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Integration Problems

Indefinite Integration. Given a function f (x) in certain class C,
decide whether there exists g(x) ∈ C such that

f =
dg
dx
, g ′.

Example. For f = log(x), we have g = x log(x)− x.

Definite Integration. Given a function f (x) that is continuous in the
interval I ⊆ R, compute the integral∫

I
f (x)dx.

Example. For f = log(x) and I = [1,2] , we have∫
I
f (x)dx = 2log(2)−1.
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Fundamental Theorem of Calculus

Newton–Leibniz Theorem. Let f (x) be a continuous function on
[a,b] and let F(x) be defined by

F(x) =
∫ x

a
f (t)dt for all x ∈ [a,b].

Then F(x) ′ = f (x) for all x ∈ [a,b] and∫ b

a
f (x)dx = F(b)−F(a). (Newton–Leibniz formula)

Definite Integration  Indefinite Integration
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Definite Integration  Indefinite Integration

∫ 2

1
log(x)dx=F(2)−F(1)= 2log(2)−1, where F(x) = x log(x)− x.
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Fundamental Theorem of Calculus

Newton–Leibniz Theorem. Let f (x) be a continuous function on
[a,b] and let F(x) be defined by

F(x) =
∫ x

a
f (t)dt for all x ∈ [a,b].

Then F(x) ′ = f (x) for all x ∈ [a,b] and∫ b

a
f (x)dx = F(b)−F(a). (Newton–Leibniz formula)

Definite Integration  Indefinite Integration

∫+∞
0

exp(−x2)dx = ?

, 3/17



What is Elementary Functions?

Polynomials: P(x) ∈ C[x]

P(x) = p0 +p1x+ · · ·+pnxn, where pi ∈ C.

Rational functions: f (x) ∈ C(x)

f (x) =
P(x)
Q(x)

, where P,Q ∈ C[x] and Q 6= 0.

Algebraic functions: α(x) ∈ C(x)

rdα
d + rd−1α

d−1 + · · ·+ r0 = 0, where ri ∈ C(x).
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What is Elementary Functions?

Exponential functions: f (x) = exp(g(x)) with g ∈ C(x)

f ′(x) = exp(g(x)) ·g ′(x) = f (x) ·g ′(x).

Logarithmic functions: f (x) = log(g(x)) with g ∈ C(x)

f ′(x) =
g ′(x)
g(x)

.

Trigonometric functions: sin(x),cos(x), tan(x), . . .

sin(x) =
exp(ix)− exp(−ix)

2i
, cos(x) =

exp(ix)+ exp(−ix)
2

.
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What is Elementary Functions?

E := ({C,x}, {+,−,×,÷}, {exp(·), log(·),RootOf(·)}) .

Definition. An elementary function is a function of x which is the
composition of a finite number of

binary operations: +,−,×,÷;

unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
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domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Polynomial ring: (C[x], ′ )

P =

n∑
i=0

pixi  P ′ =
n∑

i=0

ipixi−1.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Rational-function field: (C(x), ′ )

f =
P
Q

 f ′ =
P ′Q−PQ ′

Q2 .
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: algebraic case

(C(x)(α), ′ ) with α algebraic over C(x)

rdα
d + rd−1α

d−1 + · · ·+ r0 = 0  α
′(x) = −

r ′dαd + · · ·+ r ′0
drdαd−1 + · · ·+ r1
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The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: exponential case

(C(x)(exp(x)), ′ )

f =
1+ x+ exp(x)

x2 + exp(x)
 f ′ =

x(xexp(x)−3exp(x)− x−2)
(x2 + exp(x))2 .
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: logarithmic case

(C(x)(log(x)), ′ )

f =
1+ x+ log(x)

x2 + log(x)
 f ′=−

2 log(x)x2 + x3 − log(x)x+ x2 + x+1

(x2 + log(x))2 x
.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D : R → R is called a derivation on R if

D(f ·g) = f ·D(g)+g ·D(f ). (Leibniz’s rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: general case

(C(x)(t1, t2, t3, . . . , tn), ′ )

t1 =
√

x2 +1, t2 = log(1+ t2
1), t3 = exp

(
1+ t1
t1 + t2

2

)
, . . .
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Elementary Extensions

Differential Extension. (R∗,D∗) is called a differential extension
of (R,D) if R⊆ R∗ and D∗ |R= D.

Elementary Extension. Let (F,D) be a differential extension
of (E,D). An element t ∈ F is elementary over E if one of the
following conditions holds:

t is algebraic over E;
D(t)/t = D(u) for some u ∈ E, i.e., t = exp(u);
D(t) = D(u)/u for some u ∈ E, i.e., t = log(u).

Example. (E,D) = (C(x), ′ ) and (F,D) = (C(x, log(x)), ′ ).
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Elementary Functions

Definition. An function f (x) is elementary if ∃ a differential
extension (F, ′ ) of (C(x), ′ ) s.t. F = C(x)(t1, . . . , tn) and ti is
elementary over C(x)(t1, . . . , ti−1) for all i = 2, . . . ,n.

Example.

f (x) =
π√

log
(

exp
(√

1
3x2+3x+1

)2
+ x2 +1

)
Then f (x) is elementary since ∃ a differential extension

F = C(x)(t1, t2, t3, t4),

where

t1 =

√
1

3x2 +3x+1
, t2 = exp(t1), t3 = log(t2

2+x2+1), t4 =
√

t3.
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Symbolic Integration

Let (E,D) and (F,D) be two differential field such that E ⊆ F.

Problem. Given f ∈ E, decide whether there exists g ∈ F
s.t. f = D(g). If such g exists, we say f is integrable in F.
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Let (E,D) and (F,D) be two differential field such that E ⊆ F.

Problem. Given f ∈ E, decide whether there exists g ∈ F
s.t. f = D(g). If such g exists, we say f is integrable in F.

Elementary Integration Problem. Given an elementary function f (x)
over C(x), decide whether

∫
f (x)dx is elementary or not.

Example. The following integrals are not elementary over C(x):

∫
exp(x2)dx,

∫
1

log(x)
dx,

∫
sin(x)

x
dx,

∫
dx√

x(x−1)(x−2)
, · · ·
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Symbolic Integration

Let (E,D) and (F,D) be two differential field such that E ⊆ F.

Problem. Given f ∈ E, decide whether there exists g ∈ F
s.t. f = D(g). If such g exists, we say f is integrable in F.

Selected books on Symbolic Integration:
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827: Abel studied the elliptic integrals.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1833-1841: Liouville’s theory of elementary integration.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1844: Ostrogradsky presented a method for rational integration.

, 11/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1872: Hermite gave a reduction method for rational integration.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1906: Mordukhai-Boltovskoi studied the problem of solving the dif-
ferential equations in finite terms.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1916: Hardy wrote a book on elementary integration.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1946: Ostrowski initialized an algebraic approach for elementary
integration.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1948: Ritt summarized the works on integration in finite terms.
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Symbolic Integration: Algorithmic Developments
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Symbolic Integration: Algorithmic Developments

1961: Slagle wrote the program SAINT for symbolic integration.
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Symbolic Integration: Algorithmic Developments

1967: Moses wrote the programs SIN and SOLDIER for symbolic
integration.
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Symbolic Integration: Algorithmic Developments

1968: Rosenlicht’s differential-algebraic proof of Liouville’s theorem.
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Symbolic Integration: Algorithmic Developments

1971: Moses’s survey on symbolic integration.
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Symbolic Integration: Algorithmic Developments

1976: Rothstein’s algorithm for integration of transcendental ele-
mentary functions
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Symbolic Integration: Algorithmic Developments

1981: Davenport’s algorithm for integration of algebraic functions
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Symbolic Integration: Algorithmic Developments

1984: Trager’s algorithm for integration of algebraic functions

, 12/17



Symbolic Integration: Algorithmic Developments

1985: Singer, Saunders, and Caviness presented an extension of
Liouville’s theorem
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Symbolic Integration: Algorithmic Developments

1985: Cherry’s algorithm for integration with the error function
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Symbolic Integration: Algorithmic Developments

1990: Bronstein’s algorithm for integration of elementary functions
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Symbolic Integration: Algorithmic Developments

1990: Computation of the logarithmic part via subresultants
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Symbolic Integration: Algorithmic Developments

1992: Knowles’ algorithm for integration with the error function
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Symbolic Integration: Algorithmic Developments

1994: Baddoura’s algorithm for integration with the dilogarithms
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Symbolic Integration: Algorithmic Developments

1995: Computation of the logarithmic part via Groebner bases
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Symbolic Integration: Algorithmic Developments

2008: Kauers’s algorithm for computing the logarithmic part of al-
gebraic integration
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Symbolic Integration: Algorithmic Developments

2012: Raab’s algorithm for the logarithmic part of the integrals of
transcendental functions
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Symbolic Integration: Algorithmic Developments

2014: Zannier found some unlikely intersections between elementary
integration and number theory
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Symbolic Integration: Algorithmic Developments

2010: Creative telescoping for rational functions via Hermite reduc-
tion
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Symbolic Integration: Algorithmic Developments

2013: Creative telescoping for hyperexponential functions via Her-
mite reduction
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Symbolic Integration: Algorithmic Developments

2016: Creative telescoping for algebraic functions via Hermite re-
duction
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Liouville’s Theorem: the Rational Case

Theorem. Let f ∈ C(x). Then f (x) is elementary integrable.
Moreover, ∫

f (x)dx = g0︸︷︷︸
rational part

+

n∑
i=1

ci log(gi)︸ ︷︷ ︸
transcendental part

,

where g0,g1, . . . ,gn ∈ C(x) and c1, . . . ,cn ∈ C.

Ostrogradsky–Hermite Reduction. Any f ∈ C(x) can be
decomposed into

f = g ′+
p
q
,

where g ∈K(x), deg(p)< deg(q), and q is squarefree. Moreover,∫
f dx is rational ⇔ p = 0

, 13/17



Liouville’s Theorem: the Algebraic Case

Theorem (Liouville1834). Let f (x) be algebraic over C(x). If∫
f (x)dx is elementary, then∫

f (x)dx = g0︸︷︷︸
algebraic part

+

n∑
i=1

ci log(gi)︸ ︷︷ ︸
transcendental part

,

where g0,g1, . . . ,gn ∈ C(x, f (x)) and c1, . . . ,cn ∈ C.

Remark. With the above theorem, Liouville proved in 1834 that
the elliptic integral ∫

1√
x(x−1)(x−2)

is not elementary.
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Liouville’s Theorem: the Elementary Case

Theorem (Liouville1835). Let f (x) be elementary over C(x), i.e.,

f ∈ F = C(x)(t1, t2, . . . , tn).

If
∫

f (x)dx is elementary, then∫
f (x)dx = g0︸︷︷︸

F-part

+

n∑
i=1

ci log(gi)︸ ︷︷ ︸
transcendental part

,

where g0,g1, . . . ,gn ∈ F and c1, . . . ,cn ∈ C.

Remark. With the above theorem, Liouville proved that the
integrals ∫

exp(x2)dx,
∫

1
log(x)

dx,
∫

sin(x)
x

dx, . . .

are not elementary.
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integrals ∫

exp(x2)dx,
∫

1
log(x)

dx,
∫

sin(x)
x

dx, . . .

are not elementary.
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Why exp(x2) is not Elementary Integrable?

Let t = exp(x2). We prove by contradiction.

Proof. If
∫

t dx is elementary, Liouville’s theorem implies that
∃g0, . . . ,gn ∈ C(x, t) and c0, . . . ,cn ∈ C s.t.∫

t dx = g0 +

n∑
i=1

ci log(gi) ⇔ t = g ′0 +
n∑

i=1

ci
g ′i
gi

⇓
t = (ft) ′ for some f ∈ C(x) ⇔ 1 = f ′+2xf

Claim. The differential equation

y(x) ′+2x · y(x) = 1

has no rational-function solution!
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Welcome to Symbolic Integration!

Thank You!
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