<u>Recall</u> the concept of differential variety and the differential Nullstellensatz theorem:

Let (K, δ) be a differential field of characteristic 0 and $(E, \delta) \supset (K, \delta)$ is a differentially closed field. Consider the differential polynomial ring $K\{\mathbb{Y}\} = K\{y_1, \ldots, y_n\}$ and the affine space E^n .

• A differential variety V is the set of differential zeros of some differential polynomial set $\Sigma \subset K\{\mathbb{Y}\}$ rational over E. That is, $V = \mathbb{V}(\Sigma) \triangleq \{\eta \in E^n \mid f(\eta) = 0, \forall f \in \Sigma\}.$

Basic operations: $\mathbb{V}(\Sigma_1 \cdot \Sigma_2) = \mathbb{V}(\Sigma_1) \cup \mathbb{V}(\Sigma_2); \mathbb{V}(I \cdot J) = \mathbb{V}(I) \cup \mathbb{V}(J) = \mathbb{V}(I \cap J);$ $\mathbb{I}(V_1 \cup V_2) = \mathbb{I}(V_1) \cap \mathbb{I}(V_2)$

• The **Ritt-Raudenbush basis theorem** guarantees that each differential variety can be defined by a finite set of differential polynomials. (Indeed, $\exists f_1, \ldots, f_s \in \Sigma$ s.t. $\{\Sigma\} = \{f_1, \ldots, f_s\}$. So $V = \mathbb{V}(\Sigma) = \mathbb{V}(\{\Sigma\}) = \mathbb{V}(\{f_1, \ldots, f_s\}) = \mathbb{V}(f_1, \ldots, f_s)$.)

We have two maps between the set of δ -K-varieties and the set of radical δ -ideals in $K\{Y\}$:

$$\begin{array}{ccc} \mathbb{I}: & \{\delta \text{-varieties in } E^n \text{ over } K \} & \longrightarrow & \{ \text{radical } \delta \text{-ideals in } K \{Y \} \} \\ & V & & \mathbb{I}(V) \end{array}$$

and

$$\begin{array}{ccc} \mathbb{V}: & \{ \text{ radical } \delta\text{-ideals in } K\{Y\} \} & \longrightarrow & \{ \delta\text{-varieties in } E^n \text{ over } K \} \\ & J & & \mathbb{V}(J) \end{array}$$

• Differential Nullstellensatz: $\mathbb{I}(\mathbb{V}(F)) = \{F\}$. In particular, $\mathbb{V}(F) = \emptyset \iff 1 \in [F]$.

Consequently, $\mathbb I$ and $\mathbb V$ are inclusion reversing bijective maps.

3.3 Irreducible decomposition of differential varieties

A differential variety $V \subseteq E^n$ is said to be irreducible if V is not the union of two proper differential subvarieties. Otherwise, it is said to be reducible.

Lemma 3.3.1. A differential variety V is irreducible $\Leftrightarrow \mathbb{I}(V) \subseteq K\{y_1, \ldots, y_n\}$ is prime.

Proof. " \Rightarrow " For any $f, g \in K\{Y\}, fg \in \mathbb{I}(V)$, we have

$$V = \mathbb{V}(\mathbb{I}(V), fg) = \mathbb{V}(\mathbb{I}(V), f) \cup \mathbb{V}(\mathbb{I}(V), g).$$

V is irreducible $\Rightarrow \mathbb{V}(\mathbb{I}(V), f) = V$ or $\mathbb{V}(\mathbb{I}(V), g) = V$. Equivalently, $f \in \mathbb{I}(V)$, or $g \in \mathbb{I}(V)$. So $\mathbb{I}(V)$ is prime.

"⇐" If $V = V_1 \cup V_2$, then $\mathbb{I}(V) = \mathbb{I}(V_1) \cap \mathbb{I}(V_2)$. Since $\mathbb{I}(V)$ is prime, $\mathbb{I}(V_1) \subseteq \mathbb{I}(V)$ or $\mathbb{I}(V_2) \subseteq \mathbb{I}(V)$, for otherwise, $\exists f_i \in \mathbb{I}(V_i) \setminus \mathbb{I}(V), i = 1, 2$, but $f_1 f_2 \in \mathbb{I}(V_1) \cap \mathbb{I}(V_2) = \mathbb{I}(V)$, which yields a contradiction. If $\mathbb{I}(V_1) \subseteq \mathbb{I}(V)$, then $V = V_1$; and in the other case, $V = V_2$.

Theorem 3.3.2. Any differential variety V is a finite union of irreducible differential varieties, i.e., $V = \bigcup_{i=1}^{l} V_i$ with V_i irreducible differential subvariety of V. Call $V = \bigcup_{i=1}^{l} V_i$ an irreducible decomposition of V. If $V = \bigcup_{i=1}^{l} V_i$ is an irredundant/minimal irreducible decomposition (in the sense $V_i \not\subseteq \bigcup_{j \neq i} V_j, \forall i$), then the set $\{V_1, \ldots, V_l\}$ is unique for V.

Proof. By Theorem 2.3.5 and Corollary 2.3.6,

$$\mathbb{I}(V) = \bigcap_{j=1}^{l} P_j \text{ for } P_j \text{ prime differential ideals.}$$

So $V = \mathbb{V}(\mathbb{I}(V)) = \mathbb{V}(\bigcap_{j=1}^{l} P_j) = \bigcup_{j=1}^{l} \mathbb{V}(P_j)$ is an irreducible decomposition of V.

<u>Uniqueness</u>: If $V = \bigcup_{i=1}^{l} V_i$ and $V = \bigcup_{j=1}^{m} W_j$ are two irredundant irreducible decomposition of V, then we have two irredundant prime decomposition for $\mathbb{I}(V)$, i.e.,

$$\mathbb{I}(V) = \bigcap_{i=1}^{l} \mathbb{I}(V_i) \text{ and } \mathbb{I}(V) = \bigcap_{j=1}^{m} \mathbb{I}(W_j).$$

By Theorem 2.2.4, l = m and $\exists \sigma \in S_l$ s.t. $\mathbb{I}(V_i) = \mathbb{I}(W_{\sigma(i)})$. Hence, $V_i = W_{\sigma(i)}$ for $i = 1, \ldots, l$. \Box

Remark: Each irreducible differential variety V_i in the irreducible decomposition $V = \bigcup_{i=1}^{l} V_i$ is called an irreducible component of V. These V_1, \ldots, V_l are maximal irreducible differential subvarieties contained in V.

Irreducible components of a single Algebraic differential equation

Let $A \in K\{Y\}\setminus K$ be algebraically irreducible (i.e., not the product of two differential polynomials in $K\{Y\}\setminus K$). Unlike the algebraic case, $\mathbb{V}(A)$ might be a reducible differential variety:

Example: (1) Let $A = (y')^2 - 4y \in K\{y\}$. Note that A' = 2y'(y''-2). So $\mathbb{V}(A) = \mathbb{V}(y) \cup \mathbb{V}(A, y''-2)$. (2) Let $A = y''^2 - y \in K\{y\}$. Then $A' = 2y''y^{(3)} - y', A'' = 2y''y^{(4)} + 2(y^{(3)})^2 - y'', A^{(3)} = 2y''y^{(5)} + 6y^{(3)}y^{(4)} - y^{(3)}$. An easy calculation shows that

$$2y^{(3)}A^{(3)} + A'' - 6y^{(4)}A'' = y''(4y^{(3)}y^{(5)} - 12(y^{(4)})^2 + 8y^{(4)} - 1)$$

So $\mathbb{V}(A) = \mathbb{V}(A, y'') \cup \mathbb{V}(A, 4y^{(3)}y^{(5)} - 12(y^{(4)})^2 + 8y^{(4)} - 1).$

In the following, we study the prime decomposition of the radical differential ideal $\{A\}$ (or equivalently, the irreducible decomposition of the variety $\mathbb{V}(A)$).

Fix an arbitrary differential ranking \mathscr{R} on $\Theta(Y)$. Let $\mathrm{ld}(A) = y_p^{(h)}$ for some $p \in \{1, \ldots, n\}$ and $h \in \mathbb{N}$, and take the separant S_A of A under \mathscr{R} .

Definition. The order of A in y_i is defined to be $\operatorname{ord}(A, y_i) = \max\{k \mid \deg(A, y_i^{(k)}) \ge 1\}$. The order of A is defined to be $\operatorname{ord}(A) = \max\{\operatorname{ord}(A, y_i)\}$.

Lemma 3.3.3. Let $P_1 = \{A\}$: $S_A = \{f \in K\{Y\} \mid S_A f \in \{A\}\}$. Then

- 1) P_1 is prime.
- 2) For a differential polynomial $F \in K\{Y\}$, we have $F \in P_1$ if and only if δ -rem(F, A) = 0. In particular, if $F \in P_1$ and $\operatorname{ord}(F, y_p) \leq \operatorname{ord}(A, y_p) = h$, then F is divisible by A.

Proof. 1) Let $f, g \in K\{Y\}$ with $fg \in P_1$. Let f_1 and g_1 be the partial remainder of f and g w.r.t. A. Then $\exists a, b \in \mathbb{N}$ s.t.

$$S_A^a f \equiv f_1 \mod [A], \quad S_A^b g \equiv g_1 \mod [A]$$

So $S_A^{a+b+1}fg \equiv S_Af_1g_1 \mod [A]$. Since $fg \in P_1 = \{A\} : S_A, S_Af_1g_1 \in \{A\}$. Thus, $\exists l, q \in \mathbb{N}$ s.t.

$$(S_A f_1 g_1)^l = MA + M_1 A' + M_2 A'' + \dots + M_q A^{(q)}.$$
 (*)

We now show q can be taken 0 in (*). Assume q > 0. Recall that for $k \ge 1$, $A^{(k)} = S_A y_p^{(h+k)} + T_k$ with T_k free of $y_p^{(h+k)}$. Note that S_A , f_1, g_1 are free from $y_p^{(h+1)}, \ldots, y_p^{(h+q)}$. If q > 0, by replacing $y_p^{(h+k)}$ by $-\frac{T_k}{S_A}$ for $k = 1, \ldots, q$ at both sides of (*), we have

$$(\mathbf{S}_A f_1 g_1)^l = \overline{M} \cdot A$$
, where $\overline{M} = M \mid_{y_p^{(h+k)} = -\frac{T_A}{S_A}, \ k=1,\dots,q}$

Clearing fractions by multiplying a power of S_A , we have

$$\mathbf{S}_A^t (f_1 g_1)^l = N \cdot A$$

for some $N \in K\{Y\}$. Since A is irreducible and $A \nmid S_A$, $A|(f_1g_1)$ and thus $A|f_1$ or $A|g_1$. Suppose that $A|f_1$. Then $S_A^a f \in \{A\}$ and it follows that $f \in \{A\} : S_A = P_1$. Thus, P_1 is prime.

2) If δ -rem(F, A) = 0, then $F \in \operatorname{sat}(A) = [A] : S_A^{\infty} \subseteq \{A\} : S_A = P_1$.

Conversely, let $F \in P_1$, then $S_A F \in \{A\}$. Let R be the partial remainder of F w.r.t. A, then $S_A^m F \equiv R \mod [A]$. $S_A F \in \{A\} \Rightarrow S_A R \in \{A\} \Rightarrow \exists l \in \mathbb{N} \text{ s.t. } (S_A R)^l = MA + M_1 A' + \cdots + M_t A^{(t)}$, By the procedure in 1), we can show R is divisible by A. So δ -rem(F, A) = 0.

Remark. By Lemma 3.3.4, $P_1 = \{A\}$: $S_A = sat(A) = [A]$: S_A^{∞} and A is a characteristic set of P_1 under the ranking \mathscr{R} .

Proposition 3.3.4. $\{A\} = P_1 \cap \{A, S_A\}.$

Proof. Clearly, $\{A\} \subseteq P_1 \cap \{A, S_A\}$. Suppose $f \in P_1 \cap \{A, S_A\}$, we need to show $f \in \{A\}$. Since $f \in \{A, S_A\}, \exists l \in \mathbb{N}, f^l = T_1 + T_2$ for $T_1 \in [A], T_2 \in [S_A]$. $f \in P_1 \Rightarrow S_A f \in \{A\} \Rightarrow \delta^k(S_A) f \in \{A\}$ for each $k \in \mathbb{N}$. So $f^{l+1} \in \{A\}$ and $f \in \{A\}$ follows.

Let $\{A, S_A\} = Q_1 \cap \cdots \cap Q_t$ be the minimal prime decomposition of $\{A, S_A\}$. Then $\{A\} = P_1 \cap Q_1 \cap Q_1 \cap \cdots \cap Q_t$. Suppressing those Q_i with $P_1 \subseteq Q_i$ and denote the left Q_i 's by P_2, \ldots, P_r . Then $\{A\} = P_1 \cap \cdots \cap P_r$ is the minimal prime decomposition of $\{A\}$.

<u>Claim</u> For each separant S of A under any arbitrary ranking, $S \notin P_1 = \{A\}$: S_A and $S \in P_2, \ldots, P_r$.

Proof. $S \notin P_1$ follows from Lemma 3.3.3 and the fact $A \nmid S$. Since $\{A, S_A\} \subseteq P_2, \ldots, P_r, S_A \in P_2, \ldots, P_r$. $S \in P_2, \ldots, P_r$ follows from the fact that $\{P_1, \ldots, P_r\}$ are the unique irreducible components of $\{A\}$.

Remark: A is a differential characteristic set of $P_1 = \{A\}$: $S_A = \{A\}$: S = sat(A) (S is the separant of A under some other ranking). P_1 or $\mathbb{V}(P_1)$ is called the *general component* of A = 0. P_2, \ldots, P_r are called *singular components* of A = 0.

Example: Let n = 1 and $A = (y')^2 - 4y$. Clearly, $S_A = 2y'$ and $\{A, S_A\} = \{(y')^2 - 4y, 2y'\} = [y]$. Since A' = 2y'(y'' - 2), $y'' - 2 \in \{A\}$: S_A and $y'' - 2 \notin [y]$. Note that for each $f \in \{A\}$: S_A , if $f_1 = \delta$ -rem(f, y'' - 2), then $f_1 \in \{A\}$: S_A and $A|f_1$ follows. Thus, $\{A\}$: $S_A = [(y')^2 - 4y, y'' - 2]$ is the general component of A and [y] is the singular component of A.

Let us solve $(y')^2 - 4y = 0$ over $K = (\mathbb{R}(x), \frac{d}{dx})$: Note that $\frac{dy}{dx} = \pm 2\sqrt{y} \Rightarrow \frac{dy}{2\sqrt{y}} = \pm dx \Rightarrow \sqrt{y} = \pm x + c$. So $y = (x + c)^2$ (c an arbitrary constant) or y = 0. Here $[(y')^2 - 4y, y'' - 2]$ defines the "general solution" $(x + c)^2$ and y defines the "singular solution" of A.

Definition: A differential zero $\eta \in E^n$ of A is called a *nonsingular zero* if \exists a separant S of A s.t. $S(\eta) \neq 0$. And if $S(\eta) = 0$ for all separants of A, η is called a *singular solution/zero* of A = 0.

Nonsingular zeros belong to the general component of A, but the general component of A may contain singular solutions of A.

Example: Let $A = (y')^2 - y^3 \in K\{y\}$. $S_A = 2y'$. Since $\mathbb{V}(A, S_A) = \{0\}$, $\eta = 0$ is the only singular solution of A = 0. $A' = 2y'y'' - 3y^2y' = 2y'(y'' - \frac{3}{2}y^2) \Rightarrow \{A\} = \{A, y'' - \frac{3}{2}y^2\} \cap [y] = \{A, y'' - \frac{3}{2}y^2\} = \operatorname{sat}(A)$. Thus, $\eta = 0$ is embedded in the general component of A(=0). (Geometrically, if $K = (\mathbb{C}(t), \frac{d}{dt}), \eta_c = \frac{1}{4(t+c)^2}$ is a one-parameter family of nonsingular solutions (*c* arbitrary constant). $\lim_{c\to\infty}\eta_c = 0$.)

Ritt's problem Given $A \in K\{y_1, \ldots, y_n\}$ irreducible with $A(0, \ldots, 0) = 0$, decide whether $(0, \ldots, 0)$ (Still open!) $\in \mathbb{V}(\operatorname{sat}(A))$?

With deep results not covered in our course, we have the following result.

Theorem 3.3.5. (*Ritt's component theorem*) Let $A \in K\{y_1, \ldots, y_n\}$ be a differential polynomial not in K. Let $\{A\} = P_1 \cap \cdots \cap P_r$ be the minimal prime decomposition of $\{A\}$, then $\exists B_i \in K\{y_1, \ldots, y_n\}$ irreducible s.t. $P_i = \operatorname{sat}(B_i), i = 1, \ldots, r$.

In particular, if A is irreducible, then $\exists i_0 \ s.t. \ B_{i_0} = aA \ (a \in K^*)$ and for $i \neq i_0$, A involves a proper derivative of the leader of each $B_i \ w.r.t.$ any ranking and $\operatorname{ord}(B_i) < \operatorname{ord}(A)$.

Let $A \in K\{Y\}$ be an algebraically irreducible differential polynomial. Ritt's component theorem calims that there exists irreducible differential polynomials B_1, \ldots, B_s of order lower than the order of A such that the general component of B_1, \ldots, B_s are the singluar components of $\mathbb{V}(A)$. Let B be an irreducible differential polynomial such that A belongs to the general component of B.

Problem. Can we determine whether sat(B) is a prime component of A?

Yes, the low power theorem gives a necessary and sufficient condition for the general component of B to be a prime component of A. For this, we need the *preparation congruence for* A w.r.t. B, which is to write S_BA as a differential polnomial in B with coefficients that are differential polynomials in $K\{Y\}$ not contained in sat(B).

The Low Power Theorem (Ritt, 1936) The general component of B is a component of A if and only if the preparation congruence for A w.r.t. B contains a term cB^k , free of proper derivatives of B, which considered as a differential polynomial in B, has lower degree than any other term.

Example. [y] is a singular component of y'y'' - y, but not for $(y')^2 - y^3$, yy''' - y'' and $y''y''' - y^2$.

Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0. Let x be an indeterminate over K. Then δ can be extended to a derivation δ_0 on K[x] s.t. $\delta_0(x) = 0$ given by $\delta_0(\sum_{i=0}^l r_i x^i) = \sum_{i=0}^l \delta(r_i) x^i$. There is also a derivation on K[x] s.t. $\frac{d}{dx}(K) = 0$ and $\frac{d}{dx}(x) = 1$ given by $\frac{d}{dx}(\sum_{i=0}^l r_i x^i) = \sum_{i=1}^l ir_i x^{i-1}$. Of course, $\frac{d}{dx}$ does not extend δ .

Lemma 4.1.1. Any derivation δ_1 on K[x] which extends δ is given by

$$\delta_1 = \delta_0 + \delta_1(x) \frac{\mathrm{d}}{\mathrm{d}x}.$$

Conversely, by defining $\delta_1(x) = p(x) \in K[x]$, $\delta_1 = \delta_0 + p(x) \frac{d}{dx}$ is a derivation on K[x] extending δ . Proof. First suppose δ_1 is a derivation on K[x] extending δ . Then $\forall f = \sum_{i=0}^r r_i x^i \in K[x]$, $\delta_1(f) = \sum_{i=0}^r \delta(r_i) x^i + \sum_{i=1}^r i r_i x^{i-1} \delta_1(x) = \delta_0(f) + \delta_1(x) \frac{d}{dx}(f)$. So $\delta_1 = \delta_0 + \delta_1(x) \frac{d}{dx}$. Now let $\delta_1 : K[x] \to K[x]$

be defined by $\delta_1(f) = \delta_0(f) + \delta_1(x) \frac{\mathrm{d}}{\mathrm{d}x}(f)$. Then $\forall a \in K, \ \delta_1(a) = \delta_0(a) + \delta_1(x) \frac{\mathrm{d}}{\mathrm{d}x}(a) = \delta(a);$

$$\forall f,g \in K[x], \ \delta_1(f+g) = \delta_0(f+g) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(f+g) = \delta_1(f) + \delta_1(g)$$
$$\delta_1(fg) = \delta_0(fg) + \delta_1(x)\frac{\mathrm{d}}{\mathrm{d}x}(fg) = \delta_1(f)g + f\delta_1(g).$$

Thus, δ_1 is a derivation which extends δ .

Theorem 4.1.2. Let $K \subseteq L$ be fields of characteristic 0. Then any derivation on K could be extended to a derivation on L. This extension is unique if and only if L is algebraic over K.