2 \sqrt{y} \Rightarrow \frac{\mathrm{~d} y}{2 \sqrt{y}}= \pm \mathrm{d} x \Rightarrow$ $\sqrt{y}= \pm x+c$. So $y=(x+c)^{2}\left(c\right.$ an arbitrary constant) or $y=0$. Here $\left[\left(y^{\prime}\right)^{2}-4 y, y^{\prime \prime}-2\right]$ defines the "general solution" $(x+c)^{2}$ and y defines the "singular solution" of A.

Definition: A differential zero $\eta \in E^{n}$ of A is called a nonsingular zero if \exists a separant S of A s.t. $\mathrm{S}(\eta) \neq 0$. And if $\mathrm{S}(\eta)=0$ for all separants of A, η is called a singular solution/zero of $A=0$.

Nonsingular zeros belong to the general component of A, but the general component of A may contain singular solutions of A.

Example: Let $A=\left(y^{\prime}\right)^{2}-y^{3} \in K\{y\}$. $\mathrm{S}_{A}=2 y^{\prime}$. Since $\mathbb{V}\left(A, \mathrm{~S}_{A}\right)=\{0\}, \eta=0$ is the only singular solution of $A=0$. $A^{\prime}=2 y^{\prime} y^{\prime \prime}-3 y^{2} y^{\prime}=2 y^{\prime}\left(y^{\prime \prime}-\frac{3}{2} y^{2}\right) \Rightarrow\{A\}=\left\{A, y^{\prime \prime}-\frac{3}{2} y^{2}\right\} \cap[y]=\left\{A, y^{\prime \prime}-\right.$ $\left.\frac{3}{2} y^{2}\right\}=\operatorname{sat}(A)$. Thus, $\eta=0$ is embedded in the general component of $A(=0)$. (Geometrically, if $K=\left(\mathbb{C}(t), \frac{\mathrm{d}}{\mathrm{d} t}\right), \eta_{c}=\frac{1}{4(t+c)^{2}}$ is a one-parameter family of nonsingular solutions (c arbitrary constant). $\lim _{c \rightarrow \infty} \eta_{c}=0$.)
$\underline{\text { Ritt's problem Given } A \in K\left\{y_{1}, \ldots, y_{n}\right\} \text { irreducible with } A(0, \ldots, 0)=0 \text {, decide whether }(0, \ldots, 0), ~(0) ~}$ $\overline{(\text { Still open!) }} \in \mathbb{V}(\operatorname{sat}(A))$?
With deep results not covered in our course, we have the following result.
Theorem 3.3.5. (Ritt's component theorem) Let $A \in K\left\{y_{1}, \ldots, y_{n}\right\}$ be a differential polynomial not in K. Let $\{A\}=P_{1} \cap \cdots \cap P_{r}$ be the minimal prime decomposition of $\{A\}$, then $\exists B_{i} \in$ $K\left\{y_{1}, \ldots, y_{n}\right\}$ irreducible s.t. $P_{i}=\operatorname{sat}\left(B_{i}\right), i=1, \ldots, r$.

In particular, if A is irreducible, then $\exists i_{0}$ s.t. $B_{i_{0}}=a A\left(a \in K^{*}\right)$ and for $i \neq i_{0}, A$ involves a proper derivative of the leader of each B_{i} w.r.t. any ranking and $\operatorname{ord}\left(B_{i}\right)<\operatorname{ord}(A)$.

Let $A \in K\{Y\}$ be an algebraically irreducible differential polynomial. Ritt's component theorem calims that there exists irreducible differential polynomials B_{1}, \ldots, B_{s} of order lower than the order of A such that the general component of B_{1}, \ldots, B_{s} are the singluar components of $\mathbb{V}(A)$. Let B be an irreducible differential polynomial such that A belongs to the general component of B.

Problem. Can we determine whether $\operatorname{sat}(B)$ is a prime component of A ?
Yes, the low power theorem gives a necessary and sufficient condition for the general component of B to be a prime component of A. For this, we need the preparation congruence for A w.r.t. B, which is to write $\mathrm{S}_{B} A$ as a differential polnomial in B with coefficients that are differential polynomials in $K\{Y\}$ not contained in $\operatorname{sat}(B)$.

The Low Power Theorem (Ritt, 1936) The general component of B is a component of A if and only if the preparation congruence for A w.r.t. B contains a term $c B^{k}$, free of proper derivatives of B, which considered as a differential polynomial in B, has lower degree than any other term.

Example. $[y]$ is a singular component of $y^{\prime} y^{\prime \prime}-y$, but not for $\left(y^{\prime}\right)^{2}-y^{3}, y y^{\prime \prime \prime}-y^{\prime \prime}$ and $y^{\prime \prime} y^{\prime \prime \prime}-y^{2}$.

Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0 . Let x be an indeterminate over K. Then δ can be extended to a derivation δ_{0} on $K[x]$ s.t. $\delta_{0}(x)=0$ given by $\delta_{0}\left(\sum_{i=0}^{l} r_{i} x^{i}\right)=\sum_{i=0}^{l} \delta\left(r_{i}\right) x^{i}$. There is also a derivation on $K[x]$ s.t. $\frac{\mathrm{d}}{\mathrm{d} x}(K)=0$ and $\frac{\mathrm{d}}{\mathrm{d} x}(x)=1$ given by $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sum_{i=0}^{l} r_{i} x^{i}\right)=\sum_{i=1}^{l} i r_{i} x^{i-1}$. Of course, $\frac{\mathrm{d}}{\mathrm{d} x}$ does not extend δ.
Lemma 4.1.1. Any derivation δ_{1} on $K[x]$ which extends δ is given by

$$
\delta_{1}=\delta_{0}+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x} .
$$

Conversely, by defining $\delta_{1}(x)=p(x) \in K[x], \delta_{1}=\delta_{0}+p(x) \frac{\mathrm{d}}{\mathrm{d} x}$ is a derivation on $K[x]$ extending δ.
Proof. First suppose δ_{1} is a derivation on $K[x]$ extending δ. Then $\forall f=\sum_{i=0}^{r} r_{i} x^{i} \in K[x], \delta_{1}(f)=$ $\sum_{i=0}^{r} \delta\left(r_{i}\right) x^{i}+\sum_{i=1}^{r} i r_{i} x^{i-1} \delta_{1}(x)=\delta_{0}(f)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(f)$. So $\delta_{1}=\delta_{0}+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}$. Now let $\delta_{1}: K[x] \rightarrow K[x]$ be defined by $\delta_{1}(f)=\delta_{0}(f)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(f)$. Then $\forall a \in K, \delta_{1}(a)=\delta_{0}(a)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{d} x}(a)=\delta(a)$;

$$
\begin{gathered}
\forall f, g \in K[x], \delta_{1}(f+g)=\delta_{0}(f+g)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x}(f+g)=\delta_{1}(f)+\delta_{1}(g), \\
\delta_{1}(f g)=\delta_{0}(f g)+\delta_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x}(f g)=\delta_{1}(f) g+f \delta_{1}(g) .
\end{gathered}
$$

Thus, δ_{1} is a derivation which extends δ.
Theorem 4.1.2. Let $K \subseteq L$ be fields of characteristic 0 . Then any derivation on K could be extended to a derivation on L. This extension is unique if and only if L is algebraic over K.

