
6 CHAPTER 1. BASIC NOTIONS OF DIFFERENTIAL ALGEBRA

Recall: • A differential ring (R, δ): (1) R is a commutative ring with unity 1 and
(2) δ : R −→ R is a derivation (i.e., additive and leibniz rule.)

(If R is a domain, δ can be extended uniquely to Frac(R) and (Frac(R), δ)) is a differential field.
• A differential ideal I ⊂ R: an ideal with δ(I) ⊂ I.
• Notation: Given S ⊂ R, (S), [S], {S} are respectively the ideal, differential ideal and radical

differential ideal generated by S in R.
• In general, {S} ≠

√
[S] and a maximal differential ideal may not be prime.

But if Q ⊂ R, {S} =
√

[S] always hold:

Theorem 1.2.3 Let (R, δ) be a differential ring, Q ⊆ R and let I ⊆ (R, δ) be a differential ideal.
Then,

√
I is a radical differential ideal.

Proof. It suffices to show
√
I is a differential ideal. For this purpose, for each a ∈

√
I (i.e., ∃ a ∈

N, an ∈ I), to show δ(a) ∈
√
I. Claim: For each k, 1 ≤ k ≤ n, an−k(δ(a))2k−1 ∈ I. We show the

claim by induction on k and δ(a) ∈
√
I will follow by allowing k = n

(
(δ(a))2n−1 ∈ I ⇒ δ(a) ∈

√
I
)
.

If k = 1, δ(an) = nan−1δ(a) ∈ I. Since Q ⊆ R, an−1δ(a) ∈ I. Suppose an−k(δ(a))2k−1 ∈ I for some
1 ≤ k < n. Then, δ(an−k(δ(a))2k−1) = (n − k)an−(k+1)(δ(a))2k + an−k(2k − 1)δ(a)2k−2δ2(a) ∈ I.
Multiply the above by δ(a), we get an−(k+1)(δ(a))2k+1 ∈ I and we are done.

For simplicity, from Section 1.3 to Chapte 5, we shall focus on the ordinary differential case.

1.3 Decomposition of radical differential ideals

In computational algebraic geometry, we have studied decompositions of radical ideals. In differential
algebra, we have analogous arguments (Theorem 1.3.5).

Lemma 1.3.1. Let (R, δ) be a differential ring and I a radical differential ideal of R. If ab ∈ I,
then aδ(b) ∈ I and δ(a)b ∈ I.

Proof. ab ∈ I ⇒ δ(ab) = δ(a)b+aδ(b) ∈ I ⇒ aδ(b)·δ(ab) = (aδ(b))2+abδ(a)δ(b) ∈ I ⇒ (aδ(b))2 ∈ I.
Since I is radical, aδ(b) ∈ I and δ(a)b ∈ I follows.

Lemma 1.3.2. Let I be a radical differential ideal of the differential ring R and S ⊆ R be any
subset. Then I : S = {a ∈ R | aS ⊆ I} is a radical differential ideal.

Proof. • ∀a, b ∈ I : S, r ∈ R, aS ⊆ I and bS ⊆ I ⇒ (a+ b)S ⊆ I and raS ⊆ I
⇒ a+ b ∈ I : S, ra ∈ I : S. So I : S is an ideal.

• ∀a ∈ I : S, aS ⊆ I. By Lemma 1.3.1, δ(a)S ⊆ I ⇒ δ(a) ∈ I : S. So I : S is a differential ideal.

• ∀a ∈ R, suppose ∃n ∈ N, an ∈ I : S. Then anS ⊆ I. So for ∀s ∈ S, ans ∈ I ×sn−1

=⇒ ansn ∈ I ⇒
as ∈ I for ∀s ∈ S ⇒ a ∈ I : S.

Thus, I : S is a radical differential ideal.

Lemma 1.3.3. Let S, T ⊂ R. Then we have {S}{T} ⊆ {ST} and {S} ∩ {T} = {ST}.

Proof. For each a ∈ S, by Lemma 1.3.2, {aT} : a is a radical differnetial ideal. Since T ⊆ {aT} :
a, {T} ⊆ {aT} : a. So a{T} ⊆ {aT} ⊆ {ST}. Thus, S ⊂ {ST} : {T}. Again by Lemma 1.3.2,
{S} ⊂ {ST} : {T}, and {S}{T} ⊆ {ST} follows.

The assertion {S} ∩ {T} = {ST} follows from i) and ii):
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i) ST ⊆ {S}, {T} ⇒ {ST} ⊆ {S} ∩ {T};

ii) ∀a ∈ {S} ∩ {T}, a2 ∈ {S} · {T} ⊆ {ST}. So a ∈ {ST}.

We now use the above lemmas to show the following result.

Lemma 1.3.4. Let T ⊆ R be a subset closed under multiplication and let P be maximal among
radical differential ideals that do not intersect T . Then P is prime.

Proof. Suppose the contrary, i.e., P is not prime. Let a, b ∈ R be such that ab ∈ P but a /∈ P and
b /∈ P . Hence P ⫋ {P, a}, P ⫋ {P, b}. Thus, ∃ t1 ∈ {P, a} ∩ T, ∃ t2 ∈ {P, b} ∩ T . So t1t2 ∈ T but
t1t2 ∈ {P, a} · {P, b} ⊆ {P, ab} = P , a contradiction to P ∩ T = ∅.

In a commutative ring R, the nilradical
√
(0) of R is the intersection of all the prime ideals of

R and every radical ideal of R is the intersection of all prime ideals containing it. In differential
algebra, we have a similar result which is our main theorem of this section.

Theorem 1.3.5. Let I ⫋ R be a radical differential ideal. Then I can be represented as an inter-
section of prime differential ideals.

Proof. We first construct for each x /∈ I a prime differential ideal Px such that Px ⊇ I and x /∈ Px. Let
T = {xn | n ∈ N}. The set U = {P ⊆ R | P is a radical differential ideal of R, I ⊆ P, P ∩ T = ∅}
is nonempty since I ∈ U . By Zorn’s Lemma, ∃ a maximal element Px in U . Px is prime by Lemma
1.3.5, and since Px∩T = ∅, x /∈ Px. Clearly, I = ∩

x/∈I
Px is an intersection of prime differential ideals.

In Section 1.2, we gave an example showing a maximal differential ideal might not be prime. But
if Q ⊆ R, then a maximal differential ideal in R is always prime.

Corollary 1.3.6. Let Q ⊆ (R, δ) and M be maximal among proper differential ideals. Then M is
prime.

Proof. Consider {M} =
√
[M ] =

√
M . If

√
M = R, then 1 ∈

√
M ⇒ 1 ∈ M , which contradicts M

being proper. Therefore,
√
M =M , M is a radical differential ideal. By Theorem 1.3.6, M = ∩

α/∈M
Pα

where Pα is a prime differential ideal. Therefore, for all α /∈M,M = Pα and thus, M is prime.

Remark: A differential ring R with Q ⊆ R is called a Ritt Algebra. We have shown in Section 1.2
and Section 1.3, in a Ritt Algebra:

1) The radical differential ideal {S} =
√

[S];

2) A maximal differential ideal is a prime differential ideal;

3) Even in a Ritt Algebra R, the quotient R/M (M is a maximal differential ideal) might not be
a differential field.
Example: Let R = Q[x] with δ(x) = 1. Then [0] is the unique maximal differential ideal.
R/[0] = R is not a differential field.



Chapter 2

Differential polynomial rings and the
basis theorem

2.1 The ring of differential polynomials

Let (K, δ) be a fixed differential field of characteristic 0. We hope to develop an algebraic structure
and algebraic theory for ordinary differential equations.

Definition 2.1.1. Let (L, δ) be a differential field extension of (K, δ). A subset S of L is said to
be differentially dependent over K if the set (δk(s))k∈N,s∈S is algebraically dependent over K. In
the contrary case, S is said to be δ-independent over K, or a family of differential indeterminates
over K. In the case S = {α}, we say that α is differentially algebraic over K or differentially
transcendental over K respectively.

Example: Let (K, δ) = (Q(x), d
dx) and (L, δ) = (C(x, ex), d

dx). Clearly, each c ∈ C and α = ex are
differentially algebraic over K.

Now suppose Y = {y1, . . . , yn} is a set of differential indeterminates over K.

Definition 2.1.2. The ring of differential polynomials in y1, . . . , yn over K is the ring of polynomials

K[δkyj | k ∈ N, j = 1, . . . , n]1, denoted by K{y1, . . . , yn}.

Its elements are called differential polynomials. Note that K{y1, . . . , yn} is a differential ring with
the derivation operator δ extending δ |K and δ(δkyj) = δk+1(yj).

Example:

1) uxx = vx ←→ δ2y1 − δy2 = 0.

2) (dudt )
2 = 4ud2u

dt2
←→ (δy1)

2 − 4y1δ
2(y1) = 0.

Definition 2.1.3. Let (R1, δ1) and (R2, δ2) be two differential rings. A differential homomor-
phism from (R1, δ1) to (R2, δ2) is a ring homomorphism φ : R1 → R2 such that φ ◦ δ1 = δ2 ◦ φ.
If R0 is a common differential subring of R1 and R2, and φ |R0= idR0, φ is called a differential
homomorphism over R0.

1When there is no confusion, we also write y′
j , y

′′
j , y

′′′
j , y

(n)
j for δ(yj), δ

2(yj), δ
3(yj), δ

nyj (n > 3).
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φ

We give two examples of differential homomorphisms:

1) Let (K, δ) ⊆ (L, δ) be two differential fields. Then idK : (K, δ) → (L, δ) is a differential
homomorphism.

2) (Evaluation homomorphism) Take an element η = (η1, . . . , ηn) ∈ Ln, then the map

φη : K{y1, . . . , yn} −→ L
δk(yi) 7−→ δk(ηi)

with φη = f(η1, . . . , ηn) := f |δk(yi)=δk(ηi),k≥0 is a differential homomorphism over K. Note
that the evaluation homomorphism is uniquely determined by the value φ(yi).

Proposition 2.1.4. Let (R1, δ) and (R2, δ) be two differential rings and φ : R1 → R2 be a differential
homomorphism. Then Ker(φ) is a differential ideal.

Proof. Ker(φ) is an ideal of R, since φ is a homomorphism of rings. For each r ∈ Ker(φ), φ(r) = 0,
so δ(φ(r)) = 0 = φ(δ(r))⇒ δ(r) ∈ Ker(φ).

Corollary 2.1.5. Let (R, δ) be a differential ring and I be an ideal of R. Then I is a differential
ideal of R ⇐⇒ (R/I, δ) is a differential ring).

Proof. “⇒” Let r + I ∈ R/I. Define

δ(r + I) = δ(r) + I. (∗)

To show (∗) is well-defined, let r1 + I = r2 + I, we need to show δ(r1) + I = δ(r2) + I. Since
r1 − r2 ∈ I and I is a differential ideal, δ(r1 − r2) = δ(r1)− δ(r2) ∈ I. So δ(r1) + I = δ(r2) + I.
To show (∗) is a derivation on R/I. Let r1+I, r2+I ∈ R/I, then δ(r1+I+r2+I) = δ(r1+r2+I) =
δ(r1)+δ(r2)+I = δ(r1+I)+δ(r2+I) and δ((r1+I)(r2+I)) = δ(r1r2+I) = δ(r1)r2+r1δ(r2)+I =
δ(r1 + I) · (r2 + I) + (r1 + I) · δ(r2 + I).

“⇐” Let φ : R → R/I be defined by φ(r) = r + I for each r ∈ R. Then ∀ r ∈ R,φ(δ(r)) =
δ(r)+I = δ(r+I) = δ(φ(r)), so φ is a differential homomorphism. By Proposition 2.0.4, I = Ker(φ)
is a differential ideal of R.

Definition 2.1.6. Let Σ ⊆ K{y1, . . . , yn} and η = (η1, . . . , ηn) be a point from a differential exten-
sion field (L, δ) of (K, δ). We call η a differential zero of Σ if for each f ∈ Σ, f(η) = 0, (that is,
Σ ⊆ Ker(φη : K{y1, . . . , yn} → Ln)).

The point η is called a generic zero of a differential ideal I ⊆ K{y1, . . . , yn} if for each
f ∈ K{y1, . . . , yn}, f(η1, . . . , ηn) = 0⇔ f ∈ I.

Example: In the algebraic case, I = (x2 + y2 − 1) ⊆ Q[x, y] has a generic point ( 2t
1+t2

, 1−t2

1+t2
). Also,

(cos(θ), sin(θ)) is another generic point. So generic points are not unique.

Lemma 2.1.7. Let P ⊆ K{y1, . . . , yn} be a differential ideal. Then P has a generic zero if and only
if P is prime.
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Proof. “⇒” Suppose η is a generic zero of P . For any f, g ∈ K{y1, . . . , yn}, if fg ∈ P , then
f(η)g(η) = 0 which implies f ∈ P or g ∈ P . So P is a prime differential ideal.
“⇐” Suppose P is a prime differential ideal. Then K{y1, . . . , yn}/P is a differential domain. Let
L = Frac(K{y1, . . . , yn}/P ) and ȳi = yi + P . Then (ȳ1, . . . , ȳn) ∈ Ln is a generic zero of P . Indeed,
∀f ∈ P, f(ȳ1, . . . , ȳn) = f(y1, . . . , yn) + P = 0̄ ∈ L and ∀f ∈ K{y1, . . . , yn}, if f(ȳ1, . . . , ȳn) = 0,
then f(y1, . . . , yn) ∈ P .

Definition 2.1.8. Let (R, δ) be a differential ring. An element c ∈ R is said to be a constant if
δ(c) = 0. The set of all constants of R is a differential subring of R, called the ring of constants
of R, denoted by CR. If R is a differential field, CR is a field, called the field of constants of R.

Examples:

1) R = Q[x], δ(x) = 1. CR = Q.

2) R = Zp(x
p), δ(x) = 1. Then CR = R.

Lemma 2.1.9. Let (F , δ) be a differential field of characteristic 0 and CF = F . Let L ⊇ F be a
differential field extension and L be algebraic over F . Then CL = L.

Proof. Let a ∈ L. Suppose p(x) = anx
n + · · · + a1x + a0 ∈ F [x] is the minimal polynomial of a.

Then δ(p(a)) = ∂p
∂x(a) · δ(a) +

∑n
i=0 δ(ai)a

i = ∂p
∂x(a) · δ(a) = 0. Since char(F) = 0 and ∂p

∂x(a) ̸= 0.
Thus δ(a) = 0.

Remark: Let L ⊇ F ⊇ Q and a ∈ L. If a is algebraic over CF , then δ(a) = 0.


