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Abstract

Wilf–Zeilberger pairs are fundamental in the algorithmic theory of Wilf and
Zeilberger for computer-generated proofs of combinatorial identities. Wilf–
Zeilberger forms are their high-dimensional generalizations, which can be used
for proving and discovering convergence acceleration formulas. This paper
presents a structural description of all possible rational such forms, which can
be viewed as an additive analog of the classical Ore–Sato theorem. Based
on this analog, we show a structural decomposition of so-called multivariate
hyperarithmetic expressions, which extend multivariate hypergeometric terms
to the additive setting.

Keywords: Wilf–Zeilberger form, additive Ore–Sato theorem, hyperarithmetic
expression, orbital decomposition

1. Introduction

In the 1990s, Wilf and Zeilberger developed an algorithmic theory for proving
combinatorial identities [37, 32]. The notion of WZ-pairs is one of the core
concepts in their theory, which was originally introduced in [38] with a recent
brief description in [36]. It is an elegant and powerful tool for proving identities
involving sums of hypergeometric terms in an algorithmic fashion, and there are
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implementations in several computer algebra systems. A WZ-pair is a pair of
functions

(
F (n, k), G(n, k)

)
satisfying the relation

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k),

where both F and G are hypergeometric terms, i.e., their shift quotients with
respect to n and k are rational functions in n and k. Assume that F (n, k)
vanishes except for k in some finite interval for each n. Therefore, one can sum
both sides of the above equation w.r.t. k from 0 to ∞ to get, by telescoping,

∞∑
k=0

F (n+ 1, k)−
∞∑
k=0

F (n, k) = lim
k→∞

G(n, k + 1)−G(n, 0).

If the boundary terms on the right-hand side vanish, we obtain that

∞∑
k=0

F (n+ 1, k) =

∞∑
k=0

F (n, k),

which implies that the definite sum
∑∞

k=0 F (n, k) is independent of n. Thus,
we get the identity

∑∞
k=0 F (n, k) = c, where the constant c can be determined

by evaluating the sum for one specific value of n. We can also get a companion
identity by summing w.r.t. n. For example, the WZ-pair (F,G) with

F =

(
n
k

)2(
2n
n

) and G =
(2k − 3n− 3)k2

2(2n+ 1)(−n− 1 + k)2
·
(
n
k

)2(
2n
n

)
leads to two identities

∞∑
k=0

(
n

k

)2

=

(
2n

n

)
and

∞∑
n=0

(3n− 2k + 1)

(2n+ 1)
(
2n
n

) (n
k

)2

= 2.

WZ-pairs have been employed by Guillera to prove Ramanujan-type se-
ries [21, 22, 23, 24] and new congruences involving harmonic numbers and Apéry
numbers conjectured by Sun [35, 39, 26]. This shows that WZ-pairs are not
only beneficial in combinatorics but also in the fields of mathematical analysis
and number theory. Wilf–Zeilberger forms, in short WZ-forms, are a direct
generalization of WZ-pairs to tuples with more than two entries. The naming
“WZ-form” is reminiscent of the classical concepts of differential forms [7] and
difference forms, to which it is indeed related. To be more precise, we first recall
some basic terminologies and properties about difference forms from [40, 29].
LetM be a well-chosen module of discrete functions defined on some region of
Zn so that one can define the usual shift operators σ1, . . . , σn that commute.
Let δx1, . . . , δxn be “indeterminates” satisfying the relations

δxi δxj = −δxj δxi for all i, j with 1 ≤ i ≤ j ≤ n.
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An (exterior) difference k-form is a linear combination of “words” in the
alphabet {δx1, . . . , δxn} with coefficients from the module M, which can be
written as

ω =
∑

i1,...,ik

fi1,...,ik δxi1 · · · δxik , where fi1,...,ik ∈M.

Any element of M can be seen as a 0-form. The exterior difference δ of ω is
the (k + 1)-form defined by

δω =
∑

i1,...,ik

(
n∑

i=1

(
σi(fi1,...,ik)− fi1,...,ik

)
δxi

)
δxi1 · · · δxik

A difference form ω is called closed if δω = 0 and it is called exact if ω = δθ
for some θ. Analogous to the de Rham complex for differential forms, the
property δ2 = 0 holds for difference forms since the shift operators commute.
That is to say, every exact form is always closed, but the converse is not true
in general. Closed difference 1-forms with hypergeometric coefficients are called
WZ-forms in [40] and WZ-cohomology is the quotient of the modules of closed
forms modulo that of exact forms. Similar to WZ-pairs, WZ-forms as well can
be used to prove combinatorial identities and to derive convergence acceleration
formulas [41]. For example, Dixon’s identity∑

k

(−1)k (a+ b)!(a+ c)!(b+ c)!a!b!c!

(a+ k)!(a− k)!(b+ k)!(b− k)!(c+ k)!(c− k)!(a+ b+ c)!
= 1 (1)

can be derived from the closed difference 1-form

ω = F δk +Gδa+H δb+ I δc,

where F denotes the summand in (1), and

G :=− (b+ k)(c+ k)

2(a− k + 1)(a+ b+ c+ 1)
· F,

H :=− (a+ k)(c+ k)

2(b− k + 1)(a+ b+ c+ 1)
· F,

I :=− (a+ k)(b+ k)

2(c− k + 1)(a+ b+ c+ 1)
· F.

The idea is similar to that used in deriving identities from WZ-pairs. For
any given closed difference 1-form ω = f1 δx1 + · · · + fn δxn, Zeilberger
applied the discrete Stokes theorem [40, p. 583] under some finitely supported
conditions on the fi’s to prove that g(x̂i) =

∑
fi δxi is identically constant

in x̂i = (x1, . . . , xi−1, xi+1, . . . , xn) and this constant can be determined by
checking the sum for one special value of x̂i. To get convergence acceleration
formulas, the idea is to apply the discrete Stokes theorem to a closed difference
1-form ω = F (n, k) δk +G(n, k) δn to obtain

∞∑
n=0

G(n, 0) =

∞∑
n=1

(
F (n, n− 1) +G(n− 1, n− 1)

)
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whenever both sums converge. For example, the closed form ω = F δk + Gδn
with

F =
(−1)n+kk!2(n− k − 1)!

(n+ k + 1)!
and G =

2 (−1)n+kk!2(n− k)!
(n+ 1)(n+ k + 1)!

.

leads to the convergence acceleration formula [33] for ζ(2)

ζ(2) = 2

∞∑
n=0

(−1)n

(n+ 1)2
= 3

∞∑
n=1

1(
2n
n

)
n2
. (2)

Then the natural questions arise how one can construct such WZ-forms? And
how can we decide whether a WZ-form is exact or not? Note that the idea of
deriving WZ-forms from known identities and then employing them to generate
new identities has been shown in [19, 41, 30, 5]. In this paper, we restrict our
attention to WZ-forms with rational functions instead of hypergeometric entries
and use n-tuples (f1, . . . , fn) to denote WZ-forms instead of difference forms.
We shall describe the structure of rational WZ-forms which is an additive analog
of the Ore–Sato theorem [31, 34, 17, 4, 1] in Theorem 4. Before proving the
main theorem, we first recall the structure theorem on WZ-pairs from [8] in
Section 3 which will be used as the base case in our induction proof and then
overview some basic properties about orbital decomposition and orbital residues
in Section 4. The proof of Theorem 4 splits into two steps: the first step is to
show that any WZ-form can be decomposed into one exact WZ-form plus several
uniform WZ-forms in Section 5 and the second step is to describe the explicit
integer-linear structure of uniform WZ-forms in Section 6. In the last section,
we present an algorithm for computing the additive structure of WZ-forms that
minimizes the uniform part. With the help of this minimal decomposition, we
can detect the exactness of WZ-forms by just checking whether the uniform part
vanishes.

2. Preliminaries

Throughout this paper, let N denote the set of nonnegative integers. Let
K be an algebraically closed field of characteristic zero and K(x1, . . . , xn) be
the field of rational functions in the variables x1, . . . , xn over K, which is also
written as K(x). For a multivariate function f , the shift maps σi are defined as

σif(x1, . . . , xn) = f(x1, . . . , xi + 1, . . . , xn), ∀i ∈ {1, . . . , n}.

The action of operators on functions is also denoted by •, e.g., σi • f = σi(f).
Analogously, the forward difference operators are defined as

∆i(f) := σi(f)− f, ∀i ∈ {1, . . . , n}.

4



Definition 1 (Hypergeometric, hyperarithmetic). A nonzero expression H is
said to be hypergeometric over K(x) if there exist rational functions f1, . . . , fn ∈
K(x) such that

σi(H)

H
= fi, ∀i ∈ {1, . . . , n}.

Analogously, H is said to be hyperarithmetic over K(x) if there exist rational
functions f1, . . . , fn ∈ K(x) such that

σi(H)−H = fi, ∀i ∈ {1, . . . , n}.

In both cases, the rational functions f1, . . . , fn are called the certificates of H.
Two hypergeometric (resp. hyperarithmetic) expressions H1 and H2 are called
conjugate, denoted by H1 ≃ H2, if they have the same certificates.

Since σi and σj commute, the certificates f1, . . . , fn of a hypergeometric
term H satisfy the following compatibility conditions:

σi(fj)

fj
=
σj(fi)

fi
, ∀i, j ∈ {1, . . . , n}. (3)

Similarly, the certificates f1, . . . , fn of a hyperarithmetic expressionH satisfy
the following compatibility conditions:

σi(fj)− fj = σj(fi)− fi, ∀i, j ∈ {1, . . . , n}. (4)

Definition 2. An n-tuple (f1, . . . , fn) ∈ K(x)n is called a WZ-form with
respect to (∆1, . . . ,∆n) if ∆i(fj) = ∆j(fi) for all i, j ∈ {1, . . . , n}. Note
that (f1, . . . , fn) is a WZ-form with respect to (∆1, . . . ,∆n) if and only if
ω = f1δ1 + · · ·+ fnδn is a closed difference 1-form.

The classical Ore–Sato theorem plays an important role in the theory
of multivariate hypergeometric terms [17, 4, 1], because it describes the
multiplicative structure of nonzero rational functions f1, . . . , fn ∈ K(x) that
satisfy the compatibility conditions (3). The bivariate case was proven by
Ore [31] and the multivariate case by Sato [34]. According to this theorem,
any multivariate hypergeometric term can be decomposed into a product of a
rational function and several factorial terms (which are basically products of
Gamma functions).

Theorem 3 (Ore–Sato theorem). Let f1, . . . , fn ∈ K(x) be nonzero rational
functions satisfying the compatibility conditions (3). Then there exist a rational
function a ∈ K(x), constants µ1, . . . , µn ∈ K, a finite set V ⊂ Zn, and for each
v ∈ V a univariate monic rational function rv ∈ K(z) such that

fj =
σj(a)

a
µj

∏
v∈V

∏vj

0
ℓ

rv(v · x+ ℓ),
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where v · x := v1x1 + · · · + vnxn and where the product notation is defined as
follows: for s, t ∈ Z,

∏t

s
ℓ

αℓ :=


αsαs+1 · · ·αt−1, if t ≥ s;

1

αtαt+1 · · ·αs−1
, if t < s.

Christopher’s theorem [12, 42] is an analog of the Ore–Sato theorem in
the continuous case. Other analogs concern the q-discrete case [15] and
the continuous-discrete case [9]. In this paper, we want to explore the
additive structure of nonzero rational functions f1, . . . , fn ∈ K(x) satisfying the
compatibility conditions (4), i.e., (f1, . . . , fn) is a WZ-form. Our main result,
which is stated in the following theorem, reveals this additive structure and
therefore implies an additive decomposition of hyperarithmetic expressions.

Theorem 4 (Additive Ore–Sato theorem). Let f1, . . . , fn ∈ K(x) be nonzero
rational functions satisfying the compatibility conditions (4). Then there exist
a rational function a ∈ K(x), constants µ1, . . . , µn ∈ K, a finite set V ⊂ Zn,
and for each v ∈ V a univariate monic rational function rv ∈ K(z) such that

fj = σj(a)− a+ µj +
∑
v∈V

∑vj

0
ℓ

rv(v · x+ ℓ),

where v ·x := v1x1+ · · ·+vnxn and where we use the sum notation (for s, t ∈ Z)

∑t

s
ℓ

αℓ :=

αs + αs+1 + · · ·+ αt−1, if t ≥ s;

−(αt + αt+1 + · · ·+ αs−1), if t < s.

In the proof of the classical Ore–Sato theorem, the complete irreducible
factorization was used as a key ingredient. When it comes to the additive
case, we need another auxiliary tool, the so-called orbital decomposition, which
compensates the missing of partial fraction decompositions of multivariate
rational functions. Hence, our additive Ore–Sato theorem is not just a straight-
forward analog of its multiplicative predecessor, but is based on a significantly
different proof strategy.

3. WZ-forms and structure of WZ-pairs

The goal of this section is to introduce some notions that will help us to
describe the proofs in the later sections more concisely.

Definition 5 ((Pairwise) shift-invariant). A rational function f ∈ K(x) is
called shift-invariant if there exists a nonzero integer vector v ∈ Zn such that
f(x+ v) = f(x). It is called pairwise shift-invariant if for all i, j ∈ {1, . . . , n},
there exist s, t ∈ Z, not both zero, such that σs

i (f) = σt
j(f).

6



Definition 6 (Integer-linearity). An irreducible polynomial p ∈ K[x] is called
integer-linear over K if there exist a univariate polynomial P ∈ K[z] and a
nonzero integer vector v ∈ Zn such that

p(x) = P (v · x).

Without loss of generality, we can assume that gcd(v1, . . . , vn) = 1, because a
common factor can be extracted and absorbed by P . Such a vector v is called the
integer-linear type of p. We say that f ∈ K(x) is integer-linear of type v if all
the irreducible factors of its numerator and its denominator are of the common
integer-linear type v.

There is an efficient algorithm for the computation of the integer-linear de-
composition of multivariate polynomials [20], which will be used for computing
additive decompositions in Section 7. The next lemma reveals the equivalence
between the pairwise shift-invariance and the integer-linearity of a rational
function.

Lemma 7 ([4, Proposition 7]). A rational function f ∈ K(x) is pairwise shift-
invariant if and only if there exist a nonzero integer vector v ∈ Zn and a
univariate rational function r ∈ K(z) such that

f(x) = r(v · x),

i.e., f is integer-linear of type v.

Given the integer-linear type of f , one can easily see that f is pairwise shift-
invariant. In contrast, the opposite direction of Lemma 7 is not that obvious.
However, it follows, by using an inductive argument, from the bivariate case
that is illustrated in the following remark.

Remark 8. Let f ∈ K(x, y) satisfy σs
xσ

t
y(f) = f with s, t ∈ Z not both zero. If

s = 0, then f is free of y, which implies that f is integer-linear of type (1, 0).
Similarly, if t = 0, then f is integer-linear of type (0, 1). If both of them are
nonzero, then f is integer-linear of type (t̄, s̄), where t̄ = t/ gcd(s, t) and s̄ =
s/ gcd(s, t).

According to Definition 6, an element in K can be viewed as having any
integer-linear type. But for a non-constant rational function whose factors are of
the same integer-linear type, its type is unique. Such a type remains unchanged
under addition and under application of shift operators.

We now introduce two special kinds of WZ-forms, namely exact WZ-forms
and uniform WZ-forms, which will play an important role in describing the
structure of general WZ-forms (see Theorem 4).

Definition 9 (Exact WZ-form). A WZ-form (f1, . . . , fn) with respect to
(∆1, . . . ,∆n) is said to be exact if there exists g ∈ K(x) such that fi = ∆i(g)
for all i ∈ {1, . . . , n}.

7



Definition 10 (Uniform WZ-form). A WZ-form (f1, . . . , fn) with respect to
(∆1, . . . ,∆n) is called a uniform WZ-form if there exists an integer vector v
such that each fi is integer-linear of type v.

Remark 11. A WZ-form can be both exact and uniform: for example,(
∆x(

1
x+y ),∆y(

1
x+y )

)
is an exact WZ-pair where each component is integer-

linear of type (1, 1).

In the remaining part of this section, we recall the structure theorem [8] on
WZ-pairs that is described in terms of exact and cyclic pairs, see Theorem 14.

Definition 12 (Cyclic operator). Let G = ⟨σ1, . . . , σn⟩ be the free abelian group
generated by the shift operators σ1, . . . , σn. For any m ∈ Z and τ ∈ G, define

τm − 1

τ − 1
:=


1 + τ + · · ·+ τm−1, if m > 0;

0, if m = 0;

−(τm + · · ·+ τ−1), if m < 0.

Definition 13 (Cyclic pair). A WZ-pair (f, g) w.r.t. (∆x,∆y) is called a cyclic
pair if there exists h ∈ K(x, y) that satisfies σs

x(h) = σt
y(h) for some s, t ∈ Z,

not both zero, such that

f =
σt
y − 1

σy − 1
• h and g =

σs
x − 1

σx − 1
• h.

Note that any cyclic pair is a uniform WZ-pair by Remark 8. The following
theorem shows that each WZ-pair can be decomposed into one exact WZ-pair
plus several cyclic pairs.

Theorem 14 (Structure of WZ-pairs, [8, Theorem 3]). Any WZ-pair can be
decomposed into one exact WZ-pair plus several cyclic WZ-pairs.

When it comes to a multivariate generalization of Theorem 14, cyclic pairs
will be replaced by uniform WZ-forms, see Theorem 21. For this purpose, we
define orbital decompositions and orbital residues of rational functions in the
next section.

4. Orbital decompositions and orbital residues

In this section, we recall the notion of orbital decomposition of a rational
function, which was first used for studying the existence problem of telescop-
ers [10], and propose a modified definition of discrete residues, which were
originally introduced in [11] with polynomial and elliptic analogs in [27, 14].

Definition 15 (Shift-equivalence). Let F be a subgroup of ⟨σ1, . . . , σn⟩. For
a, b ∈ K(x), we say that a and b are F -equivalent, denoted by a ∼F b, if there
exists τ ∈ F with τ(a) = b. We call the set

[a]F := {τ(a) | τ ∈ F}

the F -orbit of a. Note that a ∼F b implies [a]F = [b]F .

8



Example 16. Let b = 4x + 6y + 5z and let F be the subgroup ⟨σx, σy⟩ of
G = ⟨σx, σy, σz⟩. Then b and b + 1 are G-equivalent because τ(b) = b + 1 for
τ = σ−1

x σz ∈ G. In contrast, b and b+ 1 are not F -equivalent.

The orbital decomposition of a rational function f = P/Q ∈ K(x) depends
on the variable x1 and a subgroup F . In order to define it, we first focus on its
denominator as a polynomial in x1, that is, Q ∈ K(x̂)[x1] with x̂ := x2, . . . , xn.
The first step consists in factoring the polynomial Q completely over K(x̂). We
sort all of its irreducible factors into distinct F -orbits as follows:

Q = c ·
I∏

i=1

J∏
j=1

∏
τ∈Λi,j

τ(bji ),

where c ∈ K(x̂), Λi,j are finite subsets of F , and the bi ∈ K(x̂)[x1] are monic
irreducible polynomials in distinct F -orbits. Note that this factorization is
unique up to the choice of the representative bi in each F -orbit. Moreover,
we impose on the sets Λi,j the condition that τ(bi) ̸= τ ′(bi) for τ, τ

′ ∈ Λi,j with
τ ̸= τ ′. In the second step, we compute the unique irreducible partial fraction
decomposition of f with respect to the above factorization:

f = p+

I∑
i=1

J∑
j=1

∑
τ∈Λi,j

ai,j,τ

τ(bji )
, (5)

where p, ai,j,τ ∈ K(x̂)[x1] with degx1
(ai,j,τ ) < degx1

(bi) for all i, j, τ . For a
polynomial b ∈ K(x̂)[x1], a subgroup F ≤ G, and j > 0, we define the following
linear K(x̂)-subspace:

UF
b,j := SpanK(x̂)

{
a

τ(bj)

∣∣∣∣ τ ∈ F, a ∈ K(x̂)[x1], degx1
(a) < degx1

(b)

}
. (6)

Note that in Equation (5), each sum
∑

τ
ai,j,τ

τ(bji )
lies in the corresponding

subspace UF
bi,j

. Since the decomposition (5) exists for any f ∈ K(x), and since
the orbits [b]F do not overlap, we obtain the following direct sum decomposition:

K(x) = K(x̂)[x1]⊕

(⊕
j>0

⊕
[b]F

UF
b,j

)
, (7)

where [b]F runs over all orbits inK(x̂)[x1]/∼F . Such a direct sum decomposition
is called [10] the orbital decomposition of K(x) with respect to the variable x1
and the group F .

According to the definition of UF
b,j , it is easy to check that this linear

subspace is closed under the application of any operator in K(x̂)[F ], that is,
any operator of the form

∑
τ∈F cττ with cτ ∈ K(x̂). The following lemma is a

direct generalization of [10, Lemma 5.1].

Lemma 17. If f ∈ UF
b,j and θ ∈ K(x̂)[F ], then θ(f) ∈ UF

b,j.

9



Theorem 18. Let f = p+
∑I

i=1

∑J
j=1 fi,j with p ∈ K(x̂)[x1] and fi,j ∈ UF

bi,j
be

an orbital decomposition of f with respect to x1 and F , and let θ1, θ2 ∈ K(x̂)[F ].
For g ∈ K(x), we have θ1(f) = θ2(g) if and only if there exist q ∈ K(x̂)[x1] and
gi,j ∈ UF

bi,j
such that θ1(p) = θ2(q) and θ1(fi,j) = θ2(gi,j) for all i, j.

Proof. The sufficiency is due to the linearity of the operators θ1, θ2 ∈ K(x̂)[F ].

For the necessity, suppose g = q +
∑I

i=1

∑J
j=1 gi,j , where q ∈ K(x̂)[x1] and

gi,j ∈ UF
bi,j

for each i, j. By Lemma 17, the orbital decomposition of θ1(f) with
respect to x1 and F is

θ1(f) = θ1(p) +

I∑
i=1

J∑
j=1

θ1(fi,j).

Similarly, we get

θ2(g) = θ2(q) +

I∑
i=1

J∑
j=1

θ2(gi,j).

By the uniqueness of the direct sum decomposition (7), we have θ1(p) = θ2(q)
and θ1(fi,j) = θ2(gi,j) for each i, j.

For f ∈ K(x), we say that f is σi-summable if there exists g ∈ K(x) such
that f = ∆i(g). Let (f1, . . . , fn) be a WZ-form w.r.t. (∆1, . . . ,∆n). Then
∆i(f1) is σ1-summable, because we have ∆i(f1) = ∆1(fi). The first step in our
proof of Theorem 4 is to decompose f1 and to find the shift-invariance of each
part.

Next, for the definition of orbital residues, let us look at the orbital
decomposition of f ∈ K(x) with respect to x1 and the subgroup F = ⟨σ1⟩.
In this case, the decomposition (5) can be written as

f = p+

I∑
i=1

J∑
j=1

L∑
ℓ=0

ai,j,ℓ

σℓ
1(d

j
i )
, (8)

where the di are irreducible polynomials in distinct ⟨σ1⟩-orbits.

Definition 19 (Orbital residue). Let f be given in the form (8), let d ∈
K(x̂)[x1] be irreducible, and let j ∈ {1, . . . , J}. If there exists i ∈ {1, . . . , I}
such that di ∈ [d]⟨σ1⟩ (by the properties of the orbital decomposition, such i is
uniquely determined), then the orbital residue of f at d of multiplicity j, denoted
by resσ1(f, d, j), is defined to be the ⟨σ1⟩-orbit [r]⟨σ1⟩ with

r :=

L∑
ℓ=0

σ−ℓ
1 (ai,j,ℓ).

If no such i exists, we define resσ1
(f, d, j) = 0. If it is clear from the context,

we will abbreviate [r]⟨σ1⟩ by [r].

10



Note that the definition of orbital residue does not depend on the represen-
tation (5) of f : if instead of di some other representative of [di]⟨σ1⟩ is used, at
the cost of changing the range of ℓ, then also the polynomial r in Definition 19
changes, but it will stay in the same ⟨σ1⟩-orbit. This is the reason why the
residue is defined to be an orbit, instead of a single polynomial. Similarly, we
have resσ1(f, d, j) = resσ1(f, d

′, j) whenever d ∼⟨σ1⟩ d
′.

Example 20. Let b = 4x+ 6y + 5z as in Example 16 and let

f =
x

b2
+

x+ y

(b+ 1)2
+

2x

(b− 3)2
+

2x+ 3

(b+ 3)2
.

We observe that b+1 = σx(b−3) and that b, b−3, b+3 are in distinct ⟨σx⟩-orbits.
By Definition 19, we have

resσx
(f, b, 2) = [x], resσx

(f, b−3, 2) = [3x+y−1], resσx
(f, b+3, 2) = [2x+3].

5. Additive decompositions of WZ-forms

Exact and uniform WZ-forms are special kinds of WZ-forms. Conversely, the
following theorem shows that these two forms are the only basic building blocks
of all possible WZ-forms. This section is dedicated to proving the following
theorem, which is a multivariate generalization of Theorem 14.

Theorem 21. Any WZ-form can be decomposed into one exact WZ-form plus
several uniform WZ-forms.

First we recall the notion of isotropy group, which was introduced by
Sato [34] in order to prove the classical Ore–Sato theorem.

Definition 22 (Isotropy group). Let p ∈ K[x]. The set

Gp = {τ ∈ G | τ(p) = p}

is a subgroup of G, called the isotropy group of p in G.

Example 23. Let b = 4x+ 6y + 5z and G = ⟨σx, σy, σz⟩ be as in Example 16,
and let c = 3y + 2z. The isotropy group of b consists of all monomials σi

xσ
j
yσ

k
z

that satisfy 4i+6j +5k = 0, i.e., Gb =
〈
σxσyσ

−2
z , σ5

yσ
−6
z

〉
. Similarly, one finds

Gc =
〈
σx, σ

2
yσ

−3
z

〉
and Gb·c = Gb ∩Gc =

〈
σ3
xσ

8
yσ

−12
z

〉
.

Definition 22 can directly be extended to rational functions. The next lemma
shows that shift-equivalent elements have the same isotropy group.

Lemma 24. Let f, g ∈ K(x). If f ∼G g, then Gf = Gg.

Proof. Let σ ∈ G such that f = σ(g). For τ ∈ Gg we have τ(g) = g. Applying
σ to both sides of the equation yields σ

(
τ(g)

)
= σ(g). Since σ and τ commute,

we have τ
(
σ(g)

)
= σ(g), i.e., τ(f) = f . Thus τ ∈ Gf , which implies that

Gg ⊆ Gf . Since σ−1 ∈ G such that g = σ−1(f), we similarly have Gf ⊆ Gg.
Hence Gf = Gg.

11



We recall a crucial lemma that led to the structure theorem of WZ-pairs.
Here it will be used to conduct the induction step in the proof of Theorem 21.

Lemma 25 ([8, Lemma 6]). Let f ∈ K(x, y) be a rational function of the form

f =
a0
bm

+
a1

σy(bm)
+ · · ·+ an

σn
y (b

m)
,

where m,n ∈ N with m > 0, a0, . . . , an, b ∈ K(y)[x] with an ̸= 0. Moreover, we
assume that deg(ai) < deg(b), b is irreducible and monic, and that σi

y(b) ̸∼⟨σx⟩
σj
y(b) for all i, j ∈ {0, . . . , n} with i ̸= j. If for some g ∈ K(x, y) we have

∆y(f) = ∆x(g), then there exists t ∈ Z such that σn+1
y (a0) = σt

x(a0), σ
n+1
y (b) =

σt
x(b), and aℓ = σℓ

y(a0) for all ℓ ∈ {0, . . . , n}. Furthermore, for some g0 ∈ K(y)
we get

f =
σn+1
y − 1

σy − 1
• a0
bm

and g =
σt
x − 1

σx − 1
• a0
bm

+ g0.

According to Remark 8, the bivariate function f in Lemma 25 is of a certain
integer-linear type. We will use this lemma to reduce the problem from the
multivariate case to the bivariate case, see the proof of Lemma 29 below.

Recall that G = ⟨σ1, . . . , σn⟩ and x̂ = x2, . . . , xn. Let ω = (f1, . . . , fn) ∈
K(x)n be a WZ-form w.r.t. (∆1, . . . ,∆n). Applying the orbital decomposi-
tion (5) with respect to x1 and G to f1 yields

f1 = p+

I∑
i=1

J∑
j=1

∑
τ∈Λi,j

ai,j,τ

τ(bji )
, (9)

where for all i, j, τ we have p, ai,j,τ ∈ K(x̂)[x1] with degx1
(ai,j,τ ) < degx1

(bi) and
Λi,j ⊂ G. The following reduction formula is crucial in Abramov’s algorithm
for rational summation [2, 3].

Fact 26. For all a, u ∈ K[x] with u ̸= 0 and automorphism ϕ of K(x), we have

a

ϕm(u)
= ϕ(g)− g + ϕ−m(a)

u
, (10)

where

g =


m−1∑
i=0

ϕi−m(a)

ϕi(u)
, if m ≥ 0;

−
−1∑
i=m

ϕi−m(a)

ϕi(u)
, if m < 0.

(11)

Let E := ⟨σ2, . . . , σn⟩. Then each τ ∈ G can be written as σm
1 λ for some

m ∈ Z and λ ∈ E. By taking ϕ = σ1 and u = λ(b) in Formula (10), we get

a

τ(b)
=

a

σm
1 (u)

= ∆1(g) +
σ−m
1 (a)

u
= ∆1(g) +

σ−m
1 (a)

λ(b)
, (12)

12



for some g ∈ K(x) of the form (11). Applying the above reduction (12) to each
summand ai,j,τ/τ(b

j
i ) in Equation (9) yields

f1 = ∆1(g0) +

I∑
i=1

J∑
j=1

f̃1,i,j with f̃1,i,j =
∑

λ∈Λ̃i,j

ãi,j,λ

λ(bji )
, (13)

where g0 ∈ K(x), Λ̃i,j ⊆ E, and λ(bi) ̸∼⟨σ1⟩ λ
′(bi) whenever λ, λ′ are two

distinct elements from Λ̃i,j . Since the shift operators σ−m
1 preserve the degrees

of the polynomials ai,j,λ, we have for all i, j that f̃1,i,j ∈ UG
bi,j

. In fact,

[ãi,j,λ] = resσ1

(
f1, λ(bi), j

)
.

We give an illustrative example to show how we can immediately obtain the
orbital residue via the reduction (13). Note that the result is the same as
specified in Definition 19.

Example 27 (Continuing Example 20). Rewrite f as

f =
x

b2
+

x+ y

σ−1
x σz(b2)

+
2x

σxσ
−2
y σz(b2)

+
2x+ 3

σ−3
x σ3

z(b
2)
.

First we get rid of the operator σx among all the denominators,

f = ∆x

(
− x+ y

σ−1
x σz(b2)

+
2x− 2

σ−2
y σz(b2)

− 2x+ 3

σ−3
x σ3

z(b
2)
− 2x+ 5

σ−2
x σ3

z(b
2)
− 2x+ 7

σ−1
x σ3

z(b
2)

)
+
x

b2
+
x+ y + 1

σz(b2)
+

2x− 2

σ−2
y σz(b2)

+
2x+ 9

σ3
z(b

2)
.

Note that σ−2
y σz(b

2) = σ−3
x σz(b

2), so we continue the reduction as follows:

2x− 2

σ−2
y σz(b2)

= ∆x

(
− 2x− 2

σ−3
x σz(b2)

− 2x

σ−2
x σz(b2)

− 2x+ 2

σ−1
x σz(b2)

)
+

2x+ 4

σz(b2)
.

Hence

f = ∆x(g) +
x

b2
+

3x+ y + 5

σz(b2)
+

2x+ 9

σ3
z(b

2)
,

for some g ∈ K(x). We observe that
{
b2, σz(b

2), σ3
z(b

2)
}
=
{
b2, (b + 5)2, (b +

15)2
}
are pairwise ⟨σx⟩-inequivalent, hence the reduction is done. We have

resσx
(f, b, 2) = [x], resσx

(
f, σz(b), 2

)
= [3x+y+5], resσx

(
f, σ3

z(b), 2
)
= [2x+9].

Using the g0 that was obtained by Abramov’s reduction (10), we define an
exact WZ-form ω0 :=

(
∆1(g0), . . . ,∆n(g0)

)
, which we remove from the given

WZ-form ω. To this end, we let f̃i := fi −∆i(g0) and observe that
(
f̃1, . . . , f̃n

)
is still a WZ-form, which implies that for each k ∈ {2, . . . , n}, ∆k(f̃1) is σ1-

summable. Note that
∑I

i=1

∑J
j=1 f̃1,i,j is the orbital decomposition of f̃1 with

respect to x1 and G. By Theorem 18, for each i, j, we have ∆k

(
f̃1,i,j

)
is σ1-

summable. Then we can focus on each orbital component of f̃1 in a linear
K(x̂)-subspace UG

b,m.
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Remark 28. We claim that a ∈ K(x) \K(x̂) is pairwise shift-invariant if and
only if for each k ∈ {2, . . . , n}, there exist Lk, Nk ∈ Z with Lk ̸= 0, such that
σLk

k (a) = σNk
1 (a). The necessity follows from Definition 5. For the sufficiency,

we combine for any k, s ∈ {2, . . . , n} the Ns-fold application of σLk

k (a) = σNk
1 (a)

with the Nk-fold application of σLs
s (a) = σNs

1 (a) to obtain

σLkNs

k (a) = σNkNs
1 (a) = σLsNk

s (a).

If Nk = Ns = 0, then a is free of xk and xs which implies that σ1
k(a) = σ1

s(a).

Lemma 29. Let f1 =
∑

λ∈Λ aλ/λ(b
m) ∈ UG

b,m with Λ ⊂ E and the λ(b) being
in distinct ⟨σ1⟩-orbits. If ∆k(f1) is σ1-summable for each k ∈ {2, . . . , n}, then
all of the aλ and b are integer-linear of the same type.

Proof. By Remark 28 and Lemma 7, it is sufficient to show that for each k ∈
{2, . . . , n}, there exist Lk, Nk ∈ Z with Lk nonzero such that σLk

k (b) = σNk
1 (b)

and σLk

k (aλ) = σNk
1 (aλ) for all λ ∈ Λ. Let Ek := ⟨σ2, . . . , σk−1, σk+1, . . . , σn⟩.

For each λ ∈ Λ ⊂ E, there exist tλ ∈ Z, ηλ ∈ Ek such that λ = σtλ
k ηλ, and

therefore
f1 =

∑
λ∈Λ

aλ

σtλ
k ηλ(b

m)
.

By applying the reduction formula (10) once again, we can rewrite f1 in the
form

f1 = ∆1(f1,k) +
∑
η∈Λk

Tη∑
ℓ=0

ãη,ℓ
σℓ
kη(b

m)
, (14)

where Λk ⊂ Ek, η(b) ̸∼⟨σ1,σk⟩ η
′(b) if η ̸= η′, σℓ

k(b) ̸∼⟨σ1⟩ σ
ℓ′

k (b) if ℓ ̸= ℓ′, and
ãη,Tη

̸= 0 for each η. Furthermore, we assume that this representation is such

that Tη ≥ 0 is as small as possible. Note that
∑Tη

ℓ=0 ãη,ℓ/σ
ℓ
kη(b

m) ∈ U ⟨σ1,σk⟩
η(b),m .

Recall that by our assumption ∆k(f1) is σ1-summable. Then by Theorem 18, we

have that ∆k

(∑Tη

ℓ=0 ãη,ℓ/σ
ℓ
kη(b

m)
)
is σ1-summable for each η. Now Lemma 25

implies that there exist integers Sη such that

σ
Tη+1
k

(
η(b)

)
= σ

Sη

1

(
η(b)

)
, (15)

σ
Tη+1
k (ãη,0) = σ

Sη

1 (ãη,0), (16)

ãη,ℓ = σℓ
k(ãη,0), ∀ℓ ∈ {0, . . . , Tη}. (17)

Applying η−1 to both sides of Equation (15) yields σ
Tη+1
k (b) = σ

Sη

1 (b) since G
is commutative. Since the σℓ

k(b) are in distinct ⟨σ1⟩-orbits, we have Tη = Tη′

and Sη = Sη′ for any two η, η′ ∈ Λk. Let Lk := Tη + 1 and Nk := Sη, then Lk

is the minimal positive integer such that σLk

k (b) ∼⟨σ1⟩ b and σLk

k (b) = σNk
1 (b).

According to Equations (16) and (17), we have σLk

k (ãη,ℓ) = σNk
1 (ãη,ℓ) for each η

and ℓ. We observe that

resσ1

(
f1, λ(b),m

)
= [aλ] and resσ1

(
f1, σ

ℓ
kη(b),m

)
= [ãη,ℓ].

14



For each λ ∈ Λ, there exists a unique pair (η, ℓ) where η ∈ Λk, ℓ ∈ {0, . . . , Tη}
such that λ(b) ∼⟨σ1⟩ σ

ℓ
kη(b). By Definition 19 we have aλ ∼⟨σ1⟩ ãη,ℓ. Now

Lemma 24 implies that σLk

k (aλ) = σNk
1 (aλ).

We are now ready to give the proof of Theorem 21.

Proof. We proceed by induction on n. For the base case n = 1, the theorem
follows from the fact that any univariate rational function is a uniformWZ-form.
For n ≥ 2 suppose that the theorem holds for any WZ-forms in n− 1 variables.
As in Lemma 29, we focus on each component of the orbital decomposition of f1
and rewrite it as in (14). Next we use the cyclic operator to describe f1 in a
more precise way as

f1 = ∆1(f1,k) +
σLk

k − 1

σk − 1
•
∑
η∈Λk

ãη,0
η(bm)

.

Suppose that Lk, Nk ∈ Z with Lk ̸= 0 such that

σLk

k

(
ãη,0
η(bm)

)
= σNk

1

(
ãη,0
η(bm)

)
.

For each k ∈ {2, . . . , n}, let

f ′k = ∆k(f1,k) +
σNk
1 − 1

σ1 − 1
•
∑
η∈Λk

ãη,0
η(bm)

.

Then one can easily check that ∆k(f1) = ∆1(f
′
k) with f

′
k and f1 being integer-

linear of the same type. For k, ℓ ∈ {2, . . . , n} with k ̸= ℓ, we have ∆k(f1) =
∆1(f

′
k) and ∆ℓ(f1) = ∆1(f

′
ℓ), from which it follows that

∆ℓ∆1(f
′
k) = ∆ℓ∆k(f1) = ∆k∆1(f

′
ℓ).

Thus ∆1

(
∆ℓ(f

′
k) − ∆k(f

′
ℓ)
)

= 0, i.e., ∆ℓ(f
′
k) − ∆k(f

′
ℓ) ∈ K(x̂). By

construction, we have f1,k ∈ UG
b,m and f ′2, . . . , f

′
n ∈ UG

b,m. By Lemma 17, also

∆ℓ(f
′
k) − ∆k(f

′
ℓ) is an element of UG

b,m. According to the definition of UG
b,m

in (6), one has
UG
b,m ∩K(x̂) = {0}.

Thus ∆ℓ(f
′
k)−∆k(f

′
ℓ) = 0. By Definition 10, (f1, f

′
2, . . . , f

′
n) is a uniform WZ-

form in UG
b,m, denoted by ωi,j for some i, j.

In conclusion, from the orbital decomposition of f1, we can obtain a WZ-
form (f1, f

′
2, . . . , f

′
n) which is one exact WZ-form ω0 plus several uniform WZ-

forms ωi,j . Note that there may remain a WZ-form of the form (0, f2 −
f ′2, . . . , fn − f ′n). From the compatibility conditions (4), we have for each
k ∈ {2, . . . , n} that ∆1(fk − f ′k) = ∆k(0) = 0, so fk − f ′k ∈ K(x̂).
Hence the remaining form can be viewed as an (n − 1)-variable WZ-form
w.r.t. (∆2, . . . ,∆n). By the induction hypothesis, the proof is completed.
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Note that this decomposition is not unique, because of two aspects. When a
WZ-form is both exact and uniform, see Remark 11, we choose to put it into the
exact part, which minimizes the uniform part. Second, the final result depends
on the operators in G that are chosen for the orbital decomposition. Next we
give an example to illustrate how the decomposition works.

Example 30. Let ω = (f, g, h) ∈ K(x, y, z)3 be a WZ-form with

f =

3∑
ℓ=0

1

4x+ 6y + 5z + ℓ
,

g =

5∑
ℓ=0

1

4x+ 6y + 5z + ℓ
+

2∑
ℓ=0

1

3y + 2z + ℓ
,

h =

4∑
ℓ=0

1

4x+ 6y + 5z + ℓ
+

1∑
ℓ=0

1

3y + 2z + ℓ
.

It is easy to check that (f, g, h) satisfy the following compatibility conditions:{
∆y(f) = ∆x(g), ∆z(f) = ∆x(h), ∆z(g) = ∆y(h)

}
.

Let b = 4x+6y+5z be the same as in Example 20, while the rational function f
here is different. In terms of b it can be written as

f =
1

b
+

1

σ−1
x σz(b)

+
1

σ−1
x σy(b)

+
1

σ−3
x σ3

z(b)
,

but note that this representation is not unique. Similarly, let c = 3y + 2z and
rewrite

2∑
ℓ=0

1

3y + 2z + ℓ
=

1

c
+

1

σ−1
y σ2

z(c)
+

1

σz(c)
.

Then we can decompose ω into an exact WZ-form plus two uniform WZ-forms:

f = ∆x(a+ ā) +

(
∆x(a2) +

σ2
y − 1

σy − 1
· σ

2
z − 1

σz − 1
• 1
b

)
+
σ0
y − 1

σy − 1
· σ

3
z − 1

σz − 1
• 1
c

= ∆x(a+ ā) +

(
∆x(a3) +

σ4
z − 1

σz − 1
· σy − 1

σy − 1
• 1
b

)
+
σ3
z − 1

σz − 1
·
σ0
y − 1

σy − 1
• 1
c
,

g = ∆y(a+ ā) +

(
∆y(a2) +

σ3
x − 1

σx − 1
· σ

2
z − 1

σz − 1
• 1
b

)
+
σx − 1

σx − 1
· σ

3
z − 1

σz − 1
• 1
c
,

h = ∆z(a+ ā) +

(
∆z(a3) +

σ5
x − 1

σx − 1
· σy − 1

σy − 1
• 1
b

)
+
σx − 1

σx − 1
·
σ2
y − 1

σy − 1
• 1
c
.

where

a = − 1

σ−1
x σz(b)

− 1

σ−1
x σy(b)

− 1

σ−3
x σ3

z(b)
− 1

σ−2
x σ3

z(b)
− 1

σ−1
x σ3

z(b)
,

a2 =
1

σyσz(b)
, a3 = − 1

σ−1
x σ2

z(b)
, ā = − 1

σ−1
y σ2

z(c)
.

16



As we can see, the first uniform WZ-form has type (4, 6, 5), while the second
one has type (0, 3, 2).

6. Structure of uniform WZ-forms

Theorem 21 tells us how every WZ-form can be decomposed into exact and
uniformWZ-forms. While exact WZ-forms are easy to describe and to construct,
Definition 10 only allows us to check whether a given tuple is a uniform WZ-
form, but this characterization is not explicit enough to construct such forms. In
this section, we use a difference homomorphism in order to write a uniform WZ-
form in terms of its integer-linear type and a single univariate rational function.
Then we finish our proof of the additive Ore–Sato theorem.

Let (A,σ) and (A, τ ) be two difference rings, where σ = (σ1, . . . , σn) and
τ = (τ1, . . . , τn). A homomorphism (resp. isomorphism) ϕ : A → A is called a
difference homomorphism (resp. isomorphism) from (A,σ) to (A, τ ) if ϕ ◦ σi =
τi ◦ ϕ for each i ∈ {1, . . . , n}. In other words, for each i there is a commutative
diagram:

A A

A A

σi

ϕ ϕ

τi

Lemma 31. Given a unimodular matrix D ∈ Zn×n, i.e., D−1 ∈ Zn×n, we
define a ring isomorphism ϕ : K(x)→ K(x) by ϕ(x) = D · x. Furthermore, we
let the σi act on vectors as σi(x) = x+ei, where ei denotes the i-th unit vector.
If we define τi(x) = x + D−1 · ei for all i ∈ {1, . . . , n}, then ϕ is a difference
isomorphism from

(
K(x),σ

)
to
(
K(x), τ

)
.

Proof. We have to check that ϕ ◦ σi = τi ◦ ϕ. For the left-hand side we get

ϕ(σi(f(x))) = ϕ(f(x+ ei)) = f(D · x+ ei),

and the right-hand side gives

τi(ϕ(f(x))) = τi
(
f(D · x)

)
= f

(
D · (x+D−1 · ei)

)
= f

(
D · x+ ei

)
.

This completes the proof.

Given f1, . . . , fn ∈ K(x) satisfying the compatibility conditions (4), then [6,
Theorem 2] shows that there exists a difference ring extension

(
K(x)[H],σ

)
of(

K(x),σ
)
, where H is a hyperarithmetic expression with certificates f1, . . . , fn.

A difference homomorphism from
(
K(x),σ

)
to
(
K(x), τ

)
can naturally be

extended to the corresponding difference ring extensions.

Lemma 32 ([4, Proposition 9]). For every integer vector v = (v1, . . . , vn)
there is an integer matrix D ∈ Zn×n with the first row v and det(D) =
gcd(v1, . . . , vn).
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Next we use such a matrix D to construct the difference homomorphism.

Theorem 33. Let
(
f1(v · x), . . . , fn(v · x)

)
be a uniform WZ-form of type v,

then there exist constants µ1, . . . , µn ∈ K and a univariate rational function
r ∈ K(z) such that for each i ∈ {1, . . . , n},

fi(v · x) = µi +
∑vi

0
ℓ

r(v · x+ ℓ).

Proof. Let H(x) be a hyperarithmetic expression, and let f1(v ·x), . . . , fn(v ·x)
be its certificates. That is to say for each i,

σi
(
H(x)

)
= H(x) + fi(v · x). (18)

Without loss of generality, we can assume that gcd(v1, . . . , vn) = 1. By
Lemma 32, there exists an integer matrix D = (dij) ∈ Zn×n with det(D) = 1
whose first row is v. Let ϕ : K(x)→ K(x) such that

ϕ
(
f(x)

)
= f

(
D−1 · x

)
, for all f(x) ∈ K(x).

By Lemma 31, ϕ is a difference isomorphism from
(
K(x)[H],σ

)
to
(
K(x)[H], τ

)
,

where τi(x) = x + D · ei for all i in {1, . . . , n}. Applying the operator ϕ to
Equation (18) yields

ϕ
(
σi
(
H(x)

))
= ϕ

(
H(x)

)
+ ϕ

(
fi(v · x)

)
,

τi
(
ϕ
(
H(x)

)
= ϕ

(
H(x)

)
+ fi(x1).

Let H ′(x) = ϕ
(
H(x)

)
, then it follows that τi

(
H ′(x)

)
= H ′(x)+fi(x1). For any

integer m > 0 and i ∈ {1, . . . , n} we have

τmi
(
H ′(x)

)
= H ′(x) +

m−1∑
j=0

fi
(
x1 + jd1i

)
=: H ′(x) + fi,m(x1), (19)

τ−m
i

(
H ′(x)

)
= H ′(x)−

m∑
j=1

fi
(
x1 − jd1i

)
=: H ′(x) + fi,−m(x1). (20)

Let D−1 =:
(
d̃ij
)
n×n

, then for all i ∈ {1, . . . , n} we can rewrite σi in terms of
τ1, . . . , τn:

σi =

n∏
j=1

τ
d̃ji

j .

By applying (19) and (20) repeatedly, we obtain σi
(
H ′(x)

)
= H ′(x)+f ′i(x1) for

some univariate rational function f ′i . That is to say, ∆i

(
H ′(x)

)
= f ′i(x1). By

the compatibility conditions (4) we have that ∆1

(
f ′k(x1)

)
= ∆k

(
f ′1(x1)

)
= 0,

and thus f ′k ∈ K for all k ∈ {2, . . . , n}. Then an easy induction shows that

H ′(x) ≃ F ′(x1) +

n∑
k=2

f ′kxk,
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where F ′(x1) is a solution of the difference equation y(x1+1)− y(x1) = f ′1(x1).
Next, we can recover H(x) as follows,

H(x) = ϕ−1
(
H ′(x)

)
= H ′(D · x)
≃ F ′(v · x) +

n∑
k=2

f ′k

( n∑
i=1

dkixi

)

= F ′(v · x) +
n∑

i=1

( n∑
k=2

f ′kdki

)
xi,

where F ′(v · x+1)−F ′(v) = f ′1(v · x). Write that µi :=
∑n

k=2 f
′
kdki. Then for

each i ∈ {1, . . . , n},

fi(v · x) = ∆i

(
H(x)

)
=



µi +

vi−1∑
ℓ=0

f ′1(v · x+ ℓ), if vi > 0;

µi, if vi = 0;

µi −
−1∑
ℓ=vi

f ′1(v · x+ ℓ), if vi < 0.

Finally we let the univariate rational function r be defined as f ′1.

Eventually we obtain Theorem 4 by combining Theorems 21 and 33. Note
that we can disregard the µi since the constant tuple (µ1, . . . , µn) itself can be
viewed as an exact WZ-form. We show that any hyperarithmetic expression
can be described, up to conjugation, as a rational function plus a K-linear
combination of polygamma functions. First we employ the partial fraction
decomposition on the univariate function r over K:

r(z) =
∑
s

∑
t

βs,t
(z + αs)t

,

where αs, βs,t ∈ K and s, t ∈ N, both with finite support.
According to the recurrence formula of polygamma functions [13, (5.15)]

ψ(t)(z + 1)− ψ(t)(z) =
(−1)tt!
zt+1

, t = 0, 1, . . .

we have

ψ(t)(z + αs + 1)− ψ(t)(z + αs) =
(−1)tt!

(z + αs)t+1
.

Then the hyperarithmetic expression H ′ with certificates(∑v1

0
ℓ

r(v · x+ ℓ), . . . ,
∑vn

0
ℓ

r(v · x+ ℓ)
)
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is conjugate to ∑
s

∑
t

βs,t+1

(−1)tt!
ψ(t)(v · x+ αs).

Corollary 34. Any hyperarithmetic expression is conjugate to

a+
∑
v∈V

∑
s

∑
t

βv,s,tψ
(t)(v · x+ αv,s),

where a ∈ K(x), V ⊂ Zn, s, t ∈ N, and for each v, we have βv,s,t, αv,s ∈ K.

Example 35. Let H be a hyperarithmetic expression with certificates (f, g, h)
as in Example 30. Then H is conjugate to ψ(0)(4x+ 6y + 5z) + ψ(0)(3y + 2z).

7. An algorithm for the minimal decomposition of WZ-forms

Now we will present an algorithm for computing additive representations of
WZ-forms based on the recursive idea in the proof of Theorem 4. Furthermore,
we require that in such a representation the uniform WZ-forms are minimal,
which we call “the minimal decomposition”. Therefore with this algorithm we
can decide the exactness of WZ-forms by checking whether the uniform part is
zero or not.

Definition 36 (Additive representation). Given a WZ-form ω = (f1, . . . , fn),
there is a decomposition of the form

ω =
(
∆1(a), . . . ,∆n(a)

)
+
∑
v∈V

(∑v1

0
ℓ

rv(v · x+ ℓ), . . . ,
∑vn

0
ℓ

rv(v · x+ ℓ)
)
.

We call the list
(
a, V, {rv}v∈V

)
an additive representation of ω. This decom-

position is called “minimal ”if it has minimal degree in the denominator of
each rv(z).

Let ω = (f1, . . . , fn) ∈ K(x)n be a WZ-form. First, we apply Abramov’s
reduction [2] with respect to the variable x1 to decompose f1 into

f1 = ∆1(g0) +

I∑
i=1

J∑
j=1

ai,j

bji
,

where g0 ∈ K(x̂)[x1], ai,j , bi ∈ K[x̂][x1] with degx1
(ai,j) < degx1

(bi), and the bi
are in distinct ⟨σ1⟩-orbits.

By Lemma 29, each ai,j/b
j
i is integer-linear of some type vi. In order to

compute the type of each simple fraction in the above decomposition, we are
reduced to the following problem.

Problem 37 (Integer-linear testing). Given a polynomial p ∈ K[x], decide
whether there exist u ∈ K[z] and v ∈ Zn such that p = u(v · x).
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This problem can be solved by the algorithm IntegerLinearDecomp [20].
Applying it to the numerator and the denominator of each simple fraction ai,j/b

j
i

yields
ai,j

bji
= ui,j(vi · x),

where ui,j ∈ K(z) and vi ∈ Zn with the first entry vi,1 being nonzero. By
collecting the simple fractions of the same type, we obtain

f1 = ∆1(g0) +
∑
v∈V

uv(v · x),

where V ⊂ Zn is a finite set and uv ∈ K(z) for each v ∈ V . The next step is to
write the rational function uv into the form

uv(z) =
∑v1

0
ℓ

rv(z + ℓ),

where rv ∈ K(z). Note that rv must be a rational solution of the difference
equation

y(z + v1)− y(z) = uv(z + 1)− uv(z),

which can also be solved by Abramov’s reduction.
Let ω0 :=

(
∆1(g0), . . . ,∆n(g0)

)
and ωv :=

(
f1,v, . . . , fn,v

)
, where for each

k ∈ {1, . . . , n},
fk,v :=

∑vk

0
ℓ

rv(v · x+ ℓ).

Then ω can be written as a summation of one exact WZ-form, several uniform
WZ-forms and a “degenerate” WZ-form:

ω = ω0 +
∑
v∈V

ωv + ω̃.

In order to get the minimal uniformWZ-forms in the sense that the denominator
of each rv has the lowest possible degree in z, we require the application of
Abramov’s reduction on rv again. The following example illustrates that this
step is needed to minimize rv.

Example 38. Let ω = (f, g, h) ∈ K(x, y, z)3 be a WZ-form with

f = ∆x

(
1

(4x+ 6y + 5z + 1)2

)
+

3∑
ℓ=0

1

4x+ 6y + 5z + ℓ
,

g = ∆y

(
1

(4x+ 6y + 5z + 1)2

)
+

5∑
ℓ=0

1

4x+ 6y + 5z + ℓ
,

h = ∆z

(
1

(4x+ 6y + 5z + 1)2

)
+

4∑
ℓ=0

1

4x+ 6y + 5z + ℓ
.
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Since the residue of Abramov’s reduction is not unique, we may get the following
decomposition of f ,

f = ∆x

(
1

(4x+ 6y + 5z + 1)2
− 1

4x+ 6y + 5z + 1

)
+

1

4x+ 6y + 5z
+

1

4x+ 6y + 5z + 5
+

1

4x+ 6y + 5z + 2
+

1

4x+ 6y + 5z + 3
.

The univariate function in Z corresponding to the uniform WZ-form is

rv(Z) =
1

Z
− 1

Z + 1
+

1

Z + 2
.

Obviously we would anticipate it to be 1/Z. This accident can happen because
4x+ 6y+ 5z + 1 and 4x+ 6y+ 5z + 5 are in the same σx-orbit, and Abramov’s
reduction on f cannot see which one will lead to the minimal rv. However, we
observe that the difference is the summable part of rv with respect to Z, which
finally can be removed by modifying the exact part of f . In this case,

3∑
ℓ=0

(
1

Z + 2 + ℓ
− 1

Z + 1 + ℓ

)
=

1

Z + 5
− 1

Z + 1
.

After substituting Z with 4x + 6y + 5z on the right-hand side of the above
equation, we obtain ∆x

(
1

4x+6y+5z+1

)
. The modification is done by absorbing

it into the previous exact part of f .

If ω̃ is nonzero, then we proceed with the induction step by repeating the
above process for ω̃ which only involves (n−1)-variables. The above process for
computing additive representations of WZ-forms is summarized in Algorithm 1
and is illustrated in Example 39. Note that ω is exact if and only if the output
is (a,∅,∅), which is equivalent to that the uniform part is zero. Our Maple
code for implementing Algorithm 1 is available at

http://www.mmrc.iss.ac.cn/~schen/AddOreSato.html

We provide a worst-case complexity analysis of Algorithm 1 in terms of
arithmetic operations in the base field. Let K[x]d denote the set of polynomials
in K[x] whose degree in xi is no more than d for each i = 1, 2, . . . , n. Let
K(x)d denote the set of rational functions in K(x) with numerators and
denominators in K[x]d. The “big Oh” notation O is referred to the cost of an

algorithm “up to a constant factor” and the “soft Oh” notation Õ may further
neglect some logarithmic factors. We define the max-norm of the multivariate
polynomial f =

∑
i1,...,in

fi1,...,inx
i1
1 · · ·xinn ∈ Q[x] as

∥f∥∞ = max
i1,...,in

|fi1,...,in |.

We first recall some known facts on complexity estimates. The irreducible
factorization of a univariate polynomial f ∈ Z[x] of degree d ≥ 1 with max-norm
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∥f∥∞ = A takes Õ(d6·(d+logA)) operations in Z (see [16, Theorem 16.23]). The
partial fraction decomposition of an element in K(x)d with a given factorization

of its denominator takes no more than Õ(d) operations in K (see [16, Section
5.11]). Multi-point evaluation and interpolation in K[x]d from the given values
on O(dm) points which form an m-dimensional tensor product grid can be done

with Õ(mdm) operations in K (see [25, Theorem 1]). Let f(x) =
∏s

ℓ=1 f̄ℓ(x) be
a multivariate factorization of f(x) ∈ Z[x] over Q. Then Mahler’s bound in [28]
using Gelfond’s inequality leads to

s∏
ℓ=1

∥f̄ℓ∥∞ ≤ 2nd(d+ 1)n/2∥f∥∞.

According to [20], the multivariate integer-linear decomposition of f ∈ Z[x]
with ∥f∥∞ = A takes (n+ logA+ d)O(1) word operations.

Let f1, . . . , fn ∈ Z(x)d with their max-norms bounded by A ∈ N. We

claim that the total cost of Algorithm 1 is Õ
(
nO(1)dO(n) logA

)
operations in Q.

The cost of the algorithm before the recursive loop (line 30 of Algorithm 1)
is dominated by the irreducible partial fraction decomposition of f1 ∈ Q(x)d
with respect to x1, where all simple fractions are of degree in xj , j = 2, . . . , n
bounded by d2. To obtain partial fraction decompositions with respect to x1 over
Q(x2, . . . , xn), we take the strategy of multi-point evaluation and interpolation,
i.e., first evaluating the rational function for variables (x2, . . . , xn) at many
points, performing the univariate irreducible partial fraction decompositions
with respect to x1, and then recovering the desired decompositions over
Q(x2, . . . , xn) by rational interpolation. To be sufficient for recovering the
final result, we need to evaluate x2, . . . , xn at O(d2(n−1)) many good points

which takes Õ
(
(n − 1)d2(n−1)

)
operations in Q. For each point, the univariate

irreducible partial fraction decompositions takes Õ(d6 · (d + logA)) operations
in Q, which is the dominating cost of the irreducible factorization of the
denominator. Finally, we need the rational interpolation to recover O(d)

coefficients in Q(x2, . . . , xn), where each coefficient costs Õ
(
(n − 1)d2(n−1)

)
operations in Q. Thus before line 30, the total cost is

Õ
(
(n− 1)d2(n−1) · d+ d2(n−1) · d6 · (d+ logA)

)
.

From the special structure of WZ-forms, we observe that the degree bound
will not be changed in the recursive steps, and the max-norms of denominators
appeared in irreducible partial fraction decompositions are uniformly bounded
by Ã := 2nd(d+1)n/2A. The exact parts during the computation will always be
expressed in a sparse representation. This idea was used to get a polynomial-
time algorithm for univariate rational summation in [18]. Let T (n, d,A) denote
the worst-case running cost of Algorithm 1 in terms of operations in Q.
According to the previous discussions, we have

T (n, d,A) = Õ
(
(n− 1)d2n−1 + d2n+4 · (d+ logA)

)
+ T̃ (n− 1, d, Ã),
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where T̃ (n− 1, d, Ã) satisfies the recursive formulae

T̃ (m− 1, d, Ã) = Õ
(
(m− 2)d2m−3 + d2m+2 · (d+ log Ã)

)
+ T̃ (m− 2, d, Ã)

for all m = 3, . . . , n. By solving the recurrence relation, we conclude
that T (n, d,A) is Õ

(
nO(1)dO(n) logA

)
.

Example 39. Let ω = (f, g, h) ∈ K(x, y, z)3 be a WZ-form with respect to
(∆x,∆y,∆z), specifically,

f =
xyz − y2z − yz2 + yz − 1

x− y − z + 1
,

g =
x2z − xyz − xz2 + xy − y2 − yz − 1

x− y − z
,

h =
x2y − xy2 − xyz + xz − yz − z2 − 1

x− y − z
.

Employing Abramov’s reduction on f yields

f = ∆x(xyz) +
1

−x+ y + z − 1
.

Then we record the following exact WZ-form as a part of ω:

ω0 :=
(
∆x(xyz),∆y(xyz),∆z(xyz)

)
.

Obviously from the decomposition of f there is only one integer-linear type v =
(−1, 1, 1) and the corresponding univariate rational function is rv = 1/Z. It is
easily checked that there is no summable part in rv. Then a uniform WZ-form
shows up as a part of ω:

ωv =
( 1

−x+ y + z − 1
,

1

−x+ y + z
,

1

−x+ y + z

)
.

Then we can update ω by subtracting ω0 and ωv and obtain ω̃ = (0, y, z),
which is equivalent to the WZ-pair (y, z) with respect to (∆y,∆z). By simple
manipulations we can see that it is an exact WZ-pair:(

∆y

(
1
2y

2 + 1
2z

2
)
,∆z

(
1
2y

2 + 1
2z

2
))
.

Combining this exact WZ-form with the previous one we can update ω0 as:

ω0 =
(
∆x

(
xyz + 1

2y
2 + 1

2z
2
)
,∆y

(
xyz + 1

2y
2 + 1

2z
2
)
,∆z

(
xyz + 1

2y
2 + 1

2z
2
))
.

Finally the decomposition works as ω = ω0+ωv, i.e., the additive representation
of ω is (

xyz + 1
2y

2 + 1
2z

2, {(−1, 1, 1)} , {1/Z}
)
.
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Algorithm 1 WZ-form decomposition algorithm

Function: WZFormDecomp
(
(f1, . . . , fn),x, Z

)
Input: WZ-form (f1, . . . , fn) ∈ K(x)n, x = (x1, . . . , xn), and a new variable Z
Output: Its additive representation:

(
a, V,R = {rv}v∈V

)
if f1 = 0 then

(a, V,R)← WZFormDecomp
(
(f2, . . . , fn), (x2, . . . , xn), Z

)
for v = (v2, . . . , vn) in V do

v← (0, v2, . . . , vn)
end for
return (a, V,R)

end if
Call AbramovReduction: f1 = ∆1(g0) +

∑I
i=1

∑J
j=1 ai,j/b

j
i , a← g0

if n = 1 then
return

(
g0,
(
(1)
)
,
(
f1 −∆1(g0)

))
end if
for 1 ≤ i ≤ I do

Call IntegerLinearDecomp: bi = qi(wi · x) with qi ∈ K[Z]
end for
V ← (v1, . . . ,vm) with {v1, . . . ,vm} = {w1, . . . ,wI} and vi ̸= vj for i ̸= j
for 1 ≤ k ≤ m do

uk ← 0
for 1 ≤ i ≤ I do

if the integer-linear type of bi is vk = (vk,1, . . . , vk,n) then
for 1 ≤ j ≤ J do

Perform the substitution vk · x→ Z in ai,j so that ai,j ∈ K[Z]

uk ← uk + ai,j/q
j
i

end for
end if

end for
Call AbramovReduction: σz(hk)− hk = uk(vk,1z + 1)− uk(vk,1z)
rk ← hk(1/vk,1Z), rk = ∆Z(gk) + r̃k, a← a+ gk(vk · x)

end for
R← (r̃1, . . . , r̃m)
for 2 ≤ k ≤ n do

f ′k ← fk−∆k(a)−
m∑
i=1

∑vi,k

0
ℓ

r̃i(vi · x+ ℓ)

end for
if f ′k ̸= 0 for some k then

(a′, V ′, R′)← WZFormDecomp
(
(f ′2, . . . , f

′
n), (x2, . . . , xn), Z

)
for v′ = (v2, . . . , vn) in V

′ do
v′ ← (0, v2, . . . , vn)

end for
a← a+ a′, V ← Join(V, V ′), R← Join(R,R′)

end if
return (a, V,R)
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Mat. i Mat. Fiz. 15, 1035–1039, 1090.
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