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Abstract
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lem of multivariate rational functions in the mixed case in which both shift
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difference transformations. This work settles the rational case of the long-
term project aimed at developing algorithms for symbolic summation of
multivariate functions.
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1 Introduction

As a classical and active topic in symbolic computation, symbolic summation
aims at providing algorithmic tools for verifying or discovering identities and
closed forms for various sums from combinatorics [32, 27, 28], computer sci-
ence [20] and theoretical physics [37, 5]. The summability problem determines
whether a given function (or sequence) is a difference of another function (or se-
quence) so that the discrete Newton—Leibniz formula can be applied to compute
definite sums. Its continuous analogue in the differential setting was related to
the effective computation of de Rham cohomologies. For instance, Picard and
Simart in their book [33, pp. 475-479] proposed to decide whether a rational
function f(z,y,z) € C(x,y, z) of three variables can be written as

_Ou  Ov  Ow
Hy.2) = Ox + oy + 0z’
where u,v,w € C(z,y, z). This is still an open problem and the related results
can be found in [21, 16, 29, 8]. The goal of this paper is to study the discrete
and ¢-discrete analogues of Picard’s problem for multivariate rational functions.

The development of algorithms for symbolic summation dates back to the
early 1970s with significant advances in subsequent decades [40, Chapter 23]. In
the univariate case, the summability problem was studied by Abramov [1, 2, 3]
for rational functions and also by Gosper [19] for hypergeometric terms. Karr
extended Risch’s algorithm to the setting of so-called ITX-extensions [25, 26] with
a series of further developments by Schneider and his collaborators [36, 38] mo-
tivated by computational problems in quantum field theory [5, 39]. Extending
these results to the multivariate setting was proposed as an intriguing prob-
lem by Andrews and Paule [4], since its solution would help us reduce multiple
sums to single sums. Initial progress was made in [14] which provides some nec-
essary conditions on the summability of bivariate hypergeometric terms. The
summability problem in the case of bivariate rational functions was solved in [13]
with later algorithmic improvements in [23, 34]. Beyond the bivariate case, this
problem has been studied for binomial sums [6], and a complete solution to the
summability problem of multivariate rational functions involving ordinary shift
operators was recently given in [10].

Continuing the work in [10], this paper focuses on the summability problem
of multivariate rational functions in the mixed case in which both shift and ¢-
shift operators can appear. Following [9], we introduce the concepts of normal
and special polynomials from symbolic integration. This helps reveal the inher-
ent differences between the g-shift and the ordinary shift cases and also enables
us to handle both types of operators within a unified framework, except in the
final step of constructing difference transformations. Several examples are pro-
vided to illustrate the computational details and to demonstrate applications in
verifying the convergence and irrationality of given series.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the basic definitions and notation to formally state the rational summa-
bility problem. Section 3 shows that the problem can be reduced to that of



simple fractions via orbital decompositions. Section 4 presents Sato’s theory
of isotropy groups, which is then used in Section 5 to derive the summability
criteria, thereby reducing the problem to a summability problem with fewer op-
erators in a more general setting. In Section 6, we construct an F-endomorphism
to transform the general (g-)summability problem into an original form. Sec-
tion 7 presents two examples that illustrate potential applications. We conclude
the paper in Section 8 by proposing some problems for future studies.

2 Preliminaries

The goal of this section is to introduce some notation and state the main problem
addressed in this paper. Let F be a field of characteristic zero and F(x) be the
field of rational functions in x = {x1,...,z,} over F. We use X; to denote
the n — 1 variables xs,...,z,. For each v € x, the shift operator o, is the F-
automorphism of F(x) defined by o, (v) = v+1 and o, (w) = w for all w € x\{v}.
Let ¢ € F* :=F\ {0} be such that ¢™ # 1 for all nonzero m € Z. The ¢-shift
operator 7, , is defined as the F-automorphism of F(x) such that 7, ,(v) =¢-v
and 7,4, (w) = w for all w € x\ {v}. Let 0, € {0y, 7} and G = (0,,,...,0,,)
be the free multiplicative abelian group generated by the operators 0,,,...,0,, .
The group algebra F[G] over the field F consists of all finite linear combinations
> agh with ap € F and 0 € G. For each 0 € G, we use 6 to replace ¢- 6 for some
¢ € F* for short and the difference operator 6 — 1 is denoted by Az, where 1
stands for the identity map on F(x). The main task of this paper is to solve the
following problem.

Problem 2.1. Given a rational function f € F(x) and 0,, = c; - 0,, for some
constant ¢; € F* with i = 1,...,n, decide whether there exist g1,...,9n € F(x)
such that

F=28g (g) 4+ +25 (g0): (2.1)

@

If such g;’s exist, we say that f is (0y,,...,0, )-summable in F(x).

Let x =yUz withy = {y1,...,ux},2 = {2z1,...,zm} and n = k + m. If
Gy]. =0y, for1<j <k, 0, =714, for1 <f<mandc =1forl<i<n,then
Problem 2.1 is reduced to deciding whether f is (0y,,...,0y,, Tg,215- -+ Tg,2m )-
summable. In general, let 1, ...,0, be a family of independent elements in G,
that means if ... 0% = 1 for some ¢y,...,0, € Z then ¢; = 0 for all 1 <
1 <r. Let 91 = ¢;0; for some ¢; € F* with ¢ = 1,...,r. A rational function
f € F(x) is called (01, ... ,0,)-summable if f = Ag (g1)+- -+ A (gr) for some
g1,-..,9r € F(x). The (1,...,0,)-summability problem is to decide whether f
is (01, ...,0,)-summable.

Let E = F(%;1). As an analog in the differential case (see [7, Definition 1.3]),
we say that p € E[z1] is normal with respect to 6, if ged(p, 6%, (p)) = 1 for any
¢ € Z\ {0}. A non-normal polynomial (with respect to 6,,) is called special
(with respect to 6,). Normal polynomials and special polynomials will be
further discussed in Sections 3 and 5.



Let 0x = (04,,...,05,) and o = (a1,...,a,) € Z". We introduce a short
notation 63 := 03! --- 05~ to denote an element in G. For ¢ = (c1,...,¢,) € F",
define ¢® = ¢{* - - - ¢%" to be a constant in F.

3 Additive decompositions

In this section, we shall introduce a direct sum decomposition of F(x) into
G-invariant subspaces, and thus reduce the summability problem of general
rational functions to the case of simple fractions.

3.1 Orbital decompositions

Let p,q € F[x] be two irreducible polynomials in 27 over F(%X;). We say that
p,q are associate if p = ¢ - q for some ¢ € F*. This is an equivalence relation.
Let Q be the set of all such equivalence classes [p] and K be a subgroup of G.
First of all, we shall introduce a group action of K on the set 2. Since each
0 € K is an F-automorphism of F(x), this naturally defines a group action on
Q by mapping [p] into [#(p)]. We call the set

Pl :={[0(p)] | 0 € K}

the K -orbit of p. The polynomials p, g are said to be K -equivalent if [p|x = [q] k,
denoted by p ~k ¢. Then p,q are K-equivalent if and only if p = ¢ - 6(q) for
some ¢ € F* and § € K. The relation ~ is an equivalence relation.

Now we shall decompose F(x) as a vector space over F(%x1). Let K = G and
by the above group action, the set ) can be partitioned into the disjoint union of
the distinct G-orbits. Given an irreducible polynomial d € F[x] with deg, (d) >
0 and a positive integer j, we define an IF(x; )-subspace Vg, ,; of F(x) spanned by
all of the fractions a/b/ with a € F(%1)[z1], b ~¢ d, and deg,, (a) < deg,, (d).
For any fraction in Vg ;, the irreducible factors of its denominator are in
the same G-orbit as d. By the irreducible partial fraction decomposition, any
rational function f € F(x) can be uniquely decomposed as f = fo+ f1+- -+ fs
with fo € F(x1)[z1] and fi,..., fs in distinct Vjg), ; spaces. Therefore, F(x)
admits the following direct sum decomposition:

Fx) = F) e B (D D Viden). (3.1)

JENt [d]geT

where NT := N\ {0} and T is the set of all distinct G-orbits such that € is the
disjoint union of 7. We use fo and fg), ; to denote the components of f in
F(x1)[x1] and Vjg), ;, respectively. Such a direct sum decomposition is called the
orbital decomposition of F(x) with respect to the variable z; and the group G.

Lemma 3.1. If f € Vig, ; and P € F(x1)[G], then P(f) € Vig;-

Proof. Let f = Y a;/b} with b; ~¢ d, deg,, (a;) < deg, (d) and P = ) pel
with py € F(x1). For any § € G, we have 6(b;) and d are still in the same



G-orbit and deg, (0(a;)) < deg,, (d). Then &Ea?) is in Vig,;- So P(f) lies
in Vig,; by the linearity. |

Lemma 3.2. Let f € F(x). Then f is ( 1 - -5 Oz, )-summable if and only if

fo is (0g,, ..., 0, )-summable in E[zx,] and f[d]cj is (9 ., 0., )-summable for
all [d]g € T and j € NT.

Proof. The sufficiency is due to the additivity of (g-)shift operators. For the
necessity, suppose f = Y1 Ay (gM) with g9 € F(x). By the additive de-

composition of rational functions in (3.1), we can write f, ¢ in the form
=t s 005 =) + ST 1505

By the additivity of Aj , we see that

_ _ (1) (Z)
1= 2, )+ 3 (2, 6 )
i=1 7 d]c =
From Lemma 3.1, it is another expression of f with respect to Vig), ;. By the
uniqueness of the orbital decomposition (3.1), we have

fo—ZA gé) and  fig,,; = ZA g[(;)

which are (0, ,...,0,, )-summable. Hence the lemma follows. |

3.2 Reducing to simple fractions

By Lemma 3.2, we have reduced Problem 2.1 to that for rational functions in
F(x1)[x1] and Vig, ;. The latter one is of the form

f= 203 9%) (3.2)

where j € Nt, 0 € G, ag € F(x1)[z1], d € F[x] with deg, (as) < deg,, (d), and
d is irreducible in F[x].

Let 6 be an automorphism of F(x), ¢ € F* and a,b € F(x). Then for any
integer ¢ € Z \ {0}, we have the reduction formula

a ¢4 a
m:c~9(g)—g+9b(), (3:3)

Wheregzz:f é%(bla)lf€>0andg——z = lg,zi(b) if / < 0. For any
0 € G, write 0 = 05! --- 05~ with a; € Z. Let ap = (a1,...,a,) € Z" be the
index vector related to 6. Using this notation, we apply the above reduction
formula (3.3) with (¢,0) = (c1,0.,), ..., (¢n, 0, ) iteratively and then arrive at

the following decomposition.



Lemma 3.3. Let f € Vig,; be given in the form (3.2) and ¢ = (c1,...,¢,) €
(F*)™. Then we can decompose f into the form

n ' a
f= ZAW% (gi) +r with r = ik (3.4)

i=1
where g; € F(x) and a =Y, c™ 07 (ag) with deg,, (a) < deg,, (d). Note that
here we use ¢~ to denote ¢y ---c;%. In particular, f is (Ou,,-..,0.,)-

summable if and only if r is (04, ..., 0z, )-summable.

Next, we shall discuss the summability problem of polynomials in E[z1] and

of simple fractions
a

f= 4’
where j € Nt, a € E[z1], d € F[x] with deg, (a) < deg,, (d) and d is irreducible
and special w.r.t. 6. When the denominator d is normal w.r.t. 6,,, the
problem is nontrivial and will be solved in Sections 5 and 6.

When 6,, = 0,,, every irreducible polynomial in x; over E is normal w.r.t.
o, and every polynomial f € E[z1] is ¢10,,-summable for any ¢; € F*.

When 0, = 7, ,,, the only special and irreducible polynomial in E[z] w.r.t.
Tq,z, 18 of the form c -z for some ¢ € E\ {0}. So it is sufficient to consider
f € E[zy,z7']. For ¢; € F*, note that ¢;(qgz1)? — 2 = (c1¢? — 1)ad. ey # ¢
for any integer v € Z, then f is ¢17, 5, -summable. In this case, for each j € Z

we have ) .
Xy = C1 - T, - - > . .
1 1 9,21 Cqu —1 Clqj —1

Now suppose ¢; = g~ ¥ for some v € Z. For each j € Z, we define W; as the
E-vector subspace of F(x) generated by z7, i.e., W; = {g- 2] | g € E}. Then
E[x1, 27 "] is the direct sum of W; where j ranges through Z. We can write

f=ca 729 —g+ (3.6)
for some g € E[zy, 27 '] and f, € W,.. Then f is (¢174.2,,0zys - - - , O, )-summable
if and only if f, is (¢17g,51:0z,, - - -, 0, )-summable provided that ¢; = ¢~ ".

Proposition 3.4. Let f be in the form of (3.6). Then we have that f is
(¢ " Tg215 00, - - - 0n, ) -summable in F(x) if and only if f, is (04,,...,05,)-
summable in F(x).

Proof. The sufficiency follows from the definition of summability. Conversely,
let 0, = ¢ ¥ Tyz, and G := (Ty0,,00s,---,0z, ). Since f, € W, C E[zy, 2]

and E[z,2z7'] is the union of E[z;] and Vieile,j for all j € N*, we can assume

that f, = >0, Ay (g:) with g; € E[z1,27'] by Lemma 3.2. Furthermore,

B[z, 27 = @jez W; and for each j € Z, the subspace W; is also G-invariant,
ie., any h € W; and 0 € G implies 0(h) € W;. Let g;, be the component of g;
in W,. By the similar discussion as in Lemma 3.2, we have

fl/ = Aéxl (gl,u) + Aé (92,1/) +--+ Aé (gn,u)~

ED) Tn



Here g1, is of the form h -z} for some h € E. Consequently, the first term
vanishes:
g, (910) = ha ™" Tq 0 (2) — ha = 0.

Hence f, is (0, . .., 0,, )-summable in F(x). |

In Proposition 3.4, if f is (f4,,...,0,, )-summable in F(x), then f can be
regarded as (0,,,...,0, )-summable in K(za,...,z,) with K = F(z), since
F* C K*. The latter one is contained in the summability problem in n — 1
variables (if we replace F by K).

4 Isotropy groups

Consider the group action given in Section 3. Let p € F[x] be a nonconstant
polynomial and K be a subgroup of G = (0,,,...,0; ). The set

K, :={0 € K | 6(p) =c-p for some c € F*}

is a subgroup of K, called the isotropy group of p in K. If two polynomials p, ¢
are K-equivalent, then K;, = K. In this section, we shall discuss some algebraic
properties of G, which will be used in Section 5.

Let G7 = (oy,,...,0y,) and G™ = (T,,,..., 75, ) be subgroups of G. Then
G = G? & G". The isotropy groups of p in G and G are denoted by G7 and
G, respectively. Every subgroup of G is a free abelian group. Furthermore, the
following structure property of the quotient group G°/Gy is given by Sato [35,
Lemma A-3].

Lemma 4.1. G?/GY is a free abelian group.
Similarly, we have the following lemma in g¢-shift case.
Lemma 4.2. G7/G7 is a free abelian group.

Proof. By [30, Chapter III, Theorem 7.3], it suffices to show G7/G7 is torsion

free. Suppose 7§ € G, for some £ > 0. Write 7o = 71, ---7lm andp =3 a;z’

with I = (i1,...,im) € Z™, 2] = 2" -..2im and a; € Fly]. Let T be the

m

set of all monomials z’ appearing in p with nonzero coefficients in F[y]. Then

75(p) = c- p implies ¢ = ¢* for some ¢y € Z and we have

E apgttrint Ftmim)=logl — g arz’.
1

T
It follows that for any z! € T,
K(tlil + -+ tmzm) = 607

since ¢ is not a root of unity. So ¢ divides ¢y and let & = ¢%/%. Then 7 (p) =¢c-p,
Le., 1 € GJ.



Proposition 4.3. G, = G © G]. Therefore, G/G, = G /G7 © G /G] is a
free abelian group.

Proof. Since G = G & G™, we only need to show that if § = 0p -7 € G,
with o9 € G, 70 € G7, then og € Gj,79 € G,. Write p = 3 fi(y)z! with
f1(y) € Fly] and T = {z! | f1(y) # 0}. If 6(p) = c - p for some ¢ € F*, then

Y oolfry)mo(@) = e fily)z'
I I

Since og preserves the leading coefficient and 7y preserves the term structure,
we have oo(f1(y)) = f1(y) and 79(2z!) = ¢ -z’ for any z! € T. Hence oo(p) = p
and 19(p) = ¢ p. |

Ifn>1,let H=(0,,...,0,, _,) beasubgroup of G generated by the oper-
ators 0., ...,0,, , and H, be the isotropy group of p in H. By Proposition 4.3,
both G/G), and H/H, are free abelian groups. So the ranks of G, and H,, are
strictly less than that of G and H respectively if p is of the positive degree in x; .

Remark 4.4. Computing a basis of G, can be reduced to solving linear systems
over the integers. By the direct sum decomposition of G, we can compute bases
for G and G}, separately. A defining set of linear equations for the basis of
G} can be derived by utilizing methods from shift equivalence testing, see [17]
and [10, Section 3. The basis of G}, can be obtained via q-shift equivalence
testing [34, Theorem 1].

Lemma 4.5. G,/H, is a free abelian group with rank G,/ H, < 1.

Proof. Define a group homomorphism ¢: G,/H, = Z by
05 - 05 Hpy s £,

It can be verified that ¢ is well-defined. For any 71,73 € G,, if they are in the
same coset of H, in G, then 7'17'2_1 € H,. This implies 7'17'2_1 € H and hence
©(11) = @(12). Moreover, ¢ is injective since G, N H = H,. Then we have
Gp/Hp = im ¢ = (Z for some integer £ € Z. So G,/H, is a free abelian group
generated by ¢~ 1(f). |

5 Summability criteria

Combining Lemma 3.2 and Lemma 3.3, we can reduce Problem 2.1 to that for

simple fractions
a

f = 57
where j € N, a € F(x;)[z1], d € F[x] with deg, (a) < deg, (d) and d is
irreducible and normal w.r.t. 6,,. In this section, we shall present a criterion
on the summability for such simple fractions.

(5.1)



For the univariate case with n = 1, the problem is for f = a/d’ with
a,d € Flz;] in the form (5.1) to decide whether f is f,,-summable. Since d
is normal w.r.t. 6,,, we get the following criterion of ,,-summability from [22,
Lemma 6.3]; see also [2, 31, 12].

Lemma 5.1. Let f = a/d’ be of the form (5.1) with a,d € F[z1] and O, = -0,
for some c € F*. Then f is 0, -summable if and only if a = 0.

For the multivariate rational functions with n > 1, we proceed in the follow-
ing two cases.

1. rank G4/Hy = 0,
2. rtank Gy/Hy = 1.

Firstly if rank G4/Hy = 0, the summability problem in n variables can be
reduced to that in n — 1 variables by the following theorem. Note that the
(04, ..,0,, ,)-summability in F(x) implies the (0,,, ... ,0,, ,)-summability in
K(z1,...,2,-1) with K = F(z,,). Furthermore, for this reason, we have the cor-
respondmg version of Lemmas 3.1, 3.2 and 3.3 for (A,,,...,0,, ,)-summability
in F(x), which will be used in the proof of Lemma 5.2 and Theorem 5.3.

Lemma 5.2. Let f = a/d’ € F(x) be given in the form (5.1). Ifrank Gq/Hq =
0 and n > 1, then f is (Ou,,...,0.,)-summable in F(x) if and only if f is
Oy .-y 04, ,)-summable in F(x).

Proof. The sufficiency follows from the definition of summability. For the ne-
cessity, suppose f is (fa,,...,0,, )-summable in F(x) but not (6,,,...,0., ,)-
summable in F(x). By Lemma 3.2, we get f = Aj (gl) +-+ Ay (gn) with
g1,---,9gn in the same subspace Vg ; as f. For each 1 with 1 <4 ng n, write
0., = ci - 0,, for some ¢; € F*. Applying the reduction formula (3.3) with
(¢,0) = (c1,04,),. -, (cn-1,0,_,) iteratively, we can decompose g, as

g"_ZA, u;)
i=1

where u; € F(x), p € N, \p € F(%1)[21], p € F[x] with deg,, (\r) < deg,, (d) and
f is in the same G-orbit as d. Furthermore, we can assume A\, # 0 and each
nonzero A/0% (p)7 is not (02y,...,0,, ,)-summable in F(x). Substituting g,
into the original equation for f and using the commutativity between 6, and
0.,(1 <i<n—1), we obtain that

5, (3 o) = e,

where h; = g; + A@I (u;) for all 1 <7 <n—1. Then

p

£=0

p+1 ~ n—1
Py 9@ 7 = 2, (ha), (52)
£=0 f”n i=1



where Xy = Ao, 5\p+1 = —cnbs, (Ny), A= A\ — enbz, (Me—1) for all 1 < £ < p.
Since d and p are in the same G-orbit, it follows that Gq = G, and Hy =
H,. Since rankG4/Hy = 0, we have all ijn (w) with £ € Z are in distinct H-
orbits. In particular, the H-orbits (i), [0x, (10)]a, - - -, (027 (1)] g are distinct.

On the other hand, the left hand side of (5.2) is (6,,,...,60,, ,)-summable.
However, \o/u/ = Ao/p is not (6,,,...,0,, ,)-summable. By Lemma 3.2 (in
n — 1 variables), the only possible choice is that p lies in the same H-orbit
as d, denoted by u ~g d. By the similar discussion, we have Hé’jl(u) ~g d
since 5\p+1 # 0. Hence p ~pr ngl(p), which leads to a contradiction since p is

a nonnegative integer and rank G,,/H, = 0. The lemma follows. ]

We are now ready to state and prove the main theorem throughout this
paper. In the pure difference case, it coincides with Theorem 5.9 in [10].

Theorem 5.3. Let f = a/d’ € F(x) be of the form (5.1). Let {0;}i_(1 <r <
n) be a basis of Gq (take 64 = 1 if Gq = {1}). Suppose 0; = 0% with oy; € Z™
and 0;(d) = e;d for some ¢; € F*. Then for any ¢ = (c1,...,¢cn) € (FH)™, f is
(¢10zy,- - - s Cnbs,, )-summable in F(x) if and only if a = 3;_ Ag (bi) for some
by € F(%1)[x1] with 0; = ;7¢®0; and deg, (b;) < deg,, (d) for all1 <i<r.

The above theorem reduces the number of difference operators in the summa-
bility problem. Before proving it, we first show that this conclusion is preserved
by any basis exchange of G4 in Lemma 5.4, so that it is sufficient to prove The-
orem 5.3 for a special basis. Next, we use induction and organize the proof in
two cases according to rank G4/H; = 0 or 1.

Lemma 5.4. Let {w;}i_q, {mi}i_1(r > 1) be two bases of G4 such that for
each 1 < i < r, wi(d) = gd, ni(d) = eid for some e;,¢; € F*. Sup-
pose w; = 0%, n; = 05 with oy, B; € Z™. Then for any f € F(x), c € (F*)?
and s € Z, [ is (e5cwy,...,eic? wy)-summable in F(x) if and only if f is
(esc™imy, ..., eichn,)-summable in F(x).

Proof. By the symmetry of {w;}_; and {n;}/_;, we only need to show one
direction. For the sufficiency, it is enough to prove that if n = 62 € (w1, ..., w,)
with 7(d) = ed for some e € F*, then

efcfn—1= (g5 wy — D@y + - + (€3¢ w, — 1)@,

for some @, ... o, € F|G|. Ifn:wil <-wir with t; € Z, then 8 = agt; +---+
ayt, and e = £l' ... elr. So we have

£ t K - t
efcfp—1 =gl .. gstremt . cortrgyli ot
= (e§c™w) - (e5c™w,)" — 1

= (ejcw; — D1 + - + (¢ w, — 1)©y
for some @1,...,0, € F[G]. The last equality is obtained from the identity

aft - ayr = 1= (e = 1)g1 + - (. — Vg,

10



for some g1, ..., g, € Flxy,..., 2,27, ... 27 1], which can be proved by induc-
tion on r. ]

Proof of Theorem 5.3. For the sufficiency, since 0;(d) = ;d, we have

a _eembib) b e el () b
& 5;j91( )i & e 70,(d)i &
o by an (Do by
= 19(d—1)—d—]+ el (Z5) — 5

The reduction formula (3.4) implies that a/d’ = Y71 | Ac,p, (gi) for some g; €
F(x).

For the necessity, we proceed by induction on the number of (g-)difference
operators n. We begin the induction with n = 1. The problem is to decide
the c10,,-summability of f = a/d’ € F(x1,...,2,). Then the subgroup G4
of G = (0,,) is trivial and #; = 1, since d is normal with respect to 6,, and
of the positive degree in z;. In this case, 1 = 1,1 = (0),c¢** = 1, and f is
105, -summable in F(zq,...,x,) if and only if @ = 0 by Lemma 5.1 (replace F
by F(%1)). Now let us assume n > 1 and formulate the inductive hypothesis for
n—1:

If {w;}s_, is a basis of Hy and w; = 02, w;(d) = e;d for some B; € Z"
and e; € F*, then f is (c104,,...,Cn-10, ,)-summable in F(x1,...,x,) if and
only if a = Y01 Ag,(b;) for some b; € F(Xq1)[z1] with &; = e cPiw; and
deg, (b;) < deg, (d) for all1 <i<s.

We shall proceed by a case-by-case analysis according to the rank of G4/H,.
If rankG4/Hy = 0, then H; = G4. By Lemma 5.2, f is (¢10y,,...,¢nbz, )-
summable in F(x) if and only if f is (¢104,,...,¢n—10,_,)-summable in F(x).
So the assertion is true by the inductive hypothesis. If rank G4/Hy = 1, us-
ing Lemma 5.4, we may assume {0;}7_; is a basis of G4 such that Hy =
(01,...,0,_1) and Gg/Hq = (0,). (If r = 1, then Hy = {1}.) By the argu-
ment of Lemma 4.5, we can write 6, = 03 as ;" - O '0%r with ¢, being
the smallest positive integer among all elements in G4. By Lemma 3.2, we can
assume f = Agg, (91) + -+ + Acp,, (9n) With g; € Vig ;. Here g, can be

decomposed as
tn—1

gn—z:Aclz U”L ZegAé I

where u; € F(x) and A¢ € IF(xl)[:cl] with deg, (A¢) < deg, (d). Then we have

tp—1 n—1
n )\Z
f - Aanxn ( Gén (d)j> = Z Aci‘gzi (h2)7 (53)

i=1

where h; = g; + Ac,0, (u;). Note that 0% (d) = e,0% --- 057~} (d). Applying
the reduction formula (3.3) to simplify (5.3), we get

tp—1 3

Z 0% (d)i )\Z i (5.4)
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for some rational functions h; € F(x), where e =N\ — enbyz, (Me—1) for 1 <4 <
t, — 1 and

)\0 =a+ X\ — g, (Cloxl) L (cn_lﬂxnfl)’t"*lcn@cn (/\tn—l)-

This means that f is (¢104,,...,¢n_10s, ,)-summable in F(x). Notice that
(&, [0z, ()], - .., [0 71 (d)] g are distinct H-orbits due to the minimality of
t,. By Lemma 3.2, it implies that each S\Z/Hf:n (d)7 is (c10pys---sCn10s, ,)-
summable in F(x) for 0 < ¢ < ¢, — 1. Let W denote the F-vector subspace of
F(x) consisting of all elements in the form of >/, ! Ag. (b;) with 0; = e; 7 c™0;,
b; € F(x1)[x1], and deg, (b;) < deg,, (d) for 1 < 1 < r—1. (If r = 1, take
W = {0}.) Since Hy = Hgﬁn(d) for 1 < ¢ < t, —1, we apply the inductive
hypothesis for rational functions S\g/ﬁﬁn (d)? with £ = 0,...,t, — 1 repeatedly
and conclude that '

0=a+ X —er (Clozcl) ti. .. (Cn—ﬁxn,l)_t"—lcnex”(/\t“_l)’
0=X — Cngzn ()‘0>
0 = )\t”_l - Cnal'n ()\tn_Q)’

where = means the congruence relation modulo W. Since W is G-invariant, the
above system of congruences leads to

a= 5;j (€100,) 7" - (Cn—larn_1)7t"71 (Cnomn)tn (Ao) — Ao
=e,7¢*0,(Xo) — Ao.
This completes the proof. |
Remark 5.5. By Proposition 4.3, we get Gq = G5 @® G7, so there exists a basis
{01y yOr s T1y o s Try } Of G such that {o1,...,00}, {11,...,7r,} are bases
of GG and G, respectively. Then o;(d) = d and 1¢(d) = ¢"*d for some v, € Z.
By Theorem 5.3, we obtain that a/d? is (0yy, ..., Oy, Ta,z1s- - - s Tq,zm ) -SUMMable

inIF(x) if and only if there exist by, ..., by, € F(Xy)[z1] with deg, (b;) < deg,, (d)
and A1, ..., A\r, € F(X1)[z1] with degzl()\g) < deg,, (d) such that

T1 T2
a=D Ag(bi)+ ) Ar (M), (5:5)
i=1 =1
where 7o = ¢~ 7V¢1y. By the similar discussion as in Lemma 3.2, the summability
criterion for a/d’ can be refined as
@ 18 (01, oy Opy s T1y - ooy Try ) -summable in F(x).

In pure difference case, Example 5.11 in [10] verifies that for positive integers
s and n, the function f = 1/(x§+---+ %) is summable if and only if s = 1 and
n > 1. We now show that f is always g-summable in the following example, for
which the bivariate case has been shown by Example 3.19 of [13].

12



Example 5.6. We consider the (Tg.uy, - - -, Tq.z, )-Summability of f in Q(x1,...,z,),
where

1
fi=———— withs,n e N*.
Let G4 be the isotropy group of d :== x} + -+ in (Tgzys..-, Tgz,). When
n =1, applying Equation (3.5) yields

F=t=a,, (M2

S
L1 L1

For n > 1, it is easy to check that Ggq is generated by T := Tqu, - Tyu,
with 7(d) = ¢°d. By Theorem 5.8, f is (Tgzys-- -+ Tq.w, )-sSummable if and only
if 1 = q7°7(b) — b for some b € Q(x1)[z1] with deg, (b) < s. Taking b= q_sl_l
satisfies the condition and then we have

F=moma (3) -

=Ar ., (Tq,gg2 Ty (Z)) + A, (Tmm e Tem (Z))

b
+o AL (E) (5.6)
Hence f is (Tqzys-- - Tqw, )-summable for any s,n € NT.

6 Difference transformations

In this section, we shall construct an F-endomorphism of F(x) that can transfer
the summability problem for general operators of G into the usual case. It can be
constructed by considering the difference case and g-difference case, separately.
Note that the pure difference case is established in [10, Proposition 5.12], which
can be restated as follows.

Proposition 6.1. Let f € K(y) with K = F(z) and {0;}/_1(1 < r < k) be
a family of independent elements in G°. Then there exists a K-automorphism
¢ of K(y) such that ¢ o 0; = oy, 0 ¢ for all 1 < i < r and therefore f is
(01,...,00)-summable in K(y) if and only if ¢(f) is (oy,,...,0y,)-summable
in K(y).

In the g¢-difference case, we may need to extend the g-summability in K(z)
with K = F(y) to its algebraic closure K(z). For each ¢ € {1,...,m}, let 7,
denote an arbitrary extension of 7, ., to K-automorphism of K(z). The following
lemma is a natural generalization of Theorem 3.2 in [13] from the summability
in bivariate case to that in multivariate case.

Lemma 6.2. Let f € K(z) with K = F(y) and {r;}]_; be a family of some
elements in G™. Then f is (11,...,7)-summable in K(z) if and only if f is
(1. ..,7r)-summable in K(z).
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Now we introduce some notation in K(z), which will be used in Proposi-
tion 6.3. For any s € Z, t € N* and h € K(z), we use h'/t € K(z) to denote
some root of the polynomial X* — h € K(z)[X] and define h*/t := (h'/*)*. In
this sense, we can write Tqui(Zf/t) = ¢/t -zf/t. For any ¢ € Z, p € N*, we have
the general rules

(hi)e =his, h'% =hs, and hi-he =hits.

Proposition 6.3. Let f € K(z) with K = F(y) and {r}i_;(1 < r < m) be
a family of independent elements in G™. Then there exists a K-endomorphism
¢ of K(z) such that ¢ o1, = 74, 0 ¢ for all 1 < i < r and furthermore f is
(r1,...,7)-summable in K(z) if and only if o(f) is (Tq.z21,- .., Tq,2,.)-sSummable
in K(z).

Proof. Assume 7; = Tgfgll e T,?fg“:f; with 8; = (b;1,...,b;m) as a vector in Z™ C
Q™ fori=1,...,r. Then B4,..., B, are linearly independent over Z, and thus
also over Q. Hence there exist vectors SB,i1,...,8m such that {81,...,5mn}
forms a basis of Q™. Suppose 8; = (b;1,...,bim) for i = r+1,...,m and
then B := (b;;) € Q™*™ is an invertible matrix. Define a K-endomorphism
¢ : K(z) = K(z) by ¢(z) := z?, which means

uj = p(z) = len.j cooglmi forall 1 < j < m.

Then g o1; =7, ,, 0 ¢ for each ¢ € {1,...,r}, since for any h € K(z)

o(ri(h(z1,- .., 2m))) = h(qbi,1u17 . ,qbi‘mum)

= Tq,z (p(h(z1, ., 2m)))
This directly implies the necessity in the second assertion. On the other hand,
let A= B~!:= (a;;) and we define a K-homomorphism ¢ : K(z) — K(z) by
@(z) =24, ie.,

wj = @(zj) = 21" 28 forall 1 <j <m.

Then ¢ o7y, =7, 0¢ for each ¢ € {1,...,r}, since for any h € K(z)
A(7q.z (R(21, .oy 2m))) = h(w1, ..., qwi, ..., W)
= 7i(G(h(z1, .-, 2m)))-
The second equality follows from

Ao — ~bi b, a1, Am,j\ — o Dopeq bieas; 0 )
Tl<w])_Tq:21...Tq;Z:T,LL(Z1 ...meﬂ)_q £=1 " J.w]_q’tﬂ.w]’

where 0; ; is the Kronecker symbol. Moreover, ¢ o ¢ = 1g(,), since @(¢(z)) =
@(zP) = 248 = z. Now suppose ¢(f) = >1_, A;, .. (h;) for some h; € K(z).
Let ¢ act on both sides of this equation. We get

[= ATl(iLl) +ot ATT(BT)’

where h; = ¢(h;) € K(z) for 1 < i < r. By Lemma 6.2, f is also (71, ...,7,)-
summable in K(z). |
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Remark 6.4. Let f € F(y,z) and {o1,...,0/,}, {71,..., 70y} be independent
elements in G° and G” respectively. Let 6; = cio; (1 < i < r1) and 7 =
et (1 < j < ry) for some c;,e; € F*. We can define an F-endomorphism
v: F(y,z) = F(y,z) by

Py, 2) = (¢(y), (2)),

where ¢, ¢ are given in Propositions 6.1 and 6.3 respectively. Then oo, = oy, 01
Jor all 1 < i < 7 and YpoT1; = 74,00 for all 1 < j < ro. Further-
more, f s (01, 0py s T1y- .., Try)-summable in F(y,z) if and only if ¥(f)
18 (Tyrs -0y s Tgyzrs -« o s Ta,20, ) -SUmmable in F(y,z), where 6,, = c;oy, and

Tqz; = €5Tq,z2;-

Remark 6.5. Note that in Proposition 6.3, ¢(h;) may not lie in K(z). We show
that the algebraic extension can be avoided by choosing a proper @ when we apply
it to solve Problem 2.1. According to Remark 5.5, we only need to consider the
case in which {T1,..., T, } s a basis of G. Note that ¢ is a K-automorphism
of K(z) if and only if B is unimodular, i.e., the rows of B form a Z-basis of Z™.
The first ro Trows of B are determined by the operators T1,...,Tr,, as in Propo-
sitton 6.3. To obtain a unimodular matriz B, the remaining rows can be derived
from Try41, ..., Tm € G7 chosen such that their images Try4+1,...,Tm form a
basis of G7/G7. The existence of such a choice is guaranteed by Lemma 4.2
together with Lemma 7.4 in [30, Chapter I1I].

Combining Proposition 4.3, Theorem 5.3 and Remark 6.4, we can reduce
the summability Problem 2.1 in n variables to that in fewer variables. With
Lemma 5.1 serving as the base case, Problem 2.1 can be completely solved.
Furthermore, the (71, ..., 7.)-summability problem has been solved.

Example 6.6. Decide whether f is (oy,,0y,,Tq 21 Tq,2.)-Summable or not in

Q(y1, y2, 21, 22), where
(21 + 22)/y2

224 (g1 —v2)z3
Note that [ is of the form (5.1) with y; playing the role of x1. Let a :=

(Zl + 22)/y27 d = Z% + (Z—,Il - yQ)Z%: and G = <0y170y2a7q,2177q722>~ It can be
verified that

fi=

Gq=(01=0y,0y,,T = Tg 2 Tq,z) With o(d) =d and 7(d) = ¢?d.

By Remark 5.5, f is (0y,, Oyys T 21> Tg 20 ) -Summable if and only if a = Ay (b) +
Ay-2-(A) for some by\ € Q(y,z). According to Remark 6.4, we define a Q-
automorphism ¥: Q(y,z) — Q(y,z) by

VY1, Y2, 21, 22) = (Y1, Y1 + Y2, 21, 2122).
Then ¢~ is given by

U Y1, Y2, 21, 22) = (Y1, —y1 + Y2, 21, 22/21).
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Now we consider the (oy,,q 7, 2, )-summability of ¢¥(a) = % Let d :

y1 +yo and G = (0y,, 74 ). Then we have éd = (Tq,z) With 74, (d) =
Applying Equation (3.5) leads to

22+ 1
(’22 + 1)21 = Aq_QTq,ﬂ <q_21 — 121>

S|

Thus (a) is (0y,,q 27q,2, ) -summable, with

(22 + D)2 /(g7"' = 1)>
Y1+ Y2 '

1/)((1) = Aqu,rq,ﬂ <

So a is (o,q 27)-summable, with

4= B0y ((ql —D(y1 +v2)) Baer (¢t =1y )’

Finally, we conclude that

B )

Tq,21 (Tq722 (g)) +Ar, ., (g), where b 1= ﬁ

7 Examples for applications

f=

> e

In this section, we give two examples to illustrate how to use the summability
criteria to reduce multiple sums. It provides a potential tool for determining
whether a series is convergent or irrational. Through this section, we assume
that F = Q.

Example 7.1 (Continuing Example 5.6). Identity (5.6) can be applied to reduce
the following n-fold sum,

1
E with |q| > 1, s,n € N* and n > 2.
g5 e g5

My yMp >1
In order to translate the identity (5.6) into the usual sums, we define the transfor-
mation 0: Q(z1,...,z,) = Q(¢™,...,q"™") by o(x;) = q"™ foranyi=1,....,n
and o(c) = ¢ for any ¢ € Q. Since q is not a root of unity, o is a Q-isomorphism
between two fields, Q(x1,...,x,) and Q(¢™,...,q™"). Let 0;’s denote the shift
operators with respect to m;’s, fori=1,...,n. Then o(744,(f)) = o:i(e(f)) for
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all f € Q(z1,...,2,). Now we derive the following identity:

1
Z qs~m1 + e + qs<mn

mi,...,mp>1

_ 1 ( Z 1
q®—1 14+ gsm2 4 ... 4 g5™n

ma,...,Mp 21

1
+ Z qs(mlfl) +14¢g5m3 4o 4 g5

mi,ms...,Mp>1

1
Tt Z qs(ml—l)_|_...+q5(mn—1—1)+1)' (7.1)

M, Mp—1221

In this way, we reduce the n-fold sum to several (n — 1)-fold sums. Con-
sidering the first sum >~ o, W on the right-hand side of
Equation (7.1), we study the (Tq.z,,- - -, Tq,z, )-Summability of

~ 1

f= oo

Letd :=1+as+---+a5 and G := (Tgpy, .- Tguwn)- It is obvious that G = {1}.
And there does not exist b € Q(xa,...,a,) such that 1 = 1(b) —b. Hence, f
is not (Tgzy, -+ Tqu, ) -summable and we can not reduce the first sum into an
(n—2)-fold sum. The similar issues arise when we consider the remaining sums

in Equation (7.1).
Example 7.2. We show that S(q) converges for 0 < |q| < 1, where
k+m

There is a Q-isomorphism o: Q(z,y,2) — Q(¢", ¢*,q™) defined analogously as
in Example 7.1. Specifically, o is given by

olz,y,2) == (¢", 4", q™).

k+m
n,k,m>1 [nikﬁ]q
(g, Tq,y» Tq,z)-summability of (1 — q)yz/(1 — zyz). By calculation,

First, we attempt to reduce the sum by considering the

1-— z z z
Uoowe 5 (g, (2
— Yz 1—-qtzyz 1—-—qtzyz
Applying this equation yields
k+m k+m m+1

q Z ( k+m q q
O D LR P D
n,k,m>1 [TL th+ m]q km>1 1 q " n,m>1 1 q" "
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k+m
It can be verified that for any |q| <1, >, .51 13(1% converges and

2 q \2
Y@= _d") = (=)~
k,m>1 E>1
an+1

n7m21 1_qn+7n .
summability of qz/(1 — xz), we have

- - )

1 e == A'rqr((l _ q)(l _ q_lxz)) + ATq‘z((l _ q)(l . q—lxz)

Now we turn to the double sum Considering the (Tqq,Tq,2)-

Hence, we have

m—+1 m
(qnm): q( (¢ - qm)+ qn)
q \2 q" ¢
:(f) _q21, m+21,7
q m>1 q n>1 q

where 3,5 13—:,” converges and ), % diverges. Applying the identity

Zk,mzl gFtm = (L)2 once more, we obtain that

1—gq
2
Y gt =Y
n,k,m>1 n>1 1- q
In conclusion, we have

q 2 q q
S@=21",) ~ X [ogm 1 T

km>1

m
which is convergent. Note that ) -, 137 is a special case of Lambert series,

see [24, p. 168]. The irrationality of the series Zmzl % for 0 < gl <1 was
conjectured by Chowla [15] and was proved by Erdds [18] when g = 1/p for p €

k+m

Z\{0,41}. Under the same assumption, the irrationality of > . .~ T
follows from [43], which in turn implies the irrationality of S(q).

8 Conclusion and future work

The long-term project aims at developing algorithms for symbolic summation
of multivariate functions. This paper resolves the rational case and thus starts
a testing step towards (¢-)Gosper’s algorithm for multivariate hypergeometric
terms, which is formulated as in [11, Problem 5.1]. A large class of combinatorial
identities involving single sums of hypergeometric terms can be efficiently proved
by Zeilberger’s method of creative telescoping [41, 42, 32], which is based on
Gosper’s algorithm. The multivariate extension of Gosper’s algorithm will be
crucial for improving the efficiency of creative telescoping when it is applied to
prove identities involving multiple sums with parameters.
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