Recall: Last week, we studied the notions of differential ranking, autoreduced set and characteristic set:

- A differential ranking \mathscr{R} is a total ordering on $\Theta(Y):=\left\{y_{i}^{(k)}: k \geq 0,1 \leq i \leq n\right\}$ satisfying (1) $v<\delta(v)$ and (2) $v<u \Rightarrow \delta(v)<\delta(u)$. It is a well-ordering.
- Given $f \in K\{Y\}$, the leader/initial/rank/separant of f is dentoed by $u_{f}, \mathrm{I}_{f}, \mathrm{~S}_{f}, \mathrm{rk}(f)$. A polynomial g is partially reduced w.r.t. f if no proper derivative of u_{f} appears in g; and in addtion, if $\operatorname{deg}\left(g, u_{f}\right)<\operatorname{deg}\left(f, u_{f}\right)$, then g is reduced w.r.t f.
- An autoreduced set is a set $\mathcal{A} \subset K\{Y\}$ with each element reduced w.r.t. all the other elements. A characteristic set of a differential ieal I is an autoreduced set of lowest rank contained in I.

We start to introduce pesudo-division of differential polynomials:
Lemma 2.2.11. Let $\mathcal{A}=A_{1}, \ldots, A_{p}$ be an autoreduced set in $K\{Y\}$ and $F \in K\{Y\}$. Then there exist $\tilde{F} \in K\{Y\}$ and $t_{i} \in \mathbb{N}$ satisfying

1) \tilde{F} is partially reduced with respect to \mathcal{A} (i.e., \tilde{F} is partially reduced w.r.t. each A_{i}),
2) the rank of \tilde{F} is not higher than that of F,
3) $\prod_{i=1}^{p} \mathrm{~S}_{A_{i}}^{t_{i}} F \equiv \tilde{F} \bmod [\mathcal{A}]$.

More precisely, $\prod_{i=1}^{p} \mathrm{~S}_{A_{i}}^{t_{i}} F-\tilde{F}$ can be expressed as a linear combination of derivatives $\theta\left(A_{i}\right)$ with coefficients in $K\{Y\}$ such that $\theta\left(u_{A_{i}}\right) \leq u_{F}$.

Proof. If F is partially reduced with respect to \mathcal{A}, then set $\tilde{F}=F$ and $t_{i}=0(i \leq p)$. Otherwise, F contains a proper derivative $\delta^{k}\left(u_{A_{i}}\right)$ of the leader of some A_{i}. Let v_{F} be the maximal one among all such derivatives. We shall prove the lemma by induction on v_{F}. Suppose for all $G \in K\{Y\}$ that doesn't involve a proper derivative of any $u_{A_{i}}$ of rank $\geq v_{F}$, the corresponding \tilde{G} and natural numbers are defined satisfying the desired properties. There exists a unique $A \in \mathcal{A}$ such that $v_{F}=\delta^{k}\left(u_{A}\right)$ for some $k>0$. If $A=\sum_{i=0}^{d} I_{i} u_{A}{ }^{i}$, then

$$
\delta^{k}(A)=\mathrm{S}_{A} \delta^{k}\left(u_{A}\right)+T \text { with } T \text { having lower rank than } \delta^{k}\left(u_{A}\right)=v_{F} .
$$

Denoting $l=\operatorname{deg}\left(F, v_{F}\right)$ and write F as $F=\sum_{i=0}^{l} J_{i} v_{F}{ }^{i}$ where J_{0}, \ldots, J_{l} don't involve proper derivatives of any $u_{A_{i}}$ of rank $\geq v_{F}$. Then we have

$$
\mathrm{S}_{A}^{l} F=\sum_{i=0}^{l} J_{i} \mathrm{~S}_{A}^{l-i}\left(\mathrm{~S}_{A} v_{F}\right)^{i} \equiv \sum_{i=0}^{l} J_{i} \mathrm{~S}_{A}^{l-i}(-T)^{i} \bmod \left(\delta^{k}(A)\right) .
$$

Clearly, $G=\sum_{i=0}^{l} J_{i} \mathrm{~S}_{A}^{l-i}(-T)^{i}$ doesn't involve proper derivatives of any $u_{A_{i}}$ of rank $\geq v_{F}$. By the induction hypothesis, $\exists \tilde{G}$ partially reduced with respect to \mathcal{A} and $k_{i} \in \mathbb{N}$ such that $\prod_{i=1}^{p} \mathrm{~S}_{A_{i}}^{k_{i}} G \equiv$ $\tilde{G} \bmod [\mathcal{A}]$. Now it suffices to set $\tilde{F}=\tilde{G}, t_{i}=\left\{\begin{array}{c}k_{i}, \quad A_{i} \neq A \\ k_{i}+l, \\ A_{i}=A\end{array}\right.$.

Remark: \tilde{F} constructed by the process in the proof is called the partial remainder of F w.r.t \mathcal{A}.
Let us recall the pseudo reduction algorithm in commutative algebra:

Let D be an integral domain and we consdier the polynomial ring $D[v]$ (v is an indeterminate over $D)$. Let $F, A \in D[v]$ be of respective degrees $d_{F}, d_{A}(\geq 0)$ and assume

$$
A=I_{d_{A}} v^{d_{A}}+\cdots+I_{1} v+I_{0}
$$

with $I_{i} \in D$. Let $e=\max \left\{d_{F}-d_{A}+1,0\right\}$. Then we can compute unique $Q, R \in D[v]$ with $\operatorname{deg}(R, v)<\operatorname{deg}(A, v)$ such that

$$
I_{d_{A}}^{e} F=Q A+R .
$$

Theorem 2.2.12. Let $\mathcal{A}=A_{1}, \ldots, A_{p}$ be an autoreduced set in $K\left\{y_{1}, \ldots, y_{n}\right\}$. If $F \in K\left\{y_{1}, \ldots, y_{n}\right\}$, then $\exists F_{0} \in K\left\{y_{1}, \ldots, y_{n}\right\}$ (called the differential remainder of F w.r.t. \mathcal{A}) and $r_{i}, t_{i} \in \mathbb{N}$ s.t.

1) F_{0} is reduced w.r.t \mathcal{A},
2) The rank of F_{0} is no higher than the rank of F,
3) $\prod_{i=1}^{p} \mathrm{~S}_{A_{i}}^{t_{i}} \mathrm{I}_{A_{i}}^{r_{i}} F \equiv F_{0} \bmod [\mathcal{A}]$.

Proof. Let \tilde{F} be the partial remainder of F with respect to \mathcal{A} and $\prod_{i=1}^{p} \mathrm{~S}_{A_{i}}^{t_{i}} F \equiv \tilde{F} \bmod [\mathcal{A}]$. Let $r_{p}=\max \left\{0, \operatorname{deg}\left(F, u_{A_{p}}\right)-\operatorname{deg}\left(A_{p}, u_{A_{p}}\right)+1\right\}$. Then $\exists F_{p-1} \in K\{Y\}$ partially reduced with respect to \mathcal{A} and reduced with respect to A_{p} such that $\mathrm{I}_{A_{p}}^{r_{p}} \tilde{F} \equiv F_{p-1} \bmod \left(A_{p}\right)$. If $p=1$, then we are done. Otherwise, we can find r_{p-1} and ${\underset{\tilde{r}}{p-2}} \in K\{Y\}$ partially reduced with respect to \mathcal{A} and reduced with respect to A_{p-1}, A_{p} s.t. $\mathrm{I}_{A_{p-1}}^{r_{p-1}} \mathrm{I}_{A_{p}}^{r_{p}} \tilde{F} \equiv F_{p-2} \bmod \left(A_{p-1}, A_{p}\right)$ and is not higher than \tilde{F}. Continuing in this way, we get F_{0} satisfying the desired properties.

Remark: The reduction procedures above could be summarized in an algorithm, called the RittKolchin algorithm to compute the δ-remainder of a δ-polynomial F with respect to an autoreduced set \mathcal{A}. Denote F_{0} above by $\delta-\operatorname{rem}(F, \mathcal{A})$, or $F \underset{\mathcal{A}}{\rightarrow} F_{0}$.
Example: Consider $K\left\{y_{1}, y_{2}\right\}$ and fix the orderly ranking with $y_{1}>y_{2}$.
(1) Let $f=y_{1}$ and $\mathcal{A}=A_{1}=y_{2} y_{1}$. Here $f \underset{\mathcal{A}}{ } 0$, and $\mathrm{I}_{A_{1}} f \in[\mathcal{A}]$.
(2) Let $f=y_{1}^{\prime}+1$ and $\mathcal{A}=A_{1}=y_{2} y_{1}^{2} . u_{A_{1}}=y_{1}$ and $\mathrm{S}_{A_{1}}=2 y_{2} y_{1}$. Clearly, f is not partially reduced with respect to \mathcal{A}. Note that $\delta\left(A_{1}\right)=2 y_{2} y_{1} y_{1}^{\prime}+y_{2}^{\prime} y_{1}^{2}$. The partial remainder of f with respect to \mathcal{A} is $2 y_{2} y_{1}-y_{2}^{\prime} y_{1}^{2}=\tilde{f}$ and $\mathrm{S}_{A_{1}} f-\tilde{f}=A_{1}^{\prime} \in[\mathcal{A}]$.
Since

$$
\mathrm{I}_{A_{1}} \tilde{f}-\mathrm{I}_{\tilde{f}} A_{1}=y_{2}\left(2 y_{2} y_{1}-y_{2}^{\prime} y_{1}^{2}\right)-\left(-y_{2}^{\prime}\right) y_{2} y_{1}^{2}=2 y_{2}^{2} y_{1}
$$

is reduced with respect to $\mathcal{A}, f \underset{\mathcal{A}}{\rightarrow} 2 y_{2}^{2} y_{1}$ and $\mathrm{I}_{A_{1}} \mathrm{~S}_{A_{1}} f-2 y_{2}^{2} y_{1}=-y_{2}^{\prime} A_{1}+\mathrm{I}_{A_{1}} A_{1}^{\prime} \in[\mathcal{A}]$.
Theorem 2.2.13. Let \mathcal{A} be an autoreduced set of a proper differential ideal $I \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$. Then the following are equivalent:
(1) \mathcal{A} is a characteristic set of I.
(2) $\forall f \in I, \delta-\operatorname{rem}(f, \mathcal{A})=0$.
(3) I doesn't contain a nonzero differential polynomial reduced with respect to \mathcal{A}.

Proof. (2) $\Leftrightarrow(3)$ is obvious.
"(1) \Rightarrow (3)" Suppose $f \in I \backslash\{0\}$ is reduced with respect to $\mathcal{A}=A_{1}, \ldots, A_{p}$. Let $k \in \mathbb{N}$ be maximal such that $\operatorname{rk}\left(A_{k}\right)<\operatorname{rk}(f)$. Then A_{1}, \ldots, A_{k}, f is an autoreduced set lower than \mathcal{A}. (Here, in the case $\operatorname{rk}(f)<\operatorname{rk}\left(A_{1}\right)$, take $k=0$ and $\{f\}$ is an autoreduced set $<\mathcal{A}$.) Thus, we get a contradiction, and (3) is valid.
" $(3) \Rightarrow(1) "$ Assume (3) is valid. Suppose $\mathcal{A}=A_{1}, \ldots, A_{p}$ is not a characteristic set of I. Then $\exists \mathcal{B}=B_{1}, \ldots, B_{q}$, an autoreduced set of I of lower rank than \mathcal{A}. Thus, by definition, either (1) $\exists k \leq \min \{p, q\}$ such that for $i<k, \operatorname{rk}\left(A_{i}\right)=\operatorname{rk}\left(B_{i}\right)$ and $A_{k}>B_{k}$, or (2) $q>p$ and for $i \leq p, \operatorname{rk}\left(A_{i}\right)=\operatorname{rk}\left(B_{i}\right)$. Then either B_{k} or B_{p+1} is nonzero and reduced with respect to \mathcal{A}.

Remark: By Theorem 2.2.13, if $\mathcal{A}=A_{1}, \ldots, A_{p}$ is a characteristic set of $I \subseteq K\{Y\}$, then $\mathrm{I}_{A_{i}}, \mathrm{~S}_{A_{i}} \notin$ $I(i=1, \ldots, p)$.

A characteristic set of I can be obtained by the following procedure (non-constructive) : choose $A_{1} \in I$ of minimal rank. Choose A_{2} of minimal rank in the set $\left\{f \in I \mid f\right.$ is reduced with respect to $\left.A_{1}\right\}$. Then A_{1}, A_{2} is autoreduced. Choose A_{3} of minimal rank in the set $\{f \in I \mid f$ is reduced with respect to $\left.A_{1}, A_{2}\right\}$. Then A_{1}, A_{2}, A_{3} is autoreduced. Continue like this. The process must terminate for an autoreduced set is finite. In the end, we will obtain an autoreduced set $\mathcal{A}:=A_{1}, \ldots, A_{p}$ of I such that no polynomial in I is reduced with respect to \mathcal{A}. Clearly, \mathcal{A} is a characteristic set of I.

Lemma 2.2.14. Let \mathcal{A} be a characteristic set of a proper differential ideal $I \subseteq K\{Y\}$. Denote $\mathrm{H}_{\mathcal{A}}^{\infty}$ to be the multiplicative set generated by initials and separants of elements in \mathcal{A} and set

$$
\operatorname{sat}(\mathcal{A}):=[\mathcal{A}]: \mathrm{H}_{\mathcal{A}}^{\infty}=\left\{f \in K\{Y\} \mid \exists M \in \mathrm{H}_{\mathcal{A}}^{\infty}, M f \in[\mathcal{A}]\right\}
$$

Then $I \subseteq \operatorname{sat}(\mathcal{A})$. Furthermore, if I is prime, $I=\operatorname{sat}(\mathcal{A})$.
Proof. For each $f \in I$, by Theorem 2.2.13, $\delta-\operatorname{rem}(f, \mathcal{A})=0$. Thus, $\exists i_{A}, t_{A} \in \mathbb{N}(A \in \mathcal{A})$ s.t. $\prod_{A \in \mathcal{A}} \mathrm{I}_{A}^{i_{A}} \mathrm{~S}_{A}^{t_{A}} f \in[\mathcal{A}]$. That is, $f \in \operatorname{sat}(\mathcal{A})$.

Suppose I is prime. For each $f \in \operatorname{sat}(\mathcal{A}), \exists i_{A}, t_{A}$ s.t. $\prod_{A \in \mathcal{A}} \mathrm{I}_{A}^{i_{A}} \mathrm{~S}_{A}^{t_{A}} f \in[\mathcal{A}] \subseteq I$. Since $\mathrm{I}_{A}, \mathrm{~S}_{A}$ are not in $I, f \in I$ and $I=\operatorname{sat}(\mathcal{A})$ follows.

Exercise: Develop a division algorithm as follows:
Input: $f \in K\{Y\}$ and an autoreduced set $\mathcal{A}=A_{1}, \ldots, A_{p}$ w.r.t. a fixed ranking.
Output: $g \in K\{Y\}$, the differential remainder of f w.r.t. \mathcal{A}. That is, g is reduced w.r.t. \mathcal{A} and there exist $i_{k}, j_{k} \in \mathbb{N}$ s.t. $\mathrm{I}_{A_{1}}^{i_{1}} \cdots \mathrm{I}_{A_{p}}^{i_{p}} \mathrm{~S}_{A_{1}}^{j_{1}} \cdots \mathrm{~S}_{A_{p}}^{j_{p}} f-g \in[\mathcal{A}]$.

2.3 The Ritt-Raudenbush basis theorem

In the end of section 2.1, we gave an example showing that a differential ideal in $K\{Y\}$ might not be differentially finitely generated. For example,

$$
I=\left[y^{2},\left(y^{\prime}\right)^{2}, \ldots,\left(y^{(k)}\right)^{2}, \ldots\right]
$$

and

$$
J=\left[y y^{\prime}, y^{\prime} y^{\prime \prime}, \ldots, y^{(k)} y^{(k+1)}, \ldots\right]
$$

are not differentially finitely generated. But note that $\{I\}=\{y\}$ and $\{J\}=\left\{y y^{\prime}\right\}$ are differentially finitely generated as radical differential ideals. In this section, we will show every radical differential ideal in $K\{Y\}$ is differentially finitely generated as radical differential ideals.

Definition 2.3.1. A differential ring is called Ritt-Noetherian if the set of radical differential ideals satisfies the ascending chain condition (ACC).

Lemma 2.3.2. Let (R, δ) be a differential ring. Then R is Ritt-Noetherian \Leftrightarrow every radical differential ideal I of R is finitely generated as a radical differential ideal. (i.e. $\exists f_{1}, \ldots, f_{s} \in I$ s.t. $I=\left\{f_{1}, \ldots, f_{s}\right\}$).

Proof. " \Rightarrow " Let I be an arbitrary radical differential ideal of R. Suppose I is not finitely generated as a radical differential ideal. Then we can construct a strict increasing sequence of radical differential ideals, i.e., $\left\{a_{1}\right\} \varsubsetneqq\left\{a_{1}, a_{2}\right\} \varsubsetneqq \cdots \varsubsetneqq\left\{a_{1}, a_{2}, \ldots, a_{p}\right\} \varsubsetneqq \cdots$.
" \Leftarrow " Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be sequence of radical differential ideals. Take $I=\bigcup_{i=1}^{\infty} I_{i}$. Then I is a radical differential ideal. Thus, $\exists f_{1}, \ldots, f_{s} \in I$ s.t. $I=\left\{f_{1}, \ldots, f_{s}\right\}$. Since each $f_{i} \in I, \exists m \in \mathbb{N}$ s.t. $f_{i} \in I_{m}(\forall i=1, \ldots, s)$. So $\left\{f_{1}, \ldots, f_{s}\right\} \subseteq I_{m} \subseteq I \Rightarrow I_{m}=I_{m+j}=\left\{f_{1}, \ldots, f_{s}\right\}$ for $j \in \mathbb{N}$.

Lemma 2.3.3. Let R be a diffeential ring with $\mathbb{Q} \subset R$. Let $S \subset R$ be a subset and $a \in R$ such that the radical differential ideal $\{S, a\}$ has a finite set of generators as a radical differential ideal. Then, there exists $s_{1}, \ldots, s_{p} \in S$ such that $\{S, a\}=\left\{s_{1}, \ldots, s_{p}, a\right\}$.

Proof. By hypothesis, $\exists h_{1}, \ldots, h_{l}$ s.t. $\{a, S\}=\left\{h_{1}, \ldots, h_{l}\right\}$. For each $i, h_{i} \in\{a, S\} \Rightarrow \exists m_{i}$ s.t. $h_{i}^{m_{i}} \in[a, S]$. So $\exists s_{1}, \ldots, s_{p} \in S$ s.t. for each $i, h_{i}^{m_{i}} \in\left[a, s_{1}, \ldots, s_{p}\right]$. Thus, $h_{i} \in\left\{a, s_{1}, \ldots, s_{p}\right\} \subset$ $\{a, S\} \Rightarrow\left\{h_{1}, \ldots, h_{l}\right\} \subseteq\left\{a, s_{1}, \ldots, s_{p}\right\} \subseteq\{a, S\}$.

Theorem 2.3.4. Let (K, δ) be a differential field with $\mathbb{Q} \subseteq K$. The differential polynomial ring $K\left\{y_{1}, \ldots, y_{n}\right\}$ is Ritt-Noetherian.

Proof. By Lemma 2.3.2, it suffices to prove that every radical differential ideal of $K\left\{y_{1}, \ldots, y_{n}\right\}$ is finitely generated as radical differential ideals. Suppose the contrary and \exists a radical differential ideal of $K\left\{y_{1}, \ldots, y_{n}\right\}$ that is not finitely generated. By Zorn's lemma, \exists a maximal radical differential ideal $J \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ that is not finitely generated.

Claim: J is a prime differential ideal.
Proof of the claim. Suppose the contrary, then $\exists a, b \in K\left\{y_{1}, \ldots, y_{n}\right\}$ s.t. $a, b \notin J$ but $a b \in J$. Since $\{a, J\} \supsetneqq J$ and $\{b, J\} \supsetneqq J,\{a, J\}$ and $\{b, J\}$ are finitely generated as radical differential ideals. Then by Lemma 2.3.3, $\exists f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t} \in J$ s.t. $\{a, J\}=\left\{a, f_{1}, \ldots, f_{s}\right\}$ and $\{b, J\}=$ $\left\{b, g_{1}, \ldots, g_{t}\right\}$. Hence,

$$
\begin{aligned}
J^{2} & \subseteq\{a, J\} \cdot\{b, J\}=\left\{a, f_{1}, \ldots, f_{s}\right\} \cdot\left\{b, g_{1}, \ldots, g_{t}\right\} \\
& \subseteq\left\{a b, a g_{j}, b f_{i}, f_{i} g_{j}: 1 \leq i \leq s, 1 \leq j \leq t\right\} \triangleq P \\
& \subseteq J .
\end{aligned}
$$

For each $f \in J, f^{2} \in J^{2} \subseteq P \Rightarrow f \in P \Rightarrow J=P=\left\{a b, a g_{j}, b f_{i}, f_{i} g_{j}: 1 \leq i \leq s, 1 \leq j \leq t\right\}$, contradicting the hypothesis that J is not finitely generated. The claim thus is proved.

Fix a ranking on $\Theta(Y)$ and take a characteristic set \mathcal{A} of J under this ranking. Let $\mathcal{A}=A_{1}, \ldots, A_{p}$ and denote $\mathrm{I} \triangleq \prod_{i=1}^{p} \mathrm{I}_{A_{i}}, \mathrm{~S} \triangleq \prod_{i=1}^{p} \mathrm{~S}_{A_{i}}$. Since J is prime, $J=\operatorname{sat}(\mathcal{A})=[\mathcal{A}]: \mathrm{H}_{\mathcal{A}}^{\infty} \subseteq\{\mathcal{A}\}:$ (IS). Since $\mathrm{I}_{A_{i}}, \mathrm{~S}_{A_{i}} \notin J$ for each i, IS $\notin J$. Thus $\{J, \mathrm{IS}\}$ is finitely generated as a radical differential ideal. That is, $\exists h_{1}, \ldots, h_{l} \in J$ s.t. $\{J, \mathrm{IS}\}=\left\{h_{1}, \ldots, h_{l}\right.$, IS $\}$. Thus,

$$
\begin{aligned}
J^{2} & \subseteq J \cdot\{J, \text { IS }\}=J \cdot\left\{h_{1}, \ldots, h_{l}, \text { IS }\right\} \\
& \subseteq\left\{h_{1}, \ldots, h_{l}, \mathcal{A}\right\}(\text { for IS } \cdot J \subseteq\{\mathcal{A}\}) \\
& \subseteq J .
\end{aligned}
$$

Hence, $J=\left\{h_{1}, \ldots, h_{l}, A_{1}, \ldots, A_{p}\right\}$, which leads to a contradiction. So every radical differential ideal of $K\left\{y_{1}, \ldots, y_{n}\right\}$ is finitely generated as a radical differential ideal.

Theorem 2.3.5. Let R be a differential ring which is Ritt-Noetherian and $\mathbb{Q} \subseteq R$. Then for every radical differential ideal $I \varsubsetneqq R$, there exist a finite number of prime differential ideals P_{1}, \ldots, P_{l} s.t.

$$
\begin{equation*}
I=\bigcap_{i=1}^{l} P_{i} . \tag{2.1}
\end{equation*}
$$

Moreover, if (2.1) is irredundant $\left(\forall i, \bigcap_{j \neq i} P_{j} \nsubseteq P_{i}\right)$, then this set of prime ideals is unique. In this case, P_{1}, \ldots, P_{l} are called prime components of I.

Proof. Suppose the statement is false, i.e., the set $U=\left\{I \mid I \varsubsetneqq K\left\{y_{1}, \ldots, y_{n}\right\}\right.$ is a radical differential ideal and I is not a finite intersection of prime differential ideals $\}$ is not empty. Since R is RittNoetherian, every ascending chain of radical differential ideals has an upper bound in U. By Zorn's lemma, U has a maximal element $J \in U$. Clearly, J is not prime. So $\exists a, b \notin J$ but $a b \in J$. Thus, $\{J, a\} \supsetneqq J$ and $\{J, b\} \supsetneqq J$. Also, $\{J, a\} \neq R$. Indeed, if not, then $1 \in\{J, a\}$. Since $\mathbb{Q} \subseteq R, 1 \in[J, a]$ and $1=f+\sum * \delta^{k}(a)$, where $f \in J$. By $a b \in J$ and J is radical, $b \delta^{k}(a) \in J \forall k \in \mathbb{N}$. So $b=f b+\sum * b \delta^{k}(a) \in J$, contradicting to $b \notin J$. Similarly, $\{J, b\} \neq R$ could be shown.

By the maximality of $J, \exists P_{1}^{a}, \ldots, P_{l}^{a}, P_{l+1}^{b}, \ldots, P_{l+t}^{b}$ prime differential ideals in R s.t.

$$
\begin{aligned}
& \{J, a\}=P_{1}^{a} \cap \cdots \cap P_{l}^{a} \text { and } \\
& \{J, b\}=P_{l+1}^{b} \cap \cdots \cap P_{l+t}^{b} .
\end{aligned}
$$

Now show $J=\{J, a\} \cap\{J, b\}$. Indeed, let $f \in\{J, a\} \cap\{J, b\}$, then $f^{2} \in\{J, a\} \cdot\{J, b\} \subseteq\{J, a b\} \subseteq$ $J \Rightarrow f \in J$. Thus, $J=\{J, a\} \cap\{J, b\}=P_{1}^{a} \cap \cdots \cap P_{l}^{a} \cap P_{l+1}^{b} \cap \cdots \cap P_{l+t}^{b}$, contradicting to the hypothesis $J \in U$. So the first statement is valid.
$\underline{\text { Uniqueness. Suppose } I=\bigcap_{i=1}^{l} P_{i}=\bigcap_{j=1}^{t} Q_{j} \text { be irredundant intersections. For each } j=1, \ldots, t, \bigcap_{i=1}^{l} P_{i} \subseteq}$ Q_{j}. Then $\exists i_{0} \in\{1, \ldots, l\}$ s.t. $P_{i_{0}} \subseteq Q_{j}$. Indeed, suppose the contrary, then $\exists f_{i} \in P_{i} \backslash Q_{j}$ for each $i=1, \ldots, l$. Thus, $f_{1} f_{2} \cdots f_{l} \in \bigcap_{i=1}^{l} P_{i} \subseteq Q_{j}$, which yields a contradiction. Similarly, $\exists j_{0} \in\{1, \ldots, t\}$ s.t. $Q_{j_{0}} \subseteq P_{i_{0}} \subseteq Q_{j}$. Since $I=\bigcap_{j=1}^{t} Q_{j}$ is irredundant, $j_{0}=j$ and $P_{i_{0}}=Q_{j}$. Thus, $l=t$ and $\exists \mathrm{a}$ permutation $\sigma \in S_{l}$ s.t. $P_{i}=Q_{\sigma(i)}$.
Corollary 2.3.6. Every proper radical differential ideal $I \varsubsetneqq K\left\{y_{1}, \ldots, y_{n}\right\}(\operatorname{char}(K)=0)$ can be written as a finite intersection of prime differential ideals. If $I=\bigcap_{i=1}^{l} P_{i}$ is irredundant, P_{i} are called prime components of I.
Example: $I=\left\{y^{\prime 2}-4 y\right\} \subseteq \mathbb{Q}\{y\}$. Then $I=\left\{y^{\prime 2}-4 y, y^{\prime \prime}-2\right\} \cap\{y\}$ (Chapter 3).

