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Abstract We extend the shell and kernel reductions for hyperexponential functions over the field of

rational functions to a monomial extension. Both of the reductions are incorporated into one algorithm.

As an application, we present an additive decomposition in rationally hyperexponential towers. The

decomposition yields an alternative algorithm for computing elementary integrals over such towers.

The alternative can find some elementary integrals that are unevaluated by the integrators in the latest

versions of maple and mathematica.
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1 Introduction

Symbolic integration aims at developing algorithms to compute integrals in closed form.

One of its classical topics is to determine whether an integrand has an elementary integral, and

compute such an integral if there exists one. Fundamental results on this topic are collected and

reviewed in [9]. The monograph [2] presents algorithms for integrating transcendental functions.

In symbolic integration, an integrand f(x) is decomposed in one way or another as

f =
dg

dx
+ r, (1)
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where g and r are functions of the same “type” as f ’s, and r is minimal in some technical sense.

Such a process is referred to as reduction for f in this paper. A reduction (1) yields an additive

decomposition g′ + r of f , provided that r = 0 if and only if the integral of f is of the same

“type” as f ’s.

Let C be a field of characteristic zero throughout the paper, and C(x) be the field of

rational functions in x. The Hermite-Ostrogradsky reduction in [2, §2.2] computes g, r ∈ C(x)

such that (1) holds. Moreover, r is proper with a squarefree denominator, and the integral of f

belongs to C(x) if and only if r is equal to zero. In other words, the Hermite-Ostrogradsky

reduction computes an additive decomposition of every element in C(x). A nonzero function is

hyperexponential if its logarithmic derivative belongs to C(x). Nonzero rational functions are

a special instance for hyperexponential functions. The Hermite reduction in [1, §4.2] computes

an additive decomposition of a hyperexponential function. Reductions do not always yield

additive decompositions. For instance, the algorithm HermiteReduce in [2, §5.3] decomposes

an integrand as the sum of a derivative, a simple function and a reduced function.

The goal of this paper is to generalize several reductions for hyperexponential functions

over C(x) to monomial extensions. We extend and unify the shell and kernel reductions in [1, 7]

(see Theorem 3.12), and generalize the Hermite reduction in [1] to an additive decomposition

algorithm in rationally hyperexponential towers (see Theorem 4.4). A method is presented in

Theorem 4.10 for determining elementary integrals over such towers.

Example 1.1 Let

y = exp

(∫
1

x3 − x− 2

)
and f =

(x3 − x− 3) exp(x)

(x3 − x− 2) (exp(x) + y)
.

Then ∫
f = log (exp(x) + y)−

∑
α3−α−2=0

1

3α2 − 1
log(x− α),

which is elementary over C(x, exp(x), y). However, neither “int( )” command in Maple nor

“Integrate[ ]” command in Mathematica finds this closed form. We shall show how to find it

by Theorems 4.4 and 4.10.

The rest of this paper is organized as follows. We describe basic notions in symbolic in-

tegration, and review shell, kernel and polynomial reductions for hyperexponential functions

over the field of rational functions in Section 2. The shell and kernel reductions are extended

and unified in Section 3. As a generalization of the Hermite reduction for hyperexponential

functions in [1, §4.2], we present an algorithm for computing additive decompositions of all

elements in a rationally hyperexponential tower in Section 4.

2 Preliminaries

This section consists of two parts. We present basic terminologies for symbolic integration

in Section 2.1, and then recall reductions that will be generalized in Section 2.2.
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2.1 Basic definitions and facts

In the sequel, F stands for a field of characteristic zero. Let f belong to F (t), where t is

an indeterminate over F . The numerator and denominator of f are denoted by num(f) and

den(f), respectively. They are coprime polynomials in F [t]. In particular, num(0) = 0 and

den(0) = 1. We say that f is t-proper if degt(num(f)) < degt(den(f)). Let p be a polynomial

in F [t] with positive degree. The order of f at p is defined to be −m if pm | den(f) but

pm+1 ∤ den(f) for some m ∈ Z+; while it is defined to be m if pm | num(f) but pm+1 ∤ num(f)

for some m ∈ N. The order is denoted by νp(f).

A derivation δ on a field F is an additive map from F to itself satisfying the usual product

rule δ(ab) = δ(a)b + aδ(b) for all a, b ∈ F . The pair (F, δ) is called a differential field. An

element of F is called a constant if its derivative is zero. The set of constants in F is a subfield

of F , which is denoted by CF . An element of F is called a logarithmic derivative if it is equal

to δ(a)/a for some a ∈ F \ {0}. Let (E, ∆) and (F, δ) be two differential fields. We call E a

differential field extension of F if F ⊂ E and ∆|F = δ. When there is no confusion, we still

denote the derivation ∆ on E by δ.

Convention. From now on, we let (F, ′) be a differential field, and F ′ := {f ′ | f ∈ F}.
Given an element f of F , a reduction decomposes f as g′+r, where g, r ∈ F and r is minimal

in some technical sense. We call g′ + r an additive decomposition of f , and r a remainder of f,

provided that r = 0 if and only if f ∈ F ′. Remainders are not necessarily unique. Algorithms

for computing additive decompositions of all elements in F are particularly useful to determine

elementary integrals over F , as indicated in [3, Theorem 6.1] and [6, Theorem 4.10]. The

Hermite-Ostrogradsky reduction in [2, §2.2] yields an additive decomposition in (C(x), d/dx).

Additive decompositions are computed in a finite extension of C(x) in [4] and in primitive

towers of some kinds over C(x) in [3, 6].

Let E be a differential field extension of F . An element t of E is called a monomial over F

if it is transcendental over F and its derivative belongs to F [t]. According to [10, page 7], a

monomial t over F is said to be regular if CF = CF (t). A nonzero element of E is said to be

hyperexponential over F if its logarithmic derivative belongs to F .

Let t be a monomial over F . For p ∈ F [t] with p ̸= 0, p is normal if gcd(p, p′) = 1. It is

special if p | p′. Nonzero elements of F are both normal and special, and vice versa. They are

said to be trivially normal and special. Basic properties of normal and special polynomials are

presented in [2, §3.4].

An element f of F (t) is said to be normally t-proper if it is t-proper and every irreducible

factor of den(f) is normal. It is said to be t-simple if it is t-proper with a normal denominator,

and it is t-reduced if den(f) is special. Clearly, t-simple elements are normally t-proper and

nonzero polynomials in F [t] are t-reduced.

Example 2.1 Let t be a regular and hyperexponential monomial over F . Then p ∈ F [t]

is special if and only if p = atm for some nonzero element a ∈ F and m ∈ N by [2, Theorem

5.1.2]. The t-reduced elements in F (t) are exactly Laurent polynomials in t over F .
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Let f ∈ F (t) and p be a nontrivial normal factor of den(f). By [2, Theorem 4.4.2 (i)],

νp(f
′) = νp(f)− 1 < νp(f) ≤ −1.

For brevity, the use of this fact will be referred to as an argument on orders in the sequel. For

instance, f /∈ F (t)′ for every nonzero and t-simple element f ∈ F (t) by such an argument.

Let y be hyperexponential over F . Then y can be expressed as exp
(∫

f
)
, where f stands for

the logarithmic derivative y′/y. Issues related to integrating y include: (i) determining whether

y ∈ F (y)′, (ii) reducing y modulo F (y)′, (iii) developing an additive decomposition in F (y),

(iv) determining whether y has an elementary integral over F (y).

Under some additional assumptions, we can replace the additive group F (y)′ in reduction

algorithms with its subgroup {(ay)′ | a ∈ F}, as described in the following proposition.

Proposition 2.2 Let y be a regular and hyperexponential monomial over F . Then

y ∈ F (y)′ ⇐⇒ y = (ay)′ for some a ∈ F .

Proof By definition, y ∈ F (y)′ if and only if there exists z ∈ F (y) such that y = z′. Then

z is y-reduced by an argument on orders. So z ∈ F [y−1, y] by Example 2.1. It follows from the

transcendence of y that z = ay for some a ∈ F . □

2.2 Shell and kernel reductions in C(x)

The first three issues listed above are well-handled by the algorithms in [1] when F = C(x).

A rational function ξ ∈ C(x) is differential reduced if gcd(num(ξ) − i den(ξ)′,den(ξ)) = 1

for all i ∈ Z. For f ∈ C(x), there exist ξ, η ∈ C(x) with η ̸= 0 such that (i) f = η′/η + ξ, (ii) ξ

is differential reduced, (iii) num(η), den(η) and den(ξ) are coprime pairwise.

It is shown in [7, §3] that ξ is unique and that η is unique up to a multiplicative constant.

They are called the kernel and shell of f , respectively.

Let y be hyperexponential over C(x), and ξ, η be the kernel and shell of y′/y, respectively.

Algorithm ReduceCert in [7, §4] decomposes

η = u′ + uξ + v +
p

den(ξ)︸ ︷︷ ︸
h

, (2)

where u, v ∈ C(x), v is x-simple, den(v) | den(η), and p ∈ C[x], and h is minimal in the sense

that den(v) divides den(ṽ) if there is another reduction η = ũ′ + ũξ + ṽ + p̃/den(ξ) for some

ũ, ṽ ∈ C(x) and p̃ ∈ C[x]. In terms of hyperexponential functions, (2) can be expressed as

y = η exp

(∫
ξ

)
=

(
u exp

(∫
ξ

))′

+ h exp

(∫
ξ

)
,

which is a reduction for y. By [7, Theorem 4], y is the derivative of another hyperexponential

element if and only if v = 0 and z′ + zξ = p/den(ξ) for some z ∈ C[x]. When this is the case,

y =
(
uη−1y + zη−1y

)′
. The equality (2) is called a shell reduction in [1].
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To avoid solving the above differential equation for z, we recall the C-linear map

ϕξ : C[x] → C[x]

a 7→ den(ξ)a′ + num(ξ)a

defined in [1]. The map is injective, because ξ is differential reduced. The injectivity allows us

to construct a C-basis of im (ϕξ) in a straightforward manner. This construction also yields a

finite-dimensional C-linear subspace N with C[x] = im (ϕξ)⊕N . Let q be the projection of p

in (2) to N with respect to the above direct sum. Then (2) can be refined into

η = w′ + wξ + v +
q

den(ξ)︸ ︷︷ ︸
r

for some w ∈ C(x). We call r a residual form with respect to ξ. Translating the above equality

in terms of hyperexponential functions, we have y = (wη−1y)′ + rη−1y. By [1, Lemma 11], y

is the derivative of another hyperexponential element over C(x) if and only if r = 0. In other

words, (wη−1y)′ + rη−1y is an additive decomposition of y. The algorithm for computing this

additive decomposition in [1] is called the Hermite reduction for hyperexponential functions,

which, together with the algorithm HermiteReduce in [2, §5.2], leads to an algorithm for

computing additive decompositions in C(x, y) whenever y is a regular monomial over C(x).

Another useful reduction is introduced on the way of computing telescopers for bivariate

hyperexponential functions in [1, §6]. Let ξ ∈ C(x) be differential reduced. By [1, Lemma 16],

for every p ∈ C[x] and m ≥ 1, we can compute u ∈ C(x) and q ∈ C[x] such that

p

den(ξ)m
= u′ + uξ +

q

den(ξ)
, (3)

which is called a kernel reduction.

3 Generalizing shell and kernel reductions

This section consists of four parts. We generalize the shell reduction (2) and notion of

kernels to monomial extensions in Sections 3.1 and 3.2, respectively. The kernel reduction (3)

is generalized in Section 3.3. A generalized kernel-shell reduction in Section 3.4 unifies the

algorithms in Sections 3.1 and 3.3.

Throughout this section, t stands for a monomial over F . For f ∈ F (t), we denote by Vf

the additive group {a′ + af | a ∈ F (t)}. Let y be hyperexponential over F (t) with logarithmic

derivative f . Then an element a′ + af corresponds to (ay)′, because (ay)
′
= (a′ + af)y.

3.1 A generalized shell reduction

First, we generalize the shell reduction (2) to F (t) locally.

Lemma 3.1 Let f ∈ F (t), p ∈ F [t] be normal and coprime with den(f), and m ∈ Z+.

Then, for every q ∈ F [t], there exist v, w ∈ F [t] with degt(v) < degt(p) such that

q

pm
≡ v

p
+

w

den(f)
mod Vf .
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Proof We set v = 0 and w = q den(f)/pm if p ∈ F . Set v to be the remainder of q by p,

and w to be the product of den(f) and the quotient of q by p if m = 1.

Assume that degt(p) > 0 and m > 1. Since p is normal, there exist u1, u2 ∈ F [t]

u1p+ u2p
′ = q. (4)

With the aid of integration by parts, we deduce that

q

pm
=

u1

pm−1
+

u2p
′

pm
=

(
−(m− 1)−1u2

pm−1

)′

+
(m− 1)−1u′

2 + u1

pm−1
.

Setting u3 = −(m− 1)−1u2 and u4 = (m− 1)−1u′
2 + u1, we have

q

pm
=

(
u3

pm−1

)′

+
u4

pm−1

=

(
u3

pm−1

)′

+
u3

pm−1
f − u3

pm−1
f +

u4

pm−1

≡ − u3

pm−1
f +

u4

pm−1
mod Vf

≡ u5

pm−1
+

u6

den(f)
mod Vf for some u5, u6 ∈ F [t].

The last congruence is derived by a partial fraction decomposition for −u3f/p
m−1 and the

assumption gcd(p,den(f)) = 1. Applying the same argument to u5/p
m−1 inductively, we get

q

pm
≡ ṽ

p
+

w̃

den(f)
mod Vf

for some ṽ, w̃ ∈ F [t]. Let v be the remainder of ṽ and p. Then the lemma holds by a similar

operation used in the case m = 1. □

A special case of the above lemma plays a key role in Section 4.

Corollary 3.2 With the notation introduced in Lemma 3.1, assume further that

degt(t
′) ≤ 1, degt(p) > degt(q) ≥ 0, and f ∈ F.

Then q/pm ≡ v/p mod Vf for some v ∈ F [t] with degt(v) < degt(p).

Proof Let us go through the second paragraph of the above proof with the additional

assumptions in mind. Since degt(t
′) ≤ 1, we have degt(p

′) ≤ degt(p), which, together with

degt(q) < degt(p), implies that u1 and u2 in (4) can be chosen to have degrees less than degt(p).

Thus, u3 and u4 given in the proof of the above lemma satisfy the same degree constraints.

Let ũ5 = u4 − u3f . Then ũ5 is a polynomial of degree less than degt(p), because f ∈ F . From

q

pm
≡ ũ5

pm−1
mod Vf ,

and a straightforward induction on m, the corollary follows. □
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Example 3.3 Let F = C(x, y) with x′ = 1 and y′ = y, and t = exp
(
x2/2

)
. Then t is a

regular and hyperexponential monomial over F . Let f = y/(t− x) and g = x/(t+ 1)2. Note

that t ∤ den(g) and gcd(den(g),den(f)) = 1. So Lemma 3.1 is applicable. Then the algorithm

implicitly described in the proof of Lemma 3.1 yields.

g =

(
1

t+ 1

)′

+
1

t+ 1
f +

x2 + x+ y

(x+ 1)(t+ 1)
− y

(x+ 1)(t− x)
≡ v

t+ 1
+

w

t− x
mod Vf ,

where v = (x2 + x+ y)/(x+ 1) and w = −y/(x+ 1).

The next lemma helps us prove certain minimality and uniqueness.

Lemma 3.4 Let f, h ∈ F (t), h be t-simple, and gcd(den(f),den(h)) = 1. If there exists

a t-reduced element r ∈ F (t) such that h+ r/den(f) ∈ Vf , then h = 0.

Proof. Since h+ r/den(f) ∈ Vf , there exists a ∈ F (t) such that

h+
r

den(f)
= a′ + af. (5)

Suppose that h is nonzero. Then νp(h) = −1 for some nontrivial normal polynomial p, because h

is t-simple. It follows from gcd(den(h),den(f)) = 1 and (5) that νp(a) < 0. By an argument

on orders, the left and right-hand sides of (5) have distinct orders at p, a contradiction. □

A generalized shell reduction in F (t) is described in the following proposition.

Proposition 3.5 Let f, g ∈ F (t). If den(g) is free of any nontrivial special factor and

coprime with den(f), then there exists a unique t-simple h ∈ F (t) and q ∈ F [t] such that

g ≡ h+
q

den(f)
mod Vf and den(h) | den(g).

Proof Applying Lemma 3.1 to each t-proper component in the squarefree partial fraction

decomposition of g, we see that there exists a t-simple h ∈ F (t) and a polynomial q ∈ F [t]

such that g ≡ h + q/den(f) mod Vf , and that den(h) divides den(g). The uniqueness of h is

immediate from Lemma 3.4. □

Corollary 3.6 With the notation introduced in Proposition 3.5, assume further that

degt(t
′) ≤ 1, f ∈ F and that g is normally t-proper. Then there exists a unique t-simple

element h ∈ F [t] such that g ≡ h mod Vf .

Proof Since f ∈ F , we have gcd(den(g),den(f)) = 1. Since den(g) has no nontrivial special

factor, the above proposition is applicable. Each component in the squarefree partial fraction

decomposition of g is of the form a/pm for some a, p ∈ F [t] with p | den(g) and deg(a) < deg(p),

because g is t-proper. The corollary follows from Corollary 3.2 and the above proposition. □

For a convenience of later references, we specify the input and output of the generalized shell

reduction. Its pseudo-code can be easily written down according to the proofs of Lemma 3.1

and Proposition 3.5.

Algorithm GSR (Generalized Shell Reduction)

Input: a monomial extension F (t) and f, g ∈ F (t), where den(g) has no nontrivial special

factor and is coprime with den(f)
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Output: (a, h, q), where a, h ∈ F (t) and q ∈ F [t] such that g = a′ + af + h+ q/den(f), and h

is t-simple with den(h)|den(g)
We can set q in the output of Algorithm GSR to be zero if degt(t

′) ≤ 1, f ∈ F and g is

normally t-proper by Corollary 3.6.

3.2 Weak normalization

In this subsection, we adapt some results scattered in [2, §6.1] to our later use. An element f

of F (t) is said to be weakly normalized (resp. normalized) if gcd(num(f)−iden(f)′,den(f)) = 1

for all i ∈ Z+ (resp. i ∈ Z). Note that f is normalized if and only if f is differential reduced

when F = C and t = x. We prefer the word “normalized” rather than the phrase “differential

reduced”, because the former is concise and compatible with the phrase “weakly normalized”

coined in [2, Definition 6.1.1].

The next lemma enables us to generalize the notion of kernels and that of shells from rational

functions to elements in a monomial extension.

Lemma 3.7 Let f ∈ F (t) and λ ∈ F . Then num(f) − λ den(f)′ and den(f) are not

coprime if and only if there exists a nontrivially normal and irreducible polynomial p such that

νp(f) = −1 and νp (f − λp′/p) ≥ 0. (6)

Proof Let p be a factor of den(f). Then den(f) = pq for some q ∈ F [t], and

f − λ
p′

p
=

num(f)− λp′q

den(f)
. (7)

Assume that p is nontrivially normal and irreducible, and that it satisfies the constraints

in (6). By (6) and (7), p divides num(f)−λp′q, which, together with νp(f) = −1, implies that p

is a common factor of num(f)−λ den(f)′ and den(f). Conversely, let p be a nontrivial irreducible

factor of gcd (num(f)− λ den(f)′,den(f)). Since num(f)− λ den(f)′ = num(f)− λ(p′q + pq′),

we see that num(f) − λp′q is divisible by p, which, together with p ∤ num(f), implies that

p ∤ p′q. Thus p ∤ p′ and p ∤ q, which imply that p is normal and νp(f) = −1, respectively. The

inequality νp (f − λp′/p) ≥ 0 in (6) holds owing to (7), νp(f) = −1 and p | (num(f)− λp′q). □

We present an algorithm to construct ξ, η ∈ F (t) with η ̸= 0 for a given f ∈ F (t) such

that (i) f = η′/η + ξ, (ii) ξ is weakly normalized (resp. normalized), (iii) den(η) is free of any

nontrivial special factor, (iv) gcd(den(η),den(ξ)) = 1 and gcd(num(η),den(ξ)) = 1.

Algorithm GKS (Generalized Kernel and Shell)

Input: a monomial extension F (t) and f ∈ F (t)

Output: ξ, η ∈ F (t) satisfy the four requirements listed above

(1) if f ∈ F then return f, 1

(2) ξ ← f and η ← 1

(3) g ← the product of the normal and irreducible factors of den(ξ) with multiplicity 1

(4) factor g over F to get its nontrivial irreducible factors: g1, . . . , gk
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(5) for i from 1 to k do

(5.1) p← num (ξ − zg′i/gi) , where z is a constant indeterminate

(5.2) r ← the remainder of p by gi

(5.3) set r = 0 to obtain a system of linear equations in z over F .

(5.4) if the system has a solution m ∈ Z+ (resp. m ∈ Z) then

η ← ηgmi and ξ ← ξ −mg′i/gi

end if

end do

(6) return ξ, η

Note that g in step (3) of Algorithm GKS can be found as follows. Compute

w =
den(f)

gcd(den(f), den(f)′)
,

which is the product of all normal and irreducible factors of den(f) by [2, Lemma 3.4.4]. Then g is

equal to w/ gcd(w,den(f)′) by a straightforward calculation. The correctness of the algorithm then

follows from Lemma 3.7. We call ξ and η computed by Algorithm GKS(F (t), f) the weakly normalized

(resp. normalized) kernel and the corresponding shell in F (t), respectively. Searching for m ∈ Z+ in

step (5.3) finds a weakly normalized kernel; while looking for m ∈ Z, we get a normalized one.

Example 3.8 Let F = C(x) and t be a regular and hyperexponential monomial over F with

t′/t = 1/(x2 + 1). Applying Algorithm GKS to

f =
x3t+ x2t+ 2xt+ t+ 1

(xt+ 1)(x2 + 1)

yields the weakly normalized kernel 1/(x2 + 1) and shell xt+ 1.

3.3 A generalized kernel reduction

We extend the kernel reduction (3) to F (t).

Proposition 3.9 Let f ∈ F (t) be weakly normalized. Then, for every p ∈ F [t] and a positive

integer m, there exists q ∈ F [t] such that p/den(f)m ≡ q/den(f) mod Vf .

Proof If m = 1 or p = 0, then set q = p. Otherwise, there exist u, v ∈ F [t] such that

u
(
num(f)− (m− 1) den(f)′

)
+ v den(f) = p

since f is weakly normalized. Using integration by parts, we have

p

den(f)m
=

(
u

den(f)m−1

)′

+

(
u

den(f)m−1

)
f +

v − u′

den(f)m−1
≡ v − u′

den(f)m−1
mod Vf .

The proposition then follows from a straightforward induction on m. □

The algorithm described in the above proof is specified below.

Algorithm GKR (Generalized Kernel Reduction)

Input: a monomial extension F (t), a weakly normalized element f ∈ F (t), a polynomial p ∈ F [t] and

a positive integer m

Output: a ∈ F (t) and q ∈ F [t] such that p/den(f)m = a′ + af + q/den(f)
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Example 3.10 Let F (t) and f be given in Example 3.3 and g = (y + 1 − xt)/(t− x)2. Since f

is weakly normalized, Algorithm GKR yields g = (1/(t− x))′ + f/(t− x) ≡ 0 mod Vf .

Example 3.11 Let F = C(x, y) with x′ = 1 and y′ = xy, and let t = exp(y). Then t is a regular

and hyperexponential monomial over F . Let

f =
1

t+ y
and g =

(y + 1− x2y)t− x2y + y2 + x+ y

(t+ y)2
.

Note that f is weakly normalized and den(g) = den(f)2. Algorithm GKR yields

g =

(
x

t+ y

)′

+

(
x

t+ y

)
f +

y

t+ y
≡ y

t+ y
mod Vf .

3.4 A generalized kernel-shell reduction

We are ready to extend and unify shell and kernel reductions.

Theorem 3.12 Let f, g ∈ F (t) and f be weakly normalized. Then the following assertions hold.

(i) There exists a unique t-simple element h with den(h) | den(g) and gcd(den(h),den(f)) = 1, and

a t-reduced element r such that

g ≡ h+
r

den(f)
mod Vf . (8)

(ii) If g ≡ h̃+ r̃/den(f) mod Vf , where h̃ ∈ F (t) and r̃ is t-reduced, then den(h) | den(h̃).

(iii) g ∈ Vf if and only if h = 0 and there exists a t-reduced element a ∈ F (t) such that

r

den(f)
= a′ + fa.

(iv) Assume further that degt(t
′) ≤ 1, f ∈ F , and that g is normally t-proper. Then (8) can be

rewritten as g ≡ h mod Vf . Moreover, g ∈ Vf if and only if h = 0.

Proof. By a partial fraction decomposition for g, we have

g = g1 + g2 + g3, (9)

where g1, g2, g3 ∈ F (t), g1 and g2 are t-proper, all the irreducible factors of den(g1) are normal and

coprime with den(f), those of den(g2) are factors of den(f), and those of den(g3) are special and

coprime with den(f).

(i) By Proposition 3.5, there exists a t-simple element h with den(h)| den(g1), and q1 ∈ F [t] such that

g1 ≡ h+q1/den(f) mod Vf . Note that g2 can be written as p/ den(f)m for some p ∈ F [t] and m ∈ Z+.

By Proposition 3.9, there exists q2 ∈ F [t] such that g2 ≡ q2/den(f) mod Vf . Since g3 is t-reduced, the

above two congruences and (9) lead to g ≡ h+ r/den(f) mod Vf , where r = q1 + q2 + g3 den(f). The

uniqueness of h is evident by Lemma 3.4.

(ii) By (i), h̃ ≡ h∗ + r∗/ den(f) mod Vf with den(h∗)|den(h̃) and gcd(den(h∗),den(f)) = 1 for

some t-simple element h∗ and t-reduced element r∗. Therefore, g ≡ h∗ + (r̃ + r∗)/den(f) mod Vf .

Since r̃ + r∗ is t-reduced, we have h = h∗ by (i). Consequently, den(h) | den(h̃).
(iii) By (8), g ∈ Vf if h = 0 and r/den(f) ∈ Vf . Conversely, assume that g ∈ Vf . Then h = 0

by (ii). It follows from (8) that there exists a ∈ F (t) such that

r = a′ den(f) + anum(f). (10)
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It remains to show that a is t-reduced. Suppose that p is a nontrivial irreducible and normal polynomial

with m := νp(a) < 0. Then νp(a
′) = m− 1. It follows from (10), νp(r) ≥ 0 and an argument on orders

that neither νp(f) ≥ 0 nor νp(f) < −1. So νp(f) = −1. Consequently, νp(aden(f)) ≤ 0 so that the

order of r/(aden(f)) at p is nonnegative. Hence, (10) implies νp(f + a′/a) ≥ 0. By the logarithmic

derivative identity, there exist ni ∈ Z and qi ∈ F [t] with gcd(p, qi) = 1 such that

f +
a′

a
= f +m

p′

p
+

∑
i

ni
q′i
qi
,

which, together with νp (f + a′/a) ≥ 0 and νp
(∑

i niq
′
i/qi

)
≥ 0, implies that νp (f +mp′/p) ≥ 0. Then

num(f) +mden(f)′ and den(f) are not coprime by Lemma 3.7. Since m is a negative integer, f is not

weakly normalized, a contradiction.

(iv) If degt(t
′) ≤ 1, f ∈ F and g is normally t-proper, then both g2 and g3 in (9) are equal to zero.

By Corollary 3.6, g ≡ h mod Vf for some t-simple h ∈ F (t). The other conclusion holds by (ii). □

Based on Theorem 3.12 and its proof, we present a generalized kernel-shell reduction.

Algorithm GKSR (Generalized Kernel-Shell Reduction)

Input: a monomial extension F (t), a weakly normalized element f ∈ F (t) and g ∈ F (t)

Output: a, h, r ∈ F (t) with h being t-simple and r being t-reduced such that

den(h)|den(g), gcd(den(h), den(f)) = 1 and g = a′ + af + h+
r

den(f)

(1) use a partial fraction decomposition to compute g1, g2, g3 ∈ F (t) such that

g = g1 + g2 + g3,

where g1 is normally t-proper with gcd(den(g1),den(f))=1, g2 is t-proper, every irreducible factor

of den(g2) divides den(f), and g3 is t-reduced

(2) (a1, h, r1)← Algorithm GSR(F (t), f, g1)

(3) find p ∈ F [t] and the minimal m ∈ Z+ such that g2 = p/ den(f)m,

and (a2, q) ← Algorithm GKR(F (t), f, p,m)

(4) (a, r)← (a1 + a2, r1 + q + g3 den(f))

(5) return a, h, r

The correctness of Algorithm GKSR is immediate from Propositions 3.5, 3.9 and Theorem 3.12 (i).

The t-reduced element r is zero if degt(t
′) ≤ 1, f ∈ F and g is normally t-proper by Theorem 3.12 (iv).

Let y be hyperexponential over F (t). By Algorithm GKS, we compute the weakly normalized

kernel ξ and the corresponding shell η of y′/y in F (t). Set z = y/η. Then z′/z = ξ. Let us reduce gz

for an element g ∈ F (t). By Algorithm GKSR, we compute an element u ∈ F (t), a t-simple element h

and a t-reduced element r such that g = u′ + uξ + h+ r/den(ξ). It follows that

gz = (uz)′ +

(
h+

r

den(ξ)

)
z.

This is a reduction for gz for all g ∈ F (t). In particular, setting g = η yields a reduction for y.

Corollary 3.13 Let degt(t
′) ≤ 1, y be a regular and hyperexponential monomial over F (t)

with y′/y ∈ F , and g ∈ F (t) be nonzero and normally t-proper. Then there exists a unique t-simple

element h ∈ F (t) such that gy = (uy)′ + hy, which is an additive decomposition of gy.
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Proof Since y′/y ∈ F , its kernel and shell in F (t) are y′/y and 1, respectively. There exists a

unique t-simple element h ∈ F (t) such that gy = (uy)′+hy by Theorem 3.12 (iv). Assume gy ∈ F (t, y)′.

By Proposition 2.2, there exists v ∈ F such that gy = (vy)′. Consequently, g ∈ Vf , which, together

with Theorem 3.12 (iv), implies that h = 0. □

Example 3.14 Let F (t) and f be given by Example 3.3. Consider

g =
−xt3 + (y − x+ 1)t2 + (2y − 2x2 − x+ 2)t+ x3 + y + 1

(1 + t)2(t− x)2
∈ F (t)

Since f is weakly normalized, its kernel is f and the shell is 1. First, we decompose g as

g =
x

(1 + t)2︸ ︷︷ ︸
g1

+
y + 1− xt

(t− x)2︸ ︷︷ ︸
g2

,

where g1 is normally t-proper with gcd(den(g1), den(f)) = 1, the irreducible factor t − x of den(g2)

divides den(f). By Algorithm GKSR, Examples 3.3 and 3.10,

g =

(
1

t− x
+

1

1 + t

)′

+

(
1

t− x
+

1

1 + t

)
f +

x2 + x+ y

(x+ 1)(1 + t)
+

−y
(x+ 1)(t− x)

≡ x2 + x+ y

(x+ 1)(1 + t)︸ ︷︷ ︸
h

+
−y

(x+ 1)(t− x)
mod Vf .

In other words,

g exp

(∫
f

)
︸ ︷︷ ︸

z

=

((
1

t− x
+

1

1 + t

)
z

)′

+

(
h+

−y
(x+ 1)(t− x)

)
z.

Since h ̸= 0, we have that gz /∈ F (t, z)′ by Theorem 3.12 (ii).

4 An additive decomposition in rationally hyperexponential towers

This section has four parts. In Section 4.1, we present a variant of the Matryoshka decomposition

in [6]. An algorithm is developed for computing additive decompositions in rationally hyperexponential

towers in Section 4.2. We describe the projections of logarithmic derivatives in terms of residues, and

present a criterion on elementary integrability over such towers in Sections 4.3 and 4.4, respectively.

4.1 Laurent-Matryoshka decompositions

For n ∈ Z+, we denote {1, 2, . . . , n} and {0, 1, 2, . . . , n} by [n] and [n]0, respectively. Let F0 be a

field. For every i ∈ [n], we further let Fi = Fi−1(ti), where ti is transcendental over Fi−1. Then there

is a chain of field extensions:

F0 ⊂ F1 ⊂ · · · ⊂ Fn

q q

F0(t1) ⊂ · · · ⊂ Fn−1(tn).

(11)

For each i ∈ [n], f ∈ Fn is said to be ti-proper if f ∈ Fi and degti(num(f)) < degti(den(f)). By a power

product of t1, . . . , tn, we mean the product tℓ11 · · · tℓnn , where the ℓi’s are integers. For all i ∈ [n − 1]0,

we denote by Ti the set of power products of ti+1, . . . , tn, and set Tn = {1}.
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In the rest of this paper, we let F0 be a differential field. Assume that each generator ti is regular

and hyperexponential over Fi−1. We call (11) a hyperexponential tower. For i ∈ [n], an element f of Fn

is ti-simple if it is ti-proper and den(f) is normal as an element of Fi−1[ti], and it is ti-reduced if it

belongs to Fi−1[t
−1
i , ti] (see Example 2.1). Similarly, f is normally ti-proper if f is ti-proper and ti

does not divide den(f) in Fi−1[ti]. Zero is normally ti-proper for all i ∈ [n]. An element of Fi can be

written uniquely as the sum of a normally ti-proper element and an element of Fi−1[t
−1
i , ti].

Let Ln be the additive subgroup consisting of all normally tn-proper elements in Fn. For i ∈ [n−1],

let Li be the additive group generated by elements of the form aT , where a ∈ Fi is normally ti-

proper and T ∈ Ti. Moreover, let L0 be the ring of Laurent polynomials in t1, . . . , tn over F0. Then

Fn = L0 ⊕ L1 ⊕ · · · ⊕ Ln by a straightforward verification. Let πi be the projection from Fn onto Li

with respect to the above direct sum for all i ∈ [n]0. For f ∈ Fn, f = π0(f) + π1(f) + · · · + πn(f) is

called the Laurent-Matryoshka decomposition of f .

Example 4.1 Let F0 = Q(x). A Laurent-Matryoshka decomposition in F3 is

t2t3(x− t3)

t1(t2 + 1)(t3 − 1)︸ ︷︷ ︸
f

= −t3t−1
1 + (x− 1)t−1

1︸ ︷︷ ︸
π0(f)

+ 0︸︷︷︸
π1(f)

+
t3

t1(t2 + 1)
− x− 1

t1(t2 + 1)︸ ︷︷ ︸
π2(f)

+
(x− 1)t2

t1(t2 + 1)(t3 − 1)︸ ︷︷ ︸
π3(f)

.

4.2 Rationally hyperexponential towers

Rationally hyperexponential towers are hyperexponential towers of a special type. They allow us

to apply the Hermite reduction in [1] and additive decomposition in Corollary 3.13 directly.

Definition 4.2 The tower Fn in (11) is said to be rationally hyperexponential if t′i/ti ∈ F0 for

every i ∈ [n], (F0,
′) = (C(x), d/dx) and CFn = C.

Lemma 4.3 Let the tower Fn in (11) be rationally hyperexponential and g belong to Fn. If

g =
∑

i∈[n]0

∑
T∈Ti

gTT︸ ︷︷ ︸
πi(g)

, (12)

where the coefficient gT in π0(g) belongs to F0 and gT in πi(g) with i ∈ [n] is normally ti-proper, then

g′ =
∑

i∈[n]0

∑
T∈Ti

(
g′T +

T ′

T
gT

)
T︸ ︷︷ ︸

πi(g′)

. (13)

Consequently, πi(g)
′ = πi(g

′) for all i ∈ [n]0.

Proof Since T ′/T ∈ F0, we have that g′T + (T ′/T ) gT belongs to F0 if gT is a coefficient in π0(g),

and it is normally ti-proper if gT is a coefficient in πi(g) for i ∈ [n]. Therefore, the lemma follows from

the identity that (gTT )
′ = (g′T + (T ′/T ) gT )T . □

We need some notation to describe remainders in a rationally hyperexponential tower Fn in (11).

For i ∈ [n], set Ri to be the additive group generated by {hT | h ∈ Fi is ti-simple and T ∈ Ti}.
For T ∈ T0, we let ξT be the normalized kernel and ηT the corresponding shell of T ′/T in F0. Set R0

to be the additive group generated by{
r
(
η−1
T T

)
| T ∈ T0 \ {1} and r is a residual form w.r.t. ξT

}
∪ {s | s ∈ F0 is x-simple} .

Finally, we let R =
∑

i∈[n]0
Ri, which is a direct sum by the observation that Ri ⊂ Li for all i ∈ [n]0.
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Theorem 4.4 With the notation just introduced, we have Fn = F ′
n ⊕R.

Proof First, we show that Fn = F ′
n +R. It suffices to show that fT ∈ F ′

n +Ri for every normally

ti-proper element f , T ∈ Ti and i ∈ [n], and that fT ∈ F ′
n +R0 for all f ∈ F0 and T ∈ T0.

Let i ∈ [n]. By Corollary 3.13, there exists a ti-simple h such that fT ≡ hT mod F ′
n, where T is

regarded as a hyperexponential element over Fi. Thus, fT ∈ F ′
n +Ri by the definition of Ri.

We regard each T ∈ T0 \ {1} as a hyperexponential element over F0. Let ξT and ηT be the

normalized kernel and shell of T ′/T in F0, respectively. For f ∈ F0, a partial fraction decomposition

for fηT yields fηT = a+b with gcd(den(a),den(ξT )) = 1 and den(b) | den(ξT )m for some m ∈ N. Then
there exists an x-simple element h ∈ C(x) and u, v ∈ C[x] such that

a
(
η−1
T T

)
≡

(
h+

u

den(ξT )

)(
η−1
T T

)
mod F ′

n and b
(
η−1
T T

)
≡ v

den(ξT )

(
η−1
T T

)
mod F ′

n

by the shell and kernel reductions in [1], respectively. It follows that

fT ≡
(
h+

u+ v

den(ξT )

)(
η−1
T T

)
mod F ′

n.

The polynomial reduction in [1] finds a polynomial p ∈ C[x] such that

fT ≡
(
h+

p

den(ξT )

)
︸ ︷︷ ︸

r

(
η−1
T T

)
mod F ′

n,

where r is a residual form with respect to ξT . So fT ∈ F ′
n + R0 for all f ∈ F0 and T ∈ T0 \ {1}. In

addition, there exists an x-simple element s ∈ F0 such that f ≡ s mod F ′
n by the Hermite-Ostrogradsky

reduction. Therefore, fT ∈ F ′
n +R0 for all f ∈ F0 and T ∈ T0. Consequently, Fn = F ′

n +R.

It remains to show that F ′
n∩R = {0}. For f ∈ F ′

n∩R, there exists g ∈ Fn such that f = g′. Let the

Laurent-Matryoshka decomposition of g be given in (12). Then the Laurent-Matryoshka decomposition

of f is given in (13) by Lemma 4.3. On the other hand, f ∈ R implies that for all i ∈ [n],

πi(f) =
∑
T∈Ti

rTT,

where rT is ti-simple. It follows that rT = g′T + (T ′/T )gT for all T ∈ Ti and i ∈ [n]. Consequently,

gT = rT = 0 by an argument on orders, that is, g ∈ L0 and f ∈ R0 with f = g′. For T ∈ T0 \ {1},∑
T∈T0

rT
(
η−1
T T

)
=

∑
T∈T0

(
g′T +

T ′

T
gT

)
T,

where ξT and ηT are the same as above, rT is a residual form with respect to ξT , and gT ∈ F0.

So rT
(
η−1
T T

)
= (gTT )

′. By [1, Lemma 11], rT = gT = 0. Accordingly, f, g ∈ F0 and f = g′. We have

that f is x-simple by f ∈ R0. Hence, f = 0, that is, F ′
n +R is a direct sum. □

By the above theorem, for every element f ∈ Fn, there exists g ∈ Fn and a unique r ∈ R such that

f = g′ + r. In other words, g′ + r is an additive decomposition of f . Moreover, the remainder r is

unique due to the direct sum F ′
n ⊕R.

Algorithm AD RHT (Additive Decomposition in a Rationally Hyperexponential Tower)

Input: a rationally hyperexponential tower Fn = C(x)(t1, t2, . . . , tn) and f ∈ Fn with f ̸= 0

Output: g, r ∈ Fn such that g′ + r is an additive decomposition of f
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(1) (g, r, 0)← Algorithm GKSR(Fn, 0, πn(f))

(2) for i from 1 to n− 1 do

(2.1) write πi(f) =
∑

j∈J ajTj , where aj ∈ Fi \ {0} and Tj ∈ Ti

(2.2) for each j ∈ J do

(uj , vj , 0) ← Algorithm GKSR(Fi, T
′
j/Tj , aj) and (g, r) ← (g + ujTj , r + vjTj)

end do

end do

(3) write π0(f) = s+
∑

j∈J ajTj , where s, aj ∈ C(x) with aj ̸= 0, and Tj ∈ T0 \ {1}

(4) find u, v ∈ C(x) such that s = u′ + v with v being x-simple by the Hermite-Ostrogradsky

reduction, and (g, r)← (g + u, r + v)

(5) for each j ∈ J do

compute gj , rj ∈ Fn such that ajT = g′j + rj by the Hermite reduction in [1]

(g, r)← (g + gj , r + rj)

end do

(6) return g, r

The correctness of Algorithm AD RHT is immediate from Corollary 3.13 and the paragraphes for

establishing Fn = F ′
n +R in the proof of Theorem 4.4.

Example 4.5 Find an additive decomposition of

f = −exp(x)(x− 1)

exp(x2/2)
+

exp(−1/x)
(1 + exp(x2/2))2

+
x

(exp(−1/x) + x)2

in the rationally hyperexponential tower

F3 = C(x)
(
exp(x)︸ ︷︷ ︸

t1

, exp
(
x2/2

)︸ ︷︷ ︸
t2

, exp(−1/x)︸ ︷︷ ︸
t3

)
.

In the tower F3, f = −(x− 1)t1t
−1
2 + t3/(1 + t2)

2 + x/(t3 + x)2. Algorithm AD RHT yields

f =

(
− x2

(x− 1)(t3 + x)
+

t3
x(1 + t2)

+ t1t
−1
2

)′

+
(x3 + x− 1)t3
x3(1 + t2)

+
x2 − 3x+ 1

(x− 1)2(t3 + x)︸ ︷︷ ︸
r

.

We conclude f /∈ F ′
3 by r ̸= 0.

Example 4.6 Let t1 = exp(x), t2 = y, where y is given in Example 1.1, and let f be the same

as that in Example 1.1. By Algorithm AD RHT,

f =

(
1

t2 + 1

)′

+
(x3 − x− 3)t1

(x3 − x− 2)(t1 + t2)︸ ︷︷ ︸
r

. (14)

So f /∈ F ′
2, because r ̸= 0.
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4.3 Logarithmic derivatives in rationally hyperexponential towers

The notion and basic properties of residues are described in [2, §4.4]. Let f be a nonzero element

of F (t), and den(f) be nontrivially normal. Then the nonzero residues of f are exactly the roots of its

Rothstein-Trager resultant by [2, Theorem 4.4.3]. Residues are closely related to elementary integrals

according to [8, Theorem 3.1].

Example 4.7 Let p ∈ F [t] be a normal polynomial of positive degree d. Then the Rothstein-

Trager resultant of p′/p is equal to (−1)d resultantt(p′, p)(z−1)d. Thus, all nonzero residues of p′/p are

equal to 1. It follows from the logarithmic derivative identity in [2, Theorem 3.1.1] that the residues of

a logarithmic derivative in F (t) are integers.

We are going to describe the residues of the projections of logarithmic derivatives in a rationally

hyperexponential tower.

Lemma 4.8 Let t be a hyperexponential monomial over F , and p ∈ F [t] be normal. Then

p′

p
= degt(p)

t′

t
+

a′

a
+ h

for some a ∈ F and some t-simple h ∈ F (t). Moreover, all the nonzero residues of h are equal to 1.

Proof Let p = atm + q, where m > 0, a ∈ F \ {0} and q ∈ F [t] with degree lower than m. Then

p′ = (a′ +mat′/t) tm + q′ and deg (q′) < m. So p′/p = mt′/t+ a′/a+ r/p, where r is the remainder of

p′ and p with respect to t. Setting h = r/p proves the first conclusion. By [2, Theorem 4.4.1], taking

residues is F -linear. Therefore, the residues of p′/p are equal to those of h, because both t′/t and a′/a

are free of t. The second conclusion then follows from Example 4.7. □

Proposition 4.9 Let the tower Fn in (11) be rationally hyperexponential, and let f ∈ Fn be

nonzero. Then π0(f
′/f) ∈ F0 and πi(f

′/f) is a ti-simple element with integral residues for all i ∈ [n].

Proof Let i ∈ [n], and let p ∈ Fi−1[ti] be nontrivially normal with respect to ti.

Claim. The projection πi (p
′/p) is ti-simple, and p′/p = s+a′/a+πi (p

′/p) for some s ∈ F0 and a ∈ Fi−1.

Moreover, all nonzero residues of πi (p
′/p) are equal to 1.

Proof of the claim. By Lemma 4.8, there exists an element a ∈ Fi−1 and a ti-simple element q ∈ Fi

such that p′/p = degti(p)t
′
i/ti + a′/a + q, and that all nonzero residues of q are equal to 1. Since

t′i/ti ∈ F0, we can set s = degti(p)t
′
i/ti. By the definition of Laurent-Matryoshka decompositions, we

have that q = πi(p
′/p). The claim is proved.

Based on the claim, we proceed by induction on n. For n = 1, the logarithmic derivative identity

implies f ′/f = f0 +
∑

j∈[k] mjp
′
j/pj , where f0 ∈ F0, pj is a nontrivially normal polynomial in F0[t1],

and mj is a nonzero integer. It follows that π1 (f
′/f) =

∑
j∈[k] mjπ1

(
p′j/pj

)
. The claim implies

that π1 (f
′/f) is t1-simple and its residues belong to Z. The claim also implies that π0(f

′/f) is equal

to f0 + u+ v′/v for some u, v ∈ F0. So π0(f
′/f) belongs to F0.

Assume that n > 1 and the lemma holds for n−1. Again, the logarithmic derivative identity implies

f ′/f = u+ g′/g +
∑

j∈[k] mjp
′
j/pj , where u ∈ F0, g ∈ Fn−1, pj ∈ Fn−1[tn] is nontrivially normal, and

mj ∈ Z. Then πn (f ′/f) =
∑

j∈[k] mjπn

(
p′j/pj

)
, which is tn-simple and has only integral residues by

the claim. Moreover, there exists v ∈ F0 and h ∈ Fn−1 such that f ′/f = v + h′/h + πn(f
′/f). By

the induction hypothesis, πℓ(h
′/h) is tℓ-simple and has only integral residues, and π0 (h

′/h) ∈ F0. The

induction is completed by the observation that πℓ(f
′/f) = πℓ(h

′/h) for all ℓ ∈ [n− 1]. □
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4.4 Computing elementary integrals

An element f of F has an elementary integral over F if there exists an elementary extension E of F

such that f ∈ E′. With the aid of remainders and residues, we determine whether f has an elementary

integral over a rationally hyperexponential tower.

Theorem 4.10 Let Fn in (11) be a rationally hyperexponential tower, and f ∈ Fn with the

remainder r. Then f has an elementary integral over Fn if and only if π0(r) ∈ F0 is x-simple, and, for

all i ∈ [n], πi(r) ∈ Fi is a ti-simple element whose residues are in the algebraic closure C of C.

Proof Assume that π0(r) ∈ F0 is x-simple, πi(r) ∈ Fi is ti-simple, and all the residues of πi(r)

belong to C for all i ∈ [n]. Then πi(r) is the sum of a C-linear combination of logarithmic derivatives

and a polynomial u in Fi−1[ti] by [5, Lemma 3.1(i)]. Since t′i/ti ∈ F0, the polynomial u belongs to F0 by

the expression for u in the proof of [5, Lemma 3.1(i)]. It follows that πi(r) has an elementary integral

over Fi for all i ∈ [n], which, together with π0(r) ∈ F0, implies that r has an elementary integral

over Fn, and so does f .

To show the converse, we assume that f has an elementary integral over Fn. Then r also has an

elementary integral over the same tower. By [2, Theorem 5.5.3], there exist g, u1, . . . , uk ∈ Fn and

c1, . . . , ck ∈ C such that

r = g′ +
∑
j∈[k]

cj
u′
j

uj
.

Accordingly, for each i ∈ [n]0,

πi(r) = πi(g
′) +

∑
j∈[k]

cjπi

(
u′
j

uj

)
. (15)

First, we show that π0(r) is x-simple. By Proposition 4.9, π0

(
u′
j/uj

)
in (15) belongs to F0 for

all j ∈ [k]. So π0(r) ≡ w mod F ′
n for some w ∈ F0 by π0(g

′) = π0(g)
′ in Lemma 4.3. We may further

assume that w is x-simple by the Hermite-Ostrogradsky reduction. Therefore, π0(r) − w ∈ R0 ∩ F ′
n.

By Theorem 4.4, we have that π0(r) = w. Consequently, π0(r) is x-simple.

It remains to show that πi(r) is ti-simple and has only constant residues for all i ∈ [n]. By

Proposition 4.9, πi

(
u′
j/uj

)
in (15) is ti-simple for all j ∈ [k]. Since the coefficient of every power of

ti+1, . . . , tn in πi(r) is ti-simple, we have that πi(g
′) = 0 by πi(g

′) = πi(g)
′ in Lemma 4.3 and an

argument on orders. Then πi(r) =
∑

j∈[k] cjπi

(
u′
j/uj

)
by (15). Consequently, πi(r) is a ti-simple

element whose residues belong to C by Proposition 4.9. □

Algorithms for determining constant residues are given in [2, §5.6] and [5, 8].

Example 4.11 Let us reconsider the tower F3 and the function f in Example 4.5. Note that

π2(r) =
x3 + x− 1

x3(t2 + 1)
t3,

which is not t2-simple. So f has no elementary integral over F3 by Theorem 4.10.

Example 4.12 Let us reconsider the tower F2 and the function f , which are the same as those

in Examples 1.1 and 4.6. By (14), the remainder r of f has only one nonzero projection, which is

π2(r) =
(x3 − x− 3)t1

(x3 − x− 2)(t1 + t2)
.

It is t2-simple. An algorithm for determining constant residues yields

π2(r) =
(t1 + t2)

′

t1 + t2
− 1

x3 − x− 2
.
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The nonzero residues of π2(r) are all equal to 1. So f has an elementary integral over F2, which is∫
f =

1

1 + t2
+ log (t1 + t2)−

∑
α3−α−2=0

1

3α2 − 1
log(x− α).
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