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Abstract Creative telescoping is the method of choice for obtaining information about definite sums

or integrals. It has been intensively studied since the early 1990s, and can now be considered as a

classical technique in computer algebra. At the same time, it is still a subject of ongoing research.

This paper presents a selection of open problems in this context. The authors would be curious to hear

about any substantial progress on any of these problems.

Keywords Computer algebra, creative telescoping, differential algebra, linear operators, ore algebras,

symbolic integration, symbolic summation.

1 Introduction

Summation and integration problems arise in all areas of mathematics, especially in discrete
mathematics, special functions, combinatorics, engineering, and physics. Nowadays, many of
these problems are solved using computer algebra. The number of applications of summation
and integration algorithms is so vast that it is pointless to even try to give a reasonably complete
overview. A collection of standard applications can be found in [1, 2]; as examples of more
recent and more sophisticated applications, see Schneider’s work on symbolic summation in
particle physics[3], the dynamic dictionary of mathematical functions[4], or the Koutschan-
Kauers-Zeilberger proof of the long-standing qTSPP conjecture[5]. These works could be viewed
as successful examples for mathematics mechanization proposed by Wen-tsün Wu[6] in the 1970s.

The general task in symbolic summation is to compute for a given expression describing a
summand sequence f(n, k) an expression that describes the sum sequence F (n) =

∑n
k=0 f(n, k).
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Depending on the type of expressions allowed for summand and/or sum, a solution may or may
not exist. The classical class of expressions considered in the theory of symbolic summation is
the class of hypergeometric terms. A univariate sequence f(k) is called hypergeometric if the
shift quotient f(k+1)/f(k) can be simplified to a rational function in k. For example, f(k) = k!
is hypergeometric because f(k+1)/f(k) = k+1 is a polynomial. Another example is f(k) = 2k.
Gosper’s algorithm[7] solved the decision problem for hypergeometric summation: Given a
hypergeometric term f(k) (i.e., given a rational function r(k) such that f(k + 1)/f(k) = r(k)),
it computes a hypergeometric term F (k) such that F (k + 1) − F (k) = f(k + 1), or it certifies
that no such hypergeometric term exists. When F (k) is found, it implies the closed form
representation

∑n
k=0 f(k) = F (n + 1) − F (0). For example, Gosper’s algorithm can find the

formula
∑n

k=0 k k! = (n + 1)! − 1.
Gosper’s algorithm only applies to so-called indefinite sums. These are sums in which the

upper summation bound is a variable that does not occur in the summand expression. All other
sums are called definite. For example,

∑n
k=0

(
m
k

)
is an indefinite sum (involving a parameter m),

while
∑n

k=0

(
n
k

)
is a definite sum. The distinction is important because there does exist a closed

form for the latter sum (it is equal to the nice expression 2n), but no closed form exist when m

and n are unrelated.
In order to process definite sums, we can use the technique of creative telescoping. In-

formally, creative telescoping solves the following problem: Given an expression f(n, k), it
computes polynomials c0(n), c1(n), · · · , cr(n), not all zero, and an expression g(n, k), such that

c0(n)f(n, k) + · · · + cr(n)f(n + r, k) = g(n, k + 1) − g(n, k).

When such a relation is available, we can sum it for k from 0 to n to obtain a relation of the
form

c0(n)F (n) + · · · + cr(n)F (n + r) = G(n)

for the definite sum F (n) =
∑n

k=0 f(n, k) and some explicit expression G(n). From such an
equation, other algorithms can be used to find closed form representations for F (n) (or prove
that there are none), or information about its asymptotic behaviour for n → ∞, or to compute
a large number of terms of the sequence efficiently.

The method of creative telescoping was propagated by Zeilberger, et al. in the early
1990s[8–11] (although the word “creative telescoping” already appears in [12]). Zeilberger also
gave the first algorithm for creative telescoping applicable to hypergeometric terms. This al-
gorithm, now known as Zeilberger’s algorithm, is a clever modification of Gosper’s algorithm.
Zeilberger also formulated a vision for doing creative telescoping in the much more general
realm of holonomic functions[13]. Over the years, this led to the development of operator-based
techniques such as Chyzak’s algorithm[14, 15] as well as difference-field-based techniques mainly
developed by Schneider[16–18].

Ore algebras provide a setting in which the creative telescoping problem can be formulated in
great generality. To give an idea, let us consider the case where C is a field of characteristic zero,
K = C(n, k) is the field of rational functions in n and k with coefficients in C, and A = K[Sn, Sk]
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is the polynomial ring in two variables Sn, Sk with coefficients in K. The multiplication on
A is defined in such a way that we have SnSk = SkSn and Snr(n, k) = r(n + 1, k)Sn and
Skr(n, k) = r(n, k + 1)Sk for all r ∈ K. The elements of A can then be viewed as operators
that act on a space F of bivariate sequences. For any particular sequence f ∈ F , we may then
consider the left ideal ann(f) = {L ∈ A : L · f = 0} of all the operators in A which map f to
zero. Then the problem of creative telescoping is to find some operator P ∈ C(n)[Sn] \ {0} and
some operator Q ∈ A such that P − (Sk − 1)Q ∈ ann(f). In such a representation, P is called
a telescoper for f and Q is called a certificate for P .

There are some other flavors of the creative telescoping problem which are also of interest.
In particular, there is a differential version, which is useful for integration. In this case, we
consider the Ore algebra A = C(x, y)[Dx, Dy] consisting of all linear differential operators with
coefficients in C(x, y), acting on a space F of bivariate functions. Note that the multiplication
laws for differential operators are slightly different from the multiplication laws for recurrence
operators: Here we have DxDy = DyDx and Dxa = aDx + ∂a

∂x and Dya = aDy + ∂a
∂y for all

a ∈ C(x, y). For any particular function f ∈ F , let ann(f) = {L ∈ A : L · f = 0} again denote
the left ideal consisting of all the operators in A that map f to zero. The problem of creative
telescoping is then to find some operator P ∈ C(x)[Dx]\{0} and some operator Q ∈ A such that
P −DyQ ∈ ann(f). In the context of integration, such an operator can serve the same purpose
as a creative telescoping relation of the form discussed before in the context of summation: From
(P −DyQ) ·f = 0 follows 0 =

∫ 1

0
((P −DyQ) ·f)(x, y)dy = P ·∫ 1

0
f(x, y)dy− [(Q ·f)(x, y)]1y=0, so

we have P · F (x) = G(x) for F (x) =
∫ 1

0 f(x, y)dy and some simple and explicit function G(x).
A lot of research has been done on algorithms for creative telescoping during the past

25 years. A reasonably complete and almost up-to-date overview of the state of the art is given
in Chyzak’s Habilitation thesis from 2014[19]. The focus of this thesis is on the algorithmic
aspects and the theoretical foundations. In addition, there are many papers that implicitly or
explicitly make use of the theory by simplifying sums or integrals using computer programs
based on the method of creative telescoping. This underlines the importance of the method.
At the same time, despite the successful work on creative telescoping that has been done in the
past, there is still a number of open problems which do not yet have satisfactory answers. In the
present article, we offer a collection of such open problems. The choice is obviously biased by
our personal interests. However, we believe that significant progress on any of these problems
would be a valuable contribution to the advance of symbolic summation.

2 Reduction-Based Algorithms

Algorithms for creative telescoping can be distinguished according to their input class or
according to the algorithmic technique they are based on. The available algorithmic tech-
niques can be divided into four generations of creative telescoping algorithms. Algorithms from
the first generation use elimination theory for operator ideals[11, 20–24]. Zeilberger’s algorithm
from 1990[25] and its generalizations[15, 18, 26, 27] form the second generation. The third gener-
ation is based on an idea that was first formulated in [28, 29] and has later been refined and
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generalized[30–33]. Algorithms from the fourth and most recent generation of creative telescop-
ing algorithms are called reduction-based algorithms. They were first introduced by Bostan,
et al.[34] for integration of rational functions. The basic idea is as follows. Consider a rational
function f = p/q ∈ C(x, y). The task is to find c0, c1, · · · , cr ∈ C(x) such that there exists
g ∈ C(x, y) with

c0f + c1Dxf + · · · + crD
r
xf = Dyg.

Consider the partial derivatives f, Dxf, D2
xf, · · · ∈ C(x, y). Using Hermite reduction, we can

write each of them in the form Di
xf = Dygi +hi for some gi, hi ∈ C(x, y) where hi has a square

free denominator whose degree exceeds the degree of its numerator. The denominators of all
these hi divide the square free part of the denominator of f in C(x)[y], so the C(x)-subspace
of C(x, y) generated by h0, h1, · · · has finite dimension. If the dimension is r, then we can find
c0, c1, · · · , cr ∈ C(x), not all zero, such that c0h0 +c1h1 + · · ·+crhr = 0. For these c0, c1, · · · , cr

we then have
c0f + c1Dxf + · · · + crD

r
x = Dy(g0 + g1 + · · · + gr) + 0

as desired.
The approach is not limited to rational functions and has been generalized to hyperexponen-

tial terms[35], hypergeometric terms (for the summation case)[36, 37] and algebraic functions[38].
It has also been worked out for the mixed case when the integrand is a hypergeometric-hyper-
exponential term fn(x)[39], and it is being worked out by Du, et al.[40] for the q-case. At this
stage, the summation case for hypergeometric-hyperexponential terms fn(x) is still open, so
this shall be our first problem.

Problem 2.1 Develop a reduction based creative telescoping algorithm which for a given
hypergeometric-hyperexponential term fn(x) computes, if possible, rational functions c0, c1, · · · ,

cr in C(x), not all zero, such that there exists a hypergeometric-hyperexponential term gn(x)
with

c0fn(x) + c1Dxfn(x) + · · · + crD
r
xfn(x) = gn+1(x) − gn(x).

In the pure differential case, we could consider integrands from larger classes of functions.
The largest class considered so far was the class of algebraic functions[38]. It is based on
Trager’s Hermite reduction[41, 42]. The correctness of the method relies heavily on Chevalley’s
theorem[43], according to which any non-constant algebraic function must have a pole at some
place (possibly over infinity). Since there is no analogous theorem for general D-finite functions,
not even for solutions of Fuchsian equations, it is not clear how to generalize the reduction based
algorithm from algebraic functions to (Fuchsian) D-finite functions. This is our second problem.

Problem 2.2 Develop a reduction based creative telescoping algorithm which for a given
(Fuchsian) D-finite function f(x, y) computes, if possible, rational functions c0, c1, · · · , cr ∈
C(x), not all zero, such that there exists an operator Q ∈ C(x, y)[Dx, Dy] with (c0 + c1Dx +
· · · + crD

r
x) · f = DyQ · f .
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3 Order-Degree Curves

When a function admits a telescoper, the telescoper is not uniquely determined. The set
of telescopers rather forms a left ideal in the operator algebra C(x)[Dx] (or in C(n)[Sn], re-
spectively). Since the operator algebras C(x)[Dx] and C(n)[Sn] are left-Euclidean domains, it
follows that there is a unique monic telescoper of minimal possible order — called the minimal
telescoper — and that all the other telescopers are left-multiples of this telescoper.

For the purpose of estimating the computational cost of creative telescoping algorithms, it
is interesting to know bounds for the size of telescopers relative to characteristic parameters
of the input. Besides bounds on the order r of the telescopers, it is also of interest to bound
the sizes of its coefficients. After clearing denominators (from left), we can assume that the
telescoper lives in C[x][Dx] or C[n][Sn], and we can ask for its degree d with respect to x or n.

Unlike C(x)[Dx] and C(n)[Sn], the rings C[x][Dx] and C[n][Sn] are not left-principal. As
a consequence, we can in general not minimize the order r and the degree d simultaneously.
Instead, we must expect that telescopers of low order r have a high degree d and telescopers of
low degree d have high order r. To describe the general situation, we use a function c : R → R

such that for each r ≥ rmin ∈ N there is a telescoper of order r and degree at most c(r). The
graph of the function c is called an order-degree curve for the summation/integration problem
at hand.

It turns out that order-degree curves can be derived from the Apagodu-Zeilberger algorithm[28].
Apagodu and Zeilberger used their approach to derive bounds on the order of the telescop-
ers. Again, the idea is easily explained for the case of rational functions. Consider f =
p/q ∈ C(x, y) and suppose for simplicity that degy p < degy q. By induction, it can be
shown that Di

xf = pi/qi+1 for some polynomial pi ∈ C(x)[y] of degree at most degy pi ≤
degy p + i degy q. Therefore, for any choice r ∈ N and any choice c0, c1, · · · , cr ∈ C(x), we have
that c0f + c1Dxf + · · ·+ crD

r
xf is a rational function with denominator qr+1 and a numerator

whose degree is bounded by degy p + r degy q. Now consider a rational function g = u/qr with
u = u0 + u1y + · · · + usy

s ∈ C(x)[y]. Then Dyg = v/qr+1 for some v ∈ C(x)[y] of degree at
most s + degy q. In order to get the desired equality c0f + c1Dxf + · · · + crD

r
xf = Dyg, we

multiply both sides by qr+1 and equate coefficients with respect to y. This gives a linear system
over C(x) for the variables c0, c1, · · · , cr, u0, u1, · · · , us. These are (r + 1) + (s + 1) variables.
The number of equations is at most 1 + max(degy p + r degy q, s + degq), which simplifies to
1 + degy p + r degy q if we choose s = degy p + (r − 1) degy q. The number of variables exceeds
the number of equations if (r + 1) + (degy p + (r − 1) degy q + 1) > 1 + degy p + r degy q, i.e., if
r > deg(q) − 1. It follows that for r ≥ deg(q) the linear system will have a nontrivial solution.
For this nontrivial solution, at least one of c0, c1, · · · , cr, u0, u1, · · · , us is nonzero. It is then not
possible that c0, c1, · · · , cr are all zero, because by our simplifying assumption g is a rational
function whose numerator as lower degree than its denominator, so Dyg can only be zero if g

is zero, and then also u0, u1, · · · , us would all have to be zero. We have thus shown that the
minimal order telescoper for f has order at most deg(q).

The reasoning can be refined such as to also provide bounds for the degrees of the telescopers.
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This has been done for hyperexponential terms in [31] and for hypergeometric terms in [32].
The resulting curves are simple hyperbolas. However, the degree bounds are not sharp. For
the hypergeometric case, also the bit size of the integer coefficients has been analyzed[44]. For
general D-finite functions, we know bounds for the order of the telescopers but an order-degree
curve has not yet been worked out. Therefore:

Problem 3.1 Derive an order-degree-curve for general D-finite functions.

It would also be interesting to have bounds for the bit size not only for hypergeometric input
but also for other classes, for example for hyperexponential terms.

Problem 3.2 Derive bounds for the bit size of telescopers for hyperexponential terms.

Experiments show that the order-degree curves following from the analysis of Apagodu-
Zeilberger-like algorithms are not sharp. Better bounds could be obtained if we had a better
understanding of the singularities of telescopers. It was shown in [45] how the distinction
between removable and non-removable singularities of an operator L ∈ C[x][Dx] implies a
curve that very accurately describes the degrees of the elements of (C(x)[Dx]L) ∩ C[x][Dx].
Here, a singularity of L is defined as a root of the leading coefficient polynomial (the coefficient
of the highest derivative), and such a singularity is called removable if there exists an operator
Q ∈ C(x)[Dx] such that QL is in C[x][Dx] and does not have this singularity. The terminology
is analogous for recurrence operators, and the connection to order degree curves observed in [45]
also applies to this case.

Several algorithms are known for identifying the removable singularities of an operator[46–48].
Therefore, when a telescoper is known, we obtain a very accurate order-degree curve. However,
for the design of efficient creative telescoping algorithms it would be useful to have order-degree
curves that can be easily read off from the summand/integrand, rather than from the telescoper.
The question therefore is whether it is possible to predict the removable and non-removable
singularities of a telescoper directly from the summand/integrand. This leads to the next
problem.

Problem 3.3 (a) Find a way to determine the removable and non-removable singularities
of a telescoper for a given proper hypergeometric term f(n, k) = pcndk

∏m
i=1 Γ (αin+βik+γi)ei

(p ∈ C[n, k], c, d ∈ C, αi, βi, ei ∈ N, γi ∈ C), using less computation time than needed for
computing a telescoper.

(b) The analogous question for hyperexponential terms f(x, y)= exp(a/b)
∏m

i=1 pci

i (a, b, pi ∈
C[x, y], ci ∈ C).

4 Differential and Difference Fields

In the area of differential algebra, a pair (K, d) is called a differential field if K is a field
and d : K → K is such that d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b) for all a, b ∈
K. For example, the field K = C(x) of rational functions forms a differential field together
with the usual derivation d

dx . More generally, appropriate differential fields can be used to
emulate the behaviour of expressions involving elementary functions under differentiation. The
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corresponding differential fields are called liouvillean fields. They are used in Risch’s integration
algorithm[42, 49–51]. Analogously, a difference field is a pair (K, s) where K is a field and
s : K → K is such that s(a + b) = s(a) + s(b) and s(ab) = s(a)s(b) for all a, b ∈ K, i.e., s is an
automorphism. Difference fields corresponding to liouvillean fields are called ΠΣ -fields. They
emulate the behaviour of expressions involving nested sums and products under shift and are
used in Karr’s summation algorithm[52, 53].

The creative telescoping problem can be formulated for differential and difference fields.
In the differential case, let K be a field with two derivations dx, dy : K → K that commute
with each other, and consider the operator algebra A = K[∂x, ∂y] with the commutation rules
∂x∂y = ∂y∂x and ∂xa = a∂x + dx(a) and ∂ya = a∂y + dy(a) for all a ∈ K. Such an operator
algebra may act on some function space F . For a given f ∈ F we may then ask, like before,
whether there exists P, Q ∈ A such that (P − ∂yQ) · f = 0. Here, P must belong to Kx[∂x],
where Kx = {u ∈ K : dy(u) = 0} is the subfield of K consisting of all elements of K that are
constant with respect to y. The version for difference fields is analogous.

Schneider[16] was the first to observe that Karr’s summation algorithm can be used to solve
the creative telescoping problem in very much the same way as Gosper’s algorithm is exploited
in Zeilberger’s algorithm. He has been working on refinements, extensions, and generalizations
of summation technology based on difference field theory for many years and has obtained spec-
tacular results, see [18] and the references given there. Yet, some questions have not yet been
addressed. In particular, there is no general theory which clarifies under which circumstances a
telescoper exists (a question that is settled for the classical hypergeometric case by the work of
Abramov, et al.[54–57], for the q-hypergeometric case by Chen, et al.[58], and for the mixed cases
by Chen, et al.[59]), or to give a priori bounds on their order or on the cost for their computa-
tion. Similar remarks apply in the differential case, for which Raab[60] has recently formulated a
creative telescoping approach based on Risch’s algorithm, but no theoretical results concerning
existence or size of telescopers were given.

Problem 4.1 For the creative telescoping problem over liouvillean fields (in the differen-
tial case) or for ΠΣ -fields (in the shift case), derive a criterion for the existence of a telescoper.
For the cases where telescopers exist, derive bounds on their order.

In contrast to D-finite functions in the differential case, elementary functions may not have a
telescoper. One obstruction to the existence of a telescoper may be the fact that an elementary
function can only be elementary integrable if all its residues are constant (cf. Section 5.6 of [51]).
A telescoper must therefore at least map all the residues of the given function to constants.
This is only possible if the residues are D-finite, which may not be the case. For example, the
function f(x, y) = x

(ex−1)(1−y) cannot have a telescoper with respect to y, because its residue
at y = 1 is x

ex−1 , which is not D-finite.
For the shift case, Schneider has an algorithm[61] which computes for a given nested sum

expression an equivalent expression in which the nesting depth is as small as possible. This is
remarkable because the equivalent representation with minimal depth does usually not belong
to the same field in which the input sum is given. So far there is no analogous algorithm for
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the differential case, although it would be interesting to have one. Therefore:

Problem 4.2 Design an algorithm which finds for a given expression of nested indefinite
integrals an equivalent expression for which the the nesting depth is as small as possible.

Our last problem in this section relates to the structure of the class of elementary functions.
As this class is not closed under integration, the set of elementary integrable elementary func-
tions forms a proper subclass. This class in turn contains integrable as well as non-integrable
functions. It is clear that for every n ∈ N, there is an elementary function which is n times
elementary integrable but not n+1 times. An example is the nth derivative of ex2

. On the other
hand, there are also elementary functions which can be integrated arbitrarily often without ever
leaving the class of elementary functions, for example polynomials. What other functions have
this property?

Problem 4.3 Determine the class of elementary functions with the property that for
every n ∈ N, their n-fold integral is again elementary.

Using repeated partial integration, we can show that a function f(x) belongs to this class
if and only if for every n ∈ N the function xnf(x) is elementary integrable. This implies that
all rational functions are arbitrarily often elementary integrable. Note that this is not obvious
because the integral of a rational function may involve logarithms of algebraic functions, and
such functions need not be elementary integrable.

5 The Multivariate Case

While most single sums appearing in practical applications are nowadays no challenge for
a computer algebra system, multiple sums may still be too hard. One natural reason is that
multiple sums tend to involve expressions in many variables, and such expressions can quickly
become too large to be handled efficiently. Another reason is that the algorithms we know
for single sums are better than those we know for multiple sums. For single sums, Zeilberger’s
algorithm supersedes elimination methods such as the so-called Sister Celine algorithm[11, 20, 62].
But while the algorithm of Sister Celine has been generalized to multisums[9, 23], there is no
multivariate Zeilberger algorithm yet. We do not even know a multivariate Gosper algorithm.

Problem 5.1 Develop an algorithm which takes as input a multivariate hypergeometric
term h in m discrete variables k1, k2, · · · , km, and decides whether there exist hypergeometric
terms g1, g2, · · · , gm such that

h = Δ1(g1) + Δ2(g2) + · · · + Δm(gm).

Here, Δi is the forward difference operator with respect to the variable ki, i.e.,

Δif(k1, k2, · · · , km) = f(k1, k2, · · · , ki+1, · · · , km) − f(k1, k2, · · · , ki, · · · , km).

A solution of this problem would be an important step towards the development of a
Zeilberger-like algorithm for multisums. Recently, Chen and Singer[63, 64] have given a nec-
essary and sufficient condition for the case when h is a rational function in two variables. Their
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criterion was then turned into an algorithm by Hou and Wang[65]. In [66] these results were
used to derive some conditions on the existence of telescopers for trivariate rational functions.
Summability criteria for larger classes, such as the class of hypergeometric terms, may analo-
gously allow for the formulation of existence criteria for telescopers in the multivariate setting.
In the long run, we would hope that a multivariate Gosper algorithm serves as a starting point
for the development of a reduction-based creative telescoping algorithm for the multivariate
setting.

The corresponding question for bivariate rational functions in the differential case has been
studied already by Picard, et al.[67, 68] many years ago. More recently, Dwork and Griffiths[69–72]

gave a method that works for any number of variables but requires some kind of regularity of
the denominator. An algorithm for creative telescoping based on these results was given by
Bostan, et al.[73].

6 Binomial Sums

The principal application of creative telescoping is the construction of recurrence relations
satisfied by definite sums. As already indicated in the introduction, such a recurrence can be
obtained from a telescoper-certificate pair for the summand. However, some care is necessary
for this step. In order to be able to sum a relation

c0(n)f(n, k) + c1(n)f(n + 1, k) + · · · + cr(n)f(n + r, k) = g(n, k + 1) − g(n, k)

for k from 0 to n, we must assure that the right hand side involving the certificate g(n, k)
does not have any poles for the values k in this range. Unfortunately, such poles do appear
in examples, and although they usually cancel each other nicely, it is not easy to verify this
algorithmically. See [74] for a detailed case study in this context.

For indefinite hypergeometric single sums, Abramov and Petkovs̆ek[75] discussed an alterna-
tive to Gosper’s algorithm that handles special points properly. Ryabenko[76] gave an accurate
summation algorithm for definite sums over a particular class of hypergeometric terms. Also
Harrison[77] have recently discussed this issue from the perspective of formal reasoning. A
continuation of this work towards a rigorous summation algorithm would be worthwhile.

Problem 6.1 Develop an algorithm that correctly transforms a telescoper-certificate pair
for a hypergeometric term into a recurrence for the corresponding definite sum. In particular,
the algorithm should properly take care of any possible issues arising from poles in the certificate.

It appears that the situation is somewhat easier for summands with compact support. A
hypergeometric term f(n, k) is said to have compact support if for every n ∈ Z there are only
finitely many k ∈ Z such that f(n, k) is different from zero. In this case, the infinite sum
∑∞

k=−∞ f(n, k) is in fact a terminating sum. For example, we have
∑n

k=0

(
n
k

)
=

∑∞
k=−∞

(
n
k

)

because
(
n
k

)
= 0 when k < 0 or k > n.

When the sum over k runs through all integers (and there are no issues with poles in the
certificate), the transformation of a telescoper-certificate pair to a recurrence for the definite
sum is particularly nice. One reason is that the operator

∑∞
k=−∞ commutes with the shift
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operator Sn, and therefore, with the telescoper. A second reason is that the right hand side
∑∞

k=−∞
(
g(n, k + 1) − g(n, k)

)
invariably collapses to zero (because when f(n, k) has compact

support, then so does g(n, k)). Therefore, in the case of compact support, the telescoper for
f(n, k) is precisely the recurrence for

∑
k f(n, k).

Viewing hypergeometric terms as algebraic objects, it is somewhat unsatisfactory that the
concept of compact support is defined “analytically” in terms of the values of sequences as-
sociated to the terms. In view of a possible automation, a more algebraic explanation of the
phenomenon would be useful. A finite summation operator such as Σ :=

∑n
k=0 does not com-

mute with the shift Sn. However, if we introduce the evaluation operator En that acts on
bivariate terms by setting k to n, then we have the commutation rule ΣSn = SnΣ − EnSn.
This rule expresses the fact

∑n
k=0 f(n+1, k) =

∑n+1
k=0 f(n+1, k)−f(n+1, n+1). Now consider

a telescoper P = c0(n) + c1(n)Sn + · · · + cr(n)Sr
n with a corresponding certificate Q, so that

(P −ΔkQ) · f(n, k) = 0. Applying Σ to this relation and using the commutation rules leads to

PΣ · f(n, k) =
((

c1(n)EnSn + · · · + cr(n)
r∑

i=1

Sr−i
n EnSi

n

)

+ (EnSnQ − E0Q)
)

· f(n, k),

where E0 denotes an evaluation operator that sets k to 0. We see that the telescoper P translates
directly into an annihilating operator for the sum if and only if the right hand side is zero, i.e.,
if the operator on the right annihilates the summand. Note that it is irrelevant whether f(n, k)
has compact support.

For the differential case, Regensburger, Rosenkranz and collaborators have developed a
theory of operator algebras that include both derivations as well as integration operators. Their
principal motivation is to solve boundary value problems, see [78–82] and the references given
there for an overview of their results. Their algebras also contain evaluation operators similar
to the En introduced above. We would like to see an analogous theory for operator algebras
involving summation as well as shift operators.

Problem 6.2 Develop a theory of operator algebras including shift as well as summation
operators, analogous to the theory of Regensburger and Rosenkranz. In this theory, find an
algebraic explanation why the right hand side of a creative telescoping relation often vanishes
for binomial sums.

In a recent paper, Bostan, et al.[83] approached the problems related to boundary conditions
and possible poles in the certificate from a different direction. Instead of applying creative
telescoping directly to the sum in question, they translate the summation problem into an
integration problem and apply creative telescoping to this problem. One advantage of this
approach is that for the resulting contour integrals there are no problems related to singularities,
because the path of integration can always be deformed such as to avoid all the singularities.
For this reason, it is not necessary to inspect the certificate, and it is possible to employ
efficient algorithms which only compute the telescoper. So far the approach does not apply to
all hypergeometric sums but only to a subclass. They call it the class of binomial sums and
they show for the case of one variable that a sequence is a binomial sum (in the sense of their
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definition) if and only if it is the diagonal of a multivariate rational function. The diagonal of a
multivariate power series

∑∞
n1,n2,··· ,nr=0 an1,n2,··· ,nrx

n1
1 · · ·xnr

r is defined as the univariate series
∑∞

n=0 an,n,··· ,nxn. The definition of binomial sums also covers sums with several variables, but
no characterization of binomial sums in several variables is given in [83].

Problem 6.3 Prove or disprove: A multivariate sequence (bk1,k2,··· ,ks) in s discrete vari-
ables is a binomial sum in the sense of [83] if and only if there exists a rational power series

∞∑

n1,n2,··· ,nr=0

an1,n2,··· ,nrx
n1
1 xn2

2 · · ·xnr
r

and i1, i2, · · · , is ∈ N with i1 + i2 + · · · + is = r such that for all k1, k2, · · · , ks we have

bk1,k2,··· ,ks = ak1,k1,··· ,k1︸ ︷︷ ︸
i1

,k2,k2,··· ,k2︸ ︷︷ ︸
i2

,··· ,ks,ks,··· ,ks︸ ︷︷ ︸
is

.

An important open problem in the context of diagonals is Christol’s conjecture[84], which
says that every formal power series with integer coefficients and a positive radius of convergence
which is the solution of a linear differential equation with polynomial coefficients is the diagonal
of some rational power series. In this conjecture, no statement is made about the number of
variables of the rational power series. Bostan, et al.[83] remarked that we must at least allow
for three variables, and that no explicit example is known which requires more.

Because of its connection to diagonals, the class of binomial sums as introduced in [83] is not
as artificial as it seems at first glance. Nevertheless, also a natural restriction is a restriction.
It would be interesting to extend the applicability of the algorithm to a wider class.

Problem 6.4 Generalize the algorithm of [83] from binomial sums to arbitrary hyperge-
ometric sums.

7 Nonlinear Equations and Annihilators of Positive Dimension

In the theory of “holonomic systems”[13], summands and integrands are represented by
ideals of operators by which they are annihilated. Properties of the ideal are used to ensure
the existence of telescopers and the termination of algorithms. A condition that is typically
imposed is that the ideal has Hilbert dimension 0. In this case, the annihilated function is called
D-finite. Many functions of practical relevance happen to be D-finite, but it is natural to ask
to whether D-finiteness is really needed for creative telescoping to succeed. It turns out that
it is not. Already in the 1990s, Majewicz has given a variant of creative telescoping applicable
to Abel-type identities[85]. The key observation is that such identities exist because the sum
has more than one free variable, and this can compensate for the lack of relations preventing
the summand from being D-finite. A summation algorithm by Kauers[27] for sums involving
Stirling numbers and an algorithm by Chen and Sun[86] for sums involving Bernoulli numbers
are based on similar observations. In 2009, the phenomenon was formulated in more general
terms by Chyzak, et al.[87]. They showed that telescopers can exist also when the annihilator
of the summand/integrand has positive dimension. More precisely, consider a function with n
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free variables and k summation/integration variables, let I be the annihilator of the function
and let T be the ideal of telescopers (in the smaller operator algebra corresponding only to the
n free variables). Then they show that dim T ≤ dim I + (p − 1)n, where p ∈ N is a quantity
they call the “polynomial growth” of the ideal I. Not much is known about this quantity. It
seems that we have p = 1 in most cases of practical interest, but we do not know whether it
is connected to more classic quantities defined for (operator) ideals, or even how to compute it
for a given ideal I.

Problem 7.1 Clarify the meaning of “polynomial growth” introduced in [87]. Can the
definition in [87] be replaced by another one, possibly not equivalent, which also satisfies the
bound on dim I stated above? Is there an efficient algorithm for computing the polynomial
growth of a given operator ideal?

For sums involving Stirling numbers, it would also be conceivable to have a creative tele-
scoping algorithm that exploits the special form of their generating function. For example,
for the Stirling numbers of the second kind,

∑∞
n,k=0 S(n, k)xn

n! y
k = exp(y(ex − 1)) is not D-

finite but still elementary, so generalized techniques as discussed in Section 4 might apply.
The function f(x, y) = exp(y(ex − 1)) is also an example of a function satisfying a system
of algebraic differential equations (ADE): We have fx(x, y) − yfy(x, y) − yf(x, y) = 0 and
f(x, y)fy,y(x, y) − fy(x, y)2 = 0. Other prominent examples of non-D-finite functions sat-
isfying algebraic differential equations are the generating function for the partition numbers
∏∞

n=0(1 − xn)−1 and the Weierstraß ℘-function. Solutions of ADEs also appear in combina-
torics, for example as generating functions of certain restricted lattice walks[88].

While there is a reasonably well developed elimination theory for systems of algebraic dif-
ferential equations[89–93], no creative telescoping algorithm for this class of functions is known.

Problem 7.2 Develop a creative telescoping algorithm applicable to functions satisfying
systems of ADEs.

For approaching this problem, it may become appropriate to adapt the specification of the
creative telescoping problem. In a context where quantities are defined by non-linear equations,
it may be too restrictive to require that the telescoper be a linear operator. On the other hand,
allowing non-linear operators as telescoper does not seem sensible either as long as the main
motivation for creative telescoping is to derive equations for definite integrals, because the
application of an integral operator does in general not commute with such an operator. It is a
part of the problem to determine a suitable adaption of the creative telescoping problem.

8 The Inverse Problem

Using creative telescoping, we can obtain a recurrence satisfied by a given definite sum.
The recurrence then serves as a basis for obtaining further information about the sum, such as
asymptotic estimates or closed from expressions. The classical application is to use Zeilberger’s
algorithm in combination with Petkovšek’s algorithm[11, 94] in order to decide whether a given
definite hypergeometric sum admits a hypergeometric term as a closed form. If the sum comes
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from some application, there is a certain chance that such a representation exist. However, an
arbitrarily chosen sum is not likely to have a closed form. It is even less likely for an arbitrary
recurrence (which may or may not come from creative telescoping) to have a hypergeometric
closed form. People have therefore designed algorithms for finding more general types of closed
form solutions of recurrence equations, for example d’Alembertian solutions[11, 95] or liouvillean
solutions[96, 97]. Even more generally, we could ask whether a given recurrence admits a solution
that can be expressed as a definite sum. In a way, this would be the inverse problem of creative
telescoping. Chen and Singer[63] gave a characterization of possible linear operator that can be
minimal telescopers for bivariate rational functions. However, no algorithm is known for solving
this problem in the general case, but it would be very valuable for practical applications.

Problem 8.1 Design an algorithm which takes as input a nonzero recurrence operator
P ∈ Q[n][Sn] and finds, if at all possible, a bivariate hypergeometric term f(n, k) which has P

as a telescoper.

The analogous problems for the differential case and the two mixed cases are interesting as
well.

In recent years there has been some activity by van Hoeij and collaborators concerning
solutions of recurrences or differential equations in terms of hypergeometric series[98–102]. In a
way, these algorithms solve only special cases of the inverse problem for creative telescoping,
thus indicating perhaps that the general problem may be very difficult.

9 Computational Challenges

Creative telescoping is not only of theoretical interest but it is also a valuable tool in all
contexts where summation and integration problems arise that are beyond the scope of any
reasonable hand-calculation. For example, the proof of the qTSPP conjecture[5], which was
obtained using Koutschan’s Mathematica package[103], involves a creative telescoping problem
that leads to a certificate of 4Gb size. Such computations are clearly not feasible by hand,
and they are also challenging for computers. We shall therefore conclude this paper with two
explicit computational challenges which to our knowledge are not feasible by any software
currently available.

The first problem is quoted from[104] and concerns the computation of diagonals. Again,
the diagonal of a multivariate series

∑∞
n1,n2,··· ,nd=0 an1,n2,··· ,nd

xn1
1 xn2

2 · · ·xnd

d is defined as the
univariate series

∑∞
n=0 an,n,··· ,nxn. The diagonal of a D-finite series is D-finite[105], and creative

telescoping can be used, at least in principle, to derive a recurrence for the diagonal terms
an,n,··· ,n from a given set of defining equations for the original multivariate series.

Problem 9.1 For d = 4, 5, · · · , 12, prove recurrence equations for the diagonals of the
rational series 1

/(
1 − ∑d

i=1
xi

1−xi

)
conjectured in [104].

For d = 1, 2, the problem is easy. For d = 3, it was solved in [106].
In 2002, Beck and Prixton made an effort to compute the Ehrhart polynomial of Birkhoff

polytopes[107], a quantity that is relevant in discrete geometry[108]. There is a Birkhoff poly-
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nomial associated to every n ∈ N. They succeeded in computing the full Ehrhart polynomial
for all n ≥ 9, and the most significant coefficient for the case n = 10. As a computational
challenge, we pose the computation of the full Ehrhart polynomial for n = 10, 11, 12. We take
advantage of Theorem 2 of [107], where these polynomials are expressed as integrals that are
amenable to creative telescoping.

Problem 9.2 For n = 10, 11, 12, compute the polynomial

Hn(t)

=
1

(2πi)n

∫

|z1|=ε1

∫

|z2|=ε2

· · ·
∫

|zn|=εn

(z1z2 · · · zn)−t−1

( n∑

k=1

zt+n−1
k∏

j �=k(zk − zj)

)n

dzn · · ·dz2dz1,

where 0 < ε1, ε2, · · · , εn < 1 are arbitrary.

This problem is similar to the previous one in so far as diagonals can be rephrased as
contour integrals. But it is different in that we ask for the polynomials Hn(t) rather than
for some differential equation satisfied by Hn(t). Following the standard approach, we would
first use creative telescoping to compute such a differential equation, then determine the space
of polynomial solutions of this equation, and then find the unique element of this space that
matches the initial terms of Hn(t). This element must be Hn(t) itself. In the present context,
this approach may not be feasible because the computation of the first coefficients of Hn(t)
is not much easier than the computation of the whole polynomial. So part of the question is
whether creative telescoping can help to compute the polynomials directly, without the detour
through a differential equation.
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