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Abstract. In this note, we present an answer to Exercise 9.3 in the Book Symbolic
Integration I (second edition) by M. Bronstein, under an additional assumption that the
real elementary extension in the exercise is purely transcendental. Our answer is based
on a rather technical lemma derived from a naive attempt to do the exercise inductively.

1. Introduction

Exercise 9.3 in [1, Chapter 9] states that

Let C be a field of characteristic 0, x be transcendental over C, and (K, D) be a real ele-
mentary extension of (C(x), d/dx) with ConstD(K) = C. Suppose that there are a, b in K
such that b2 + 1 6= 0, Da/a is not the derivative on an element of K, and

Da

a
=

Db

b2 + 1
. (1)

Show that
√−1 ∈ C. Conclude that if C is a real field, then the index sets LK/C(x)

and AK/C(x) are disjoint.
We now explain the terminologies appearing in the exercise. Let (F, D) be a differential

field of characteristic zero, and (E, D) a differential extension of (F, D). An element t ∈ E is
said to be real elementary over F if either t is algebraic over F , or there exists an element a∈F
such that one of the following conditions is fulfilled:

(i) D(t) = D(a)t, in which case we say that t is exponential over F , and write t = exp(a);

(ii) D(t) = D(a)
a with a 6= 0, in which case we say that t is logarithmic over F , and

write t = log(a);

(iii) D(t) = D(a)(t2+1), in which case we say that t is a tangent over F , and write t=tan(a);

(iv) D(t) = D(a)
a2+1

with a2 +1 6= 0, in which case we say that t is an arc-tangent over F , and
write t = arctan(a).

We may write the real elementary extension in Exercise 9.3 as

K = C(x)(t1, t2, . . . , tn),
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where ti is real elementary over C(x)(t1, . . . , ti−1) for all i with 1 ≤ i ≤ n. Put K0 = C(x)
and Ki = C(x)(t1, . . . ti) for i with 1 ≤ i ≤ n. We define the following four index sets:

(a) EK/K0
= {i ∈ {1, . . . , n} | ti is transendental and exponential over Ki−1},

(b) LK/K0
= {i ∈ {1, . . . , n} | ti is transendental and logarithmic over Ki−1},

(c) TK/K0
= {i ∈ {1, . . . , n} | ti is transendental and tangent over Ki−1}, and

(d) AK/K0
= {i ∈ {1, . . . , n} | ti is transendental and arc-tangent over Ki−1}.

In this note we do this exercise under the additional assumption that ti is transcendental
over Ki−1 for all i with 1 ≤ i ≤ n. We are not yet able to complete the exercise when some ti
is algebraic over Ki−1.

2. Preliminaries

For brevity,
√−1 is denoted by i in the sequel. Let (F, D) be a differential field and t an

indeterminate over F . We extend D to F [t] by defining D(t) to be an element of F [t] (see [1,
Theorem 3.2.2]). Then D can be further extended uniquely to F (t). Such a field extension
is called a monomial extension of F (see [1, Deinition 3.4.1].) A polynomial f ∈ F [t] is
said to be special with respect to D if gcd(f,D(f)) = f , while f is said to be normal
if gcd(f, D(f)) = 1. Note that a special polynomial is also called a Darboux polynomial
in F [t].

We are interested in the set of special polynomials in F [t], where t is a transcendental
and real elementary over F with Const(F (t)) = Const(F ). By a straightforward calculation,
we have the following table, in which MISP is the abbreviation for monic, irreducible and
special polynomials.

t is exp t is log t is tan t is arctan
MISP (i /∈ F ) 1, t 1 1, t2 + 1 1
MISP (i ∈ F ) 1, t 1 1, t− i, t + i 1

Every element of F is special. The product of special polynomials is special, and every factor
of a special polynomial is special (see [1, Theorem 3.4.1]). All special polynomials in F [t]
can be obtained from the monic and irreducible ones. By the definition of special (normal)
polynomials, we see that if p is special (normal) in F [t], it is special (normal) in E[t], where
E is an algebraic extension of F .

For p ∈ F [t] with deg p > 0, we define a map νp from F [t] to N∪∞ by sending 0 to∞, and
a nonzero element a to max{n ∈ N | pn|a}. Extend νp to F (t) by sending a

b to νp(a)− νp(b),
where a, b ∈ F [t]. For f ∈ F (t), the value νp(f) is called the order of f at p. The following
lemma will be frequently used in the sequel.

Lemma 1 Let F (t) be a monomial extension over F , and p an irreducible polynomial
in F [t] \ F . Then the following statements hold.

1. νp

(
D(f)

f )
)
≥ −1 for all nonzero elements f in F (t).
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2. If p is normal, then νp(Df) = νp(f) − 1 for every f ∈ F (t) with νp(f) 6= 0, and
νp(Df) ≥ 0 for every f ∈ F (t) with νp(f) = 0. In particular, we have νp(f) 6= −1 for
all f ∈ F (t).

3. If t is real elementary over F and if p is special, then νp(Df) = νp(f) for every f ∈ F (t)
with νp(f) 6= 0.

The first assertion of the lemma is given in [1, Corollary 4.4.2]. The rest is a special case
in [1, Theorem 4.4.2]. The correctness of the last assertion is due to the fact that a special
polynomial in a transcendental and real elementary extension over F is always of the first
kind. Of course, one can prove this lemma by direct calculations using the above table.

Next, we recall the notion of residues at a normal and irreducible polynomial p in F [t].
The valuation ring of νp is

Op = {f ∈ F (t) | νp(f) ≥ 0}.
The unique maximal ideal of Op is

pOp = {f ∈ F (t) | νp(f) ≥ 1}.

Denote by πp the canonical projection from Op to Op/pOp, and let

Rp = {f ∈ F (t) | νp(f) ≥ −1},

which is a vector space over F . For every f ∈ Rp, the product fp/D(p) is an element in Op,
because, νp(fp) is greater than or equal to zero and D(p) is co-prime with p. The residue
at p is defined to be the map

ρp : Rp −→ Op/pOp

f 7→ πp

(
f p

D(p)

)
.

Note that the field Op/pOp is isomorphic to F [t]/(p) (see [1, Theorem 4.2.1]). The following
two properties are useful.

1. The residue map ρp is F -linear.

2. ρp

(
Df
f

)
= νp(f) for every nonzero element f in F (t)

These two assertions are special cases in Theorem 4.4.1 and Corollary 4.4.2 in [1]. Again,
one can verify their correctness directly.

Lemma 2 Let F (t) be a monomial extension of (F, D) and p a normal and irreducible
polynomial in F [t] \ F . If f ∈ F [t] is special, then, for every g ∈ F [t], the residue ρp

(
g
f

)
is

well-defined and equal to zero.

Proof. Since f is special, so are its factors. Therefore, p is not a factor of f . It follows that
g
f

p
Dp is in pOp. 2
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3. Results

In this section, we do Exercise 9.3 in [1] under the additional assumption that the real
elementary extension is purely transcendental. For an element f in F (t), we denote the
numerator and denominator of f by num(f) and den(f), respectively. The denominator of
an element of F (t) is normalized to be monic. If i is not in a field F and f is in F (i), we
denote the conjugate of f by f̄ .

Lemma 3 Let (k, D) be a differential field of characteristic 0, and Ck be the field of con-
stants in k. Assume that i is not in k. Let k(t) be a monomial extension of k. Assume
further that

D(v) +
D(a)

a
+

λ∑

j=1

cj
D(fj)

fj
=

D(b)
b2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

, (2)

in which v, a, fj , b, g` are in k(t) and cj , d` in Ck. Then the following assertions are true.

(i) In the field k(i)[t], (2) can be rewritten as

D(v) + D(num(a))
num(a) − D(den(a))

den(a) +
∑λ

j=1 cj

(
D(num(fj))

num(fj)
− D(den(fj))

den(fj)

)

= 1
2i

(
DB
B − DB

B

)
+ 1

2i

∑µ
`=1 d`

(
D(G`)

G`
− D(G`)

G`

) (3)

where B = num(b)−i·den(b) and G` = num(g`)−i·den(g`). In addition, both gcd(B, B)
and gcd(G`, G`) are equal to one.

(ii) If both {1, c1, · · · , cλ} and {1, d1, · · · , dµ} are linearly independent over Q, then den(v),
num(a), den(a), num(fj) and den(fj) are special in k[t], and, moreover, B, B, G` and
G` are special in k(i)[t].

Proof. Applying the logarithmic derivative identity yields

Da

a
=

D(num(a))
num(a)

− D(den(a))
den(a)

.

The same holds when a is replaced by fj . A straightforward calculation yields

Db

b2 + 1
=

(
D(B)

B
− D(B)

B

)
.

The same holds when b and B are replaced by g` and G`, respectively. So (2) is rewritten
as (3) in K(i).

Since gcd(num(b),den(b)) = 1, gcd(B +B,B−B) = 1. Consequently, gcd(B,B) = 1. In
the same vein, we derive that gcd(G`, G`) = 1. The first assertion is proved.

To prove the second assertion, we regard all polynomials appearing in (3) as elements
in k(i)[t].

First, we show that den(v) is special. Suppose the contrary that den(v) is not special.
Then den(v) has a factor p, which is irreducible and normal in k(i)[t]. Since νp(v) is less
than zero, νp(Dv) is less than −1 by the second assertion of Lemma 1, while the order of
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a logarithmic derivative at p is at least −1 by the first assertion of Lemma 1. So the order
of the left hand-side of (3) at p is less than −1. But that of the right hand-side of (3) is at
least −1, a contradiction.

Next, we show that num(a) is special. Suppose on the contrary that num(a) is not
special. Then num(a) has a factor p, which is irreducible and normal in k(i)[t]. By
Lemma 2, the residue ρp(v) = 0 since gcd(den(v), p) = 1, and, moreover ρp(den(a)) = 0
since gcd(den(a),num(a)) = 1. By the second property of ρp listed in Section 2.,

ρp

(
D(num(a))

num(a)

)
= νp(num(a)) ∈ Z.

In the same way, we have, for all j with 1 ≤ j ≤ λ,

ρp

(
D(num(fj))

num(fj)
− D(den(fj))

den(fj)

)
= ρp

(
D(fj)

fj

)
= νp(fj) ∈ Z.

Therefore, the residue of the left hand-side of (3) is equal to

r1 = νp(num(a)) +
λ∑

j=1

cjνp(fj) ∈ Ck.

To compute the residue of the right hand-side of (3), we get

r2 = ρp

(
1
2i

((
DB
B − DB

B

)
+

∑µ
`=1 d`

(
D(G`)

G`
− D(G`)

G`

)))

= 1
2iρp

(
DB
B − DB

B

)
+ 1

2i

∑µ
`=1 d`ρp

(
D(G`)

G`
− D(G`)

G`

)

= 1
2i

(
νp(B)− νp(B)

)
+ 1

2i

∑µ
`=1 d`

(
νp (G`)− νp

(
G`

))

(4)

which is in 1
2iCk. Since r1 = r2 and i /∈ Ck, r1 has to be zero. Note that the order of a at p is

nonzero, since p divides num(a). Hence r1 = 0 would imply that 1, c1, · · · , cλ are Q-linearly
dependent, a contradiction. It follows that num(a) is special. In the same vein, one sees
that den(a), num(fj) and den(fj) are all special for all j with 1 ≤ j ≤ λ.

At last, we show that B, B, G`, and G`, are special in k(i)[t]. Suppose that B is not
special. Then there exists a normal and irreducible polynomial q in k(i)[t] \ k(i) dividing B.
Since gcd(B,B) = 1, νp(B) equals zero. Thus, the difference νp(B)−νp(B) is nonzero. Since
den(v) is special, ρp(v) = 0 by Lemma 2. Similarly, we have

ρp(num(fj)) = ρpden(fj)) = ρq(num(a)) = ρq(den(a)) = 0.

Thus r1 is equal to zero, and so is r2. By (4),

νp(B)− νp(B) +
µ∑

`=1

d`

(
νp (G`)− νp

(
G`

))
= 0.

Since νq(B) − νq(B) is nonzero, the elements 1, d1, . . . , dµ are Q-linearly dependent, a con-
tradiction. 2

The next lemma is the main result of this note.
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Lemma 4 Let C be a field of characteristic zero with i /∈ C, and x an indeterminate over C.
Let K = C(x)(t1, t2, ..., tn) be a differential extension of

(
C(x), d

dx

)
, in which ti is transcen-

dental and real elementary over the subfield C(x)(t1, t2, ..., ti−1), i = 1, . . . , n. Assume that C
is the constant field of K, and denote by D the derivation operator on K. Assume further
that

D(v) +
D(a)

a
+

λ∑

j=1

cj
D(fj)

fj
=

D(b)
b2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

, (5)

where v, a, fj , b, g` are in K, and cj , d` are in C, j = 1, ..., λ, and ` = 1, ..., µ. If both
1, c1, . . . , cλ and 1, d1, . . . , dµ are Q-linearly independent, then Da

a is a derivative of some
element of K.

Proof. We proceed by induction on n. If n = 0, then the special polynomials in C[x] are
precisely the elements of C. By the second assertion of Lemma 3, both num(a) and den(a)
are in C, so is a itself. Thus D(a)

a = 0 = D(1)
1 .

Assume n > 0, and put k = C(x)(t1, · · · , tn−1) and t = tn. In particular, k = C(x)
when n = 1. We assume that the lemma holds when K = k and prove that it holds
when K = k(t) by a case distinction.

Before completing our induction, we recall a useful identity. Let (F, D) be a differential
field, and p, q in F . If p + q 6= 0, then

D(p)
p2 + 1

+
D(q)
q2 + 1

=
D(r)
r2 + 1

, where r = pq−1
p+q ,

which, together with the obvious identity −D(p)
p2+1

= D(−p)
(−p)2+1

, implies that, for any mi ∈ Z and
hi ∈ F , there exists h ∈ F such that

∑

i

mi
D(hi)
h2

i + 1
=

D(h)
h2 + 1

. (6)

Logarithmic Case: Suppose that D(t) = D(u)
u for some u ∈ k. Note that D(u) is nonzero,

because Const(K) = C and t /∈ k. The special polynomials in k[t] are the elements of k (see
the table in Section 2.). By the second assertion of Lemma 3, we conclude that

a, f1, . . . , fλ, b, g1, . . . , gµ ∈ k (7)

and that v is in k[t]. Moreover, D(v) is in k by (5). Therefore v is of the form ct+v0, where c
is in C and v0 is in k. It follows that

D(v) = c
D(u)

u
+ D(v0). (8)

So (5) can be rewritten as

D(v0) +
D(a)

a
+ c

D(u)
u

+
λ∑

j=1

cj
D(fj)

fj
=

D(b)
b2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

. (9)
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If c, 1, c1, . . . , cλ are Q-linear independent, then, by (7), the induction hypothesis can be
directly applied to (9), which yields that D(a)

a is a derivative of some element of k. If c is
Q-linearly dependent on 1, c1, . . . , cλ, then there exist ξ, ξj and nonzero η in Z such that

c =
ξ

η
+

λ∑

j=1

ξj

η
cj . (10)

Substituting the right hand-side of (10) for c into (9) yields

D(ηv0) +
D(auξ)

auξ
+

λ∑

j=1

cj
D(fju

ξj )
fjuξj

= η

(
D(b)
b2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

)
.

By (6), the above equation implies

D(ηv0) +
D(auξ)

auξ
+

λ∑

j=1

cj
D(fju

ξj )
fjuξj

=

(
D(b̃)
b̃2 + 1

+
µ∑

`=1

d`
D(g̃`)
g̃2
` + 1

)

for some b̃, g̃1, . . . , g̃µ ∈ k. Applying the induction hypothesis to this equation yields that D(auξ)
auξ

is a derivative of some element in k. Observe that

D(auξ)
auξ

=
D(a)

a
+ ξ

D(u)
u

=
D(a)

a
+ D(ξt).

So D(a)
a is a derivative of some element in K. This completes the induction for the logarithmic

case.

Arc-tangent Case: Suppose that D(t) = D(u)
u2+1

for some u ∈ k with u 6= 0. The special
polynomials in k[t] are the elements of k (see the table in Section 2.). By the second assertion
of Lemma 3, we conclude that

a, f1, . . . , fλ, b, g1, . . . , gµ ∈ k (11)

and that v is in k[t]. Moreover, D(v) is in k by (5). Therefore v is of the form −dt + v0,
where d is in C and v0 is in k. It follows that

D(v) = −d
D(u)
u2 + 1

+ D(v0). (12)

So (5) can be rewritten as

D(v0) +
D(a)

a
+

λ∑

j=1

cj
D(fj)

fj
=

D(b)
b2 + 1

+ d
D(u)
u2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

. (13)

If d, 1, d1, . . . , dµ are Q-linear independent, then, by (11), the induction hypothesis can
be directly applied to (13), which yields that D(a)

a is a derivative of some element of k. If d
is Q-linearly dependent on 1, d1, . . . , dµ, then there exist ξ, ξ` and nonzero η in Z such that

d =
ξ

η
+

µ∑

`=1

ξ`

η
d`. (14)



122 Chen, Feng, Li and Wang

Substituting the right hand-side of (14) for d into (13) yields

D(ηv0) +
D(aη)

aη
+

λ∑

j=1

cj

D(fη
j )

fη
j

= η
D(b)
b2 + 1

+ ξ
D(u)
u2 + 1

+
µ∑

`=1

d`

(
ξ`

D(u)
u2 + 1

+
D(g`)
g2
` + 1

)
.

Again, (6) allows us to derive from the above equation that

D(ηv0) +
D(aη)

aη
+

λ∑

j=1

cj

D(fη
j )

fη
j

=
D(p)
p2 + 1

+
µ∑

`=1

d`
D(q`)
q2
` + 1

.

for some p, q1, . . . , qµ ∈ k. Applying the induction hypothesis to this equation yields that D(aη)
aη

is a derivative of some element in k, and so is D(a)
a . This completes the induction for the

arc-tangent case.

Exponential Case: Suppose that D(t) = D(u)t for some u ∈ k with u 6= 0. The special
polynomials in k[t] are either elements in k or monomials in t (see the table in Section 2.).
By the second assertion of Lemma 3, both num(a) and den(a) are special. Thus a = ãtα

with ã ∈ k and α ∈ Z. It follows that

D(a)
a

=
D(ã)

ã
+ α

D(t)
t

=
D(ã)

ã
+ αD(u). (15)

In the same vein, for j = 1, . . . , µ,

D(fj)
fj

=
D(f̃j)

f̃j

+ αjD(u) for some f̃j ∈ k and αj ∈ Z. (16)

Since u is in k, (15) and (16) imply that

D(a)
a

,
D(f1)

f1
, . . . ,

D(fλ)
fλ

∈ k. (17)

We are going to show that
b, g1, . . . , gµ ∈ k. (18)

By the first assertion of Lemma 3, (5) implies (3). The second assertion then implies that B =
num(b)− i ·den(b) is special in k(i)[t]. Thus, B = (h1− ih2)tβ for some h1, h2 ∈ k and β ∈ Z.
Since i is not in k[t], num(b) and den(b) are equal to h1t

β and h2t
β , respectively. Since num(b)

and den(b)) are co-prime, β is zero, and thus b is in k. The same argument concludes that
the g` are all in k.

Now, we show that v is in k. It follows from (5), (17) and (18) that D(v) is in k. The
second assertion of Lemma 3 implies that den(v) = tγ for some γ ∈ N. If γ is nonzero, then
νt(v) less than zero, and so is νt(D(v)) by the last assertion of Lemma 1, which contradicts
with the fact that D(v) is in k. Thus v is in k[t]. Suppose that the degree ε of v is greater
than zero. Write

v = rtε + terms in which t has degree less than ε,
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with r ∈ k and r 6= 0. Then

D(v) = (D(r) + εrD(u))tε + terms in which t has degree less than ε.

It follows from the fact D(v) ∈ k that

D(r) + rεD(u) = D(r) + εr
D(t)

t
= r · D (rtε)

rtε
= 0.

Consequently, rtε is in C, and, thus, t is algebraic over k, a contradiction. This proves that v
is in k.

Set w = v +
(
α +

∑λ
j=1 αjcj

)
u. From (15) and (16) we rewrite (5) as

D(w) +
D(ã)

ã
+

λ∑

j=1

cj
D(f̃j)

f̃j

=
D(b)
b2 + 1

+
µ∑

`=1

d`
D(g`)
g2
` + 1

.

By (15), (16), (17) and (18) and the definition of w, we see that w, ã, b̃, the f̃j and the g̃` are
all in k. By the induction hypothesis there exists r̃ in k such that D(ã)

a = D(r̃). It follows
from (15) that

D(a)
a

= D(r̃) + αD(u) = D(r̃ + αu).

This completes our induction for the exponential case.

Tangent Case: Suppose that D(t) = D(u)(t2 +1) for some u ∈ k with D(u) 6= 0. We proceed
along in the same line as in the exponential case. The set of the monic and irreducible special
polynomials in k[t] is {1, t2 + 1} (see the table in Section 2.). By the second assertion of
Lemma 3, both num(a) and den(a) are special in k[t]. Thus a = ã(t2 + 1)α with ã ∈ k
and α ∈ Z. It follows that

D(a)
a

=
D(ã)

ã
+ 2α · D(t)

t2 + 1
· t =

D(ã)
ã

+ 2αD(u)t. (19)

In the same vein, for j = 1, . . . , µ,

D(fj)
fj

=
D(f̃j)

f̃j

+ 2αjD(u)t for some f̃j ∈ k and αj ∈ Z. (20)

Since u is in k, (19) and (20) imply that

D(a)
a

,
D(f1)

f1
, . . . ,

D(fλ)
fλ

∈ k[t]. (21)

We are going to show that the right hand-side of (5) is an element in k. Recall that the
special polynomials in k(i)[t] are either elements of k(i) or monomials in t−i and t+i over k(i).
(see the table in Section 2.). Let B = num(b)− i ·den(b) and B̄ = num(b)+ i ·den(b). By the
second assertion of Lemma 3 both B and B̄ are special. Since B and B̄ are co-prime (see the
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first assertion of Lemma 3), So we may assume w.l.o.g. that B = z(t− i)β and B̄ = z̄(t+ i)β ,
where z = z1 + z2i and z1, z2 ∈ k. We compute

D(B)
B − D(B̄)

B̄
= D(z)

z + β D(t−i)
t−i − D(z̄)

z̄ − β D(t+i)
t+i

= D(z)
z + β D(u)(t2+1)

t−i − D(z̄)
z̄ − β D(u)(t2+1)

t+i

= D(z)
z − D(z̄)

z̄ + 2iβD(u)

= 2i D(y)
y2+1

+ 2iβD(u), where y =
{

z1/z2 if z2 6= 0
0 otherwise.

Thus
1
2i

(
D(B)

B
− D(B̄)

B̄

)
=

D(y)
y2 + 1

+ βD(u) for some y ∈ k. (22)

Similarly, we have, for all ` with 1 ≤ ` ≤ µ,

1
2i

(
D(G`)

G`
− D(Ḡ`)

Ḡ`

)
=

D(y`)
y2

` + 1
+ β`D(u) for some y` ∈ k. (23)

Thus, both 1
2i

(
D(B)

B − D(B̄)
B̄

)
and 1

2i

(
D(G`)

G`
− D(Ḡ`)

Ḡ`

)
belong to k. Consequently, the right

hand-side of (3) is an element in k, so is that of (5).
Next, we show that v is in k. By (5), (21) and the conclusion made in the preceding

paragraph, D(v) is in k[t]. Since den(v) is special by Lemma 3, den(v) equals (t2 + 1)γ for
some γ ∈ N. If γ is nonzero, then νt2+1(v) is less than zero, and so is νt2+1(D(v)) by the
last assertion of Lemma 1, which contradicts with the fact that D(v) is in k[t]. Thus v is
also in k[t]. If the degree of v is greater than zero, then that of D(v) is greater than one
by a straightforward calculation. On the other hand, (19) and (20) implies that the degree
of D(v) is at most one, a contradiction.

By the conclusions made in the preceding two paragraphs, (5) implies that

D(a)
a

+
λ∑

j=1

cj
D(fj)

fj

belongs to k. It follows from (19) and (20) that D(u)
(
α +

∑λ
j=1 cjαj

)
= 0. Since D(u) 6= 0,

we have that α +
∑λ

j=1 cjαj = 0. Thus α = α1 = · · · = αλ = 0, because the con-
stants 1, c1, . . . , cλ are linearly independent over Q. Accordingly, (19) and (20) become

D(a)
a

=
D(ã)

ã
and

D(fj)
fj

=
D(f̃j)

f̃j

, (24)

respectively. By these two equations, (22) and (23) we rewrite (5) as

D




v − βu−
µ∑

`=1

β`u

︸ ︷︷ ︸
q




+
D(ã)

ã
+

λ∑

j=1

D(f̃j)
f̃j

=
D(y)
y2 + 1

+
µ∑

`=1

D(y`)
y2

` + 1
.



Real elementary functions 125

Since q, ã, f̃j , y, y` are all in k, we can apply the induction hypothesis to the above equation
to conclude that D(ã)

ã is a derivative of some element in k, and so is D(a)
a by (24). This

completes the induction for the tangent case. 2

We are ready to complete Exercise 9.3 under the additional assumption that

K = C(x)(t1, t2, . . . , tn),

where ti is real elementary and transcendental over C(x)(t1, . . . , ti−1) for all i with 1 ≤ i ≤ n.
Set v = 1 and λ = µ = 0. Then (5) in Lemma 4 becomes (1). Suppose on the con-

trary that i is not in C. Then, by Lemma 4, D(a)
a would be a derivative of some element

in K, contradiction. Suppose that there exists an integer m in the intersection of LK/C(x)

and AK/(C(x). Then

tm =
D(a)

a
and tm =

D(b)
b2 + 1.

It follows that (1) holds, so i is in C, that is, C is not a real field.
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