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D-finite functions

Let K be a field of characteristic zero (e.g. Q, R, C).
Definition. A function f (x1, . . . ,xd) is D-finite over K(x1, . . . ,xd) if
for each i ∈ {1, . . . ,d}, f satisfies a LPDE:

pi,ri

∂ ri f
∂xri

i
+pi,ri−1

∂ ri−1f

∂xri−1
i

+ · · ·+pi,0f = 0,

where pi,j ∈K[x1, . . . ,xd].
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R. P. Stanley. Differentiably Finite Power Series. European
Journal of Combinatorics, 1: 175–188, 1980.

L. Lipshitz. D-Finite Power Series. Journal of Algebra, 122:
353–373, 1989.
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Algorithmic aspect of D-finite functions
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Ring of linear differential operators

Definition. Let F :=K(x1, . . . ,xd). The ring D := F〈Dx1 , . . . ,Dxd〉
of linear differential operators over F consists of all polynomials

L :=
∑

0≤i1,...,id≤N

fi1,...,id Di1
x1
· · ·Did

xd
with fi1,...,id ∈ F,

in which Dxi ·Dxj = Dxj ·Dxi for i, j ∈ {1, . . . ,d} and

Dxi · f = f ·Dxi +
∂ f
∂xi

for any f ∈ F.

Remark. D is a non-commutative ring.
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Dxi · f = f ·Dxi +
∂ f
∂xi

for any f ∈ F.

Remark. D is a non-commutative ring.

Definition. Let h be a infinitely differentiable function and L ∈D.
We define the action of L on h by

L(h) =
∑

0≤i1,...,id≤N

fi1,...,id
∂ i1

∂xi1
1

· · · ∂ id

∂xid
1

(h).
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Remark. D is a non-commutative ring.

Definition. Let M be a left D-module (e.g. K[[x1, . . . ,xd]]) and
h ∈M. The annihilating ideal of h is the set

AnnD(h) := {L ∈D | L(h) = 0}.
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h is D-finite over Fm
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Closure properties

Let n = n1, . . . ,nd, x = x1, . . . ,xd, and xn = xn1
1 · · ·x

nd
d .

Definition. Let f =
∑

a(n)xn and g =
∑

b(n)xn be in K[[x]]. The
Hadamard product of f and g is

f �g =
∑

a(n)b(n)xn.

The diagonal of f is defined as diag(f ) =
∑

a(n, . . . ,n)xn ∈K[[x]].

Theorem (Lipshitz1989). Let D := {f ∈K[[x]] | f is D-finite}. Then

(i) if f ,g ∈D , then f +g, f ·g, and f�g are in D ;

(ii) if f ∈D , diag(f ) is D-finite in K[[x]];

(iii) if f ∈D , and α1, . . . ,αd ∈ K[[y]] are algebraic over K(y) and
the substitution makes sense, then f (α1, . . . ,αd) is D-finite.
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Algorithms for D-finite Functions

Let D :=K(x)〈Dx〉 and M be a left D-module.

Univariate case. Let f1, f2 ∈M be D-finite with annihilating
operators L1, L2 ∈D resp. An annihilating operator for f1 + f2 is

L := LCLM(L1,L2) = R1L1 = R2L2, R1,R2 ∈D.

Example. Let f1 = exp(x) and f2 =
√

x. Then their annihilating
operators are L1 := Dx −1 and L2 := 2xDx −1, resp. We get an
annihilating operator for f1 + f2 by

L := LCLM(L1,L2) = 2x(2x−1)D2
x −(4x2 +1)Dx +(2x+1).

Remark. Abramov, Le and Li developed the Maple package
OreTools for manipulating univariate D-finite functions.
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S. Abramov, H. Le and Z. Li. Univariate Ore polynomial rings
in computer algebra. Journal of Mathematical Sciences,
131(5), 5885-5903, 2005., 7/27
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A. Bostan, F. Chyzak, Z. Li and B. Salvy. Fast computation of
common left multiples of linear ordinary differential operators,
Proceedings of ISSAC2012, pp. 99–106, ACM Press, 2012., 7/27



Algorithms for D-finite Systems

Let D :=K(x1, . . . ,xd)〈Dx1 , . . . ,Dxd〉 and M be a left D-module.

Multivariate case. Let f1, f2 ∈M be D-finite with annihilating
ideals I1, I2 ⊆D resp. An annihilating ideal for f1 + f2 is

I := I1∩ I2.

Remark. F. Chyzak’s Maple library Mgfun and C. Koutschan’s
Mathematica package HolonomicFunctions for manipulating
multivariate D-finite functions.

F. Chyzak and B. Salvy. Non-commutative Elimination in Ore
Algebras Proves Multivariate Identities. Journal of Symbolic
Computation, 26 (2) :187-227, 1998.
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Creative Telescoping

Theorem. Let f (x,y) be D-finite over K(x,y). Then there exists a
nonzero L ∈K(x)〈Dx〉 such that

L(x,Dx)︸ ︷︷ ︸
Telescoper

(f ) = Dy(Q(f )) for some Q ∈K(x,y)〈Dx,Dy〉.

Call Q the certificate for L.
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Telescoper

(f ) = Dy(Q(f )) for some Q ∈K(x,y)〈Dx,Dy〉.

Call Q the certificate for L.

Application. The core step in the Wilf-Zeilberger theory of algo-
rithmic proving of combinatorial identities.
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Telescoper

(f ) = Dy(Q(f )) for some Q ∈K(x,y)〈Dx,Dy〉.

Call Q the certificate for L.

Example. Let f (x,y) = 1/
√

y(y−1)(y− x). Then

L = 4(x−1)xD2
x +4(2x−1)Dx +1, Q =

2y(y−1)
x− y

.
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Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Rational case

A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of Creative
Telescoping for Bivariate Rational Functions. Proceeding of
ISSAC2010, pp. 203–210, ACM Press, 2010.
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Reduction-based Algorithms: Hyperexponential case

A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite
Reduction and Creative Telescoping for Hyperexponential Functions.
Proceedings of ISSAC2013, pp. 77–84, ACM Press, 2013.
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Creative Telescoping

Theorem. Let f (x,y) be D-finite over K(x,y). Then there exists a
nonzero L ∈K(x)〈Dx〉 such that

L(x,Dx)︸ ︷︷ ︸
Telescoper

(f ) = Dy(Q(f )) for some Q ∈K(x,y)〈Dx,Dy〉.

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Hypergeometric case

S. Chen, H. Huang, M. Kauers, and Z. Li. A Modified
Abramov-Petkovsek Reduction and Creative Telescoping for
Hypergeometric Terms. Proceedings of ISSAC2015 , pp. 117–124,
ACM Press, 2015.
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Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Algebraic case

S. Chen, M. Kauers, and C. Koutschan. Reduction-Based Creative
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175–182, ACM Press, 2016.
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Creative Telescoping

Theorem. Let f (x,y) be D-finite over K(x,y). Then there exists a
nonzero L ∈K(x)〈Dx〉 such that

L(x,Dx)︸ ︷︷ ︸
Telescoper

(f ) = Dy(Q(f )) for some Q ∈K(x,y)〈Dx,Dy〉.

Call Q the certificate for L.

Problem. How to develop efficient algorithms for computing tele-
scopers for D-finite functions?

Reduction-based Algorithms: Fuchsian D-finite case

S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan.
Reduction-Based Creative Telescoping for Fuchsian D-finite
Functions. Journal of Symbolic Computation, 85:108–127, 2018.
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Analytic aspect of D-finite functions
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Apparent singularities

f ′′(x) =
(x+1) f (x)+(x2 −10x+7) f ′(x)

3(x−5)(x−2)
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(x+1) f (x)+(x2 −10x+7) f ′(x)

3(x−5)(x−2)

The roots of the denominator are called the singularities of
the equation.

If a solution f has a singularity at ξ , then ξ is also a
singularity of the equation.
The converse is not true: the equation may have singularities
where all solutions are regular.
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Apparent singularities

f ′′(x) =
(x+1) f (x)+(x2 −10x+7) f ′(x)

3(x−5)(x−2)

Solutions in this case:

exp(x/3),
1

x−5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

Applications. Asymptotic estimates of the coefficient growth of D-
finite power series.

, 11/27



Apparent singularities

f ′′(x) =
(x+1) f (x)+(x2 −10x+7) f ′(x)

3(x−5)(

apparent singularity

x−2)

Solutions in this case:

exp(x/3),
1

x−5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

Applications. Asymptotic estimates of the coefficient growth of D-
finite power series.

, 11/27



Apparent singularities

f ′′(x) =
(x+1) f (x)+(x2 −10x+7) f ′(x)

3(

non-apparent singularity

x−5)(

apparent singularity

x−2)

Solutions in this case:

exp(x/3),
1

x−5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

Applications. Asymptotic estimates of the coefficient growth of D-
finite power series.

, 11/27



Apparent singularities

f ′′(x) =
(x+1) f (x)+(x2 −10x+7) f ′(x)

3(

non-apparent singularity

x−5)(

apparent singularity

x−2)

Solutions in this case:

exp(x/3),
1

x−5
How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

Applications. Asymptotic estimates of the coefficient growth of D-
finite power series.

, 11/27



Removable singularities

Definition. Let L :=
∑r

i=0 `iDi ∈ C[x]〈D〉. A factor q ∈ C[x] of
lc(L) is removable if there exists Q ∈ C(x)〈D〉 such that

QL ∈ C[x]〈D〉 and lc(QL) =
1
q

lc(L).
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Removable singularities

Definition. Let L :=
∑r

i=0 `iDi ∈ C[x]〈D〉. A factor q ∈ C[x] of
lc(L) is removable if there exists Q ∈ C(x)〈D〉 such that

QL ∈ C[x]〈D〉 and lc(QL) =
1
q

lc(L).

Example. L = (x−1)xD−(x−2), q = x, Q = 1
x D2.

Problem. How to decide removability and how to remove a remov-
able singularity?

Theorem.

x−ζ is removable ⇔ x = ζ is an apparent singularity

, 12/27



Removability criterion

L = pr(x)Dr +pr−1(x)Dr−1 + · · ·+p1(x)D+p0(x)

Suppose (w.l.o.g.) that x | pr.

Facts:
The factor x is removable

⇐⇒

The singularity x = 0 is apparent

⇐⇒ There are r linearly independent solutions in C[[x]]

Thus, to check removability, just compute the first few terms of
the power series solutions of L, and see how many there are:

©+©x+©x2 +©x3 + · · ·
©+©x+©x2 +©x3 + · · ·
©+©x+©x2 +©x3 + · · ·
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Desingularization

Algorithm for removing x from L (if possible):

If L has less than r power series solutions, return NO_WAY
Determine the gaps e1, . . . ,em in the exponent pattern for L

Compute M := lclm(xD− e1, xD− e2, . . . , xD− em).
Return lclm(L,M)

, 14/27
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1 +©x+©x2 +©x3 +©x4 + · · ·
0 + 0 x+ 1 x2 +©x3 +©x4 + · · ·
0 + 0 x+ 0 x2 + 0 x3 + 1 x4 + · · ·⇓

e1 = 1
⇓

e2 = 3
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Example L = (x−1)xD2 −(x2 +2x−2)D−(2x2 −8x+4).
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Example L = (x−1)xD2 −(x2 +2x−2)D−(2x2 −8x+4).

1 + 2 x+ 2 x2 + 4
3 x3 + 2

3 x4 + 4
15 x5 + · · ·

0 + 0 x+ 0 x2 + 1 x3 − 1 x4 + 1
2 x5 + · · ·

Exponent pattern: 0,3

Gaps: 1,2

Take M = lclm(xD−1,xD−2) = x2 D2 −2xD+2.

Compute lclm(L,M).
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Example L = (x−1)xD2 −(x2 +2x−2)D−(2x2 −8x+4).

lclm(L,M) = (x−1)(2x4 −10x3 +11x2 −8x+2)D4

−(2x5 −2x4 −27x3 +44x2 −28x+8)D3

−4x2(x3 −10x2 +24x−12)D2

+8x(x3 −10x2 +24x−12)D

−8(x3 −10x2 +24x−12)
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Example L = (x−1)xD2 −(x2 +2x−2)D−(2x2 −8x+4).

lclm(L,M) =

The factor x is removed :-)
But a new factor was introduced :-(

(x−1)(2x4 −10x3 +11x2 −8x+2)D4

−(2x5 −2x4 −27x3 +44x2 −28x+8)D3
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Example L = (x−1)xD2 −(x2 +2x−2)D−(2x2 −8x+4).

No problem!

Use the extended Euclidean algorithm to find u,v such that

ux+ v(2x4 −10x3 +11x2 −8x+2) = 1.

Then
uD2 L+ v lclm(L,M) = (x−1)D4 + · · ·

S. Chen, M. Kauers, and M. Singer. Desingularization of Ore
Operators. Journal of Symbolic Computation, 74(C): 617-626,
2016.

S. Chen, M. Kauers, Z. Li and Y. Zhang. Apparent
Singularities of D-finite Systems. Sumitted to Journal of
Symbolic Computation, 2017.
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Arithmetic aspect of D-finite functions
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. ”

Hadamard then considered the following problem:

What relationships are there between the coefficients of a power
series and the singularities of the function it represents?

Two special cases of the problem have been studied:

Power series with integral coefficients;

Power series with finitely distinct coefficients.
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Power series with integral coefficients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Fatou’s Theorem. If f (x) converges inside the unit disk, then it is
either rational or transcendental over Q(x).
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Power series with integral coefficients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Pólya-Carlson Theorem. If f (x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.

Corollary. If f (x) is algebraic, then it is rational.
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n≥0
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Pólya-Carlson Theorem. If f (x) converges inside the unit disk,
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Corollary. If f (x) is algebraic, then it is rational.
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Power series with finitely distinct coefficients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Szegö’s Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.

, 20/27



Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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Power series with integral coefficients
(the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

Rationality Theorem (BellChen, 2016) If the power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·x

nd
d ∈ Z[[x1, . . . ,xd]]

is D-finite and converges on the unit polydisc, then it is rational.

, 22/27
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Power series with finitely distinct coefficients
(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).
Let an : N→ ∆ , where |∆ | is a finite subset of Q. If the generating
function f (x) =

∑
n anxn is D-finite, then it is rational.

Remark. This follows from Szegö’s theorem by the fact that a
D-finite power series can only have finitely many singularities.

Rationality Theorem (BellChen, 2016). Let an1,...,nd : Nd→ ∆ ,
where |∆ | is a finite subset of Q. If the generating function

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·x

nd
d

is D-finite, then it is rational.

J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set.
Journal of Combinatorial Theory, Series A, 151, pp. 241–253, 2017.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g≥ 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a rational function?

Theorem. If FV is rational, then V ∩Nd is semilinear, i.e., ∃n ∈ N
and finite subsets V0, . . .Vn of Nd, and b1, . . . ,bn ∈ Nd such that

E = V0
⋃{ n⋃

i=1

(
bi +
∑
v∈Vi

v ·N

)}
.

, 24/27



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Corollary.
FV is D-finite ⇔ FV is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Theorem.

The problem of testing whether FV is rational is undecidable!
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FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x
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d

We may ask the following questions:

When FV is a differentially algebraic function?

Definition. F ∈ K[[x1, . . . ,xd]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
Di1

x1
· · ·Did

xd
(F) with ij ∈ N over K(x1, . . . ,xd) is finite.

, 24/27



Nonnegative integer points on algebraic curves

Theorem. If V is defined by linear polynomials over Q, then FV is
rational.

Theorem. Let p(x,y) ∈ C[x,y]. If the generating function

Fp(x,y) :=
∑

(n,m)∈V(p)∩N2

xnym

is rational. Then p = f ·g, where f ,g ∈ C[x,y] s.t.

f =
∏

i

(si · x+ ti · y+ ci) with si, ti ∈ Z and ci ∈ C

and g has only finite zeros in N2.

Example. Let p = x2 − y. Since p is not a product of integer-linear
polynomials, the power series Fp(x,y) is not D-finite.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Example. Let p = x2 − y. Then the power series

Fp(x,y) :=
∑
m≥0

xmym2

is not differentially algebraic, otherwise, Fp(x,2) =
∑

2m2
xm is dif-

ferentially algebraic. By Mahler’s lemma, we get a contradiction

2m2 � (m!)c for any positive constant c.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series

f :=
∑
n∈N

xn3 ∈ C[[x]]

is not differentially algebraical, i.e., satisfies no ADE.

Remark. The power series
∑

xn2
is differentially algebraic.
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Summary

Thank you!
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