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Recall: Last week, we studied the notions of differential ranking, autoreduced set and character-
istic set:
• A differential ranking R is a total ordering on Θ(Y ) := {y(k)i : k ≥ 0, 1 ≤ i ≤ n} satisfying (1)

v < δ(v) and (2) v < u⇒ δ(v) < δ(u). It is a well-ordering.
• Given f ∈ K{Y }, the leader/initial/rank/separant of f is dentoed by uf , If , Sf , rk(f). A

polynomial g is partially reduced w.r.t. f if no proper derivative of uf appears in g; and in addtion,
if deg(g, uf ) < deg(f, uf ), then g is reduced w.r.t f .
• An autoreduced set is a set A ⊂ K{Y } with each element reduced w.r.t. all the other elements.

A characteristic set of a differential ieal I is an autoreduced set of lowest rank contained in I.

We start to introduce pesudo-division of differential polynomials:

Lemma 2.2.11. Let A = A1, . . . , Ap be an autoreduced set in K{Y } and F ∈ K{Y }. Then there
exist F̃ ∈ K{Y } and ti ∈ N satisfying

1) F̃ is partially reduced with respect to A (i.e., F̃ is partially reduced w.r.t. each Ai),

2) the rank of F̃ is not higher than that of F ,

3)
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A].

More precisely,
p∏

i=1
Sti
Ai
F − F̃ can be expressed as a linear combination of derivatives θ(Ai) with

coefficients in K{Y } such that θ(uAi) ≤ uF .

Proof. If F is partially reduced with respect to A, then set F̃ = F and ti = 0 (i ≤ p). Otherwise,
F contains a proper derivative δk(uAi) of the leader of some Ai. Let vF be the maximal one among
all such derivatives. We shall prove the lemma by induction on vF . Suppose for all G ∈ K{Y }
that doesn’t involve a proper derivative of any uAi of rank ≥ vF , the corresponding G̃ and natural
numbers are defined satisfying the desired properties. There exists a unique A ∈ A such that
vF = δk(uA) for some k > 0. If A =

∑d
i=0 IiuA

i, then

δk(A) = SAδ
k(uA) + T with T having lower rank than δk(uA) = vF .

Denoting l = deg(F, vF ) and write F as F =
∑l

i=0 JivF
i where J0, . . . , Jl don’t involve proper

derivatives of any uAi of rank ≥ vF . Then we have

SA
lF =

l∑
i=0

JiSA
l−i(SAvF )

i ≡
l∑

i=0

JiSA
l−i(−T )i mod (δk(A)).

Clearly, G =
∑l

i=0 JiSA
l−i(−T )i doesn’t involve proper derivatives of any uAi of rank ≥ vF . By

the induction hypothesis, ∃ G̃ partially reduced with respect to A and ki ∈ N such that
p∏

i=1
Ski
Ai
G ≡

G̃ mod [A]. Now it suffices to set F̃ = G̃, ti =

{
ki, Ai ̸= A

ki + l, Ai = A
.

Remark: F̃ constructed by the process in the proof is called the partial remainder of F w.r.t A.

Let us recall the pseudo reduction algorithm in commutative algebra:
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Let D be an integral domain and we consdier the polynomial ring D[v] (v is an indeterminate
over D). Let F,A ∈ D[v] be of respective degrees dF , dA(≥ 0) and assume

A = IdAv
dA + · · ·+ I1v + I0

with Ii ∈ D. Let e = max{dF − dA + 1, 0}. Then we can compute unique Q,R ∈ D[v] with
deg(R, v) < deg(A, v) such that

IedAF = QA+R.

Theorem 2.2.12. Let A = A1, . . . , Ap be an autoreduced set in K{y1, . . . , yn}. If F ∈ K{y1, . . . , yn},
then ∃ F0 ∈ K{y1, . . . , yn} (called the differential remainder of F w.r.t. A) and ri, ti ∈ N s.t.

1) F0 is reduced w.r.t A,

2) The rank of F0 is no higher than the rank of F ,

3)
p∏

i=1
Sti
Ai

IriAi
F ≡ F0 mod [A].

Proof. Let F̃ be the partial remainder of F with respect to A and
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A]. Let

rp = max{0, deg(F, uAp)− deg(Ap, uAp) + 1}. Then ∃Fp−1 ∈ K{Y } partially reduced with respect
to A and reduced with respect to Ap such that IrpAp

F̃ ≡ Fp−1 mod (Ap). If p = 1, then we are done.
Otherwise, we can find rp−1 and Fp−2 ∈ K{Y } partially reduced with respect to A and reduced with
respect to Ap−1, Ap s.t. Irp−1

Ap−1
IrpAp

F̃ ≡ Fp−2 mod (Ap−1, Ap) and is not higher than F̃ . Continuing in
this way, we get F0 satisfying the desired properties.

Remark: The reduction procedures above could be summarized in an algorithm, called the Ritt-
Kolchin algorithm to compute the δ-remainder of a δ-polynomial F with respect to an autoreduced
set A. Denote F0 above by δ-rem(F,A), or F →

A
F0.

Example: Consider K{y1, y2} and fix the orderly ranking with y1 > y2.

(1) Let f = y1 and A = A1 = y2y1. Here f →
A

0, and IA1f ∈ [A].

(2) Let f = y′1 + 1 and A = A1 = y2y
2
1. uA1 = y1 and SA1 = 2y2y1. Clearly, f is not partially

reduced with respect to A. Note that δ(A1) = 2y2y1y
′
1 + y′2y

2
1. The partial remainder of f

with respect to A is 2y2y1 − y′2y21 = f̃ and SA1f − f̃ = A′
1 ∈ [A].

Since
IA1 f̃ − If̃A1 = y2(2y2y1 − y′2y21)− (−y′2)y2y21 = 2y22y1

is reduced with respect to A, f →
A

2y22y1 and IA1SA1f − 2y22y1 = −y′2A1 + IA1A
′
1 ∈ [A].

Theorem 2.2.13. Let A be an autoreduced set of a proper differential ideal I ⊆ K{y1, . . . , yn}.
Then the following are equivalent:

(1) A is a characteristic set of I.

(2) ∀f ∈ I, δ-rem(f,A)=0.

(3) I doesn’t contain a nonzero differential polynomial reduced with respect to A.
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Proof. (2)⇔ (3) is obvious.
“(1)⇒ (3)” Suppose f ∈ I\{0} is reduced with respect to A = A1, . . . , Ap. Let k ∈ N be maximal

such that rk(Ak) < rk(f). Then A1, . . . , Ak, f is an autoreduced set lower than A. (Here, in the
case rk(f) < rk(A1), take k = 0 and {f} is an autoreduced set < A.) Thus, we get a contradiction,
and (3) is valid.

“(3) ⇒ (1)” Assume (3) is valid. Suppose A = A1, . . . , Ap is not a characteristic set of I.
Then ∃ B = B1, . . . , Bq, an autoreduced set of I of lower rank than A. Thus, by definition, either
(1) ∃ k ≤ min{p, q} such that for i < k, rk(Ai) = rk(Bi) and Ak > Bk, or (2) q > p and for
i ≤ p, rk(Ai) = rk(Bi). Then either Bk or Bp+1 is nonzero and reduced with respect to A.

Remark: By Theorem 2.2.13, if A = A1, . . . , Ap is a characteristic set of I ⊆ K{Y }, then IAi , SAi /∈
I (i = 1, . . . , p).

A characteristic set of I can be obtained by the following procedure (non-constructive) : choose
A1 ∈ I of minimal rank. ChooseA2 of minimal rank in the set {f ∈ I | f is reduced with respect to A1}.
ThenA1, A2 is autoreduced. ChooseA3 of minimal rank in the set {f ∈ I | f is reduced with respect to
A1, A2}. Then A1, A2, A3 is autoreduced. Continue like this. The process must terminate for an
autoreduced set is finite. In the end, we will obtain an autoreduced set A := A1, . . . , Ap of I such
that no polynomial in I is reduced with respect to A. Clearly, A is a characteristic set of I.

Lemma 2.2.14. Let A be a characteristic set of a proper differential ideal I ⊆ K{Y }. Denote H∞
A

to be the multiplicative set generated by initials and separants of elements in A and set

sat(A) := [A] : H∞
A = {f ∈ K{Y } | ∃M ∈ H∞

A ,Mf ∈ [A]}.

Then I ⊆ sat(A). Furthermore, if I is prime, I = sat(A).

Proof. For each f ∈ I, by Theorem 2.2.13, δ-rem(f,A) = 0. Thus, ∃ iA, tA ∈ N (A ∈ A) s.t.∏
A∈A

IiAA StA
A f ∈ [A]. That is, f ∈ sat(A).

Suppose I is prime. For each f ∈ sat(A), ∃ iA, tA s.t.
∏

A∈A
IiAA StA

A f ∈ [A] ⊆ I. Since IA, SA are

not in I, f ∈ I and I = sat(A) follows.

Exercise: Develop a division algorithm as follows:
Input: f ∈ K{Y } and an autoreduced set A = A1, . . . , Ap w.r.t. a fixed ranking.
Output: g ∈ K{Y }, the differential remainder of f w.r.t. A. That is, g is reduced w.r.t. A and

there exist ik, jk ∈ N s.t. Ii1A1
· · · IipAp

Sj1
A1
· · · Sjp

Ap
f − g ∈ [A].

2.3 The Ritt-Raudenbush basis theorem

In the end of section 2.1, we gave an example showing that a differential ideal in K{Y } might not
be differentially finitely generated. For example,

I = [y2, (y′)2, . . . , (y(k))2, . . .]

and
J = [yy′, y′y′′, . . . , y(k)y(k+1), . . .]

are not differentially finitely generated. But note that {I} = {y} and {J} = {yy′} are differentially
finitely generated as radical differential ideals. In this section, we will show every radical differential
ideal in K{Y } is differentially finitely generated as radical differential ideals.
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Definition 2.3.1. A differential ring is called Ritt-Noetherian if the set of radical differential
ideals satisfies the ascending chain condition (ACC).

Lemma 2.3.2. Let (R, δ) be a differential ring. Then R is Ritt-Noetherian ⇔ every radical dif-
ferential ideal I of R is finitely generated as a radical differential ideal. (i.e. ∃ f1, . . . , fs ∈ I s.t.
I = {f1, . . . , fs}).

Proof. “⇒” Let I be an arbitrary radical differential ideal of R. Suppose I is not finitely generated as
a radical differential ideal. Then we can construct a strict increasing sequence of radical differential
ideals, i.e., {a1} ⫋ {a1, a2} ⫋ · · · ⫋ {a1, a2, . . . , ap} ⫋ · · · .
“⇐” Let I1 ⊆ I2 ⊆ · · · be sequence of radical differential ideals. Take I =

⋃∞
i=1 Ii. Then I is a

radical differential ideal. Thus, ∃ f1, . . . , fs ∈ I s.t. I = {f1, . . . , fs}. Since each fi ∈ I, ∃m ∈ N s.t.
fi ∈ Im (∀ i = 1, . . . , s). So {f1, . . . , fs} ⊆ Im ⊆ I ⇒ Im = Im+j = {f1, . . . , fs} for j ∈ N.

Lemma 2.3.3. Let R be a diffeential ring with Q ⊂ R. Let S ⊂ R be a subset and a ∈ R such that
the radical differential ideal {S, a} has a finite set of generators as a radical differential ideal. Then,
there exists s1, . . . , sp ∈ S such that {S, a} = {s1, . . . , sp, a}.

Proof. By hypothesis, ∃h1, . . . , hl s.t. {a, S} = {h1, . . . , hl}. For each i, hi ∈ {a, S} ⇒ ∃mi s.t.
hmi
i ∈ [a, S]. So ∃ s1, . . . , sp ∈ S s.t. for each i, hmi

i ∈ [a, s1, . . . , sp]. Thus, hi ∈ {a, s1, . . . , sp} ⊂
{a, S} ⇒ {h1, . . . , hl} ⊆ {a, s1, . . . , sp} ⊆ {a, S}.

Theorem 2.3.4. Let (K, δ) be a differential field with Q ⊆ K. The differential polynomial ring
K{y1, . . . , yn} is Ritt-Noetherian.

Proof. By Lemma 2.3.2, it suffices to prove that every radical differential ideal of K{y1, . . . , yn} is
finitely generated as radical differential ideals. Suppose the contrary and ∃ a radical differential ideal
of K{y1, . . . , yn} that is not finitely generated. By Zorn’s lemma, ∃ a maximal radical differential
ideal J ⊆ K{y1, . . . , yn} that is not finitely generated.

Claim: J is a prime differential ideal.
Proof of the claim. Suppose the contrary, then ∃ a, b ∈ K{y1, . . . , yn} s.t. a, b /∈ J but ab ∈ J .

Since {a, J} ⫌ J and {b, J} ⫌ J , {a, J} and {b, J} are finitely generated as radical differential
ideals. Then by Lemma 2.3.3, ∃ f1, . . . , fs, g1, . . . , gt ∈ J s.t. {a, J} = {a, f1, . . . , fs} and {b, J} =
{b, g1, . . . , gt}. Hence,

J2 ⊆ {a, J} · {b, J} = {a, f1, . . . , fs} · {b, g1, . . . , gt}
⊆ {ab, agj , bfi, figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t} ≜ P

⊆ J.

For each f ∈ J , f2 ∈ J2 ⊆ P ⇒ f ∈ P ⇒ J = P = {ab, agj , bfi, figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t},
contradicting the hypothesis that J is not finitely generated. The claim thus is proved.

Fix a ranking on Θ(Y ) and take a characteristic setA of J under this ranking. LetA = A1, . . . , Ap

and denote I ≜
p∏

i=1
IAi , S ≜

p∏
i=1

SAi . Since J is prime, J = sat(A) = [A] : H∞
A ⊆ {A} : (IS). Since

IAi , SAi /∈ J for each i, IS /∈ J . Thus {J, IS} is finitely generated as a radical differential ideal. That
is, ∃h1, . . . , hl ∈ J s.t. {J, IS} = {h1, . . . , hl, IS}. Thus,

J2 ⊆ J · {J, IS} = J · {h1, . . . , hl, IS}
⊆ {h1, . . . , hl,A}(for IS · J ⊆ {A})
⊆ J.
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Hence, J = {h1, . . . , hl, A1, . . . , Ap}, which leads to a contradiction. So every radical differential
ideal of K{y1, . . . , yn} is finitely generated as a radical differential ideal.

Theorem 2.3.5. Let R be a differential ring which is Ritt-Noetherian and Q ⊆ R. Then for every
radical differential ideal I ⫋ R, there exist a finite number of prime differential ideals P1, . . . , Pl s.t.

I =
l⋂

i=1

Pi. (2.1)

Moreover, if (2.1) is irredundant (∀ i,
⋂
j ̸=i

Pj ̸⊆ Pi), then this set of prime ideals is unique. In this

case, P1, . . . , Pl are called prime components of I.

Proof. Suppose the statement is false, i.e., the set U = {I | I ⫋ K{y1, . . . , yn} is a radical differential
ideal and I is not a finite intersection of prime differential ideals} is not empty. Since R is Ritt-
Noetherian, every ascending chain of radical differential ideals has an upper bound in U . By Zorn’s
lemma, U has a maximal element J ∈ U . Clearly, J is not prime. So ∃ a, b /∈ J but ab ∈ J . Thus,
{J, a} ⫌ J and {J, b} ⫌ J . Also, {J, a} ≠ R. Indeed, if not, then 1 ∈ {J, a}. Since Q ⊆ R, 1 ∈ [J, a]
and 1 = f +

∑
∗δk(a), where f ∈ J . By ab ∈ J and J is radical, bδk(a) ∈ J ∀ k ∈ N. So

b = fb+
∑
∗bδk(a) ∈ J , contradicting to b /∈ J . Similarly, {J, b} ≠ R could be shown.

By the maximality of J , ∃P a
1 , . . . , P

a
l , P

b
l+1, . . . , P

b
l+t prime differential ideals in R s.t.

{J, a} = P a
1 ∩ · · · ∩ P a

l and
{J, b} = P b

l+1 ∩ · · · ∩ P b
l+t.

Now show J = {J, a} ∩ {J, b}. Indeed, let f ∈ {J, a} ∩ {J, b}, then f2 ∈ {J, a} · {J, b} ⊆ {J, ab} ⊆
J ⇒ f ∈ J . Thus, J = {J, a} ∩ {J, b} = P a

1 ∩ · · · ∩ P a
l ∩ P b

l+1 ∩ · · · ∩ P b
l+t, contradicting to the

hypothesis J ∈ U . So the first statement is valid.

Uniqueness. Suppose I =
l⋂

i=1
Pi =

t⋂
j=1

Qj be irredundant intersections. For each j = 1, . . . , t,
l⋂

i=1
Pi ⊆

Qj . Then ∃ i0 ∈ {1, . . . , l} s.t. Pi0 ⊆ Qj . Indeed, suppose the contrary, then ∃ fi ∈ Pi\Qj for each

i = 1, . . . , l. Thus, f1f2 · · · fl ∈
l⋂

i=1
Pi ⊆ Qj , which yields a contradiction. Similarly, ∃ j0 ∈ {1, . . . , t}

s.t. Qj0 ⊆ Pi0 ⊆ Qj . Since I =
t⋂

j=1
Qj is irredundant, j0 = j and Pi0 = Qj . Thus, l = t and ∃ a

permutation σ ∈ Sl s.t. Pi = Qσ(i).

Corollary 2.3.6. Every proper radical differential ideal I ⫋ K{y1, . . . , yn} (char(K) = 0) can be

written as a finite intersection of prime differential ideals. If I =
l⋂

i=1
Pi is irredundant, Pi are called

prime components of I.

Example: I = {y′2 − 4y} ⊆ Q{y}. Then I = {y′2 − 4y, y′′ − 2} ∩ {y} (Chapter 3).


