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Integration Problems

Indefinite Integration. Given a function f(x) in certain class €,
decide whether there exists g(x) € € such that

f=%og

Example. For f =1log(x), we have g = xlog(x) —x.
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Integration Problems

Indefinite Integration. Given a function f(x) in certain class €,
decide whether there exists g(x) € € such that

f=%og

Example. For f =1log(x), we have g = xlog(x) —x.

Definite Integration. Given a function f(x) that is continuous in the
interval I C R, compute the integral

Jlf(x)dx.

Example. For f =log(x) and I =11,2] , we have
Jf(x)dx =2log(2)—1.
i
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Fundamental Theorem of Calculus

Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by

F(x)= rf(t)dt for all x € [a,b].

a

Then F(x)' =f(x) for all x € [a,b] and

be(x) dx =F(b)—F(a). (Newton—Leibniz formula)

a
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Fundamental Theorem of Calculus

Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by

F(x)= rf(t)dt for all x € [a,b].

Then F(x)' =f(x) for all x € [a,b] and

be(x) dx =F(b)—F(a). (Newton—Leibniz formula)

a

Definite Integration ~~ Indefinite Integration

1

rlog(x) dx=F(2)—F(1)=2log(2)—1, where F(x) =xlog(x)—x.
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Fundamental Theorem of Calculus

Newton—Leibniz Theorem. Let f(x) be a continuous function on
la,b] and let F(x) be defined by

F(x)= rf(t)dt for all x € [a,b].

a

Then F(x)' =f(x) for all x € [a,b] and

be(x) dx =F(b)—F(a). (Newton—Leibniz formula)

a
Definite Integration ~~ Indefinite Integration

+o00
J exp(—x?)dx =?
0
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What is Elementary Functions?

» Polynomials: P(x) € Clx]

P(x) =po+pix+---+pux", where p; € C.
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What is Elementary Functions?

» Polynomials: P(x) € C[x]

P(x) =po+pix+---+pux", where p; € C.

» Rational functions: f(x) € C(x)

flx)= —i where P,Q € C[x] and Q #0.
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What is Elementary Functions?

» Polynomials: P(x) € C[x]

P(x) =po+pix+---+pux", where p; € C.

» Rational functions: f(x) € C(x)

flx)= “ 0 where P,Q e Clx] and Q #£0.
x
» Algebraic functions: a(x) € C(x)
ra@l+rg a4 41 =0, where r; € C(x).

417



What is Elementary Functions?

» Exponential functions: f(x) = exp(g(x)) with g € C(x)

f(x) =exp(g(x)) - g'(x) =f(x) - g"(x).
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What is Elementary Functions?

b Exponential functions: f(x) = exp(g(x)) with g € C(x)

f(x) =exp(g(x)) - g'(x) =f(x) - g"(x).

b Logarithmic functions: f(x) =log(g(x)) with g € C(x)




What is Elementary Functions?

b Exponential functions: f(x) = exp(g(x)) with g € C(x)

f'(x) =exp(g(x)) -g'(x) =f(x) - &' (x).

b Logarithmic functions: f(x) =log(g(x)) with g € C(x)

b Trigonometric functions: sin(x),cos(x),tan(x),...

sin(x) = exp(ix) —;xp(—ix)} cos(x) = exp(ix) —i—zexp(—ix).
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

322 +3x+1
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

1
3x2+3x4+1
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;
b unitary operations: exponential, logarithms, constants,

solutions of polynomial equations.

Example.

1
3x24+3x+1
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

1
exp(v 3x2+3x+1)

Example.
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

2
/ 1 2
- 1
exp< 3x2+3x+1> T
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

2
1 2
log e"P(\/ 3z+3+1> e+l
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

2
/ 1
IOg CXp( 3x2_|_3x_'_1> +X2+1
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What is Elementary Functions?

¢:=({Cx}, {+,— x,=}, {exp(),log(-),RootOf(-)}).

Definition. An elementary function is a function of x which is the
composition of a finite number of

b binary operations: +,—, x,+;

b unitary operations: exponential, logarithms, constants,
solutions of polynomial equations.

Example.

T

2
\/log <exp (, /W) —|—x2—|—1>
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Polynomial ring: (Clx],")

n n
pP= Zpixi ~  Pl= Z ipixL,
i=0 i=0
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Rational-function field: (C(x),’)
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: algebraic case

(C(x)(@),”) with a algebraic over C(x)

! yd /
Y e
drgod=1 - g r

I"dOtd—i-rd,]Old_l—l—"'—Fr():O ~ a’(x):
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: exponential case

(C(x)(exp(x)),")

_ I+x+exp(x)

(xexp(x) —3exp(x) —x—2)
f= x2 +exp(x) '

(x* +exp(x))?

fr==
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Differential Algebra

Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if

D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)
The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: logarithmic case

(C(x)(log(x)),")

2 log(x)x? + x> —log(x)x+x*+x+1
(x2 +1log(x))*x '

1 +x+log(x)
e
x> +log(x)

=

17



Differential Algebra
Differential Ring and Differential Field. Let R be an integral
domain. An additive map D:R — R is called a derivation on R if
D(f-g)=f-D(g)+g-D(f). (Leibniz's rule)

The pair (R,D) is called a differential ring. If R is a field, it is then
called a differential field.

Example.
Elementary-function field: general case

(Cx)(n1,12,13,...,1),")

141t
n=vVx2+1, t=log(l+7£), t3:exp< +1>,...

t+13
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Elementary Extensions

Differential Extension. (R*,D*) is called a differential extension
of (R,D) if RC R* and D* |g=D.
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Elementary Extensions

Differential Extension. (R*,D*) is called a differential extension
of (R,D) if RC R* and D* |g=D.

Elementary Extension. Let (F,D) be a differential extension
of (E,D). An element t € F is elementary over E if one of the
following conditions holds:

b tis algebraic over E;

» D(t)/t=D(u) for some u € E, i.e., t =exp(u);

» D(t) =D(u)/u for some u € E, i.e., t =log(u).
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Elementary Extensions

Differential Extension. (R*,D*) is called a differential extension
of (R,D) if RC R* and D* |g=D.

Elementary Extension. Let (F,D) be a differential extension
of (E,D). An element t € F is elementary over E if one of the
following conditions holds:

b tis algebraic over E;

» D(t)/t=D(u) for some u € E, i.e., t =exp(u);

» D(t) =D(u)/u for some u € E, i.e., t =log(u).

Example. (E,D) = (C(x),’) and (F,D) = (C(x,log(x)),’).
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Elementary Functions
Definition. An function f(x) is elementary if 3 a differential

extension (F,”) of (C(x),’) s.t. F=C(x)(t1,...,t,) and t; is
elementary over C(x)(t,...,ti—1) forall i=2,...,n.
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Elementary Functions

Definition. An function f(x) is elementary if 3 a differential
extension (F,”) of (C(x),’) s.t. F=C(x)(t1,...,t,) and t; is
elementary over C(x)(t,...,ti—1) forall i=2,...,n.

Example.
T

2
\/log (exp <, / m) +x2+ 1>

Then f(x) is elementary since 3 a differential extension

flx) =

F=C(x)(t1,12,13,14),

where

1
HH=4———— = t ta=1 t2 2 1), ti=+/n.
! 323t 2 exp(t1), r=log(t;+x"+1), =1
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Symbolic Integration

Let (E,D) and (F,D) be two differential field such that ECF.

Problem. Given f € E, decide whether there exists g € F
s.t. f=D(g). If such g exists, we say f is integrable in F.
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Symbolic Integration

Let (E,D) and (F,D) be two differential field such that ECF.

Problem. Given f € E, decide whether there exists g € F
s.t. f=D(g). If such g exists, we say f is integrable in F.

Elementary Integration Problem. Given an elementary function f(x)
over C(x), decide whether [f(x)dx is elementary or not.

Example. The following integrals are not elementary over C(x):

) 1 sin(x) dx
JGXP(X )dx, Jlog(x)dx’ J X ax, J X(x—1)(x—2)’
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Symbolic Integration

Let (E,D) and (F,D) be two differential field such that ECF.

Problem. Given f € E, decide whether there exists g € F
s.t. f=D(g). If such g exists, we say f is integrable in F.

Selected books on Symbolic Integration:

COMPUTER
ALGEBRA

SYSTEMS AND ALGORITHMS . St Modular Algorithms
FOR ALGEBRAIC COMPUTATION in Symbolic Summation

and Symbolic Integration

Manuel Bronstein
Symbolic
Integration |

Transcendental
Functions

10/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

¢ O0—O—"0O—"0C—0C—0CB0

1827: Abel studied the elliptic integrals.

12.
Recherches sur les fonctions elliptiques.
(Par M. N. H. Abel.)

Depuis longtems les fonctions logarithmiques, et les fonctions exponen-
tielles et circulaives ont été les seules fonctions transcendantes, qui ont
altiré T'attention des géométres. Ce n'est que dans les derniers tems,
qu'on a commencé a en consul:.-rer que]ques autres. Parmi celles-ci il
faut distinguer les foncti i tant pour leurs belles
propriéiés analytiques, que pour leur apphcnuon dans les diverses bran-
ches des mathématiques. La premiére idée de ces fonctions a été don-
née par Iimmortel Euler, en démontrant, que ]dquatmn néparée

L T t TR =

1/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o O0—O0O—10C——C——~C0C0

1833-1841: Liouville's theory of elementary integration.

PREMIER MEMOIRE SECOND MEMOIRE
Sur la déwermination des Luigrales done la valeur est | Sur la détermination des Intigrass dowe la valeur est
algébrique; algébrique;
Pan Josees LIOUVILLE *). Pan Joseon LIOUVILLE.

Liouville’s Theorem: Let y be an arbitrary algebraic function of z. If
the integral [ ydz is expressible in finite explicit form, it is always
possible to write

/ydz=l+Alogu+Blogv+---+Clogw, ([2)

(1809--1882)

where A, B, . ..,C are constants and ,u,9,...,w are algebraic func-

tions of z.
[Liouville 1834c, p. 42]
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o-O0—e—(O0—1C0C—0——0°0

1844: Ostrogradsky presented a method for rational integration.

7. De L'INTEGRATION DES FRACTIONS RATIONNELLES; par
M. OSTROGRADSKY. (Lu le 22 novembre
184%,)

1. Les inventeurs de l'analyse différentielle n'ont pn.
traité tous les cas de l'intégration des fractions rationnel-

1/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1916 1946 1948

1827 1833 1844 1872 1906
o-O0—O0—=8—-oO Oo—0O0—0

1872: Hermite gave a reduction method for rational integration.

SUR L'INTEGRATION

DES

FRACTIONS RATIONNELLES,

Par M. HERMITE,

MEMBRE DE U INSTITUT DE FRANCE.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o-Oo0—O0—_C—e—0—~0C0

1906: Mordukhai-Boltovskoi studied the problem of solving the dif-
ferential equations in finite terms.

A General Investigation of Integration in Finite Form
of Differential Equations of the First Order
Article 1
by

D, Mo:l:'dukhai-Boltovskoil

Translated by Boris Korenblum2and Myra Prelle?’

1/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o—-O0—0O0—C——C—e—0°0

1916: Hardy wrote a book on elementary integration.

THE
INTEGRATION OF FUNCTIONS
OF A SINGLE VARIABLE

by ==
G. H. HARDY, MA, F.RS. (1877--1947)

Fellow and Lectuser of Trinity College and Cayley Lecturer
in Mathematics in the University of Cambridge

1/17



Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o—-O0—0O0—0C—-O0 O—e—oO

1946: Ostrowski initialized an algebraic approach for elementary
integration.

Sur l'intégrabilité élémentaire
de quelques classes d’expressions

Par M. A. OstrowskI, Bale

rationnelle en Ig z et z. Nous avons complétement résolu cette question de

sorte que l'on peut maintenant & I'aide de calouls purement_algébriques

reconnaitre si l'intégrale de (1) est une fonction élémentaire ou non.
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Symbolic Integration: Theoretical Developments

Timeline: from 1827 to 1948

1827 1833 1844 1872 1906 1916 1946 1948

o—-O0——O0—C—-O0 o—0O0—e

1948: Ritt summarized the works on integration in finite terms.

INTEGRATION
IN FINITE TERMS
Liouville’s Theory
of Elementary Methods

Joseph Fels Ritt

Davies Professor of Mathematics (1893--1951)

Columbia University

1/17



Symbolic Integration: Algorithmic Developments

12/17



Symbolic Integration: Algorithmic Developments

1961: Slagle wrote the program SAINT for symbolic integration.

A HEURISTIC PROGRAM THAT
SOLVES SYMBOLIC INTEGRATION
PROBLEMS IN FRESHMAN
CALCULUS

by James R. Slagle
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Symbolic Integration: Algorithmic Developments

1967: Moses wrote the programs SIN and SOLDIER for
integration.

SYMBOLIC INTEGRATION
by
Joel Moses
Submitted to the Department of Mathematics on September 1, 1967 in
partial fulfillment of the requirements for the degree of Doctor of

Philosophy
ABSTRACT

SIN and SOLDIER are heuristic programs written im LISP which solve

symbolic integration problems. SIN (Symbolic INtegrator) solves inde-

symbolic

12/17



Symbolic Integration: Algorithmic Developments

1968: Rosenlicht's differential-algebraic proof of Liouville's theorem.

PACIFIC JOURNAL OF MATHEMATICS
Vol. 24, No. 1, 1368

LIOUVILLE’S THEOREM ON FUNCTIONS
WITH ELEMENTARY INTEGRALS

MAXWELL ROSENLICHT

Integration in Finite Terms
Maxwell Rosenlicht

The American Mathematical Monthly, Vol. 79, No. 9 (Nov., 1972), 963-972.
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Symbolic Integration: Algorithmic Developments

1971: Moses's survey on symbolic integration.

Three approaches to symbolic integration in the
1960’s are described. The first, from artificial

Symbohc intelligence, led to Slagle’s SAINT and to a large degree
= , to Moses’ SIN. The second, from algebraic manipulation,
Integratlon- The led to Manove’s implementation and to Horowitz’ and
e Tobey’s reexamination of the Hermite algorithm for
Stormy Decad integrating rational functions. The third, from
Joel Moses* ; h ics, led to Rich ’s proof of the
{,{‘;-;zz]?:s':gg MIT, Cambridge, unsolvability of the problem for a class of functions and
for Risch’s decision pi dure for the ¥

functions. Generalizations of Risch’s algorithm to a
class of special functions and programs for solving
differential equations and for finding the definite integral
are also described.

12/17



Symbolic Integration: Algorithmic Developments

1976: Rothstein’s algorithm for integration of transcendental ele-
mentary functions

ASPECTS OF SYMBOLIC INTEGRATION AND SIMPLIFICATION OF
EXPONENTIAL AND PRIMITIVE FUNCTIONS
by
MICHAEL ROTHSTEIN

1976
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Symbolic Integration: Algorithmic Developments

1981: Davenport's algorithm for integration of algebraic functions
James Harold Davenport

On the Integration
of Algebraic Functions

&

Springer-Verlag
Berlin Heidelberg New York 1981
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Symbolic Integration: Algorithmic Developments

1984: Trager's algorithm for integration of algebraic functions

INTEGRATION OF ALGEBRAIC FUNCTIONS
by

BARRY MARSHALL TRAGER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1984

12/17



Symbolic Integration: Algorithmic Developments

1985: Singer, Saunders, and Caviness presented an extension of
Liouville's theorem

SIAM J. COMPUT. (© 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, November 1985

AN EXTENSION OF LIOUVILLE’S THEOREM ON INTEGRATION
IN FINITE TERMS*

M. F. SINGERY, B. D. SAUNDERS} AND B. F. CAVINESS§
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Symbolic Integration: Algorithmic Developments

1985: Cherry's algorithm for integration with the error function

J. Symbolic Computarion (1985) 1, 283-302

Integration in Finite Terms with Special Functions:
the Error Functionf

G. W. CHERRY
Tektronizx, Inc., Beaverton, Oregon

{Received 20 December 1984)

12/17



Symbolic Integration: Algorithmic Developments

1990: Bronstein's algorithm for integration of elementary functions

J. Symbolic Computation (1990) 9, 117-173

Integration of Elementary Functions!

MANUEL BRONSTEIN

Mathematical Sciences Depariment, IBM Rescarch Division,
T.J.Walson Research Cenier, Yorktown Heighta, NY 10598, USA

(Received 1 September 1988)
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Symbolic Integration: Algorithmic Developments

1990: Computation of the logarithmic part via subresultants

1. Symbolic Computation (1990) 9, 113-115

Integration of Rational Functions:
Rational Computation of the Logarithmic Part

D. LAZARD AND R. RIOBOOt

LITP & GRECO e Caleu Forme, Unversié Plere i Marte Cure
lace Jussiou, 15252 Paris Cedex 05

(Received 18 November 1987)

J. Symbolic Computation (1997) 24, 45-50 @

A Note on Subresultants and the
Lazard/Rioboo/Trager Formula in Rational Function
Integration

THOM MULDERS
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Symbolic Integration: Algorithmic Developments

1992: Knowles' algorithm for integration with the error function

1. Symbalic Computation (1992) 13, 525-543

Integration of a Class of Transcendental Liouvillian Functions
with Error-Functions, Part [

PAUL H. KNOWLES
D" Youville College, 320 Porter Avenue, Buffalo, NY 14201, US.A.

(Received 16 May 1988)
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Symbolic Integration: Algorithmic Developments

1994: Baddoura's algorithm for integration with the dilogarithms

Integration in Finite Terms with Elementary
Functions and Dilogarithms
by
Mohamed Jamil Baddoura

Dipléme d’Ingénieur, Ecole Polytechnique (1980)
S.M., Massachusetts Institute of Technology (1982)

bmitted to the D of Math
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1994
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Symbolic Integration: Algorithmic Developments

1995: Computation of the logarithmic part via Groebner bases

J. Symbalic Computation (1995) 20, 163-167

A Note on Griobner Bases and Integration of
Rational Functions

GUNTER CZICHOWSKI

Institut fir Mathematik und Informatik,
Universitdt Greifswald, F.L. Johmstr. 15a, D-17487 Greifswald,
Germany

(Recetved 20 October 1994)
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Symbolic Integration: Algorithmic Developments

2008: Kauers's algorithm for computing the logarithmic part of al-
gebraic integration

Integration of Algebraic Functions:
A Simple Heuristic for Finding the Logarithmic Part

¥
Manuel Kauers
RISC-Linz
Johannes Kepler Universitat
A-4040 Linz, Austria
mkauers@risc.uni-linz.ac.at
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Symbolic Integration: Algorithmic Developments

2012: Raab's algorithm for the logarithmic part of the integrals of
transcendental functions

Journal of Symbolic Computation 47 (2012) 1290~ 1296

Contents lists available at SciVerse ScienceDirect
| Symbolic _
’ . Do,
Journal of Symbolic Computation =
ELSEVIER journal ]

Using Grobner bases for finding the logarithmic part of the
integral of transcendental functions

Clemens G. Raab

Research Institute for Symbolic Computation, fohannes Kepler University, 4040 Linz, Austria
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Symbolic Integration: Algorithmic Developments

2014: Zannier found some unlikely intersections between elementary
integration and number theory

Elementary integration of differentials in families
and conjectures of Pink

Umberto Zannier

Abstract. In this short survey paper we shall consider, in particular, indefinite integrals of differentials
on algebraic curves, trying to express them in elementary terms. This is an old-fashioned issue, for
which Liouville gave an explicit criterion that may be considered a primordial example of differential
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Liouville’s Theorem: the Rational Case

Theorem. Let f € C(x). Then f(x) is elementary integrable.
Moreover,

[ma= o0+ 3 atogten .

rational part i=1

transcendental part
where go,€1,...,8:, € C(x) and cy,...,c, € C.

Ostrogradsky—Hermite Reduction. Any f € C(x) can be

decomposed into

f=¢'+7,
q

where g € K(x), deg(p) < deg(q), and g is squarefree. Moreover,

dex is rational & p=0
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Liouville’s Theorem: the Algebraic Case

Theorem (Liouville1834). Let f(x) be algebraic over C(x). If
[f(x)dx is elementary, then

Jf(X)dx— Lo +;cl~log(gi),

algebraic part = ,

transcendental part

where go,g1,...,8, € C(x,f(x)) and ¢y,...,¢c, € C.
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Liouville’s Theorem: the Algebraic Case

Theorem (Liouville1834). Let f(x) be algebraic over C(x). If
[f(x)dx is elementary, then

Jf(X)dx— Lo + ;Cilog(gi),

algebraic part N ,
transcendental part

where go,g1,...,8, € C(x,f(x)) and ¢y,...,c, € C.

Remark. With the above theorem, Liouville proved in 1834 that
the elliptic integral

1
J x(x—1)(x—2)
is not elementary.
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Liouville’s Theorem: the Elementary Case

Theorem (Liouville1835). Let f(x) be elementary over C(x), i.e.,

feF=Cx)(n,t,....1n).

If [f(x)dx is elementary, then

[ fxrar= g0 + 3 citoelsn)

F-part =1

transcendental part

where go,81,...,8n € F and ¢y,...,¢c, € C.
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Liouville’s Theorem: the Elementary Case

Theorem (Liouville1835). Let f(x) be elementary over C(x), i.e.,

feF=Cx)(tn,t,...,t).
If [f(x)dx is elementary, then

n
[ fxrar= g0 + 3 citoelsn)
~~ :

F-part =1

transcendental part

where go,g1,...,8, € F and ¢y,...,c, € C.

Remark. With the above theorem, Liouville proved that the

integrals
1 )
Jexp(xz)dx, J dx, Jsm(x)dx, ...
log(x) X

are not elementary.
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Why exp(x?) is not Elementary Integrable?

Let t =exp(x?). We prove by contradiction.

Proof. If ftdx is elementary, Liouville’s theorem implies that
dgo,...,gn € C(x,t) and ¢g,...,c, € C s.t.

n !

n
Jtdx:g0+zcilog(gi) & t=gt ) ¢

i=1

U
t=(ft) forsomefcCx) & 1=f+2uf

Claim. The differential equation
y(x) +2x-y(x) =1

has no rational-function solution!
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Welcome to Symbolic Integration!

Thank Youl



