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D-finite functions

Let K be a field of characteristic zero (e.g. Q, R, C).

Definition. A function f(x1,...,xs) is D-finite over K(x1,...,xq) if
for each i €{1,...,d}, f satisfies a LPDE:

8r,~f o~ lf

l7i,ri;§:£§? '+']7i,ri é; ri— ] _+_ _+>171 Qj? ()

where p;j € Klxq,...,x4].
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D-finite functions

Let K be a field of characteristic zero (e.g. Q, R, C).

Definition. A function f(x1,...,xs) is D-finite over K(x1,...,xq) if
for each i €{1,...,d}, f satisfies a LPDE:

8”f o~ lf

pi,nﬁ +pi,r, (9 ri— S =1 +-- +onf 0

where p;; € Klxy,...,x4l.

[@ R. P. Stanley. Differentiably Finite Power Series. European
Journal of Combinatorics, 1: 175-188, 1980.

@ L. Lipshitz. D-Finite Power Series. Journal of Algebra, 122:
353-373, 1989.
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Let K be a field of characteristic zero (e.g. Q, R, C).

Definition. A function f(x1,...,xs) is D-finite over K(x1,...,xq) if
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(9rif ar,—lf

pi,nﬁ +pi,r, (9 ri— + +Pfo 0

where p;; € Klxy,...,x4l.

Enumerati

6
Combinatorics . .. B
Volume2 Algebraic, D-Finite, and Noncommutative

Generating Functions

I (R. Stanley, Enumerative Combinatorics Vol. 2)
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D-finite functions

Let K be a field of characteristic zero (e.g. Q, R, C).

Definition. A function f(x1,...,xs) is D-finite over K(x1,...,xq) if
for each i €{1,...,d}, f satisfies a LPDE:

8"‘f ar,—lf

pi,r,‘ﬁ +pi,r, (9 ri— + +Pfo 0

where p;; € Klxy,...,x4l.

7

Non-D-finite 1/sin(x)

D-finite sin(x) +log(x) +exp(x)
Algebraic Hypergeometric series
t
At N\ sin(x), exp(x)
2F1(a, b, ¢; x)

Rational

1/x
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Algorithmic aspect of D-finite functions

Algorithmic
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Ring of linear differential operators

Definition. Let F:=K(xy,...,x7). The ring ® :=F(D,,,...,Dy,)
of linear differential operators over I consists of all polynomials

L= Y  fi..iDb--Di withf,  €F,

0<iy,oig<N
in which Dy, - Dy, = Dy, - Dy, for i,j €{1,...,d} and
0
Dxi'f:f'Dxf"ai for any f € F.
Xi

Remark. © is a non-commutative ring.
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Ring of linear differential operators

Definition. Let F:=K(xy,...,x7). The ring ® :=F(D,,,...,Dy,)
of linear differential operators over I consists of all polynomials

L= Y fi..iDl---Di withf . €F,
0<iy,...,ig<N
in which Dy, - Dy, = Dy, - Dy, for i,j €{1,...,d} and
d
Dxi-f:f~Dxi+—f for any f € F.
8xl~
Remark. © is a non-commutative ring.

Definition. Let & be a infinitely differentiable function and L € ®.
We define the action of L on h by
L Qld
LW= Y  fiioo o v (h).

0<iy,...,ig<N
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Ring of linear differential operators

Definition. Let F:=K(xy,...,x7). The ring ® :=F(D,,,...,Dy,)
of linear differential operators over I consists of all polynomials

L:= Z Fir DIt --Dit with fi F,

0<iy,...,ig<N

in which Dy, - Dy, = Dy, - Dy, for i,j €{1,...,d} and

Dxi-f:f-Dxi—i—aaf for any f € F.
X

Remark. © is a non-commutative ring.

Definition. Let 9t be a left ®-module (e.g. Kl[[xy,...,x4]]) and
h € M. The annihilating ideal of & is the set

Anng(h):={L€®|L(h) =0}
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Ring of linear differential operators

Definition. Let F:=K(xy,...,x7). The ring ® :=F(D,,,...,Dy,)
of linear differential operators over I consists of all polynomials

L= Y  fi..iDb--Di withf,  €F,
0<iy,oig<N
in which Dy, - Dy, = Dy, - Dy, for i,j €{1,...,d} and
0
Dxi.f:f'Dxi—i—a—f for any f € F.
X

Remark. © is a non-commutative ring.

Proposition.
h is D-finite over F

)
dimp(®/Anng(h)) < +o0
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Ring of linear differential operators

Definition. Let F:=K(xy,...,x7). The ring ® :=F(D,,,...,Dy,)
of linear differential operators over I consists of all polynomials

. i 12 H
L:= E fi1,»--»ide11 a 'Dx(iz with filv'"vid eF,
0<iyyesig <N

in which Dy, - Dy, = Dy, - Dy, for i,j €{1,...,d} and

Dxi-f:f-Dxi—i—aaf for any f € F.
X

Remark. © is a non-commutative ring.

Proposition.
h is D-finite over F

T

Anng(h) is of dimension zero.
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Closure properties

Let n=ny,...,nq, X=1x1,...,%g, and X" =x|"---x".

Definition. Let f =) a(n)x™ and g =) b(n)x" be in K[[x]]. The
Hadamard product of f and g is

fOg=) ambmx".

The diagonal of f is defined as diag(f) = _a(n,...,n)x" € K[[x]].
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Closure properties

Let n=ny,...,nq, X=1x1,...,%g, and X" =x|"---x".

Definition. Let f =) a(n)x™ and g =) b(n)x" be in K[[x]]. The
Hadamard product of f and g is

fOg=) ambmx".
The diagonal of f is defined as diag(f) = _a(n,...,n)x" € K[[x]].

Theorem (Lipshitz1989). Let 2 :={f € Kl[xl] |f is D-finite}. Then
(i) iff,g € 2, then f+g, f-g, and fOg are in Z;
(ii) if f € 2, diag(f) is D-finite in K[[x]];

(i) if f€ 2, and ay,...,04 € K[[yl] are algebraic over K(y) and
the substitution makes sense, then f(a,...,04) is D-finite.
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Algorithms for D-finite Functions

Let © :=K(x)(D,) and 9 be a left D-module.

Univariate case. Let fi, 2 € 9 be D-finite with annihilating
operators Li, Ly € ®© resp. An annihilating operator for f| + /> is

L:= LCLM(Ll,Lz) =R|Li =R:L,, R|,R,€D.
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Algorithms for D-finite Functions

Let © :=K(x)(D,) and 9 be a left D-module.

Univariate case. Let fi, 2 € 9 be D-finite with annihilating
operators L1, Ly, € ® resp. An annihilating operator for fi +/5 is

L:= LCLM(Ll,Lz) =R|Li =R:L,, R|,R,€D.

Example. Let fi =exp(x) and f, = \/x. Then their annihilating
operators are Ly :=D,—1 and L, :=2xD,— 1, resp. We get an
annihilating operator for fi +f> by

L:=LCLM(Ly,Ly) = 2x(2x— 1)D? — (4x*> 4+ 1)D, + (2x+ 1).

Remark. Abramov, Le and Li developed the Maple package
OreTools for manipulating univariate D-finite functions.
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Let © :=K(x)(D,) and 9 be a left D-module.

Univariate case. Let fi, 2 € 9 be D-finite with annihilating
operators Li, Ly € ®© resp. An annihilating operator for f| + /> is

L:= LCLM(Ll,Lz) =R|Li =R:L,, R|,R,€D.

Example. Let fi =exp(x) and f, = \/x. Then their annihilating
operators are Ly :=D,—1 and L, :=2xD,— 1, resp. We get an
annihilating operator for fi +f> by

L:=LCLM(Ly,Ly) = 2x(2x— 1)D? — (4x*> 4+ 1)D, + (2x+ 1).

Remark. Abramov, Le and Li developed the Maple package
OreTools for manipulating univariate D-finite functions.

@ S. Abramov, H. Le and Z. Li. Univariate Ore polynomial rings
in computer algebra. Journal of Mathematical Sciences,
131(5), 5885-5903, 2005.
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Algorithms for D-finite Functions

Let © :=K(x)(D,) and 9 be a left D-module.

Univariate case. Let fi, 2 € 9 be D-finite with annihilating
operators Li, Ly € ®© resp. An annihilating operator for f| + /> is

L:= LCLM(Ll,Lz) =R|Li =R:L,, R|,R,€D.

Example. Let fi =exp(x) and f, = \/x. Then their annihilating
operators are Ly :=D,—1 and L, :=2xD,— 1, resp. We get an
annihilating operator for fi +f> by

L:=LCLM(Ly,Ly) = 2x(2x— 1)D? — (4x*> 4+ 1)D, + (2x+ 1).

Remark. Abramov, Le and Li developed the Maple package
OreTools for manipulating univariate D-finite functions.

W A. Bostan, F. Chyzak, Z. Li and B. Salvy. Fast computation of
common left multiples of linear ordinary differential operators,
Proceedings of ISSAC2012, pp. 99-106, ACM Press, 2012.
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Algorithms for D-finite Systems

Let ® :=K(xy,...,x7)(Dxy,,...,Dyx,) and 9 be a left D-module.

Multivariate case. Let fi, f> € 9t be D-finite with annihilating
ideals I, I, C© resp. An annihilating ideal for f| + /> is

I=01LHNI.
Remark. F. Chyzak's Maple library Mgfun and C. Koutschan's

Mathematica package HolonomicFunctions for manipulating
multivariate D-finite functions.

@ F. Chyzak and B. Salvy. Non-commutative Elimination in Ore
Algebras Proves Multivariate Identities. Journal of Symbolic
Computation, 26 (2) :187-227, 1998.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that

L(x,Dy) (f) = Dy(Q(f)) for some Q € K(x,y)(Dx,Dy).
W—/

Telescoper

Call Q the certificate for L.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that

L(x,Dy) (f) =Dy(Q(f)) for some Q € K(x,y)(Dx,Dy).
~—

Telescoper

Call Q the certificate for L.

Application. The core step in the Wilf-Zeilberger theory of algo-
rithmic proving of combinatorial identities.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that

L(x,Dy) (f) =Dy(Q(f)) for some Q € K(x,y)(Dx,Dy).
W—/

Telescoper

Call Q the certificate for L.

Example. Let f(x,y) =1/y/y(y—1)(y—x). Then
yiy—1)

2
L=4(x—1)xD>+4(2x—1)D;+1, Q=
x—y
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that
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W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that

L(x,Dy) () = Dy(Q(f))  for some Q € K(x,y){Dy. Dy).
W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Rational case
@ A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of Creative

Telescoping for Bivariate Rational Functions. Proceeding of
ISSAC2010, pp. 203-210, ACM Press, 2010.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(Dy) such that

L(x,Dy) () = Dy(Q(f))  for some Q € K(x,y){Dy. Dy).
W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Hyperexponential case
@ A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite

Reduction and Creative Telescoping for Hyperexponential Functions.
Proceedings of ISSAC2013, pp. 77-84, ACM Press, 2013.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(Dy) such that

L(x,Dy) () = Dy(Q(f))  for some Q € K(x,y){Dy. Dy).
W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Hypergeometric case

@ S. Chen, H. Huang, M. Kauers, and Z. Li. A Modified
Abramov-Petkovsek Reduction and Creative Telescoping for
Hypergeometric Terms. Proceedings of ISSAC2015 , pp. 117-124,
ACM Press, 2015.
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Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(D,) such that

L(x,Dy) () = Dy(Q(f))  for some Q € K(x,y){Dy. Dy).
W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Algebraic case
@ S. Chen, M. Kauers, and C. Koutschan. Reduction-Based Creative

Telescoping for Algebraic Functions. Proceedings of ISSAC2016, pp.
175-182, ACM Press, 2016.

9/27



Creative Telescoping

Theorem. Let f(x,y) be D-finite over K(x,y). Then there exists a
nonzero L € K(x)(Dy) such that

L(x,Dy) () = Dy(Q(f))  for some Q € K(x,y){Dy. Dy).
W—/

Telescoper

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Fuchsian D-finite case
@ S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan.

Reduction-Based Creative Telescoping for Fuchsian D-finite
Functions. Journal of Symbolic Computation, 85:108-127, 2018.
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Analytic aspect of D-finite functions

Algorithmic

Analytic
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Apparent singularities

(x4+1) f(x)+ (x> —10x+7) f/(x)

S = 3(x—5)(x—2)

11111



Apparent singularities

(x4+1) f(x)+ (x> —10x+7) f/(x)

i) = 3(x—5)(x—2)

b The roots of the denominator are called the singularities of
the equation.
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Apparent singularities

(x4+1) f(x)+ (x> —10x+7) f/(x)
3x—5)(x—2)

S x) =

b The roots of the denominator are called the singularities of
the equation.

b If a solution f has a singularity at &, then & is also a
singularity of the equation.
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Apparent singularities

(x4+1) f(x)+ (x> —10x+7) f/(x)
3x—5)(x—2)

S x) =

b The roots of the denominator are called the singularities of
the equation.

b If a solution f has a singularity at &, then & is also a
singularity of the equation.

b The converse is not true: the equation may have singularities
where all solutions are regular.

11/27



Apparent singularities

1) = G DS+ (02— 1054 7) ()

3x—5)(x—2)
Solutions in this case:

1
exp(x/3), —5



Apparent singularities

apparent singularity

(x4+1) f(x)+ (x> —10Y4+7) f'(x)

S x) = 363)

Solutions in this case:

1
exp(x/3), —5



Apparent singularities

non-apparent singularity apparent singularity

(x+1) + (x> —10¥4+7) f'(x)

3(x—95)

fx) =
Solutions in this case:

1
exp(x/3), —5



Apparent singularities

non-apparent singularity apparent singularity

Solutions in this case:
3 1
exp(x/3), —5
How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

Applications. Asymptotic estimates of the coefficient growth of D-
finite power series.
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Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).
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Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—Dxf"(x) = (x=2)f(x) =0
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Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x— Dxf’ (x) — (x—2)f(x) =0 v
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Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—D)xf'(x) — (x—2)f(x) =0 | 4
(2x— 1)f"(x) + (x— D)xf " (x) —f(x) — (x—=2)f"(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—D)xf’(x) — (x—2)f (x) =0 | £

(x—Dxf"(x) + (x+ 1)f"(x) —=f(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—Dxf"(x) = (x=2)f(x) =0
(x—Dxf"(x) + (x+ 1)f"(x) —=f(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—D)xf’(x) — (x—2)f (x) =0 | £
(x—Dxf" () + (x4 1)f /() = f(x) =0 | &

(2x=1)f " (x)+(e=1)xf " ()" (x) + (x+ 1) ()= (x)=



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—1)xf"(x) = (x—=2)f(x) =0
(= 1)/ " (x) + (x+ 1)f"(x) =f(x) =0
(x—1)xf" (x)+3xf"(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x—D)xf’(x) — (x—2)f (x) =0 | £
(x—Dxf" () + (x4 1)f /() = f(x) =0 | &
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Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= :]lc(L).

(x— D)xf/(x) — (x—2)f (x) =0 | £
(x—Dxf" () + (x4 1)f /() = f(x) =0 | &
(x—Dxf"(x)+3xf"(x) =0 ‘ DX

(x—=1)f"(x)+3f"(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

OLeCh(D) and  1c(QL) = :IIC(L).
removable singularity
o ()~ e =0
(= D)/ (x) + (x+ 1)f"(x) = f(x) =0
(e— D" (x) 4 32" (x) = 0

(x—=1)f"(x)+3f"(x) =0



Removable singularities

Definition. Let L:= ZLO&D" € C[x](D). A factor g € C[x] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= }IIC(L).

non-removable singularity

(x—1D)xf"(x) + (x+ 1)f"(x) =f(x) =0
(x—Dxf"(x)+3xf"(x) =0

(x—=1)f"(x)+3f"(x) =0



Removable singularities

Definition. Let L:=) | ¢:D' € Clx](D). A factor q € Clx] of
Ic(L) is removable if there exists Q € C(x)(D) such that

QLe Clxl(D) and Ic(QL)= Clllc(L).

Example. L=(x—1)xD—(x—2),g=x, Q= %Dz'

Problem. How to decide removability and how to remove a remov-
able singularity?

Theorem.

x—{ isremovable & x={ is an apparent singularity
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Removability criterion

L=p.(x)D" +p, 1 (x)D"" +--+pi(x)D+po(x)
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Facts:
The factor x is removable

&=  The singularity x =0 is apparent
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Facts:
The factor x is removable

&=  The singularity x =0 is apparent
&=  There are r linearly independent solutions in C[[x]]
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Removability criterion

L=p,(x)D" +p,—1(x)D" "+ -+ p1(x)D+po(x)

Suppose (w.l.0.g.) that x| p,.

Facts:
The factor x is removable

&=  The singularity x =0 is apparent
&=  There are r linearly independent solutions in C[[x]]

Thus, to check removability, just compute the first few terms of
the power series solutions of L, and see how many there are:

O+0x+0x*+0x +--
O+0x+0xF+0x +---
O+0x+0Ox*+0Ox3 4+

13/27



Desingularization

Algorithm for removing x from L (if possible):
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Desingularization

Algorithm for removing x from L (if possible):

» If L has less than r power series solutions, return NO _ WAY

O+Ox+ O+ O +Ox* + -+
O+O0x+ O+ 0 +Ox* +---
O+O0x+ O+ 03 +Ox* +---

14/27



Desingularization

Algorithm for removing x from L (if possible):
» If L has less than r power series solutions, return NO _ WAY

» Determine the gaps eq,...,e;, in the exponent pattern for L

I +Ox4+0O82+O3 + O+

04+ 0x+ 1x24+0Ox8° +Ox*+---

04 0x+ 024+ 02+ 1x*+--.
2 {

e1=1 er =3
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Desingularization

Algorithm for removing x from L (if possible):
» If L has less than r power series solutions, return NO _ WAY
» Determine the gaps eq,...,e;, in the exponent pattern for L

» Compute M :=Iclm(xD—ey, xD—ey, ..., xD—e,).

04+ 1x+ 0%+ 04+ 0x*+---
04+ 0x+0x°+ 154+ 0x*+--

f i

e1=1 er =3
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Desingularization

Algorithm for removing x from L (if possible):
» If L has less than r power series solutions, return NO _ WAY
» Determine the gaps eq,...,e;, in the exponent pattern for L
» Compute M :=Iclm(xD—ey, xD—ey, ..., xD—e,).
» Return Iclm(L,M)

I +Ox+ O+ 0O +Oxt 4+
0+ 1x+0x+0x+ 0x*+---
04 0x+ 12+ +Ox' +-+-
04+ 0x+0x>+ 188+ 0x* 4+
04+ 0x+ 024+ 0x°+ 1 x*+--.
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).
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Example L= (x—1)xD*—(x*>+2x—2)D— (2x*> —8x+4).

I+ 2x+ 22+ F 0+ 260+ L0+
0+ 0x+ 02+ 10— 1x*+ L0+
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

I+ 2x+ 22+ F 0+ 260+ L0+
0+ 0x+ 02+ 10— 1x*+ L0+

Exponent pattern: 0,3
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

I+ 2x+ 22+ F 0+ 260+ L0+
0+ 0x+ 02+ 10— 1x*+ L0+

Exponent pattern: 0,3
Gaps: 1,2
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

|+2x+2f+%f+%f+%f+m
0+ 0x+ 02+ 10— 1x*+ L0+

Exponent pattern: 0,3
Gaps: 1,2
Take M =lclm(xD —1,xD—2) =x>D?> —2xD+2.
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

+2x+ 227+ %x3+ _%x4+%x5+-~
04 0x+0x>4+ 1 22— 1x*+ %xs—k'--

Exponent pattern: 0,3

Gaps: 1,2

Take M =lclm(xD —1,xD—2) =x>D?> —2xD+2.
Compute lIclm(L,M).

15/27



Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

lelm(L,M) = (x—1)(2x* —10x° + 11x2 — 8x +2) D*
— (2x° —2x* —27x% + 44x* —28x+-8) D?
—4x% (X — 10x% +24x— 12) D?
+8x(x® — 10x> +24x—12) D
—8(x* —10x% +24x—12)
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

lelm(L, M) =|(x—1)(2x* — 10x* + 11> — 8x+2) "
— (2x° —2x* —27x% + 44x* —28x+-8) D?
—4x% (X — 10x% +24x— 12) D?
+8x(x* —10x> +24x—12) D
—8(x® — 10x% +24x—12)

15/27



Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

No problem!
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).
No problem!

Use the extended Euclidean algorithm to find u,v such that

ux—+v(2x* =103 + 113> —8x+2) = 1.
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Example L= (x—1)xD*—(x*4+2x—2)D— (2x> —8x+4).

No problem!

Use the extended Euclidean algorithm to find u,v such that
ux—+v(2x* =103 + 113> —8x+2) = 1.

Then
uD*L+vlcm(L,M) = (x—1)D*+---

15/27



Example L= (x—1)xD*—(x*>+2x—2)D— (2x*> —8x+4).
No problem!

Use the extended Euclidean algorithm to find u,v such that

ux—+v(2x* =103 + 113> —8x+2) = 1.

uD*L+vlclm(L,M) =*D4+-~-

= %IC(L)

Then

@ S. Chen, M. Kauers, and M. Singer. Desingularization of Ore
Operators. Journal of Symbolic Computation, 74(C): 617-626,
2016.

[ S. Chen, M. Kauers, Z. Li and Y. Zhang. Apparent
Singularities of D-finite Systems. Sumitted to Journal of
Symbolic Computation, 2017.
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Arithmetic aspect of D-finite functions

Algorithmic

Analytic Arithmetic
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. ”
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. "

Hadamard then considered the following problem:

What relationships are there between the coefficients of a power
series and the singularities of the function it represents?
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. "

Hadamard then considered the following problem:

What relationships are there between the coefficients of a power
series and the singularities of the function it represents?

Two special cases of the problem have been studied:
b Power series with integral coefficients;

b Power series with finitely distinct coefficients.

17/27



Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

Acta Math. 30 (1906), no. 1, 335-400.

Pierre Fatou (1878-1929)

Pierre Fatou, Séries trigonométriques et séries de Taylor,
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Power series with integral coefficients

flx)= Zanx", where a, € Z.

n>0

Pierre Fatou, Séries trigonométriques et séries de Taylor,

Acta Math. 30 (1906), no. 1, 335-400.

Pierre Fatou (1878-1929)

Fatou's Theorem. If f(x) converges inside the unit disk, then it is
either rational or transcendental over Q(x).
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4, 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921). no. 1-2. 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4. 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921). no. 1-2. 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.

Corollary. If f(x) is algebraic, then it is rational.

19/27



Power series with finitely distinct coefficients

fx) = Zanx", where a, € A with |A] < +00.

n>0

From 1917 to 1922, there are four papers with the same title:

Cher Potenzreihen mit endlich vielen verschiedenen
Koeffizienten.

Power Series with Finitely Distinct Coefficients

1. G. Polya in 1917, Math. Ann.

2. R. Jentzsch in 1918, Math. Ann.
3. F. Carlson in 1919, Math. Ann.
4. G. Szego in 1922, Math Ann.

Gibor Szegd (1895-1985)

Szegd's Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?

Problems

and Theorems

AT P ey e AL
HS5EE w2

Chapter 3. Arithmetical Aspects of Power Series

§1
§2
§3
§4
§5
§6

§7

(130-137)
(138-148)
(149-154)
(155-164)
(165-173)
(174-187)

(188-193)

Preparatory Problems on Binomial Coefficients .
On Eisenstein’s Theorem

On the Proof of Eisenstein’s Theorem

Power Series with Integral Coefficients Assoclated
with Rational Functions

Function-Theoretic Aspects of Power Senes w1th
Integral Coefficients .

Power Series with Integral Coeﬂic1ents in the
Sense of Hurwitz

The Values at the Integers of Power Senes that
Converge about z=co . e e e

134
134
136
137
138
140

142
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?

11 Boundary Behavior of Power Series 213

Reinhold Remmert §1. Convergence on the Boundary . . . .. .. ... ... 214
1. Theorems of Faton. M. Riesz. and Ostrowski . . .. 241

Classical Topics 2. Alemmaof M. Riesz . .. ... .. ... .. ..... 25
in Complex 3. Proof of the theorems in 1. .. .. .. ... .. ... 217
Function Theory 4. A criterion for nonextendibility . . .. ... L L 248
Bibliography for Section 1 . . . . . ... ... 214

§2.  Theory of Overconvergence. Gap Theorem . . . . . . . . .. 249

fé« Springer
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Power series with integral coefficients

(the multivariate case)

Multivariate extensions of the Pélya-Carlson Theorem:
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Power series with integral coefficients

(the multivariate case)
Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant les séries de puissances a coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060
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Power series with integral coefficients

(the multivariate case)
Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant le. ies de puissances d coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060

Rationality Theorem (BellChen, 2016) If the power series

F:Z‘f(nh'”’nd)xrlll '”'xgd € Z[[X],...,Xd]]

is D-finite and converges on the unit polydisc, then it is rational.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let a,: N — A, where |A| is a finite subset of Q. If the generating
function f(x) =), a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).
Let a,: N — A, where |A| is a finite subset of Q. If the generating
function f(x) =), a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.

Rationality Theorem (BellChen, 2016). Let ay,,. 4, ‘NS A,
where |A] is a finite subset of Q. If the generating function

n ng
fler,ox § Any,ong®y " Xg

is D-finite, then it is rational.

@ J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set.
Journal of Combinatorial Theory, Series A, 151, pp. 241-253, 2017.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

. n ng
FV(xl,...,xd) = Z xll---xd
(nl,...,nd)GVﬂNd
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(x1,...,xq) = Z R
(n1,....nq)€VNN?
We may ask the following questions:
When Fy is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z R
(n1,....nq)€VNN?
We may ask the following questions:
When Fy is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g > 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z R
(n1,....nq)€VNN?
We may ask the following questions:
When Fy is a rational function?

Theorem. If Fy is rational, then VNN9 is semilinear, i.e., In € N
and finite subsets Vy,...V, of N and by,...,b, € N? such that

E:VOU{Q1 <b,-+Zv-N>}.

vevV;
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

— n nd
FV(xl,...,xd) = Z xll---xd
(n1,....nq)€VNN?

We may ask the following questions:

When Fy is a D-finite function?

Corollary.
Fy is D-finite & Fy is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

— n nd
FV(xl,...,xd) = Z xll---xd
(n1,....nq)€VNN?

We may ask the following questions:

When Fy is a D-finite function?

Theorem.

The problem of testing whether Fy is rational is undecidable!
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(x1,...,xq) = Z R
(n1,....nq)€VNN?
We may ask the following questions:
When Fy is a differentially algebraic function?

Definition. F € K[[xq,...,x4]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
Dill D;;f](F) with i; € N over K(xy,...,x4) is finite.
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Nonnegative integer points on algebraic curves

Theorem. If V is defined by linear polynomials over Q, then Fy is
rational.

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fplxy)= ) X"

(n,m)eV(p)NN2

is rational. Then p=f-g, where f,g € Clx,y] s.t.

sz(s,--x+t,~-y+c,~) with s;,7; € Z and ¢; € C
i

and g has only finite zeros in N?.
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Nonnegative integer points on algebraic curves

Theorem. If V is defined by linear polynomials over Q, then Fy is
rational.

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fplxy)= ) X"

(n,m)eV(p)NN2

is rational. Then p=f-g, where f,g € Clx,y] s.t.

sz(s,--x+t,~-y+c,~) with s;,7; € Z and ¢; € C
i

and g has only finite zeros in N

Example. Let p =x>—y. Since p is not a product of integer-linear
polynomials, the power series F),(x,y) is not D-finite.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)GVﬂNd

is differentially algebraic if and only if it is rational.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)€VﬂNd

is differentially algebraic if and only if it is rational.

Example. Let p =x?>—y. Then the power series

=3y

m>0

is not differentially algebraic, otherwise, F),(x,2) ZZ’" X" is dif-
ferentially algebraic. By Mahler's lemma, we get a contradiction

m (m!)¢  for any positive constant c.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)GVﬂNd

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series
fi=) & eCl]
neN
is not differentially algebraical, i.e., satisfies no ADE.

Remark. The power series Zx”2 is differentially algebraic.
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