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1. Introduction

Given a sum Um := ∑∞
n=0 um,n to be computed, creative telescoping is a process that determines 

a recurrence in m satisfied by the univariate sequence U = (Um) from a system of recurrences in 
m and n satisfied by the bivariate summand u = (um,n). A natural counterpart exists for integration. 
Algorithmic research on this topic has been initiated by Zeilberger in the early 1980s, leading in the 
1990s to creative-telescoping algorithms for summands and integrands described by first-order linear 
equations, i.e., for hypergeometric terms and hyperexponential functions (Zeilberger, 1990a, 1991; 
Almkvist and Zeilberger, 1990).

The termination problem of Zeilberger’s algorithms has been extensively studied in the last two 
decades (Wilf and Zeilberger, 1992b; Abramov and Le, 2002; Abramov, 2003; Chen et al., 2005) and 

✩ In this work, S. Chen was supported by the NSF grant CCF-1017217 and NSFC No. 60821002/F02. F. Chyzak was supported in 
part by the Microsoft Research–INRIA Joint Centre. G. Fu, R. Feng and Z. Li were supported in part by NKBRPC (2011CB302400) 
and two grants of NSFC No. 60821002/F02 and No. 10901156.

E-mail addresses: schen@amss.ac.cn (S. Chen), frederic.chyzak@inria.fr (F. Chyzak), ryfeng@amss.ac.cn (R. Feng), 
fuguofeng@mmrc.iss.ac.cn (G. Fu), zmli@mmrc.iss.ac.cn (Z. Li).
http://dx.doi.org/10.1016/j.jsc.2014.08.005
0747-7171/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2014.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:schen@amss.ac.cn
mailto:frederic.chyzak@inria.fr
mailto:ryfeng@amss.ac.cn
mailto:fuguofeng@mmrc.iss.ac.cn
mailto:zmli@mmrc.iss.ac.cn
http://dx.doi.org/10.1016/j.jsc.2014.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2014.08.005&domain=pdf


2 S. Chen et al. / Journal of Symbolic Computation 68 (2015) 1–26
can be related to existence problems for other operations, like the computation of diagonals (Lipshitz, 
1988). The main output of creative telescoping is the recurrence on the sum U . It is called a telescoper
for u. Zeilberger’s algorithms terminate if and only if telescopers exist, whence the interest to discuss 
their existence. Zeilberger (1990b) shows that holonomicity, a notion borrowed from the theory of 
D-modules, implies the existence of telescopers. In particular, the fundamental theorem in Wilf and 
Zeilberger (1992a) states that telescopers always exist for proper hypergeometric terms. However, 
holonomicity is merely a sufficient condition, i.e., there are cases in which the input functions are not 
holonomic (proper) but Zeilberger’s algorithms still terminate, see Chyzak et al. (2009). Therefore, a 
challenging problem is to find a necessary and sufficient condition that enables us to determine the 
existence of telescopers.

In view of the theoretical difficulty, special attention has been focused on the subclass of hyperge-
ometric terms, hyperexponential functions, and mixed hypergeometric terms (see Definition 2.8). In 
the continuous case, the results by Bernšteı̆n (1971), Kashiwara (1978), Lipshitz (1988) and Takayama
(1992) show that every hyperexponential function has a telescoper. This implies that Zeilberger’s al-
gorithm always succeeds on hyperexponential inputs. However, the situation in other cases turns out 
to be more involved. In the discrete case, the first complete solution to the termination problem has 
been given by Le (2001) and Abramov and Le (2002), by deciding whether there exists a telescoper for 
a given bivariate rational sequence in the (q)-discrete variables m and n. According to their criterion, 
the rational sequence (1/(m2 + n2))m,n∈Z+ , has no telescoper. The criterion has been extended to the 
general case of bivariate hypergeometric terms by Abramov (2002, 2003). He proved that a hypergeo-
metric term can be written as a sum of a hypergeometric-summable term and a proper one if it has 
a telescoper, see Abramov (2003, Theorem 10). Similar results have been obtained in the q-discrete 
case by Chen et al. (2005).

Almkvist and Zeilberger (1990) presented a continuous–discrete analogue of creative telescoping. 
This analogue is useful in the study of orthogonal polynomials (Koepf, 1998, Chapters 10–13). In 
analogy with the discrete case, not all mixed hypergeometric terms have telescopers. Therefore, an 
Abramov-like criterion is also needed in the mixed case.

In order to unify the various cases of mixed rational terms, Chen and Singer (2012) recently pre-
sented a criterion that is based on residue analysis for the existence of telescopers for bivariate 
rational functions. In the present paper, we give a criterion, Theorem 6.3, on the existence of tele-
scopers for mixed hypergeometric terms, including continuous–discrete, continuous–q-discrete and 
discrete–q-discrete terms. The criterion determines whether Zeilberger’s algorithms for mixed hyper-
geometric terms terminate. Moreover, the non-existence of telescopers makes us able to verify that 
some indefinite sums do not satisfy any polynomial differential equation. See Hardouin and Singer
(2008), Schneider (2010) and Example 6.8 in this paper.

The rest of this paper is organized as follows. An algebraic setting for mixed hypergeometric terms 
is described in Section 2, and the existence problem of telescopers is stated in Section 3. In Section 4, 
we define the two notions of exact and proper terms, and we describe two kinds of decompositions: 
additive and structural. These notions and decompositions are crucial for establishing our criterion. 
A necessary condition on the existence of telescopers is presented in Section 5. The criterion is given 
in Section 6, which is based on the fundamental theorem in Wilf and Zeilberger (1992a). Appendix A
contains a detailed proof of the fundamental theorem in the mixed setting (Theorem 6.1).

2. Preliminaries

The goal of this section is to present an algebraic setting for mixed hypergeometric terms in 
continuous–discrete, continuous–q-discrete, and discrete–q-discrete cases.

Throughout the paper, we let k be an algebraically closed field of characteristic zero, and q be 
a nonzero element of k. Assume further that q is not a root of unity. Let k(x, y) be the field of 
rational functions in x and y over k. For an element f ∈ k(x, y), the denominator and numerator of f
are denoted by den( f ) and num( f ), respectively. They are two coprime polynomials in k[x, y], and 
numerators are monic with respect to a pre-selected term order.

This section contains three subsections. In Section 2.1, we describe a field that will serve as ground 
field in our subsequent algebraic constructions, and we define a (noncommutative) ring of Ore poly-
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nomials whose elements will be regarded as linear functional operators. In Section 2.2, we describe 
a (commutative) ring extension of the ground field, and recall from Chen et al. (2011) the notion of 
compatible rational functions. In Section 2.3, we define the notion of mixed hypergeometric terms 
that occur in the study of existence of telescopers. The terms are contained in the ring extension 
described in the previous subsection.

2.1. Fields endowed with a pair of operators

Let δx = ∂/∂x be the usual derivation with respect to x, and δy = ∂/∂y be that with respect to y. 
For an element f ∈ k(x, y), we define the shift operators σx and σy as

σx
(

f (x, y)
) = f (x + 1, y) and σy

(
f (x, y)

) = f (x, y + 1),

respectively, and q-shift operators τx and τy as

τx
(

f (x, y)
) = f (qx, y) and τy

(
f (x, y)

) = f (x,qy),

respectively. To describe the mixed cases concisely, we introduce the following notation.

Convention 2.1. Set Θ := {δx, σx, τx} ×{δy, σy, τy} \{(δx, δy), (σx, σy), (τx, τy)}. A pair (θx, θy) is always 
assumed to be in Θ , and is called a mixed pair of operators.

Note that θx ◦ θy( f ) = θy ◦ θx( f ) for all f ∈ k(x, y). In the sequel, k(x, y) is usually endowed with 
a mixed pair (θx, θy) of operators. The resulting structure is denoted as (k(x, y), (θx, θy)). Given a 
field (k(x, y), (θx, θy)), one can define a ring of Ore polynomials (Chyzak and Salvy, 1998), which 
we denote here by k(x, y)〈∂x, ∂y〉. Its commutation rules are ∂x∂y = ∂y∂x and, for every f ∈ k(x, y)

and z ∈ {x, y}, ∂z f = f ∂z + θz( f ) if θz = δz; and ∂z f = θz( f )∂z if θz ∈ {σz, τz}.
According to the different choices of operator pairs in Θ , the associated Ore rings correspond to 

the rings of linear differential-difference, differential-q-difference, and difference-q-difference opera-
tors, respectively. Telescopers to be studied in the sequel are regarded as elements of associated Ore 
rings. Since telescopers need to be studied type by type, we denote ∂x by Dx , Sx and Tx when θx is 
chosen to be δx , σx and τx , respectively. The same convention applies when x is replaced by y. These 
fields and associated Ore rings are illustrated in Table 2.3.

Remark 2.2. Table 2.3 contains three choices, although there are six distinct mixed pairs of operators 
in Θ . This is because the last three pairs can be identified with the first three when the indetermi-
nates x and y are switched.

2.2. Linear functional operators and compatible rational functions

A first-order mixed linear-functional system is of the form{
θx(z) = az,
θy(z) = bz, (1)

where (θx, θy) ∈ Θ and a, b ∈ k(x, y). For brevity, we call (1) a first-order mixed system.

Table 2.3
Ground fields and rings of Ore polynomials.

Choice (θx, θy) Ground field (k(x, y), (θx, θy)) Associated Ore ring k(x, y)〈∂x, ∂y〉
(δx, σy) (k(x, y), (δx, σy)) k(x, y)〈Dx, S y〉
(δx, τy) (k(x, y), (δx, τy)) k(x, y)〈Dx, T y〉
(σx, τy) (k(x, y), (σx, τy)) k(x, y)〈Sx, T y〉
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Example 2.4. Let (θx, θy) = (δx, σy), a = y/x and b = −x. The system (1) becomes{
δx(z) = y

x z,
σy(z) = −xz.

It is straightforward to verify that the expression (−x)y solves this mixed system. Moreover, this 
system does not have any nonzero rational solution in k(x, y): if it had, we could write such a solution 
in the form

z = P

Q
= pm ym + · · · + p0

qn yn + · · · + q0
, where pi and q j are in k(x) with pmqn �= 0.

By the equality σy(z) = −xz, we have σy(P )Q = −xPσy(Q ). Equating the leading coefficients with 
respect to y yields pmqn = −xpmqn , which implies that x = −1. This is a contradiction with the 
assumption that x is transcendental over k.

The example given above shows that solving a mixed system generally requires to extend the 
field k(x, y). This motivates us to consider ring extensions of k(x, y) endowed with a mixed pair of 
operators.

Definition 2.5. For a pair (θx, θy) ∈ Θ , we call a tuple (R, (θ̄x, θ̄y)) a ring extension of (k(x, y), (θx, θy))

if the following conditions are satisfied.

(i) R is a commutative ring containing k(x, y).
(ii) θ̄x : R → R is an extension of θx , and θ̄y : R → R is an extension of θy .

(iii) θ̄x is a derivation on R if θx = δx , and it is a monomorphism if θx = σx or θx = τx .
(iv) θ̄y is a derivation on R if θy = δy , and it is a monomorphism if θy = σy or θy = τy .
(v) θ̄x and θ̄y commute.

Moreover, such a ring extension is said to be simple if there does not exist any ideal I of R such 
that θ̄x(I) ⊂ I and θ̄y(I) ⊂ I except for I = R and I = {0}.

Without any possible ambiguity, we denote the operators θ̄x and θ̄y obtained as in the definition 
given above by θx and θy , respectively. The reader may find more general ring extensions endowed 
with derivations, shift and q-shift operators, potentially with respect to the same variable, in Hardouin 
and Singer (2008).

Let L = ∑
i, j ai, j∂

i
x∂

j
y be an Ore polynomial in k(x, y)〈∂x, ∂y〉, where k(x, y) is endowed with a 

mixed pair (θx, θy) of operators. Let (R, (θx, θy)) be a ring extension of (k(x, y), (θx, θy)). The applica-
tion of L to an element r ∈ R is defined to be

L(r) =
∑
i, j

ai, jθ
i
x ◦ θ

j
y(r).

So an Ore polynomial can be viewed as a linear functional operator on R . One can verify that mul-
tiplication of Ore polynomials and composition of linear functional operators are compatible, that is, 
(L1L2)(r) = L1(L2(r)) for L1, L2 ∈ k(x, y)〈∂x, ∂y〉 and r ∈ R .

We are about to define the constants of a given field (k(x, y), (θx, θy)), by describing them in a 
uniform way as the solutions of specific operators. Define

�x := ∂x − ∂x(1) =
{

Dx if θx = δx,

Sx − 1 if θx = σx,

Tx − 1 if θx = τx.

(2)

We define �y similarly by replacing x with y. An element c ∈ R is then called a constant with 
respect to the pair (θx, θy) if

�x(c) = �y(c) = 0.
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One can easily verify that c ∈ k(x, y) is a constant with respect to (θx, θy) if and only if c is an element 
of k.

Given a system of the form (1), a basic question is whether there exists a ring extension 
(R, (θx, θy)) containing a nonzero solution of the system. This question is related to compatibility 
conditions of (1).

Let k(x, y) be endowed with a mixed pair (θx, θy) of operators. If system (1) has a nonzero solution 
h in a ring extension (R, (θx, θy)), then θy ◦ θx(h) = θx ◦ θy(h) by the commutativity of θx and θy . In 
addition, if θx , resp. θy , is a monomorphism, then a, resp. b, is nonzero. So (1) satisfies the following 
compatibility conditions:⎧⎪⎨

⎪⎩
δx(b)

b = σy(a) − a and b �= 0 if (θx, θy) = (δx,σy),

δx(b)
b = τy(a) − a and b �= 0 if (θx, θy) = (δx, τy),

σx(b)
b = τy(a)

a and ab �= 0 if (θx, θy) = (σx, τy),

(3)

if it has a nonzero solution in a ring extension of (k(x, y), (θx, θy)).

Remark 2.6. The compatibility conditions corresponding to the other three mixed pairs of operators 
in Θ can be obtained by swapping x with y and a with b in (3).

Definition 2.7. Let (a, b) ∈ k(x, y) × k(x, y) and (θx, θy) ∈ Θ . We say that a and b are compatible with 
respect to (θx, θy) if the compatibility conditions corresponding to (θx, θy) in (3) and Remark 2.6 are 
satisfied.

A first-order mixed system of the form (1) is said to be compatible if its coefficients a and b are 
compatible with respect to (θx, θy). Conversely, given a compatible mixed system of the form (1), 
Theorem 2 in Bronstein et al. (2005) implies that there exists a simple ring extension (R, (θx, θy))

of (k(x, y), (θx, θy)) containing a nonzero solution of (1). Moreover, under the assumption that k is 
algebraically closed, R contains no new constant other than the elements of k. Such a simple ring is 
called a Picard–Vessiot extension associated to (1).

2.3. Mixed hypergeometric terms

Hypergeometric terms are a common abstraction of geometric terms, factorials, and binomial co-
efficients. They play an important role in combinatorics. The continuous analogue of hypergeometric 
terms is hyperexponential functions: they generalize usual exponential functions and simple radicals. 
In this paper, we will consider a class of functions in x and y that are solutions of first-order mixed 
systems, and are therefore intermediate objects between hypergeometric terms and hyperexponential 
functions.

Definition 2.8. Let k(x, y) be a field endowed with a mixed pair (θx, θy) of operators. Assume that 
(R, (θx, θy)) is a simple ring extension of (k(x, y), (θx, θy)), and that the set of constants in R is equal 
to k. A nonzero element h of R is called a mixed hypergeometric term over (k(x, y), (θx, θy)) if there 
exist a, b ∈ k(x, y) such that

θx(h) = ah and θy(h) = bh.

We call a the certificate of h with respect to θx, and b the certificate with respect to θy .

The certificates of a mixed term are compatible rational functions, because θx and θy commute. For 
brevity, a mixed hypergeometric term will be called a mixed term in the sequel. Viewing mixed terms 
in an abstract ring allows us to compute their sums, products and inverses legitimately. Moreover, we 
will never encounter any analytic considerations, such as singularities and the regions of definition. 
This choice will not do any harm, as the problem we are dealing with is purely algebraic.
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We recall some basic facts about mixed terms in this ring setting. These facts are scattered in the 
literature. We summarize them for the convenience of later references.

The first lemma says that all mixed terms form a multiplicative group, and that two mixed terms 
with the same certificates differ by a multiplicative constant.

Lemma 2.9. Let the ring extension (R, (θx, θy)) be given as in Definition 2.8.

(i) The product of mixed terms is a mixed term, and every mixed term is invertible.
(ii) If two mixed terms have the same certificates, then their ratio belongs to k.

Proof. (i) The closure under product follows from simple calculations with certificates. Now, let h be 
a mixed term in R , and I be the ideal generated by h in R . Then θx(h) and θy(h) belong to I . It follows 
that θx(I) ⊂ I and θy(I) ⊂ I . Since R is simple and h is nonzero, I = R , that is, 1 ∈ I . Consequently, h
is invertible.

(ii) Let h1 and h2 be two mixed terms in R . If they have the same certificates, then h1/h2 is a 
constant by a straightforward calculation, that is to say, h1 = ch2 for some c ∈ k. �

By the second assertion of Lemma 2.9, two mixed terms having the same certificates differ by a 
multiplicative constant. These constants are irrelevant to the main result of this paper. So we intro-
duce a notation to suppress them.

Let h be a mixed term in R with θx-certificate a and θy-certificate b. Set

H(a,b) = {ch | c ∈ k}.
The set consists of zero and mixed terms in R whose respective certificates are a and b. 
Clearly, H(a, b) is a one-dimensional linear subspace over k. In the sequel, whenever the no-
tation H(a, b) is used, a and b are assumed to be compatible rational functions in k(x, y), 
and H(a, b) ⊂ R . In particular, for a nonzero rational function f ∈ k(x, y), the set f H(a, b) is a subset 
of R . Indeed, it is the one-dimensional linear subspace spanned by f h over k. By the definition of 
certificates, we have

θx
(
H(a,b)

) = aH(a,b) and θy
(
H(a,b)

) = bH(a,b).

Let h′ be another mixed term in R with θx-certificate a′ and θy-certificate b′ . Define

H(a,b)H
(
a′,b′) = {

gg′ ∣∣ g ∈ H(a,b), g′ ∈ H
(
a′,b′)},

which is equal to the one-dimensional linear subspace spanned by hh′ over k.
More rules for manipulating H(a, b) are given below. They are used for computing the certificates 

of the product of two mixed terms.

Lemma 2.10. For a field (k(x, y), (θx, θy)), we let H(a, b) and H(a′, b′) be given as above, and let f be a 
nonzero rational function in k(x, y).

(i) If θx = δx, then

f H(a,b) = H
(

a + θx( f )

f
,b

θy( f )

f

)
and H(a,b)H

(
a′,b′) = H

(
a + a′,bb′).

(ii) If θy = δy , then

f H(a,b) = H
(

a
θx( f )

f
, b + θy( f )

f

)
and H(a,b)H

(
a′,b′) = H

(
aa′,b + b′).
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(iii) If either (θx, θy) = (σx, τy) or (θx, θy) = (τx, σy), then

f H(a,b) = H
(

a
θx( f )

f
, b

θy( f )

f

)
and H(a,b)H

(
a′,b′) = H

(
aa′,bb′).

Proof. Let h be a mixed term in H(a, b).
(i) Assume that θx = δx and θy ∈ {σy, τy}. It is straightforward to verify that the θx-certificate 

and θy-certificate of f h are a + θx( f )/ f and bθy( f )/ f , respectively. Assume further that h′ ∈H(a′, b′)
with hh′ �= 0. Then the θx-certificate of hh′ is a + a′ , and its θy-certificate is bb′ . It follows 
that H(a, b)H(a′, b′) ⊂ H(a + a′, bb′). Equality is then a consequence of the two sets being one-
dimensional vector spaces. This proves part (i).

Parts (ii) and (iii) can be proved in a similar way. �
Two mixed terms h1 and h2 are said to be similar if the ratio h1/h2 is in k(x, y) \ {0}. Similarity is 

an equivalence relation. When studying the existence of telescopers, we will encounter at most finitely 
many mixed terms that are dissimilar to each other. These terms can be regarded as elements in a 
simple ring extension, because a finite number of Picard–Vessiot extensions associated to compatible 
first-order mixed systems can be embedded into a simple ring (Li et al., 2006, §2.2). From now on, 
we assume that R is given as in Definition 2.8. It will be sufficient to consider mixed terms in R .

The next lemma shows that the set consisting of zero and mixed terms similar to each other form 
a linear space over k(x, y), which is closed under the application of every linear functional operator 
in k(x, y)〈∂x, ∂y〉.

Lemma 2.11. Let g and h be two mixed terms over (k(x, y), (θx, θy)). If g and h are similar, then

(i) g + h is either equal to zero or similar to h;
(ii) for any L ∈ k(x, y)〈∂x, ∂y〉, L(h) is either equal to zero or similar to h.

Proof. (i) Let r ∈ k(x, y) be equal to g/h. Then g + h = (r + 1)h.
(ii) Since h is a mixed term, its successive derivatives and (q-)shifts are either equal to zero or 

similar to h. So L(h) is either equal to zero or similar to h by part (i). �
Remark 2.12. Let h, h1, h2 be three mixed terms. If h = h1 + h2, then the three terms are similar, 
because the sum of two dissimilar mixed terms is not a mixed term.

The next two examples illustrate how a linear differential or recurrence operator applies to mixed 
terms similar to a given one. The results will be used for establishing our criterion.

Example 2.13. Consider how to apply Di
x to rh, where r is a rational function in k(x, y) and h is a 

mixed term in H(u, v) for some u, v ∈ k(x, y).
First, Dx(rh) = (δx(r) + ru)h. Putting L1 = Dx + u, we rewrite the above relation as Dx(rh) = L1(r)h.
An easy induction shows that

Di
x(rh) = Li(r)h,

where Li = (Dx + u)i ∈ k(x, y)〈Dx〉 has coefficients whose common denominators divide some power 
of den(u). Moreover, the denominator of Li(r) divides (den(u) den(r))i+1.

Example 2.14. Consider how to apply Si
x to rh, where r and h are the same as those in the above 

example.
Let Mi = (

∏i−1
j=0 σ

j
x (u))Si

x for i > 0. Then an easy induction shows that

Si
x(rh) = Mi(r)h.

A similar result holds when the shift operator Sx is replaced by the q-shift operator Tx .
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3. Telescopers for mixed hypergeometric terms

The method of creative telescoping was first formulated and popularized in a series of papers 
by Zeilberger and his collaborators in the early 1990s (Almkvist and Zeilberger, 1990; Zeilberger, 
1990a, 1990b, 1991; Wilf and Zeilberger, 1992a). To illustrate the idea of this method, we consider 
the problem of finding a linear recurrence equation for the integral (if there exists one):

H(x) :=
+∞∫
0

h(x, y)dy,

where h(x, y) is a mixed term over (k(x, y), (σx, δy)). Suppose that all integrals occurring in the 
derivation below are well-defined. The key step of creative telescoping tries to find a nonzero lin-
ear recurrence operator L(x, Sx) in k(x)〈Sx〉 such that

L(x, Sx)(h) = D y(g), (4)

for some mixed term g over k(x, y).
Applying the integral sign to both sides of (4) yields

L(x, Sx)
(

H(x)
) = g(x,+∞) − g(x,0).

This implies that L(x, Sx) is indeed the recurrence relation satisfied by H(x) under certain nice bound-
ary condition, say g(x, +∞) = g(x, 0). For example, consider the integral

A(x) =
+∞∫
0

yx−1 exp(−y)dy.

The differential variant of Zeilberger’s algorithm in Almkvist and Zeilberger (1990) delivers a pair 
(L, g) with

L = Sx − x and g = −yx exp(−y).

Note that, if x > 0, then g(x, +∞) = g(x, 0) = 0, which implies that

L
(

A(x)
) = A(x + 1) − xA(x) = 0.

So we recognize the solution A(x) = Γ (x) since the initial value A(1) is equal to 1. For more inter-
esting examples, see the appendix of Almkvist and Zeilberger (1990) or the book by Koepf (1998, 
Chapters 10–13).

Definition 3.1. Let h be a mixed term over (k(x, y), (θx, θy)). A nonzero linear operator L(x, ∂x) ∈
k(x)〈∂x〉 is called a telescoper of type (∂x, ∂y) for h if there exists another mixed term g such that

L(x, ∂x)(h) = �y(g). (5)

Alternatively, the mixed term h is said to be telescopable of type (∂x, ∂y) if it has a telescoper of type 
(∂x, ∂y).

For a given mixed term, when does a telescoper of certain type exist? And how can one con-
struct telescopers? These are two basic problems related to the method of creative telescoping. In the 
subsequent sections, we will answer the first one for the mixed cases. More precisely, we solve the 
following problem, which is equivalent to the termination problem of creative-telescoping algorithms 
for mixed inputs.

Existence problem for telescopers. For a mixed term h over (k(x, y), (θx, θy)), find a necessary and 
sufficient condition on the existence of telescopers of type (∂x, ∂y) for h.
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Remark 3.2. For a mixed term h, the existence of a telescoper of type (∂x, ∂y) does not imply the 
existence of a telescoper of type (∂y, ∂x) (see Example 6.4).

Remark 3.3. By Lemma 2.11, the mixed term g in (5) is similar to h if �y(g) is nonzero. Otherwise, 
g can be chosen to be 1.

4. Exact and proper terms

To study the existence problem for telescopers, we need two key notions: exact terms and proper 
terms. They are related to additive and multiplicative decompositions of mixed terms, respectively.

This section contains three subsections. In Section 4.1, we define the notion of exact terms and de-
scribe an additive decomposition of mixed terms, based on the additive decompositions for univariate 
(q)-hypergeometric terms and hyperexponential functions in Abramov and Petkovšek (2002b), Geddes 
et al. (2004), Chen et al. (2005). In Section 4.2, we recall the notion of split polynomials from Chen
(2011) and that of spread polynomials from Abramov (2003), and describe a relation among the two 
notions and exact terms. In Section 4.3, we recall a multiplicative decomposition of mixed terms from 
Chen et al. (2011), define the notion of proper terms, and study how to decide whether a mixed term 
is proper.

4.1. Exact terms and additive decompositions

For a univariate hypergeometric term H(y), the Gosper algorithm (Gosper, 1978) decides whether 
it is hypergeometric-summable (also known as Gosper-summable) with respect to y, i.e., whether 
H = (S y − 1)(G) for some hypergeometric term G . Based on the Gosper algorithm, Zeilberger (1990a, 
1990b) developed his fast version of creative-telescoping algorithms for bivariate hypergeometric 
terms. Almkvist and Zeilberger (1990) presented a continuous analogue of the Gosper algorithm for 
deciding the hyperexponential integrability, which leads to a fast algorithm for hyperexponential tele-
scoping. From the viewpoint of creative telescoping, the Gosper algorithm and its continuous analogue 
decide whether the identity operator, 1, is a telescoper for the inputs.

The following notion of exact terms is motivated in the differential case by the existence of an 
underlying exact form. This differential-form point of view was taken in Chen et al. (2012) recently.

Definition 4.1. Let h be a mixed term over (k(x, y), (θx, θy)). We say that h is exact with respect to ∂x

if there exists a mixed term g such that h = �x(g), where �x is defined in (2). An exact term with 
respect to ∂y is defined likewise.

Remark 4.2. In Abramov and Petkovšek (2002b) and Geddes et al. (2004), an exact term is traditionally 
called a (q-)hypergeometric-summable term in the (q-)discrete case, and a hyperexponential-integrable
function in the continuous case, respectively. For each choice of ∂x in {Dx, Sx, Tx}, it is clear that every 
exact term with respect to ∂y has a telescoper of type (∂x, ∂y): for instance 1 is such a telescoper.

The next notion to be introduced, related to exact terms, is that of additive decompositions. An 
algorithm by Abramov and Petkovšek (2002b) decomposes a hypergeometric term H(y) into the 
sum �y(H1) + H2, where H2 is minimal in some sense. Such a decomposition is called an additive 
decomposition for H with respect to y. Abramov and Petkovšek’s algorithm generalizes the capability 
of the Gosper algorithm in the sense that H is hypergeometric-summable if and only if H2 is zero. In 
the continuous case, an algorithm to decompose a hyperexponential function H(y) as D y(H1) + H2, 
where H1 and H2 are either zero or hyperexponential, is part of the proof of Lemma 4.2 in Davenport
(1986). This remained unknown to Geddes et al. (2004), who later described a similar additive de-
composition as a continuous analogue of Abramov and Petkovsek’s algorithm, but also prove that 
H2 satisfies certain minimality requirements. Based on the continuous analogue, Bostan et al. (2013)
presented a reduction algorithm that decomposes a hyperexponential function into the sum of an 
integrable one and a non-integrable one in a unique way. On the other hand, a q-discrete analogue 
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is presented in Chen et al. (2005). When H is a rational function, additive decompositions are more 
classical; they were presented by Ostrogradskiı̆ (1845) and Hermite (1872) for the continuous case, 
and by Abramov (1975, 1995) for the discrete and q-discrete cases.

For a mixed term h over (k(x, y), (θx, θy)), we can perform three kinds of additive decomposi-
tions with respect to y according to the choice of θy . We recall now the notions related to additive 
decompositions.

Definition 4.3. Let K be a field of characteristic zero, and a be a nonzero polynomial in K [z]. De-
note by δz , σz , and τz the usual derivation, shift and q-shift operators with respect to z on K (z), 
respectively.

(i) a is said to be δz-free, or squarefree, if gcd(a, δz(a)) = 1.
(ii) a is said to be σz-free, or shift-free, if gcd(a, σ i

z(a)) = 1 for every nonzero integer i.
(iii) Let a = zmã with ã ∈ K [z] and z � ã. Then a is said to be τz-free, or q-shift-free, if

gcd
(
ã, τ i

z(ã)
) = 1 for every nonzero integer i.

Moreover, let f be a nonzero rational function in K (z). Set a = num( f ) and b = den( f ).

(iv) f is said to be δz-reduced if gcd(b, a − iδz(b)) = 1 for all i ∈ Z;
(v) f is said to be σz-reduced if gcd(b, σ i

z(a)) = 1 for all i ∈ Z; and
(vi) f is said to be τz-reduced if gcd(b, τ i

z(a)) = 1 for all i ∈ Z.

A univariate polynomial is δz-free if and only if it has no multiple root. It is σz-free if and only 
if its distinct roots do not differ by an integer additively; and it is τz -free if and only if its distinct 
nonzero roots do not differ by a power of q multiplicatively.

A univariate rational function is δz-reduced if it has no integral residue at any simple pole by 
Lemma 2 in Geddes et al. (2004). It is σz-reduced (resp. τz-reduced) if any root of the numerator and 
any root of the denominator do not differ by an integer additively (resp. a power of q multiplicatively).

For a polynomial p in k[x, y], we say that it is θy-free when p is θy-free as a polynomial in y
over k(x). The same convention applies to θy -reduced functions.

Finally, we define an additive decomposition in the setting of mixed terms.

Definition 4.4. Let h be a mixed term over (k(x, y), (θx, θy)). Assume that

h = �y(h1) + h2 (6)

where h1 is a mixed term, and h2 is equal to either zero or a mixed term. We call (6) an addi-
tive decomposition of h with respect to ∂y if there exist r ∈ k(x, y) with a θy-free denominator, and 
compatible rational functions u, v ∈ k(x, y) with v being θy-reduced such that

h2 ∈ rH(u, v). (7)

The additive decomposition with respect to ∂x is defined likewise.

We remark that the additive decompositions given in Definition 4.4 are more weakly constrained 
than those in Abramov and Petkovšek (2001) and Geddes et al. (2004). For example, h2 is not neces-
sarily equal to zero when h is an exact term.

4.2. Split and spread polynomials

Split polynomials defined in Chen (2011) play the same role as integer-linear polynomials in the 
difference case. A polynomial p ∈ k[x, y] is said to be split if it is of the form p1(x)p2(y) with p1 ∈
k[x] and p2 ∈ k[y]. A rational function r ∈ k(x, y) is said to be split if it is of the form r1(x)r2(y)

with r1 ∈ k(x) and r2 ∈ k(y).
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A rational function f ∈ k(x, y) can always be decomposed as f1(x) f2(y) f3(x, y), where f1 ∈ k(x), 
f2 ∈ k(y) and neither num( f3) nor den( f3) have split factors except constants. We call f1 f2 and f3
the split and non-split parts of f , respectively. Both are defined up to a nonzero multiplicative constant.

Remark 4.5. For p ∈ k[x, y], one may decide whether it is split by comparing all monic normalized 
coefficients of p with respect to y. More precisely, p is split if and only if all those are equal. In an 
implementation, one would abort as soon as a mismatch is found.

Remark 4.6. A nontrivial and non-split polynomial p ∈ k[x, y] has at least two terms. Since q is not a 
root of unity, τ i

y(p) and τ
j

y(p) are coprime for all i, j ∈ Z with i �= j if p is irreducible.

The notion of spread polynomials is introduced by Abramov (2003) for establishing his criterion 
on the existence of telescopers for hypergeometric terms. We extend this notion to the mixed setting 
so as to connect split rational functions with exact terms.

Definition 4.7. Let K be a field of characteristic zero, and δz , σz , and τz be the usual derivation, shift 
and q-shift operators on K [z], respectively. For a polynomial a ∈ K [z] of positive degree, we say that:

(i) a is δz-spread if every nontrivial irreducible factor of a has multiplicity > 1;
(ii) a is σz-spread if, for every nontrivial irreducible factor b of a, σ i

z(b) | a for some nonzero integer i;
(iii) a is τz-spread if, for every nontrivial irreducible factor b of a with z � b, τ i

z(b) | a for some nonzero 
integer i.

Clearly, δz-spread polynomials are not δz-free. And there are polynomials that are neither δz-spread 
nor δz-free. The same observations hold for σz-spread polynomials and for τz-spread polynomials that 
have at least two terms.

For a polynomial p in k[x, y] of positive degree in y, we say that it is θy-spread when p is 
θy-spread as a polynomial in y over k(x). Case (iii) of Definition 4.7 restricts the factors b in a 
way that makes no constraint on the multiplicity of z in a. This is because we shall only consider 
τy-spread non-split polynomials in what follows.

Next, we present a mixed analogue of Theorem 8 in Abramov (2003), which is the basis of a key 
argument in the proof of the main conclusion in Section 5.

Proposition 4.8. Let h be a mixed term over (k(x, y), (θx, θy)), and assume h ∈ f H(u, v), where f , u, v ∈
k(x, y). Let w be the non-split part of den( f ). Assume that h is exact with respect to ∂y , and that w is not in k.

(i) If θy = δy and den(v) is split, then w is δy-spread.
(ii) If θy ∈ {σy, τy} and v is split, then w is θy-spread.

Proof. Since h is exact, there exists a mixed term g such that h = �y(g). By Remark 3.3, g is similar 
to h, that is, g ∈ rH(u, v) for some r ∈ k(x, y). Accordingly,

f H(u, v) = �y
(
rH(u, v)

)
. (8)

Let p be a non-split irreducible factor of w with degx p > 0 and degy p > 0.
(i) Assume that θy = δy and den(v) is split. By (8), there exists c ∈ k \ {0} such that

cf = δy(r) + rv.

Since den(v) is split and p divides den( f ), p is an irreducible factor of den(r). So there exists an 
integer i > 1 such that pi | den(δy(r)) and pi � den(r). Therefore, pi � den(rv). It follows that pi |
den( f ), and, thus, pi | w . This proves part (i).
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Table 4.9
Multiplicative decompositions of mixed terms.

Choice (a,b) ∈ k(x, y) × k(x, y) compatible w.r.t. (θx, θy)

1. (θx, θy) = (δx, σy) ∃ f ∈ k(x, y),α,β ∈ k(x), and γ ∈ k(y) such that H(a, b) = f H(y δx(β)
β

+ α,β · γ )

2. (θx, θy) = (σx, δy) ∃ f ∈ k(x, y), α,β ∈ k(y), and γ ∈ k(x) such that H(a,b) = f H(β · γ , x
δy (β)

β
+ α)

3.

3.1. (θx, θy) = (δx, τy)

∃ f ∈ k(x, y), α ∈ k(x), and β ∈ k(y) such that H(a, b) = f H(α, β)
3.2. (θx, θy) = (τx, δy)

3.3. (θx, θy) = (σx, τy)

3.4. (θx, θy) = (τx, σy)

(ii) Assume that θy = σy and v is split. By (8), there exists c ∈ k \ {0} such that

cf = vσy(r) − r. (9)

Since v is split, p | den(r) or p | den(σy(r)). So, the set

L := {

 ∈ Z such that σ 


y (p)
∣∣ den(r)

}
is nonempty (consider 0 ∈ L and −1 ∈ L, respectively) and finite. Therefore, there exist i, j ∈ Z
with i > j such that i − 1 ∈ L, i /∈ L, j − 1 /∈ L, j ∈ L, that is

σ i
y(p)

∣∣ den
(
σy(r)

)
, σ i

y(p) � den(r), σ
j

y (p) � den
(
σy(r)

)
, and σ

j
y (p)

∣∣ den(r).

It follows from (9) that both σ i
y(p) and σ j

y (p) divide den( f ). Since i �= j, we can find 
 �= 0 in {i, j}. 
Then, both p and σ 


y (p) divide w . So w is σy-spread, and part (ii) holds.
The case θy = τy can be handled in the same vein by Remark 4.6 �

4.3. Structural decompositions and proper terms

By the Ore–Sato theorem in Ore (1930), Sato (1990), every bivariate hypergeometric term is the 
product of a rational function and a factorial term. Using this multiplicative decomposition, one can 
define the notion of proper hypergeometric terms. Wilf and Zeilberger (1992a) show that every proper 
hypergeometric term has a telescoper. In this section, we apply a mixed analogue of the Ore–Sato 
theorem in Chen et al. (2011) to define the notion of proper mixed terms.

Let (θx, θy) be a mixed pair of operators in Θ . For a pair (a, b) of compatible rational functions in 
k(x, y) × k(x, y), we obtain the conclusions listed in Table 4.9 by Proposition 6.1 in Chen et al. (2011). 
In fact, the conclusions can also be derived from Lemmas 3.1, 3.2 and 3.3 in Chen et al. (2011), because 
we are only concerned with bivariate mixed terms over (k(x, y), (θx, θy)).

Example 4.10. Let h ∈H(a, b) be a mixed term over (k(x, y), (θx, θy)).
If (θx, θy) = (δx, σy), then there exist f ∈ k(x, y), β ∈ k(x), a univariate hyperexponential function 

E(x), and a univariate hypergeometric term G(y) such that

h = f (x, y)β(x)y E(x)G(y)

by Proposition 6.1 in Chen et al. (2011). Setting α(x) to be δx(E)/E and γ (y) to be σy(G)/G , we see 
that part 1 in Table 4.9 holds by Lemma 2.10(i).

If (θx, θy) = (σx, τy), then there exist f ∈ k(x, y), α ∈ k(x) and β ∈ k(y) such that

a = σx( f )

f
α and b = τy( f )

f
β

by Lemma 3.3 in Chen et al. (2011). Part 3.3 in Table 4.9 holds by Lemma 2.10(iii).

The decomposition of sets in Table 4.9 induces a decomposition of mixed terms.
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Definition 4.11. Given a mixed term h ∈H(a, b), the product f h′ of a rational function f ∈ k(x, y) and 
a mixed term h′ is called a structural decomposition of h if h = f h′ and if h′ has certificates given by 
the rational functions α, β, γ in Table 4.9 for the same f .

A mixed term may have more than one structural decompositions, as illustrated below.

Example 4.12. Let h = x(x + y)xy exp(x)Γ (y) be a mixed term over (k(x, y), (δx, σy)). Then the two 
certificates of h are, respectively,

a := δx(h)

h
= x2 + 2xy + y2 + 2x + y

x(x + y)
and b := σy(h)

h
= xy(x + y + 1)

x + y
.

The mixed term h has at least two structural decompositions h = f ihi with i ∈ {1, 2},

f i ∈ k(x, y) and hi ∈ H
(

y
δx(βi)

βi
+ αi, βi · γi

)
,

where f1 = x + y, β1 = x, α1 = (x +1)/x, and γ1 = y; and f2 = x(x + y), β2 = x/2, α2 = 1, and γ2 = 2y.

The next definition is fundamental for our existence criterion.

Definition 4.13. Let h be a mixed term over (k(x, y), (θx, θy)). We say that h is a proper term if there 
exists a structural decomposition h = f h′ for which den( f ) is split.

Two questions concern this definition of proper terms. First, defining properness by the existence 
of some structural decomposition with a prefactor f whose denominator is split raises the question 
whether any structural decomposition of a given proper h will have the property witnessing proper-
ness. In order to derive a properness test, it is indeed of importance to understand if any structural 
decomposition will do, or if one needs to consider a restricted type of structural decompositions. Sec-
ond, a decomposition of the form (7) in Definition 4.4 can be computed easily, but it is not necessarily 
a structural decomposition. This raises a question of algorithmic importance, namely, to what extend 
one could decide properness without appealing to any structural decomposition.

In the rest of this subsection, we answer these two questions.

Lemma 4.14. Let f and r be two nonzero rational functions in k(x, y).

(i) If the denominator of θ( f )/ f is split for some θ ∈ {δx, δy}, so is f .
(ii) If θ( f )/ f is split for some θ ∈ {σx, σy, τx, τy}, so is f .

(iii) If both den(r) and f /r are split, so is den( f ).

Proof. (i) It is immediate from the logarithmic derivative identity.
(ii) Suppose that f is not split. Then there exists a nontrivial non-split irreducible polynomial p

dividing den( f ) · num( f ). Assume further that σ i
x(p) does not divide den( f ) · num( f ) for all i > 0. 

Then σx(p) is a factor of either the numerator or the denominator of the rational function σx( f )/ f . 
Thus, σx( f )/ f is not split, a contradiction. The same argument applies to τx( f )/ f by Remark 4.6. 
Likewise, part (ii) holds for θ ∈ {σy, τy}.

(iii) Note that

f

r
= num( f ) · den(r)

den( f ) · num(r)
.

Suppose for a contradiction that den( f ) has a non-split irreducible factor p. Since f /r is split, p
divides num( f ) · den(r). Since den( f ) and num( f ) are coprime, p divides den(r), a contradiction to 
the assumption that den(r) is split. �
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Proposition 4.15. Let h be a mixed term over (k(x, y), (θx, θy)). Assume h ∈ rH(u, v) for some r, u, v ∈
k(x, y) and that den(r) is split. Then the following statements hold:

(i) Assume that θx = δx. If den(u) or v is split, then h is proper.
(ii) Assume that θy = δy . If u or den(v) is split, then h is proper.

(iii) Assume that (θx, θy) = (σx, τy) or (θx, θy) = (τx, σy). If u or v is split, then h is proper.

Proof. (i) We assume that (θx, θy) = (δx, σy). For any structural decomposition h = f h′ given by f ∈
k(x, y), α, β ∈ k(x) and γ ∈ k(y) as in part 1 in Table 4.9, Lemma 2.10(i) implies that

δx(h)

h
= δx( f )

f
+ y

δx(β)

β
+ α and

σy(h)

h
= σy( f )

f
βγ ,

which, together with the assumption h ∈ rH(u, v), further implies that

δx( f )

f
+ y

δx(β)

β
+ α = δx(r)

r
+ u and

σy( f )

f
βγ = σy(r)

r
v. (10)

In view of Definition 4.13 and the structural decomposition h = f h′ , it remains to show that den( f )
is split. It suffices to show that f /r is split by Lemma 4.14(iii) and by the hypothesis that den(r) is 
split.

Case 1. Assume that den(u) is split. By the first equality in (10),

δx( f /r)

f /r
= u − y

δx(β)

β
− α,

which, together with the splitness of α, β and den(u), implies that the denominator of δx( f /r)/( f /r)
is split. Thus, f /r is split by Lemma 4.14(i).

Case 2. Assume that v is split. By the second equality in (10),

σy( f /r)

f /r
= v

βγ
,

which, together with the splitness of β, γ and v , implies that σy( f /r)/( f /r) is split. Thus, f /r is split 
by Lemma 4.14(ii).

The case (θx, θy) = (δx, τy) can be handled in the same vein by part 3.1 of Table 4.9 and Re-
mark 4.6.

(ii) It can be proved by switching x with y in (i).
(iii) It can be proved by a similar argument used for Case 2 in part (i), because, by parts 3.1 and 3.2 

of Table 4.9, (10) becomes

θx( f )

f
α = θx(r)

r
u and

θy( f )

f
β = θy(r)

r
v

for some α ∈ k(x) and β ∈ k(y). �
Remark that Proposition 4.15 assumes h = rh̄ for h̄ ∈ H(u, v) with conditions in each of the cases 

(i), (ii), and (iii) that are satisfied if h = rh̄ is a structural decomposition. The proof establishes that for 
any structural decomposition h = f h′ and f , α, β, γ defined as in the right-hand column of Table 4.9, 
den( f ) is split whenever den(r) is split. As a consequence, given a mixed term h attested to be proper 
by a structural decomposition h = f1h1 in which den( f1) is split, then den( f2) is split in any other 
structural decomposition h = f2h2. Thus, the notion of proper terms is independent of the structural
decomposition under consideration. So Proposition 4.15 answers the first question.

To answer the second question, we connect split polynomials and reduced rational functions via 
Table 4.9, as done in the next lemma. Observe before the proof that cases (i) and (ii) are not symmet-
ric, owing to the hypothesis on v , and similarly with the two subcases of (iii).
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Lemma 4.16. Let u, v ∈ k(x, y) be compatible with respect to a mixed pair (θx, θy) of operators. Assume that 
v is θy-reduced.

(i) If θx = δx, then both den(u) and v are split.
(ii) If θy = δy , then both u and den(v) are split.

(iii) If (θx, θy) is equal to either (σx, τy) or (τx, σy), then both u and v are split.

Proof. There exist f , u′, v ′ ∈ k(x, y) such that

H(u, v) = f H
(
u′, v ′), (11)

where f ∈ k(x, y), and u′, v ′ are given by univariate rational functions α, β , γ in Table 4.9.
(i) First, we set (θx, θy) = (δx, σy). By part 1 of Table 4.9 and Lemma 2.10(i), (11) can be rewritten 

as

u = δx( f )

f
+ y

δx(β)

β
+ α and v = σy( f )

f
βγ . (12)

We claim that f is split. Suppose on the contrary that f is non-split. Then there exists a non-split 
irreducible polynomial p ∈ k[x, y] dividing den( f ) · num( f ). We only treat the case of p dividing 
num( f ); the case of p dividing den( f ) would be dealt with similarly. Then there exist two integers i
and j with i ≤ j such that both σ i

y(p) and σ j
y (p) divide num( f ), but σ 


y (p) does not divide num( f )
for all 
 with 
 < i or 
 > j. It follows from the second equality in (12) and the splitness of βγ

that σ i
y(p) divides den(v) and σ

j+1
y (p) divides num(v). Hence, v is not σy-reduced, a contradiction. 

This proves our claim that f is split, which, together with (12), implies that v and den(u) are also 
split.

Second, we set (θx, θy) = (δx, τy). Then (11) becomes

u = δx( f )

f
+ α and v = σy( f )

f
β for some f ∈ k(x, y), α ∈ k(x) and β ∈ k(y)

by part 3.1 in Table 4.9 and Lemma 2.10(i). It follows from the same argument as given above that 
both den(u) and v are split.

(ii) Set (θx, θy) = (σx, δy). Then (11) becomes

u = σx( f )

f
βγ and v = δy( f )

f
+ x

δy(β)

β
+ α (13)

by part 2 of Table 4.9 and Lemma 2.10(ii). Since v is δy-reduced, every irreducible factor of den( f ) ·
num( f ) is either in k[x] or in k[y] by Lemma 2 in Geddes et al. (2004) and the second equality 
in (13). So f is again split. Both u and den(v) are split by (13).

Consider the case (θx, θy) = (τx, δy). Then (11) becomes

u = σx( f )

f
α and v = δy( f )

f
+ β for some f ∈ k(x, y), α ∈ k(x) and β ∈ k(y)

by part 3.2 of Table 4.9 and Lemma 2.10(ii). The same argument used in the above case implies that 
both u and den(v) are split.

(iii) We only treat the case (θx, θy) = (σx, τy); the case (θx, θy) = (τx, σy) would be dealt with 
similarly. By part 3.3 in Table 4.9 and Lemma 2.10(iii), (11) becomes

u = σx( f )

f
α and v = τy( f )

f
β. (14)

The lemma follows from a similar argument used for the first case in part (i). �
The last proposition answers the second question by providing a properness criterion that requires 

considering no structural decomposition.
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Proposition 4.17. Let h be a mixed term over (k(x, y), (θx, θy)). Assume h ∈ rH(u, v) for some r, u, v ∈
k(x, y). If den(r) is split and v is θy-reduced, then h is proper.

Proof. If θy = δy , then den(v) is split by Lemma 4.16(ii). It follows from Proposition 4.15(ii) that h
is proper. If θy ∈ {σy, τy}, then v is split by Lemma 4.16(i) and (iii). Thus, h is proper by Proposi-
tion 4.15(i) and (iii). �

By the above proposition, the mixed term h2 in the additive decomposition (6) is proper if r in (7)
has a split denominator.

5. A necessary condition on the existence of telescopers

In the rest of this paper, we provide a necessary and sufficient condition on the existence of 
telescopers for mixed terms. Recall that a mixed term is telescopable if it has a telescoper. The goal 
of this section is to prove that a telescopable term can be written as the sum of an exact term and a 
proper one. More precisely, we are going to prove

Theorem 5.1. Let h be a mixed term over (k(x, y), (θx, θy)). Let

h = �y(h1) + h2

be an additive decomposition with respect to ∂y . If h is telescopable of type (∂x, ∂y), then h2 is either zero or 
proper.

As pointed out in Remark 3.2, a telescopable term of type (∂x, ∂y) is not necessarily telescopable 
of type (∂y, ∂x). So there are six mixed pairs of operators to be considered. We prove Theorem 5.1 for 
the continuous–discrete and continuous–q-discrete cases in Section 5.1, and for the discrete–q-discrete 
case in Section 5.2.

Owing to the length and case distinction of our proof, we make a notational convention.

Convention 5.2. Assume that h2 given by the additive decomposition in Theorem 5.1 is nonzero. By 
Definition 4.4, there exist r, u, v ∈ k(x, y) such that

(i) den(r) is θy-free;
(ii) u and v are compatible with respect to (θx, θy), and v is θy-reduced;

(iii) h2 belongs to rH(u, v).
(iv) Assume further that L is a telescoper of type (∂x, ∂y) for h.
(v) Set

L =
ρ∑

i=0

ei∂
i
x ∈ k(x)〈∂x〉, where ei ∈ k(x) and eρ �= 0, (15)

f =
ρ∑

i=0

uiθ
i
x(r), (16)

where

ui =
{

the coefficient of Di
x in

∑ρ
i=0 ei(Dx + u)i if θx = δx;

ei
∏i−1

j=0 θ
j

x (u) if θx = σx or θx = τx.

By Examples 2.13 and 2.14 there exists a mixed term g ∈H(u, v) such that

L(h2) = f g. (17)

(vi) Set w to be the non-split part of den( f ).
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The strategy for our proof is as follows. By the above convention and Proposition 4.17, it suffices 
to prove that den(r) is split. Suppose on the contrary that den(r) is not split. We show that w is 
neither in k nor θy-spread by (16) and the θy -freeness of den(r). On the other hand, the exactness 
of f g with respect to ∂y enables us to prove that w is either in k or θy-spread by the next lemma. 
This contradiction asserts that den(r) has to be split.

Lemma 5.3. With Convention 5.2, we assume that w is not in k. Then w is θy-spread.

Proof. Note that f is nonzero, because w is not in k. Hence, f g is nonzero, which, together with 
Convention 5.2(iv) and Eq. (17), implies that f g is an exact term.

By Convention 5.2(ii), v is θy-reduced. If θy = δy , then den(v) is split by Lemma 4.16(ii). It follows 
from Proposition 4.8(i) applied to the exact term f g that w is δy-spread. If θy ∈ {σy, τy}, then v is 
split by Lemma 4.16(i) and (iii). Thus, w is θy-spread by Proposition 4.8(ii). �
5.1. Continuous–discrete and continuous–q-discrete cases

In this section, we prove that Theorem 5.1 holds for a mixed pair of operators, in which either θx =
δx or θy = δy . By Convention 5.2(ii), (iii) and Proposition 4.17, it suffices to show that den(r) is split.

Case (θx, θy) = (δx, σy). The telescoper L for h is of type (Dx, S y). So ∂x = Dx in (15). The ui in (16)
have split denominators, because den(ui) divides a power of den(u), which is split by Lemma 4.16(i). 
Moreover, Leibniz’s rule for δx implies that uρ = eρ , which is a univariate rational function of x
by (15).

Suppose for a contradiction that den(r) is not split. Then there exists a non-split irreducible poly-
nomial p ∈ k[x, y] such that p | den(r). Assume that m is the multiplicity of p in den(r). Then the 
multiplicity of p in den(uiδ

i
x(r)) is less than or equal to m + i, because den(ui) is split. In particular, 

the multiplicity of p in den(uρδ
ρ
x (r)) is equal to m +ρ , because uρ ∈ k(x). By (16), p is an irreducible 

factor of den( f ). Accordingly, the non-split part w of den( f ) is nontrivial. Since all the den(ui) are 
split, w divides a power of den(r) by (16). Since den(r) is σy-free, so is w . Hence, w is neither in k
nor σy-spread, a contradiction to Lemma 5.3. Therefore, den(r) is split.

Case (θx, θy) = (σx, δy). The telescoper L for h is of type (Sx, D y). So ∂x = Sx in (15). The ui in (16)
are all split, because u is split by Lemma 4.16(ii). In particular, uρ is nonzero because eρ is nonzero.

Suppose for a contradiction that den(r) is not split. Then there exists a non-split irreducible poly-
nomial p ∈ k[x, y] such that p | den(r) and σ i

x(p) � den(r) for all i > 0. Since den(r) is δy-free, p is a 
nontrivial simple factor of den(r) in k(x)[y]. Since uρ is split, σ

ρ
x (p) is a simple and irreducible factor 

of den(uρσ
ρ
x (r)). Since σ i

x(p) � den(r) for any i > 0, σ
ρ
x (p) is not an irreducible factor of den(u jσ

j
x (r))

for any j with 0 ≤ j ≤ ρ − 1. It follows from (16) that σ
ρ
x (p) is a simple factor of w . So w is neither 

in k nor δy-spread, a contradiction to Lemma 5.3. Therefore, den(r) is split.
By Remark 4.6, we can replace σx and σy by τx and τy in the above proof, respectively. This 

completes the proof of Theorem 5.1 in both continuous–discrete and continuous–q-discrete cases.

5.2. Discrete–q-discrete case

For the case in which either (θx, θy) = (σx, τy) or (θx, θy) = (τx, σy), we need not only similar 
arguments used in Section 5.1, but also two mixed analogues of the results given by Abramov and 
Petkovšek (2002a) and by Abramov (2003), respectively. Such analogues are not necessary for the 
proof in the continuous–discrete case, because a power of a σy-free polynomial is again σy-free, and 
the least common multiple of finitely many δy -free polynomials is again δy -free. Unfortunately, similar 
situations do not occur in the discrete–q-discrete case.

The first lemma is a mixed analogue of Theorem 7 in Abramov and Petkovšek (2002a).

Lemma 5.4. Let p be an irreducible polynomial in k[x, y]. Assume that σ i
xτ

j
y(p) = cp for some i, j ∈ Z and 

c ∈ k.
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(i) If i �= 0, then p ∈ k[y].
(ii) If j �= 0, then either p ∈ k[x] or p = λy for some λ ∈ k.

Proof. (i) Assume that there exist i, j ∈ Z with i �= 0 and c ∈ k such that σ i
xτ

j
y(p) = cp. We consider 

two cases. First, if τ
j

y(p) = p, then σ i
x(p) = cp, so that c = 1 by comparing the leading coefficients 

with respect to x. Thus, p is free of x since i �= 0.
Second, assume that τ

j
y(p) �= p. Then d = degy(p) > 0 and j �= 0. Write

p = pd(x)yd + · · · + p0(x),

where p0, . . . , pd ∈ k[x] and pd �= 0. Then

σ i
xτ

j
y(p) = pd(x + i)q jd yd + · · · + p0(x + i).

By the equality σ i
xτ

j
y(p) = cp, we have that

p
(x + i)q j
 = cp
(x) for all 
 with 0 ≤ 
 ≤ d.

Assume that 
 is an integer in {0, . . . , d} such that p
(x) �= 0. Then c = q j
 by considering leading 
coefficients with respect to x in the above equation. This implies that p
(x + i) = p
(x). It follows 
from i �= 0 that p
 belongs to k. Thus, p is again free of x.

(ii) First, we show that σ i
x(p) = p and τ

j
y(p) = cp. If i = 0, then there is nothing to prove. Other-

wise, p belongs to k[y] by (i). So σ i
x(p) = p. The result follows from σx ◦ τy = τy ◦ σx .

Second, we show that p is a monomial in y over k[x]. Suppose that there are d1 and d2 in N
with d1 > d2 such that

p = pd1 yd1 + pd2 yd2 + terms of lower degree in y,

where pd1 , pd2 ∈ k[x] and pd1 pd2 �= 0. Applying τ
j

y to p yields

τ
j

y(p) = pd1 q jd1 yd1 + pd2 q jd2 yd2 + lower terms in y.

The equality τ
j

y(p) = cp implies that c = q jd1 and c = q jd2 . Hence, q j(d1−d2) = 1, a contradiction to the 
assumption that q is not a root of unity. So p is a monomial in y.

Set p = λys for some λ ∈ k[x] and s ∈N. Since p is irreducible, s is equal to 0 or 1. If s = 0, then p
is an irreducible polynomial in k[x]. If s = 1, then λ belongs to k, again because p is irreducible. 
Part (ii) of the lemma holds. �

The next lemma is a mixed analogue of Theorem 9 in Abramov (2003). Its proof is also similar to 
that in Abramov (2003).

Lemma 5.5. Let r ∈ k(x, y) be a nonzero rational function whose denominator is not split. Let L be a nonzero 
element in k(x, y)〈∂x〉 whose coefficients are all split. Then the following statements hold.

(i) If ∂x = Tx, and den(r) is σy-free, then the non-split part of the denominator of L(r) is neither in k
nor σy-spread.

(ii) If ∂x = Sx, and den(r) is τy-free, then the non-split part of the denominator of L(r) is neither in k
nor τy-spread.

Proof. Set a = num(r), b = den(r) and L = ∑ρ
i=0 ui∂

i
x , where u0, u1, . . . , uρ ∈ k(x, y) are split and uρ

is nonzero.
(i) Applying L to r, we have that

L(r) =
ρ∑

uiτ
i
x

(
a

b

)
. (18)
i=0
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There exists a non-split and irreducible polynomial p such that p divides b but τ
μ
x (p) does not 

divide b for any positive integer μ > 0, because b is not split. It follows that the irreducible poly-
nomial τ

ρ
x (p) divides the denominator of τ

ρ
x (a/b) but does not divide that of τ i

x(a/b) for any i
with 0 ≤ i ≤ ρ − 1. Thus, τ

ρ
x (p) divides the non-split part B of den(L(r)). In particular, B does not 

belong to k.
It remains to prove that B is not σy-spread. Suppose on the contrary that B is σy-spread. Then 

there exists j0 ∈ Z with j0 �= 0 such that σ
j0

y τ
ρ
x (p) | B . Furthermore, we have that B | ∏ρ

i=0 τ i
x(b)

by (18) and the splitness of the ui . The two divisibilities and irreducibility of p imply that there 
exists 
0 in {0, . . . , ρ} such that σ

j0
y τ

ρ
x (p) | τ


0
x (b). Note that 
0 �= ρ , for otherwise, σ

j0
y (p) would 

divide b, which, together with p | b, would imply that b is not shift-free, a contradiction. There-
fore, 
0 < ρ . Since σ

j0
y τ

ρ−
0
x (p) | b, there exists a non-negative integer i0 such that

σ
j0

y τ
ρ−
0+i0
x (p) | b but σ

j0
y τ

ρ−
0+i0+μ
x (p) � b

for any positive integer μ. It follows from ρ − 
0 > 0 that ρ − 
0 + i0 > 0.
Repeating the above process for the irreducible factor σ

j0
y τ

ρ−
0+i0
x (p) instead of the factor p, we 

can find j1 ∈ Z with j1 �= 0, i1 ∈ N and 
1 ∈ {0, . . . , ρ − 1} such that ρ − 
1 + i1 > 0 and

σ
j0+ j1

y τ
(ρ−
0+i0)+(ρ−
1+i1)
x (p) | b but σ

j0+ j1
y τ

(ρ−
0+i0)+(ρ−
1+i1)+μ
x (p) � b

for any positive integer μ. Continuing this process yields a sequence of irreducible factors of b. Since b
has only finitely many irreducible factors, there exist m, n ∈N with n < m such that

σ
j0+···+ jn

y τ
(ρ−
0+i0)+···+(ρ−
n+in)
x (p) = cσ j0+···+ jm

y τ
(ρ−
0+i0)+···+(ρ−
m+im)
x (p)

for some c ∈ k. This implies that

σ
− jn+1−···− jm
y τ

−(ρ−
n+1+in+1)−···−(ρ−
m+im)
x (p) = cp.

Note that (ρ − 
n+1 + in+1) + · · · + (ρ − 
m + im) �= 0. By Lemma 5.4(ii), p is split, a contradiction to 
the assumption that p is non-split.

(ii) It follows from the same argument given as above, in which τx and σy are replaced by σx

and τy , respectively. �
We are ready to prove that Theorem 5.1 holds for the discrete–q-discrete cases.

Case (θx, θy) = (τx, σy). With Convention 5.2, suppose for a contradiction that den(r) is not split. Note 
that the ui in (16) are split by Lemma 4.16(iii). Thus, Lemma 5.5(i) implies that the non-split part w
of den( f ) is neither in k nor σy-spread, a contradiction to Lemma 5.3. We conclude that den(r) is 
split.

Case (θx, θy) = (σx, τy). The assertion can be proved by a similar argument, in which Lemma 5.5(ii) is 
applied instead of Lemma 5.5(i).

We have completed a proof of Theorem 5.1 for all the six mixed pairs of operators.

6. Determining the existence of telescopers

In this section, we first establish a criterion on the existence of telescopers for mixed terms in 
Section 6.1, then present an algorithm with a few examples in Section 6.2.

6.1. A criterion on the existence of telescopers

In this section, we prove the converse of Theorem 5.1, leading to the criterion of Theorem 6.3. Our 
proof is based on the following theorem.

Theorem 6.1. A proper term over (k(x, y), (θx, θy)) is telescopable of type (∂x, ∂y).
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In fact, the above theorem is part of the fundamental theorem in Wilf and Zeilberger (1992a). In 
their paper, Wilf and Zeilberger present an elementary proof of the existence of telescopers for proper 
hypergeometric terms and indicate that their argument should be applicable to the mixed setting. For 
the sake of completeness, we elaborate a proof of Theorem 6.1 in Appendix A of this paper.

Next, we show the converse of Theorem 5.1.

Lemma 6.2. Let h be a mixed term over (k(x, y), (θx, θy)). Let

h = �y(h1) + h2

be an additive decomposition with respect to ∂y . If h2 is either zero or proper, then h is telescopable of type 
(∂x, ∂y).

Proof. If h2 is zero, then 1 is a telescoper of h. Therefore, we assume that h2 is a proper mixed term. 
By Theorem 6.1 below, h2 is telescopable of type (∂x, ∂y). We claim that so is h, which ends the proof 
of the lemma.

Because h2 has a telescoper L of type (∂x, ∂y), there exists indeed a mixed term g such 
that L(h2) = �y(g). Note that L�y = �y L, because L ∈ k[x]〈∂x〉 and �y ∈ k〈∂y〉. It follows that

L(h) = L�y(h1) + L(h2) = �y
(
L(h1)

) + �y(g). (19)

If L(h) = 0, then L(h) = �y(1) and L is a telescoper for h; if either �y(L(h1)) = 0 or �y(g) = 0, 
then L is a telescoper for h by (19). Otherwise, the three mixed terms L(h), �y(L(h1)) and �y(g) are 
similar to each other by Remark 2.12. Therefore, L(h1) + g is either a mixed term or zero. Set g′ to be 
the sum if it is nonzero. Otherwise, set g′ = 1. Then L(h) = �y(g′), that is, h is telescopable of type 
(∂x, ∂y). �

As both Theorem 5.1 and its converse Lemma 6.2 hold, we obtain a criterion on the existence of 
telescopers for mixed terms, which is the main result of this article.

Theorem 6.3. Let h be a mixed term over (k(x, y), (θx, θy)). Assume that

h = �y(h1) + h2

is an additive decomposition of h. Then h has a telescoper of type (∂x, ∂y) if and only if h2 is either zero or a 
proper mixed term.

6.2. Algorithm and examples

For a given mixed term, we can decide the existence of telescopers by Theorem 6.3. First, we use 
the algorithms in Abramov and Petkovšek (2002b), Geddes et al. (2004), and Chen et al. (2005) to per-
form the respective additive decompositions to obtain (6). Second, we test whether the denominator 
of r in (7) is split by Remark 4.5. The decision procedure is given in Table 6.6.

Example 6.4. It is possible that a mixed term has a telescoper of type (Sx, D y) but no telescoper of 
type (Dx, S y) or (Dx, T y). Consider the rational function

h = 1

(x + y)2
.

Applying Hermite reduction to h with respect to δy yields h = D y(−1/(x + y)), which implies that 1
is a telescoper of type (Sx, D y) for h. Note that h = �y(1) +h is an additive decomposition when θy =
σy or θy = τy , because den(h) = (x + y)2 is both shift-free and q-shift-free with respect to y. But h is 
not proper, because x + y is not split. Hence, h has no telescoper of type (Dx, S y) and (Dx, T y).
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Table 6.6
Algorithms for deciding the existence of telescopers.

Algorithm IsTelescopable
Input: a mixed term h ∈H(a, b) over (k(x, y), (θx, θy)).
Output: true, if h has a telescoper of type (θx, θy); false, otherwise.

(1) Compute an additive decomposition of h with respect to θy and get

h = �y(h1) + rg,

where r ∈ k(x, y) and g ∈ H(u, v) are as given by (6) and (7) in Definition 4.4.

(2) Compute the primitive part p of den(r) with respect to y.

(3) If p is in k[y], then return true, otherwise, return false.

Similarly, consider the rational function

h = 1

(x + y)(x + y + 1)
.

Since h = (S y − 1)(−1/(x + y)), 1 is a telescoper of type (Dx, S y) for h. However, h has no telescoper 
of type (Sx, D y) or (Tx, D y), because (x + y)(x + y + 1) is squarefree with respect to δy and it is not 
split.

Example 6.5. 1 Consider the rational function

h = x5 + 2yx3 + xy2 − y

(y + x2)2 y
.

An additive decomposition of h with respect to D y is

h = D y

(
1

y + x2

)
+ x

y
.

Since y is split, x/y is proper. So h is telescopable of the type (Sx, D y) by Theorem 6.3. An additive 
decomposition of h with respect to �y is

h = �y(1) + h.

Since the denominator (y + x2)2 y of h is not split, h is not proper. So h is not telescopable of type 
(Dx, S y) by Theorem 6.3.

As we mentioned before, properness is only a sufficient condition for the existence of telescopers. 
The following example illustrates this fact.

Example 6.7. Consider the mixed term over (k(x, y), (σx, δy))

h = −y + 2xy + 2x2

(x + y)2x
· yx · e−y .

A structural decomposition of h is given by α = −1, β = y, γ = 1, and f = h/(yxe−y). Note that the 
denominator of f is equal to x(x + y)2, which is not split. So h is not proper. But h has a telescoper 
of type (Sx, D y) since it can be decomposed into

1 This example was proposed by an anonymous referee.
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h = D y

(
1

y(x + y)
· yx · e−y

)
+ yx−1 · e−y,

where yx−1 · e−y is proper, because the rational function in the corresponding structural decomposi-
tion is 1, and therefore its denominator is split.

Similarly, h also has a telescoper of type (Tx, D y).

The last example presents another application of Theorem 6.3.

Example 6.8. Let f = 1/(x + y)s , where s is any fixed positive integer. Note that the denominator 
of f is non-split and shift-free with respect to σy . By Theorem 6.3, there is no linear differential 
operator L(x, Dx) ∈ k(x)〈Dx〉 and g ∈ k(x, y) such that L(x, Dx)( f ) = �y(g), which, together with 
Proposition 3.1 in Hardouin and Singer (2008) and the descent argument similar to that given in 
the proof of Corollary 3.2 in Hardouin and Singer (2008) (or Section 1.2.1 of Di Vizio and Hardouin, 
2012), implies that the incomplete Hurwitz zeta function

ζ(x, y, s) :=
y−1∑
i=1

1

(i + x)s
(satisfying S y(F ) − F = f )

satisfies no polynomial differential equation P (x, y, s, F , Dx(F ), D2
x(F ), . . .) = 0.
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Appendix A. A proof of Theorem 6.1

Our proof of Theorem 6.1 consists of two steps. First, we show that a mixed term in the 
continuous–discrete case is telescopable if its certificate with respect to the shift operator has a split 
denominator. This is done by a well-known linear algebra argument borrowed from Lipshitz (1988). 
Second, we prove the theorem by expressing a proper term as a linear combination of the mixed 
terms treated in the first step. The coefficients in the linear combination are mixed terms free of y. 
Note that the first step is not necessary for the continuous–q-discrete and discrete–q-discrete cases, 
because the structural decompositions in part 3 of Table 4.9 are simpler than those in parts 1 and 2. 
Four technical lemmas prepare the ground: Lemma 7.1 completes the first step, and Lemmas 7.3, 7.4, 
and 7.5 prepare the second.

As said, the next lemma enables us to use structural decompositions to show that Theorem 6.1
holds in the continuous–discrete case.

Lemma 7.1. Let h be a mixed term over (k(x, y), (θx, θy)), where (θx, θy) = (δx, σy) or (θx, θy) = (σx, δy). If 
its certificate with respect to the shift operator has a split denominator, then h is telescopable of type (Dx, S y)

and (Sx, D y).

Proof. The proof is reminiscent of the linear algebra argument given by Lipshitz (1988); however, it 
is based on linear algebra and filtrations over k(x) instead of k. Let μ be the maximum of the degrees 
in y of the numerators and denominators of the two certificates of h. Moreover, let a and b be the 
denominators of the θx- and θy-certificates, respectively.

Assume that (θx, θy) = (δx, σy). Since θy is a shift operator, the θy-certificate of h has a split 
denominator, that is, b is split. So there are b1 ∈ k[x] and b2 ∈ k[y] such that b = b1b2. It follows that

S j
y(h) = p∏ j−1

σ 
(b )
h


=0 y 2
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for some p ∈ k(x)[y] with degy(p) ≤ jμ. Since b2 is free of x,

Di
x S j

y(h) = Di
x(ph)∏ j−1


=0 σ 

y (b2)

= wh

ai
∏ j−1


=0 σ 

y (b2)

for some w ∈ k(x)[y] with degy(w) ≤ (i + j)μ.

If i + j ≤ N , then Di
x S j

y(h) is an element of the k(x)-linear space

WN = span
k(x)

{
ymh

aN
∏N−1


=0 σ 

y (b2)

∣∣∣ m ≤ 2μN

}
. (20)

Accordingly, there is a well-defined k(x)-linear map φN from

FN = span
k(x)

{
Di

x S j
y

∣∣ i + j ≤ N
}

to WN that sends L to L(h) for all L ∈ FN . Since the dimension of FN over k(x) is
(N+2

2

)
while that 

of WN is 2μN + 1, the kernel of φN is nontrivial when N is sufficiently large.
Let A be a nonzero element of ker(φN) whose degree in S y is minimal. Since A is free of y, 

A = L + (S y − 1)N for some L ∈ k(x)〈Dx〉 and N ∈ k(x, y)〈Dx, S y〉. Accordingly, L is nonzero by the 
same argument used by Graham et al. (1994, §5.8, p. 241)2 (see also Petkovšek et al., 1997, §6.2, 
p. 108). Since A(h) = 0, L(h) = (S y − 1)(N(h)). So L is a telescoper of type (Dx, S y) for h.

For the case (θx, θy) = (σx, δy), we can replace the linear space WN in (20) by

span
k(x)

{
ymh

bN
2

∏N−1

=0 σ 


x (a)

∣∣∣ m ≤ 2μN

}
,

and prove that h is telescopable of type (Sx, D y) by a similar argument. �
Remark 7.2. With the map from FN to WF , the proof above has obtained, in the terminology of 
Chyzak et al. (2009), a polynomial growth of 1 for the ideal of annihilating operators of h, from which 
the existence of a telescoper follows by Theorem 3 in there.

Next, we prepare for the second step of the proof. The following lemma reflects the intuition that 
a mixed term H is “free of” y if �y(H) = 0, where �y is defined in (2).

Lemma 7.3. Let H be a mixed term over (k(x, y), (θx, θy)). If �y(H) = 0, then its θx-certificate belongs to k(x)
and its θy-certificate is equal to θy(1).

Proof. Let the θx-certificate and θy -certificate of H be a and b, respectively.
First, assume that θy = δy . Then �y = D y . It follows from D y(H) = bH = 0 that b = 0. Conse-

quently, b = δy(1). It remains to show that a ∈ k(x). If θx = σx , then δy(a)/a = σx(b) − b by (3) and 
Remark 2.6. Since b = 0, δy(a) = 0, that is, a is free of y. Similarly, a is free of y if θx = τx .

Second, assume that θy = τy . Then �y(H) = 0 implies that τy(H) = bH = H . It follows that b = 1, 
that is, b = τy(1). To show that a ∈ k(x), we make a case distinction.

Case 1. If θx = δx , then δx(b)/b = τy(a) − a by (3). It follows from b = 1 that τy(a) = a. Thus, a ∈ k(x)
because q is not a root of unity.

Case 2. If θx = σx , then σx(b)/b = τy(a)/a, which, together with b = 1, implies that τy(a) = a, and so 
that a ∈ k(x).

Third, assume that θy = σy . Then b = 1 and a ∈ k(x) by a similar argument as in the second 
case. �

2 This section is not part of the first edition.
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Lemma 7.4. Let h and H be two mixed terms over (k(x, y), (θx, θy)) with �y(H) = 0. If h is telescopable of 
type (∂x, ∂y), so is Hh.

Proof. Assume that H ∈H(a, b). A straightforward induction shows that, for all i ∈ N,

H∂ i
x(h) = Li(Hh) for some Li ∈ k(x)〈∂x〉, (21)

where Li = (∂x − a)i if ∂x = Dx and Li = (
∏i−1

j=0 θ
j

x (a))−1∂ i
x if ∂x ∈ {Sx, Tx}. Furthermore, Li ∈ k(x)〈∂x〉, 

because a ∈ k(x) by Lemma 7.3.
Let L ∈ k(x)〈∂x〉 be a telescoper for h of the form L = ∑ρ

i=0 ei∂
i
x , where eρ , eρ−1, . . . , e0 are in k(x)

with eρ �= 0. Since L(h) = �y(g) for some mixed term g ,

H L(h) =
ρ∑

i=0

ei Li(Hh) = �y(H g)

by (21). Set M = ∑ρ
i=0 ei Li . Then M(Hh) = �y(H g). Moreover, M �= 0 because Li is of order i in ∂x . 

Therefore, M is a telescoper for Hh. �
Lemma 7.5. Similar and telescopable terms of type (∂x, ∂y), together with zero, form a linear space over k(x), 
which is closed under �y .

Proof. Let h be a telescopable term of type (∂x, ∂y). Set

Vh = {g | g is similar to h and telescopable of the same type} ∪ {0}.
For two telescopable terms in Vh , a common left multiple of their telescopers is a telescoper of the 
sum whenever the sum is nonzero. Then Vh is a linear space over k(x) by Lemma 7.4. The space is 
closed under �y , because �y commutes with every element of k(x)〈∂x〉. �

We are ready to show Theorem 6.1, which states that every proper term is telescopable.

Proof of Theorem 6.1. Assume that h is a proper term over (k(x, y), (θx, θy)). By Definition 4.13, a 
structural decomposition of h is of the form h = (u/v)g and g ∈ H(a, b), where u ∈ k(x)[y], v ∈ k[y], 
and H(a, b) are given by α, β and γ in Table 4.9. In particular, the denominators of a and b are 
split by their expressions in the table. By Lemma 2.10, we can move the univariate polynomial v(y)

into H(a, b), yielding h = uG and G ∈H(a, B), where B has a split denominator.
Write u = ∑m

i=0 ui yi , where u0, u1, . . . , um ∈ k(x), and set Gi = yi G . Again by Lemma 2.10, Gi ∈
H(a, Bi) for some Bi ∈ k(x, y) whose denominator is split. Since h is equal to

∑m
i=0 ui Gi and the Gi

are similar to each other, by Lemma 7.5 it suffices to prove that Gi is telescopable of type (∂x, ∂y) for 
all i with 0 ≤ i ≤ m.

In the continuous–discrete case, Gi is telescopable by Lemma 7.1, because both a and Bi have split 
denominators.

In the continuous–q-discrete and discrete–q-discrete cases, a ∈ k(x) and b ∈ k(y) by part 3 of 
Table 4.9. Therefore, Bi ∈ k(y) by Lemma 2.10. It follows again from Lemma 2.10 that H(a, Bi) =
H(a, c′)H(c′′, Bi), where c′ = 0 and c′′ = 1 if θy = δy , c′ = 1 and c′′ = 0 if θx = δx , and, other-
wise, c′ = c′′ = 1. Accordingly, Gi = G ′

i G
′′
i for some G ′

i in H(a, c′) and G ′′
i in H(c′′, Bi). It follows 

that

�y
(
G ′

i

) = 0 and �x
(
G ′′

i

) = 0.

The second equality implies that G ′′
i is telescopable of type (∂x, ∂y), which, together with the first 

equality and Lemma 7.4, implies that Gi is telescopable of type (∂x, ∂y). The proof of Theorem 6.1 is 
completed. �
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