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Zeilberger’s method

In the early 1990s, Zeilberger developed an algorithmic theory for
proving identities in combinatorics and special functions.
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Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k)

= ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
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Creative telescoping

Problem. For a sequence f (n,k) in some class S(n,k), find a linear
recurrence operator L ∈ F[n,Sn] and g ∈S(n,k) s.t.

L(n,Sn)︸ ︷︷ ︸
Telescoper

(f ) = ∆k(g)

Call g the certificate for L.

Example. Let f (n,k) =
(n

k

)2. Then a telescoper for f and its
certificate are

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

, 4/30
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Proving identities

F(n) :=
n∑

k=0

(
n
k

)2
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(
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)

Creative telescoping for f =
(n

k

)2: L(f ) = ∆k(g), where
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Since f (n,k) = 0 when k < 0 or k > n, we have
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(
n
k

)2

=

n∑
k=0

(
n
k

)2

, 5/30



Proving identities

F(n) :=
n∑

k=0

(
n
k

)2

=

(
2n
n

)
Creative telescoping for f =

(n
k

)2: L(f ) = ∆k(g), where

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

Taking sums on both sides of L(f ) = ∆k(g):

+∞∑
k=−∞L(f ) = L

(
+∞∑

k=−∞f

)
= g(n,+∞)−g(n,−∞) = 0
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Verify the initial condition:
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Handbooks of identities

Dixon’s identity
a∑

k=−a

(−1)k
(

a+b
a+ k

)(
b+ c
b+ k

)(
c+a
c+ k

)
=

(a+b+ c)!
a!b!c!

Hille-Hardy’s identity∞∑
n=0

∑
k1

∑
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unn!
(a+1)n

(
n+a
n− k1

)
(−x)k1

k1!

(
n+a
n− k2

)
(−y)k2

k2!

= (1−u)−a−1 exp
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(x+ y)u

1−u
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n
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n!(a+1)n
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Fundamental problems

Creative telescoping

Existence problem.
For a function f (n,k), decide whether telescopers exist?

Construction problem.
For a function f (n,k), how to computer a telescoper if it exists?

Tools:
Algebraic analysis (holonomic D-modules)
Differential and difference algebra
Non-commutative rings (Ore polynomials)
Computational algebraic geometry
. . .
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Existence of telescopers

Timeline of works on existence problem
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Existence of telescopers

Timeline of works on existence problem

1990: Zeilberger proved that telescopers always exist for holonomic
functions:
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Existence of telescopers

Timeline of works on existence problem

1992: Wilf and Zeilberger proved that telescopers always exist for
proper hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2002: Abramov and Le solved the existence problem for rational
functions in two discrete variables:
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Existence of telescopers

Timeline of works on existence problem

2003: Abramov solved the existence problem for bivariate hyperge-
ometric terms:
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Existence of telescopers

Timeline of works on existence problem

2005: W.Y.C. Chen, Hou and Mu solved the existence problem for
bivariate q-hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2012: S. Chen and Singer solved the existence problem for bivariate
rational functions in the mixed cases:
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Existence of telescopers

Timeline of works on existence problem

2015: Chen et al. solved the existence problem for bivariate mixed
hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2016: Chen et al. solved the existence problem for rational functions
in three discrete variables:
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Mixed hypergeometric terms

Let F be a field of char. zero and algebraically closed.

t = (t1, . . . , tm), x = (x1, . . . ,xn)

Di : ∂/∂ ti︸ ︷︷ ︸
derivations

, Sj : xj→ xj +1︸ ︷︷ ︸
shifts

Definition. h(t,x) is mixed hypergeometric over F(t,x) if

all
Di(h)

h
and

Sj(h)
h

are rational functions in F(t,x).

Remark. Mixed hypergeometric terms are solutions of systems of
first-order homogeneous differential and difference equations.
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Examples

Rational functions:

t1 + t2 + x1,
1

(t1 + t2)
,

t1 + x1 +1
t1 + t2 + x2

1 +3
, . . .

Hyperexponential functions:

exp(t1 + t2
2), (t2

1 + t2 +1)
√

5
, exp

(∫
1

t1 + t2

)
, . . .

Symbolic powers:

tx1
1 , (t1 + t2)x1 · (t2 + t2

3)
x2 , . . .

Hypergeometric terms:

2x1 , x1!, (x1 +2x2 +
√

3)!, . . .
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Structure theorem

Theorem. Any mixed hypergeometric term h(t,x) is of the form

f (t,x) ·
n∏

j=1

βj(t)xj · exp(g0(t)) ·
L∏

`=1

g`(t)c` ·
∏

λ

(vλ ·x+pλ )!
eλ

where f is a rational function in F(t,x).

Proper terms. A mixed hypergeometric term h(t,x) is proper if it is
of the form

P(t,x) ·
n∏

j=1

βj(t)xj · exp(g0(t)) ·
L∏

`=1

g`(t)c` ·
∏

λ

(vλ ·x+pλ )!
eλ

where P is a polynomial in F[t,x].
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Holonomic terms

Let H(z) be a function of continuous variables z = (z1, . . . ,zs).
Notation: As := F[z1, . . . ,zs]〈Dz1 , . . . ,Dzs〉, and

annAs(H(z)) := {L ∈As | L(H) = 0}.

Definition.
H(z) is holonomic if the Hilbert dimension of annAs(H(z)) as
a left ideal of As is s.
A function h(t,x) is holonomic if the generating function

H(t,z) =
∑

x1,...,xn≥0

h(t,x)zx1
1 · · ·z

xn
n

is holonomic over Am+n := F(t,z)〈Dt1 , . . . ,Dtm ,Dz1 , . . . ,Dzn〉.
Remark. No algorithm for verifying holonomicity:-(
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:

In Page 585, they said:
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:

Chen and Koutschan recently proved the conjecture:

, 13/30



Existence criteria: bivariate case

(L,∂x) Dy ∆y ∆q,y

F(t)〈Dx〉

Zeilberger1990
√ √

F(t)〈Sx〉

√
Abramov2003

√

F(t)〈Sq,x〉

√ √
ChenHouMu2005

9 types of telescopers for bivariate mixed hypergeometric terms

In the pure continuous case, telescopers always exists since h
is holonomic.
In the pure discrete case, Abramov proved that

h has a telescoper ⇔ h = ∆y(g)+ r,where r is proper

In the pure q-discrete case, Chen, Hou and Mu proved a
q-anlogue of Abramov’s criterion.

In 2015, Chen et al. solved the other 6 mixed cases.

, 14/30
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Beyond the bivariate case

All existence criteria in the bivariate case show that

h(x,y) has a telescoper ⇔ h = ∆y(g)+ r, where r is proper
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Beyond the bivariate case

All existence criteria in the bivariate case show that

h(x,y) has a telescoper ⇔ h = ∆y(g)+ r, where r is proper

Example in the discrete case:

1
x2 + y2 has no telescoper of type (Sx,∆y)!
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Beyond the bivariate case

All existence criteria in the bivariate case show that

h(x,y) has a telescoper ⇔ h = ∆y(g)+ r, where r is proper

Example in the mixed case:

1
x+ y

has no telescoper of type (Sx,Dy)!
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Beyond the bivariate case

All existence criteria in the bivariate case show that

h(x,y) has a telescoper ⇔ h = ∆y(g)+ r, where r is proper

Is this pattern still true in the trivariate case?
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Beyond the bivariate case

All existence criteria in the bivariate case show that

h(x,y) has a telescoper ⇔ h = ∆y(g)+ r, where r is proper

1
x+ y+ z2 is not proper but it still has a telescoper!
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Construction of telescopers

Four approaches:
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Construction of telescopers

Four approaches:

1902: Picard proved the existence of Picard-Fuchs equations for
parameterized integrals of algebraic functions:
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Construction of telescopers

Four approaches:

1958: Manin gave a constructive method for finding Picard-Fuchs
equations:

, 16/30



Construction of telescopers

Four approaches:

1958: Manin gave a constructive method for finding Picard-Fuchs
equations:

α(x) =
∮

Γ

dy√
y(y−1)(y− x)

 y ′′+
2x−1

x(x−1)
y ′+

1
4x(x−1)

y = 0

, 16/30



Construction of telescopers

Four approaches:

1969: Griffiths developed the Dwork-Griffiths reduction, which later
is used to compute telescopers for multivariate rational functions:

, 16/30



Construction of telescopers

Four approaches:

2012: Chen, Kauers and Singer gave a method for computing tele-
scopers for algebraic functions via residues:
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Construction of telescopers

Four approaches:

1947: Fasenmyer gave a method, so-called Sister Celine’s method,
to find recurrence relations satisfied by hypergeometric sums:

, 16/30



Construction of telescopers

Four approaches:

1990: Zeilberger’s algorithm for computing telescopers for holonom-
ic functions via non-commutative elimination in Weyl algebra:
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Construction of telescopers

Four approaches:

1990: Zeilberger’s algorithm for computing telescopers for holonom-
ic functions via non-commutative elimination in Weyl algebra:{

P(x,y,Dx)(h) = 0
Q(x,y,Dy)(h) = 0

 A(x,Dx,Dy)(h)= 0  A(x,Dx,0) is telescoper

, 16/30



Construction of telescopers

Four approaches:

1992: Takayama improved the non-commutative elimination in Weyl
algebra by Groebner bases computation:

, 16/30



Construction of telescopers

Four approaches:

1998: Chyzak and Salvy applied non-commutative elimination in
Ore algebra to identities proofs :
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Construction of telescopers

Four approaches:

1990: Based on Gosper’s algorithm, Zeilberger developed an algo-
rithm for computing telescoping for bivariate hypergeometric terms:
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Construction of telescopers

Four approaches:

1990: Almkvist and Zeilberger extends Zeilberger’s algorithm to the
hyperexponential case:
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Construction of telescopers

Four approaches:

2000: Chyzak extends Zeilberger’s algorithm to the high-order case:

, 16/30



Construction of telescopers

Four approaches:

2010: Koutschan improved Chyzak’s algorithm via advanced ansatz
and applied to solve many conjectures in combinatorics:

, 16/30



Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:
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Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:

f (x) = Dx(g)+
p
q

where p,q ∈ F[x] with q squarefree and degx(p)< degx(q).
, 16/30



Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:∫

f (x)dx = rational part + logarithmic part

, 16/30



Construction of telescopers

Four approaches:

2013: Bostan et al. generalize the Hermite reduction to hyperexpo-
nential case and design a reduction-based telescoping algorithm:

, 16/30



Construction of telescopers

Four approaches:

2013: Bostan, Lairez and Salvy design a telescoping algorithm for
multivariate rational function based on Dwork-Griffiths reduction:

, 16/30



Construction of telescopers

Four approaches:

2015: Chen et al. design a telescoping algorithm for bivariate hyper-
geometric terms based on modified Abramov-Petkovsek reduction:
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Construction of telescopers

Four approaches:

2016: Chen, Kauers and Koutschan design a telescoping algorithm
for bivariate algebraic functions based on Trager’s reduction and
polynomial reduction:

, 16/30



Gosper’s algorithm

In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example.
B. Gosper
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Gosper’s algorithm

In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example. k! = ∆k(No solution!)

B. Gosper
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In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example. k · k! = ∆k(k!)

B. Gosper
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Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if
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Example.
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k!(k+1)!(k+2)!27k = ∆k(G)

B. Gosper
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Zeilberger’s algorithm

Input: A proper hypergeometric term H(n,k)
Output: A telescoper L ∈ C[n,Sn] s.t.

L(n,Sn)(H) = ∆k(G)

Pick some r ∈ N and set Lr =
∑r

i=0 ciSi
n

Consider the hypergeometric term

Lr(H) :=

r∑
i=0

crH(n+ i,k)

Call Gosper’s algorithm on Lr(H) to check
whether ∃ c0, . . . ,cr ∈ K[n] s.t.

Lr(H) = ∆k(Gr)

If all ci’s are zero, increase r and try again

Petkovsek, Wilf & Zeilberger

, 18/30
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Telescoper

Example.

H =
k10

n+ k

The telescoper of minimal order L for H is

L = n10Sn −(n+1)10

Guess the certificate of L?
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Certificate

1
2520(n+ k)

(2100k8n2 −84n3 −68460k6n4 −840n4 −3720n5 +140700k4n6 −9480n6 −

15024n7−10500k2n8−14808n8−8400n9−79590n2k7+284235n4k5−143640n6k3+210nk8−

26250n3k6 +133035n5k4 −35700n7k2 +252k11 +18900k9n−213780k7n3 +368340k5n5 −

110460k3n7 −2100n10 +1890k9 −1764k7 +1260k5 −378k3 −1260k10 −294nk2 +700nk4 −

588nk6 +63504k11n5 +52920k11n4 +30240k11n3 +11340k11n2 −2940n2k2 −13080n3k2 −

33780n4k2 −55116n5k2 −57348n6k2 −17360k3n2 −48860k3n3 −94920k3n4 −

135156k3n5 −55440k3n8 −13860k3n9 −3780k3n+7000n2k4 +31185n3k4 +80850n4k4 +

90090n7k4 +27720n8k4 +57141k5n2 +155610k5n3 +347886k5n6 +238392k5n7 +

110880k5n8 +27720k5n9 +12600k5n−5880n2k6 −114114n5k6 −123816n6k6 −

83160n7k6 −27720n8k6 −379830k7n4 −469128k7n5 −411840k7n6 −257400k7n7 −

110880k7n8 −27720k7n9 −17640k7n+9405n3k8 +24750n4k8 +42075n5k8 +47520n6k8 +

34650n7k8 +13860n8k8 +85085k9n2 +398475k9n4 +23100k9n9 +480480k9n5 +

92400k9n8 +235620k9n7 +227150k9n3 +404250k9n6 −12628k10n−13860k10n9 −

152460k10n3 −60060k10n8 −267960k10n4 −157080k10n7 −271656k10n6 −56980k10n2 −

323400k10n5 +2520k11n+2520k11n9 +11340k11n8 +30240k11n7 +52920k11n6)
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Telescoping without certificates

Problem. Can we compute the telescopers without also computing
the certifiates?

Algorithms: L(x,∂x)(f ) = ∂y1(g1)+ · · ·+∂ym(gm)

Bivariate rational case: Hermite reduction

Multivariate rational case: Dwork-Griffiths reduction

Bivariate hyperexponential case:

Hermite reduction + polynomial reduction

Bivariate hypergeometric case:

Abramov-Petkovsek reduction + polynomial reduction

Bivariate algebraic case:

Trager’s reduction + polynomial reduction
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Reduction: the rational case

Fact:
1

k+1
= ∆k

(
1
k

)
+

1
k
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Reduction: the rational case

Fact:
1

k+ s
= ∆k

(
1

k+ s−1
+ · · ·+ 1

k

)
+

1
k

Abramov’s reduction: For any f ∈ F(k),

f (k) = ∆k(g)+
a
b
,

where f ∈ F(k),degk(a)< degk(b) and b is shift-free, i.e., the
distance of any two roots of b is not integer.

Remark. The decomposition above is not unique, e.g.

2k+1
k(k+1)

= ∆k

(
1
k

)
+

2
k
= ∆k

(
−

1
k

)
+

2
k+1
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Telescoping via reduction

f =
1

(k+n)(2k+3n)
= ∆k(· · ·)+

1
(k+n)(2k+3n)︸ ︷︷ ︸

r0

Sn(f ) =
1

(k+n+1)(2k+3n+3)
= ∆k(· · ·)+

n+3
(n+1)(k+n)(2k+3n+3)︸ ︷︷ ︸

r1

S2
n(f ) =

1
(k+n+2)(2k+3n+6)

= ∆k(· · ·)+
n

(n+2)(k+n)(2k+3n)︸ ︷︷ ︸
r2

Note that
n · r0 +0 · r1 −(n+2) · r2 = 0

⇓
L =−(n+2)S2

n +n is a telescoper for f .
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Reduction: the hypergeometric case

Let T be hypergeometric w.r.t. k with f = Sk(T)/T ∈ F(k).

f =
Sk(r)

r
·K ! T = r ·H with

Sk(H)

H
= K.

We can have K = c/d satisfying gcd(c,Si
k(d)) = 1 for all i ∈ Z

Modified Abramov-Petkovšek’s reduction:

T = ∆k(· · ·)+
(a

b
+

p
d

)
·H,

where a,b,p ∈ F[k] with degk(a)< degk(b), b shift-free and p in a
f.d. vector space VK .

Proposition.

T = ∆k(T ′) ⇔ a = 0 and p = 0
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Telescoping via reductions

Consider
T =

1
n+ k

· k!
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Telescoping via reductions

Consider
T =

1
n+ k

· k!

T = ∆k(g0)+

c0(n)·−1·

1
n+ k

H

Sn(T) = ∆k(· · ·)+
1

(n+ k+1)2 H

= ∆k (g1)+

+ c1(n)·+(1−n)·

(
−

1/n
n+ k

+
1
n

)
H

S2
n(T) = ∆k (· · ·)+

(
−

1/(n+1)
n+ k+1

+
1

n+1

)
H

= ∆k (g2)+

+ c2(n)·+(n+1)·

(
−

1/(n(n+1))
n+ k

+
n−1

n(n+1)

)
H

= 0
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Telescoping via reductions

Consider
T =

1
n+ k

· k!

Therefore,

the minimal telescoper for T w.r.t. k is

L = (n+1) ·S2
n −(n−1) ·Sn −1

the corresponding certificate is

G = (n+1) ·g2 −(n−1) ·g1 −1 ·g0

=
k!

(n+ k)(n+ k+1)
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Timings (in seconds)

Let
T =

f (n,k)
g1(n+ k)g2(2n+ k)

Γ (2αn+ k)
Γ (n+αk)

with

gi(z) = pi(z)pi(z+λ )pi(z+µ), α,λ ,µ ∈ N,
deg(p1) = deg(p2) = m and deg(f ) = n.

(m,n,α,λ ,µ) Zeilberger RCT+cert RCT order
(2,0,1,5,10) 354.46 58.01 4.93 4
(2,0,2,5,10) 576.31 363.25 53.15 6
(2,0,3,5,10) 2989.18 1076.50 197.75 7
(2,3,3,5,10) 3074.08 1119.26 223.41 7
(3,0,1,5,10) 18946.80 407.06 43.01 6
(3,0,2,5,10) 46681.30 2040.21 465.88 8
(3,0,3,5,10) 172939.00 5970.10 1949.71 9
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Softwares

MAPLE:
1 EKHAD by Zeilberger

2 DEtools:-Zeilberger by Le

3 SumTools[Hypergeometric]:-Zeilberger by Le

4 Mgfun:-creative_telescoping by Chyzak

5 HermiteCT:-Telescoper by S.C.
6 . . .

MATHEMATICA:
1 fastZeil: Zb by Paule and Schorn
2 HolonomicFunctions: CreativeTelescoping by

Koutschan

3 . . .
Maxima: Zeilberger by Fabrizio Caruso

Reduce: zeilberg by Wolfram Koepf
. . .
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4 Mgfun:-creative_telescoping by Chyzak

5 HermiteCT:-Telescoper by S.C.
6 . . .

MATHEMATICA:
1 fastZeil: Zb by Paule and Schorn
2 HolonomicFunctions: CreativeTelescoping by

Koutschan

3 . . .
Maxima: Zeilberger by Fabrizio Caruso

Reduce: zeilberg by Wolfram Koepf
. . .
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Summary

Existence problem of telescopers

Construction problem of telescopers

Picard’s problem (1889):
Given a rational function f ∈ C(x,y,z), decide whether
there exist u,v,w ∈ C(x,y,z) such that

f = Dx(u)+Dy(v)+Dz(w).

Thank you!
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