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Recall the concept of differential variety and the differential Nullstellensatz theorem:

Let (K, 6) be a differential field of characteristic 0 and (£,9) D (K, J) is a differentially closed
field. Consider the differental polynomial ring K{Y} = K{y1,...,yn} and the affine space E".

e A differential variety V is the set of differential zeros of some differential polynomial set ¥ C
K{Y} rational over E. That is, V =V(X) 2 {n € E" | f(n) =0,V f € ¥}.
Basic operations: V(3 - X9) = V(X)) UV(X2); V(I - J) =V UV(J) =V NJ);
I(Vi UVe) =1(V1) N I(V2)

e The Ritt-Raudenbush basis theorem guarantees that each differential variety can be de-
fined by a finite set of differential polynomials. (Indeed, 3 f1,..., fs € ¥ s.t. {E}={f1,..., fs}.

So V = V(2) = VUE}) = V{f1,- -, 1) = V(fi.e.. £2))

We have two maps between the set of §-K-varieties and the set of radical d-ideals in K{Y }:

I: {o-varieties in E™ over K} — {radical d-ideals in K{Y'}}
Vv I(V)

and
V: { radical é-ideals in K{Y}} — {d-varieties in E" over K}
J V(J)

e Differential Nullstellensatz: I(V(F)) = {F'}. In particular, V(F) =0 < 1 € [F].

Consequently, I and V are inclusion reversing bijective maps.

3.3 Irreducible decomposition of differential varieties

A differential variety V' C E™ is said to be irreducible if V' is not the union of two proper differential
subvarieties. Otherwise, it is said to be reducible.

Lemma 3.3.1. A differential variety V' is irreducible < 1(V) C K{y1,...,yn} is prime.

Proof. “=" For any f,g € K{Y}, fg € I(V), we have
V =V(I(V), fg) = VIV), f) UV(IV),9g).
V is irreducible = V(I(V), f) =V or V(I(V),g) = V. Equivalently, f € I(V), or g € (V). So I(V)

is prime.

“<" IV = ViU Vs, then I(V) = I(Vh) N I(Va). Since I(V) is prime, I(Vy) C I(V) or I(Va) C
I(V), for otherwise, 3 f; € I(Vi)\I(V),i = 1,2, but fife € I(V1) N I(Va) = I(V), which yields a
contradiction. If I(Vy) C I(V), then V' = Vi; and in the other case, V = V5. O

Theorem 3.3.2. Any differential variety V is a finite union of irreducible differential varieties,

l l
i.e., V.= |JV; with V; irreducible differential subvariety of V. Call V. = |J Vi an irreducible
i=1 i=1

l
decomposition of V. If V.= |J V; is an irredundant/minimal irreducible decomposition (in the sense

=1
Vi & U Vj,Vi), then the set {Vi,...,Vi} is unique for V.
J#

Proof. By Theorem 2.3.5 and Corollary 2.3.6,
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!
I(V) = () P; for P; prime differential ideals.

J=1

l l
SoV=V(I(V)) =V( P;) = U V(P)) is an irreducible decomposition of V.
j=1 j=1
l m
Uniqueness: If V = [J V; and V = |J W; are two irredundant irreducible decomposition of V,
- i=1 j=1
then we have two irredundant prime decomposition for I(V), i.e.,
l m
(V) = () I(V:) and I(V) = () I(W).
i=1 j=1

By Theorem 2.2.4, Il =m and 30 € §; s.t. [(Vi) = [(W,(;)). Hence, V; = W, fori=1,...,1. O

Remark: Each irreducible differential variety V; in the irredundant irreducible decomposition V =
l
|J Vi is called an irreducible component of V. These Vi, ..., V; are maximal irreducible differential

i=1
subvarieties contained in V.

Irreducible components of a single Algebraic differential equation

Let A € K{Y }\ K be algebraically irreducible (i.e., not the product of two differential polyno-
mials in K{Y }\K). Unlike the algebraic case, V(A) might be a reducible differential variety:

Example: (1) Let A = (y/)?—4y € K{y}. Note that A’ = 2y/(3y"—2). So V(A) = V(y)UV (A4, 3" —2).
(2) Let A = y? —y € K{y}. Then A" = 2/"y® —y/, A" = 2¢/"y™) + 2(y¥)? — ", AB) =
2y"y®) + 6yBlyD — yB) . An easy calculation shows that
2y AB) 1 A" — 6y W A" = " (43 yO) — 12(y™)2 4 8y — 1),
So V(A) = V(A,y") UV(A,4yByB) —12(y™)2 4 8y — 1),

In the following, we study the prime decomposition of the radical differential ideal {A} (or
equivalently, the irreducible decomposition of the variety V(A)).

Fix an arbitrary differential ranking Z on ©(Y). Let 1d(A) = ;(,h) for some p € {1,...,n} and
h € N, and take the separant S4 of A under Z.
Definition. The order of A in y; is defined to be ord(A,y;) = max{k | deg(A, yl(k)) > 1}. The
order of A is defined to be ord(A) = mzax{ord(A, vi)}-

Lemma 3.3.3. Let Py = {A}:Sa={f e K{Y} |Saf € {A}}. Then
1) Py is prime.

2) For a differential polynomial F € K{Y}, we have F € Py if and only if 6-rem(F, A) = 0. In
particular, if F € Py and ord(F,y,) < ord(A,y,) = h, then F is divisible by A.

Proof. 1) Let f,g € K{Y'} with fg € P;. Let f; and g; be the partial remainder of f and g w.r.t.
A. Then da,b € N s.t.

S%f = fi mod [4], SY%g = g1 mod [A].
So 84T fg = Safigr mod [A]. Since fg € Py = {A}:Sa, Safigi € {A}. Thus, 31,q € N s.t.
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(Safigi)t = MA+ MyA" + MpA” + -+« + M,AD . (%)

We now show ¢ can be taken 0 in (). Assume g > 0. Recall that for k > 1, AK) = SAy]thrk) + Tk
with T}, free of y](,thk). Note that Sg4, f1, g1 are free from yz(ohﬂ), R y},hﬂ). If ¢ > 0, by replacing

yz(?thk) by _S% for k =1,...,q at both sides of (x), we have

(Safig1)! = M - A, where M = M | niny 7, el o
yp - S y R=1,...,9

A

Clearing fractions by multiplying a power of S4, we have
Sh(fig)) =N-A

for some N € K{Y'}. Since A is irreducible and A { S4, A|(f1g1) and thus A|f1 or A|g1. Suppose
that A|f;. Then S%f € {A} and it follows that f € {A}: S4 = P;. Thus, P; is prime.

2) If 0-rem(F, A) =0, then F' € sat(A) = [A] : S C {A}:Sa = P1.

Conversely, let F' € P;, then SyF € {A}. Let R be the partial remainder of F' w.r.t. A, then
S"F = Rmod [A]. SyF € {A} = SyR € {A} = Fl € Ns.t. (SAR)' = MA+ M A + -+ M;AD),
By the procedure in 1), we can show R is divisible by A. So d-rem(F, A) = 0.

O

Remark. By Lemma 3.3.4, P, = {A} : S4 = sat(A) = [A] : ST and A is a characteristic set of P;
under the ranking Z.

Proposition 3.3.4. {A} = PN {A,Sa}.

Proof. Clearly, {A} C Py N{A,Sa}. Suppose f € PLN{A,Ss}, we need to show f € {A}. Since
fe{ASat, JNEN, fl=T, + Ty for Ty € [A], Ty € [Sa]. f € P1 = Saf € {A} = 68(Sa)f € {A}
for each k € N. So fI*! € {A} and f € {A} follows. O

Let {A,S4} = Q1 N---NQ; be the minimal prime decomposition of {A,S4}. Then {A} =
PNn@QiN@iN---NQ¢. Suppressing those @Q; with P, C @Q; and denote the left Q;’s by P, ..., P,.
Then {A} = Py N---N P, is the minimal prime decomposition of {A}.

Claim For each separant S of A under any arbitrary ranking, S ¢ P, = {A} : S4 and S €
P, ..., P

Proof. S ¢ Py follows from Lemma 3.3.3 and the fact A +S. Since {A4,Sa} C P»,..., P, Ss €
Py, ...,P.. SE€ Ps,..., P, follows from the fact that {Py,..., P} are the unique irreducible compo-
nents of {A}. O

Remark: A is a differential characteristic set of P, = {A} : Sq4 = {A} : S = sat(A) (S is the
separant of A under some other ranking). P; or V(P)) is called the general component of A = 0.
Py, ..., P, are called singular components of A = 0.

Example: Let n = 1 and A = (y)? — 4y. Clearly, Sy = 2/ and {A,Sa} = {(v/)? — 4y,2y'} = [y].
Since A" = 2y/(y" — 2), y" —2 € {A} : S4 and y’ — 2 ¢ [y]. Note that for each f € {A} : Sy, if
fi = d-rem(f,y" —2), then f1 € {A} : S4 and A|fy follows. Thus, {A} : Sa = [(v/)? — 4y,y" — 2] is

the general component of A and [y] is the singular component of A.

Let us solve (y')2 — 4y = 0 over K = (R(z), &£): Note that % = £2,/y = % = +dz =

VY =%z +c Soy = (x+c)? (can arbitrary constant) or y = 0. Here [(y)* — 4y, y” — 2] defines
the “general solution" (x + ¢)? and y defines the “singular solution" of A.



3.3. IRREDUCIBLE DECOMPOSITION OF DIFFERENTIAL VARIETIES 31

Definition: A differential zero n € E™ of A is called a nonsingular zero if 3 a separant S of A s.t.
S(n) # 0. And if S(n) = 0 for all separants of A, 7 is called a singular solution/zero of A = 0.

Nonsingular zeros belong to the general component of A, but the general component of A may
contain singular solutions of A.

Example: Let 4 = (y')? — 4% € K{y}. Sa = 2y’. Since V(A,S,4) = {0}, n = 0 is the only singular
solution of A = 0. A" = 2y/y" —3y*y = 2y/(y" — 3y°) = {A} = {A,y" - 3v*} N[y = {4,y —
3y?} = sat(A). Thus, n = 0 is embedded in the general component of A(= 0). (Geometrically, if
K = (C(t), %), Ne = W is a one-parameter family of nonsingular solutions (¢ arbitrary constant).

lime—00n. = 0.)

Ritt’s problem Given A € K{y1,...,y,} irreducible with A(0,...,0) = 0, decide whether (0, ..., 0)
(Still open!) € V(sat(A))?

With deep results not covered in our course, we have the following result.

Theorem 3.3.5. (Ritt’s component theorem) Let A € K{y,...,yn} be a differential polynomial
not in K. Let {A} = Py N---N P, be the minimal prime decomposition of {A}, then IB; €
K{y1,...,yn} trreducible s.t. P; =sat(B;),i=1,...,r.

In particular, if A is irreducible, then Jig s.t. B;, = aA (a € K*) and for i # ig, A involves a
proper deriwvative of the leader of each B; w.r.t. any ranking and ord(B;) < ord(A).

Let A € K{Y} be an algebraically irreducible differential polynomial. Ritt’s component theorem
calims that there exists irreducible differential polynomials By, ..., Bs of order lower than the order
of A such that the general component of By, ..., By are the singluar components of V(A). Let B be
an irreducible differential polynomial such that A belongs to the general component of B.

Problem. Can we determine whether sat(B) is a prime component of A?

Yes, the low power theorem gives a necessary and sufficient condition for the general component
of B to be a prime component of A. For this, we need the preparation congruence for A w.r.t.
B, which is to write SpA as a differential polnomial in B with coefficients that are differential
polynomials in K{Y} not contained in sat(B).

The Low Power Theorem (Ritt, 1936) The general component of B is a component of A if
and only if the preparation congruence for A w.r.t. B contains a term c¢B*, free of proper derivatives
of B, which considered as a differential polynomial in B, has lower degree than any other term.

1", 1 2
y —

Example. [y] is a singular component of y'y” —y, but not for (v')2 — 3, yy"” —3" and y Y.



Chapter 4

Extensions of differential fields

4.1 Extensions of derivations

Let (K,0) be a differential field of characteristic 0. Let x be an indeterminate over K. Then ¢ can

l . l .
be extended to a derivation g on K[z] s.t. do(x) = 0 given by do(>_ miz') = > d(ri)x’. There is
= i=0

i=0
! , ! .
also a derivation on K[z] s.t. L(K) = 0 and £ (z) = 1 given by L (3 riz?) = > irz®l. Of
i=0 i=1
course, % does not extend §.
Lemma 4.1.1. Any derivation 01 on K[x] which extends § is given by
01 = dp + 51(l‘)%.
Conversely, by defining 61(x) = p(z) € K[|, 61 = 8o + p(z) £k is a derivation on K|z] extending §.
Proof. First suppose d; is a derivation on K[z] extending §. Then V f = 3 riz’ € K|z, 61(f) =
i=0
ST 8(r)at + S irrtTloy (x) = So(f) + 51(x)%(f). So 61 = 6o + 01(x) 7. Now let 91 : K[z] — K|x]
i=0 i=1

d
be defined by 6;(f) = do(f) + 61(2)L (f). Then Va € K, 8y(a) = do(a) + 01 (2) L (a) = 8(a);
Vf g€ Klz], s1(f +9) =o(f +9) +51($)%(f+9) = 01(f) + d1(9),
51(£9) = Bo(9) + 1 (2) 3 (F9) = 61(1)g + F61(9)

Thus, d1 is a derivation which extends 6. O

Theorem 4.1.2. Let K C L be fields of characteristic 0. Then any derivation on K could be
extended to a derivation on L. This extension is unique if and only if L is algebraic over K.
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