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Recall the concept of differential variety and the differential Nullstellensatz theorem:
Let (K, δ) be a differential field of characteristic 0 and (E, δ) ⊃ (K, δ) is a differentially closed

field. Consider the differental polynomial ring K{Y} = K{y1, . . . , yn} and the affine space En.

• A differential variety V is the set of differential zeros of some differential polynomial set Σ ⊂
K{Y} rational over E. That is, V = V(Σ) ≜ {η ∈ En | f(η) = 0,∀ f ∈ Σ}.

Basic operations: V(Σ1 · Σ2) = V(Σ1) ∪ V(Σ2); V(I · J) = V(I) ∪ V(J) = V(I ∩ J);
I(V1 ∪ V2) = I(V1) ∩ I(V2)

• The Ritt-Raudenbush basis theorem guarantees that each differential variety can be de-
fined by a finite set of differential polynomials. (Indeed, ∃ f1, . . . , fs ∈ Σ s.t. {Σ} = {f1, . . . , fs}.
So V = V(Σ) = V({Σ}) = V({f1, . . . , fs}) = V(f1, . . . , fs).)

We have two maps between the set of δ-K-varieties and the set of radical δ-ideals in K{Y }:

I : {δ-varieties in En over K} −→ {radical δ-ideals in K{Y }}
V I(V )

and
V : { radical δ-ideals in K{Y }} −→ {δ-varieties in En over K}

J V(J)

• Differential Nullstellensatz: I(V(F )) = {F}. In particular, V(F ) = ∅ ⇐⇒ 1 ∈ [F ].

Consequently, I and V are inclusion reversing bijective maps.

3.3 Irreducible decomposition of differential varieties

A differential variety V ⊆ En is said to be irreducible if V is not the union of two proper differential
subvarieties. Otherwise, it is said to be reducible.

Lemma 3.3.1. A differential variety V is irreducible ⇔ I(V ) ⊆ K{y1, . . . , yn} is prime.

Proof. “⇒” For any f, g ∈ K{Y }, fg ∈ I(V ), we have

V = V(I(V ), fg) = V(I(V ), f) ∪ V(I(V ), g).

V is irreducible ⇒ V(I(V ), f) = V or V(I(V ), g) = V . Equivalently, f ∈ I(V ), or g ∈ I(V ). So I(V )
is prime.

“⇐” If V = V1 ∪ V2, then I(V ) = I(V1) ∩ I(V2). Since I(V ) is prime, I(V1) ⊆ I(V ) or I(V2) ⊆
I(V ), for otherwise, ∃ fi ∈ I(Vi)\I(V ), i = 1, 2, but f1f2 ∈ I(V1) ∩ I(V2) = I(V ), which yields a
contradiction. If I(V1) ⊆ I(V ), then V = V1; and in the other case, V = V2.

Theorem 3.3.2. Any differential variety V is a finite union of irreducible differential varieties,

i.e., V =
l⋃

i=1
Vi with Vi irreducible differential subvariety of V . Call V =

l⋃
i=1

Vi an irreducible

decomposition of V . If V =
l⋃

i=1
Vi is an irredundant/minimal irreducible decomposition (in the sense

Vi ̸⊆
⋃
j ̸=i

Vj ,∀ i), then the set {V1, . . . , Vl} is unique for V .

Proof. By Theorem 2.3.5 and Corollary 2.3.6,
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I(V ) =
l⋂

j=1
Pj for Pj prime differential ideals.

So V = V(I(V )) = V(
l⋂

j=1
Pj) =

l⋃
j=1

V(Pj) is an irreducible decomposition of V .

Uniqueness: If V =
l⋃

i=1
Vi and V =

m⋃
j=1

Wj are two irredundant irreducible decomposition of V ,

then we have two irredundant prime decomposition for I(V ), i.e.,

I(V ) =
l⋂

i=1
I(Vi) and I(V ) =

m⋂
j=1

I(Wj).

By Theorem 2.2.4, l = m and ∃σ ∈ Sl s.t. I(Vi) = I(Wσ(i)). Hence, Vi =Wσ(i) for i = 1, . . . , l.

Remark: Each irreducible differential variety Vi in the irredundant irreducible decomposition V =
l⋃

i=1
Vi is called an irreducible component of V . These V1, . . . , Vl are maximal irreducible differential

subvarieties contained in V .

Irreducible components of a single Algebraic differential equation

Let A ∈ K{Y }\K be algebraically irreducible (i.e., not the product of two differential polyno-
mials in K{Y }\K). Unlike the algebraic case, V(A) might be a reducible differential variety:

Example: (1) Let A = (y′)2−4y ∈ K{y}. Note that A′ = 2y′(y′′−2). So V(A) = V(y)∪V(A, y′′−2).

(2) Let A = y′′2 − y ∈ K{y}. Then A′ = 2y′′y(3) − y′, A′′ = 2y′′y(4) + 2(y(3))2 − y′′, A(3) =
2y′′y(5) + 6y(3)y(4) − y(3). An easy calculation shows that

2y(3)A(3) +A′′ − 6y(4)A′′ = y′′(4y(3)y(5) − 12(y(4))2 + 8y(4) − 1).

So V(A) = V(A, y′′) ∪ V(A, 4y(3)y(5) − 12(y(4))2 + 8y(4) − 1).

In the following, we study the prime decomposition of the radical differential ideal {A} (or
equivalently, the irreducible decomposition of the variety V(A)).

Fix an arbitrary differential ranking R on Θ(Y ). Let ld(A) = y
(h)
p for some p ∈ {1, . . . , n} and

h ∈ N, and take the separant SA of A under R.
Definition. The order of A in yi is defined to be ord(A, yi) = max{k | deg(A, y(k)i ) ≥ 1}. The
order of A is defined to be ord(A) = max

i
{ord(A, yi)}.

Lemma 3.3.3. Let P1 = {A} : SA = {f ∈ K{Y } | SAf ∈ {A}}. Then

1) P1 is prime.

2) For a differential polynomial F ∈ K{Y }, we have F ∈ P1 if and only if δ-rem(F,A) = 0. In
particular, if F ∈ P1 and ord(F, yp) ≤ ord(A, yp) = h, then F is divisible by A.

Proof. 1) Let f, g ∈ K{Y } with fg ∈ P1. Let f1 and g1 be the partial remainder of f and g w.r.t.
A. Then ∃ a, b ∈ N s.t.

Sa
Af ≡ f1 mod [A], Sb

Ag ≡ g1 mod [A].

So Sa+b+1
A fg ≡ SAf1g1 mod [A]. Since fg ∈ P1 = {A} : SA, SAf1g1 ∈ {A}. Thus, ∃ l, q ∈ N s.t.
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(SAf1g1)
l =MA+M1A

′ +M2A
′′ + · · ·+MqA

(q). (∗)

We now show q can be taken 0 in (∗). Assume q > 0. Recall that for k ≥ 1, A(k) = SAy
(h+k)
p +Tk

with Tk free of y(h+k)
p . Note that SA, f1, g1 are free from y

(h+1)
p , . . . , y

(h+q)
p . If q > 0, by replacing

y
(h+k)
p by − Tk

SA
for k = 1, . . . , q at both sides of (∗), we have

(SAf1g1)
l =M ·A, where M =M |

y
(h+k)
p =− TA

SA

, k=1,...,q
.

Clearing fractions by multiplying a power of SA, we have

St
A(f1g1)

l = N ·A

for some N ∈ K{Y }. Since A is irreducible and A ∤ SA, A|(f1g1) and thus A|f1 or A|g1. Suppose
that A|f1. Then Sa

Af ∈ {A} and it follows that f ∈ {A} : SA = P1. Thus, P1 is prime.

2) If δ-rem(F,A) = 0, then F ∈ sat(A) = [A] : S∞
A ⊆ {A} : SA = P1.

Conversely, let F ∈ P1, then SAF ∈ {A}. Let R be the partial remainder of F w.r.t. A, then
Sm
AF ≡ R mod [A]. SAF ∈ {A} ⇒ SAR ∈ {A} ⇒ ∃ l ∈ N s.t. (SAR)

l =MA+M1A
′ + · · ·+MtA

(t),
By the procedure in 1), we can show R is divisible by A. So δ-rem(F,A) = 0.

Remark. By Lemma 3.3.4, P1 = {A} : SA = sat(A) = [A] : S∞
A and A is a characteristic set of P1

under the ranking R.

Proposition 3.3.4. {A} = P1 ∩ {A, SA}.

Proof. Clearly, {A} ⊆ P1 ∩ {A, SA}. Suppose f ∈ P1 ∩ {A, SA}, we need to show f ∈ {A}. Since
f ∈ {A, SA}, ∃ l ∈ N, f l = T1 + T2 for T1 ∈ [A], T2 ∈ [SA]. f ∈ P1 ⇒ SAf ∈ {A} ⇒ δk(SA)f ∈ {A}
for each k ∈ N. So f l+1 ∈ {A} and f ∈ {A} follows.

Let {A, SA} = Q1 ∩ · · · ∩ Qt be the minimal prime decomposition of {A, SA}. Then {A} =
P1 ∩Q1 ∩Q1 ∩ · · · ∩Qt. Suppressing those Qi with P1 ⊆ Qi and denote the left Qi’s by P2, . . . , Pr.
Then {A} = P1 ∩ · · · ∩ Pr is the minimal prime decomposition of {A}.

Claim For each separant S of A under any arbitrary ranking, S /∈ P1 = {A} : SA and S ∈
P2, . . . , Pr.

Proof. S /∈ P1 follows from Lemma 3.3.3 and the fact A ∤ S. Since {A, SA} ⊆ P2, . . . , Pr, SA ∈
P2, . . . , Pr. S ∈ P2, . . . , Pr follows from the fact that {P1, . . . , Pr} are the unique irreducible compo-
nents of {A}.

Remark: A is a differential characteristic set of P1 = {A} : SA = {A} : S = sat(A) (S is the
separant of A under some other ranking). P1 or V(P1) is called the general component of A = 0.
P2, . . . , Pr are called singular components of A = 0.

Example: Let n = 1 and A = (y′)2 − 4y. Clearly, SA = 2y′ and {A, SA} = {(y′)2 − 4y, 2y′} = [y].
Since A′ = 2y′(y′′ − 2), y′′ − 2 ∈ {A} : SA and y′′ − 2 /∈ [y]. Note that for each f ∈ {A} : SA, if
f1 = δ-rem(f, y′′ − 2), then f1 ∈ {A} : SA and A|f1 follows. Thus, {A} : SA = [(y′)2 − 4y, y′′ − 2] is
the general component of A and [y] is the singular component of A.

Let us solve (y′)2 − 4y = 0 over K = (R(x), d
dx): Note that dy

dx = ±2√y ⇒ dy
2
√
y = ±dx ⇒

√
y = ±x + c. So y = (x + c)2 (c an arbitrary constant) or y = 0. Here [(y′)2 − 4y, y′′ − 2] defines

the “general solution" (x+ c)2 and y defines the “singular solution" of A.
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Definition: A differential zero η ∈ En of A is called a nonsingular zero if ∃ a separant S of A s.t.
S(η) ̸= 0. And if S(η) = 0 for all separants of A, η is called a singular solution/zero of A = 0.

Nonsingular zeros belong to the general component of A, but the general component of A may
contain singular solutions of A.

Example: Let A = (y′)2 − y3 ∈ K{y}. SA = 2y′. Since V(A, SA) = {0}, η = 0 is the only singular
solution of A = 0. A′ = 2y′y′′ − 3y2y′ = 2y′(y′′ − 3

2y
2) ⇒ {A} = {A, y′′ − 3

2y
2} ∩ [y] = {A, y′′ −

3
2y

2} = sat(A). Thus, η = 0 is embedded in the general component of A(= 0). (Geometrically, if
K = (C(t), d

dt), ηc =
1

4(t+c)2
is a one-parameter family of nonsingular solutions (c arbitrary constant).

limc→∞ηc = 0.)

Ritt’s problem GivenA ∈ K{y1, . . . , yn} irreducible withA(0, . . . , 0) = 0, decide whether (0, . . . , 0)
(Still open!) ∈ V(sat(A))?

With deep results not covered in our course, we have the following result.

Theorem 3.3.5. (Ritt’s component theorem) Let A ∈ K{y1, . . . , yn} be a differential polynomial
not in K. Let {A} = P1 ∩ · · · ∩ Pr be the minimal prime decomposition of {A}, then ∃Bi ∈
K{y1, . . . , yn} irreducible s.t. Pi = sat(Bi), i = 1, . . . , r.

In particular, if A is irreducible, then ∃ i0 s.t. Bi0 = aA (a ∈ K∗) and for i ̸= i0, A involves a
proper derivative of the leader of each Bi w.r.t. any ranking and ord(Bi) < ord(A).

Let A ∈ K{Y } be an algebraically irreducible differential polynomial. Ritt’s component theorem
calims that there exists irreducible differential polynomials B1, . . . , Bs of order lower than the order
of A such that the general component of B1, . . . , Bs are the singluar components of V(A). Let B be
an irreducible differential polynomial such that A belongs to the general component of B.

Problem. Can we determine whether sat(B) is a prime component of A?
Yes, the low power theorem gives a necessary and sufficient condition for the general component

of B to be a prime component of A. For this, we need the preparation congruence for A w.r.t.
B, which is to write SBA as a differential polnomial in B with coefficients that are differential
polynomials in K{Y } not contained in sat(B).

The Low Power Theorem (Ritt, 1936) The general component of B is a component of A if
and only if the preparation congruence for A w.r.t. B contains a term cBk, free of proper derivatives
of B, which considered as a differential polynomial in B, has lower degree than any other term.

Example. [y] is a singular component of y′y′′−y, but not for (y′)2−y3, yy′′′−y′′ and y′′y′′′−y2.



Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K, δ) be a differential field of characteristic 0. Let x be an indeterminate over K. Then δ can

be extended to a derivation δ0 on K[x] s.t. δ0(x) = 0 given by δ0(
l∑

i=0
rix

i) =
l∑

i=0
δ(ri)x

i. There is

also a derivation on K[x] s.t. d
dx(K) = 0 and d

dx(x) = 1 given by d
dx(

l∑
i=0

rix
i) =

l∑
i=1

irix
i−1. Of

course, d
dx does not extend δ.

Lemma 4.1.1. Any derivation δ1 on K[x] which extends δ is given by

δ1 = δ0 + δ1(x)
d
dx .

Conversely, by defining δ1(x) = p(x) ∈ K[x], δ1 = δ0 + p(x) d
dx is a derivation on K[x] extending δ.

Proof. First suppose δ1 is a derivation on K[x] extending δ. Then ∀ f =
r∑

i=0
rix

i ∈ K[x], δ1(f) =

r∑
i=0

δ(ri)x
i +

r∑
i=1

irix
i−1δ1(x) = δ0(f) + δ1(x)

d
dx(f). So δ1 = δ0 + δ1(x)

d
dx . Now let δ1 : K[x]→ K[x]

be defined by δ1(f) = δ0(f) + δ1(x)
d
dx(f). Then ∀ a ∈ K, δ1(a) = δ0(a) + δ1(x)

d
dx(a) = δ(a);

∀ f, g ∈ K[x], δ1(f + g) = δ0(f + g) + δ1(x)
d

dx
(f + g) = δ1(f) + δ1(g),

δ1(fg) = δ0(fg) + δ1(x)
d

dx
(fg) = δ1(f)g + fδ1(g).

Thus, δ1 is a derivation which extends δ.

Theorem 4.1.2. Let K ⊆ L be fields of characteristic 0. Then any derivation on K could be
extended to a derivation on L. This extension is unique if and only if L is algebraic over K.
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