Shift Equivalence Testing of Polynomials and Symbolic Summation of Multivariate Rational Functions *

Shaoshi Chen ${ }^{1,2}$, Lixin Du^{3}, Hanqian Fang ${ }^{1,2}$
${ }^{1}$ KLMM, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, 100190, China
${ }^{2}$ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
${ }^{3}$ Institute for Algebra, Johannes Kepler University, Linz, A4040, Austria
schen@amss.ac.cn, Ix.du@hotmail.com, hqfang_math@163.com

August 29, 2023

Abstract

The Shift Equivalence Testing (SET) of polynomials is deciding whether two polynomials $p\left(x_{1}, \ldots, x_{m}\right)$ and $q\left(x_{1}, \ldots, x_{m}\right)$ satisfy the relation $p\left(x_{1}+a_{1}, \ldots, x_{m}+a_{m}\right)=q\left(x_{1}, \ldots, x_{m}\right)$ for some a_{1}, \ldots, a_{m} in the coefficient field. The SET problem is one of basic computational problems in computer algebra and algebraic complexity theory, which was reduced by Dvir, Oliveira and Shpilka in 2014 to the Polynomial Identity Testing (PIT) problem. This paper presents a general scheme for designing algorithms to solve the SET problem which includes Dvir-Oliveira-Shpilka's algorithm as a special case. With the algorithms for the SET problem over integers, we give complete solutions to two challenging problems in symbolic summation of multivariate rational functions, namely the rational summability problem and the existence problem of telescopers for multivariate rational functions. Our approach is based on the structure of isotropy groups of polynomials introduced by Sato in 1960s. Our results can be used to detect the applicability of the Wilf-Zeilberger method to multivariate rational functions.

Keywords: Dispersion set; isotropy group; shift equivalence; symbolic summation; telescoper

MSC classes: $68 \mathrm{~W} 30,12 \mathrm{H} 05,12 \mathrm{H} 10$

[^0]
Contents

1 Introduction 3
1.1 Related work on symbolic summation 4
1.2 The main results 5
1.2.1 Algorithms for the SET problem 5
1.2.2 Reduction for rational summability 7
1.2.3 Reduction for existence of telescopers 8
1.3 An example 9
1.4 Organization 10
2 Preliminaries 10
3 Shift equivalence testing of polynomials 12
3.1 Overview of the general algorithm 12
3.2 Proof of correctness of Theorem 3.7 15
3.3 Two special admissible covers 21
4 Isotropy groups and orbital decompositions 24
4.1 Isotropy groups 24
4.2 Orbital decompositions 26
5 Rational summability problem 27
5.1 Orbital reduction for summability 28
5.2 Summability criteria 30
6 Existence problem of telescopers 37
6.1 Orbital reduction for existence of telescopers 37
6.2 Criteria on the existence of telescopers 39
7 Appendix: implementations and timings 47

1 Introduction

Polynomials are basic arithmetic structures in mathematics and computer sciences. Efficient algorithms have been developed for manipulating polynomials in computer algebra [28, 43, 62, 68] with extensive complexity studies in $[15,60,61]$. Let \mathbb{F} be a computable field and $\mathbb{F}[\mathbf{x}]$ be the ring of polynomials in m variables $\mathbf{x}=x_{1}, \ldots, x_{m}$ over \mathbb{F}. One can ask several basic computational questions on polynomials: Given $p, q \in \mathbb{F}[\mathbf{x}]$ and $\mathbf{P}, \mathbf{Q} \in \mathbb{F}[\mathbf{x}]^{n}$,
(1) Polynomial Identity Testing (PIT): Is $p(\mathbf{x})$ identically zero?
(2) Fast Evaluation and Interpolation (FEI): How fast can we evaluate $p(\mathbf{x})$ at many points and interpolate it from values at many points?
(3) Fast Multiplication and Factorization (FMF): How fast can we multiply $p(\mathbf{x})$ by $q(\mathbf{x})$ and factor $p(\mathbf{x})$ into a product of irreducible polynomials over \mathbb{F} ?
(4) Polynomial Equivalence Testing (PET): Decide whether there exists some invertible matrix $A \in G L_{m}(\mathbb{F})$ such that $p(\mathbf{x})=q(A \cdot \mathbf{x})$.
(5) Shift Equivalence Testing (SET): Decide whether there exists some vector $\mathbf{b} \in \mathbb{F}^{m}$ such that $q(\mathbf{x})=p(\mathbf{x}+\mathbf{b})$.
(6) Isomorphism of Polynomials (IP): Decide whether there exists a pair $(A, B) \in G L_{m}(\mathbb{F}) \times$ $G L_{n}(\mathbb{F})$ such that $\mathbf{Q}=B \cdot \mathbf{P}(A \cdot \mathbf{x})$.
(7) Affine Projection of Polynomials (APP): Decide whether there exists a polynomial r in $n<m$ variables such that $p(\mathbf{x})=r(A \cdot \mathbf{x}+\mathbf{b})$ for some $n \times m$ matrix A over \mathbb{F} and some vector $\mathbf{b} \in \mathbb{F}^{n}$.

The answers to these questions may depend on the way in which how we model polynomials. A randomized polynomial-time algorithm for PIT was given independently by Schwartz [58] and Zippel [67], whose derandomization is still a long-standing open problem in algebraic complexity theory with impressive progress in the last three decades (see surveys [52,53,59]). When polynomials are modelled as arithmetic circuits, partial derivatives of polynomials are used extensively and essentially in most of the above questions (see the comprehensive survey [24]). Kayal presented a deterministic algorithm for the first question in the case where the input circuit is a sum of powers of sums of univariate polynomials and a randomized polynomial-time algorithm for some special cases of the fourth question in [41]. Fast algorithms for the second and third questions are fundamental for solving many computational problems in computer algebra [62,68]. The fifth question was originally motivated by sparse interpolation of polynomials [30,31,44,45] and answered in several works $[25,26,32,33,40]$ with different methods. The sixth question was first introduced by Patarin [47] and has rich applications in multivariate cryptography [12, 14, 27, 34]. In 2012, Kayal proved that the seventh question is NP-hard in general but admits randomized polynomial-time algorithms for special classes of polynomials including permanent and determinant polynomials [24, 42]. Beside the above-mentioned results, research and extensive work on these questions have been done by combing tools from symbolic computation and algebraic complexity theory. The above seven dwarfs build an exchanging bridge between mathematics and computer science.

This paper will focus on the SET problem which boils down to solving linear systems over \mathbb{F}. We present a general scheme for designing algorithms to solve the SET problem which includes Dvir-Oliveira-Shpilka's algorithm in $[25,26]$ as a special case. To enrich the applications of the SET problem in symbolic computation, we present a group-theoretical method that reduces the
following two challenging problems in symbolic summation of multivariate rational functions to the SET problem: Let $\mathbb{F}(\mathbf{x})$ be the field of rational functions in variables \mathbf{x} over \mathbb{F} and let $\sigma_{x_{i}}$ be the shift operator with respect to x_{i} defined by

$$
\sigma_{x_{i}}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{i}+1, x_{i+1}, \ldots, x_{m}\right)
$$

for all $f \in \mathbb{F}(\mathbf{x})$. Let \mathbb{K} be a subfield of \mathbb{F}. If $\mathbb{F}=\mathbb{K}(t)$ for some transcendental $t \in \mathbb{F}$ over \mathbb{K}, we let σ_{t} be the shift operator with respect to t defined similarly as above.
(1) Rational Summability Problem: Given a rational function $f(\mathbf{x}) \in \mathbb{F}(\mathbf{x})$, decide whether there exist rational functions $g_{1}(\mathbf{x}), \ldots, g_{m}(\mathbf{x}) \in \mathbb{F}(\mathbf{x})$ such that

$$
f=\sigma_{x_{1}}\left(g_{1}\right)-g_{1}+\cdots+\sigma_{x_{m}}\left(g_{m}\right)-g_{m} .
$$

If such g_{i} 's exist, we say that f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right)$-summable in $\mathbb{F}(\mathbf{x})$.
(2) Existence Problem of Telescopers: Given a rational function $f(t, \mathbf{x}) \in \mathbb{F}(\mathbf{x})$ with $\mathbb{F}=$ $\mathbb{K}(t)$, decide whether there exists a nonzero linear recurrence operator $L=\sum_{i=0}^{r} \ell_{i} \sigma_{t}^{i}$ with $\ell_{i} \in \mathbb{F}$ such that

$$
L(f)=\sigma_{x_{1}}\left(g_{1}\right)-g_{1}+\cdots+\sigma_{x_{m}}\left(g_{m}\right)-g_{m} \quad \text { for some } g_{1}, \ldots, g_{m} \in \mathbb{F}(\mathbf{x})
$$

If such an operator L exists, we call it a telescoper for f of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right)$.

1.1 Related work on symbolic summation

Symbolic summation is a classical and active research topic in symbolic computation, whose central problem is evaluating and simplifying different types of sums arising from combinatorics and theoretical physics $[13,55]$ and other areas. For a given sequence in a certain specific class, the indefinite summation problem (in the univariate case) is to determine whether the given sequence is the difference of another sequence in the same class, which is a discrete analogue of indefinite integration problem. For instance, $-1 /\left(n^{2}+n\right)$ is the difference of $1 / n$, but $1 / n$ is not the difference of any rational sequence. The definite summation problem is to find a closed form for the sum $\sum_{i=a}^{b-1} f(i)$ assuming that the function $f(x)$ is well-defined in the interval $[a, b]$. The two summation problems are connected by the discrete Leibniz-Newton formula. Since the early 1970s, efficient algorithms have been developed for symbolic summation [62, Chapter 23]. Abramov's algorithm [1-3] solves the indefinite summation problem for univariate rational functions. A Hermite-like reduction algorithm for rational summation was developed by Paule via greatest factorial factorizations in [10,46,48,50]. The indefinite summation problem for hypergeometric terms is handled by Gosper's algorithm [29]. For sequences in a general difference field, the corresponding problem is studied by Karr in [38, 39] with significant improvements by Schneider [54] and recent fruitful applications in Quantum Field Theory $[13,57]$. Most of existing complete algorithms are mainly applicable to the summation problem with univariate inputs. A long-term project in symbolic computation is to developing theories, algorithms and softwares for symbolic summation of multivariate functions. In the multivariate case, the stimulating problem was first raised by Andrews and Paule in [9]:
"Is it possible to provide any algorithmic device for reducing multiple sums to single sums? "
For a multiple sums, one would try to detect whether the summand is summable or not. If it is, the multiple sums can be reduced to several simpler sums. So it is crucial to first solve the summability problem in order to address the problem of Andrews and Paule. This first step
beyond the univariate case was started in the work [23] by Chen, Hou and Mu in 2006 and then a complete algorithm for testing the summability of bivariate rational functions was given in [21] with a practical improvement in [36]. We will solve in this paper the summability problem for general multivariate rational functions.

Creative telescoping is the core of the Wilf-Zeilberger theory of computer-generated proofs of combinatorial identities [49,63,64]. For a multivariate function, the main task of creative telescoping is to construct a nonzero linear recurrence operator in one variable, which is called a telescoper for the given function. Two fundamental problems have been studied extensively related to creative telescoping. The first problem is the existence problem of telescopers, i.e., deciding the existence of telescopers for a given class of functions. The second one is the construction problem of telescopers, i.e., designing efficient algorithms for computing telescopers if they exist.

The existence problem of telescopers is equivalent to the termination of Zeilberger's algorithm $[65,66]$ and can be used to detect the hypertranscendence and algebraic dependency of functions defined by indefinite sums or integrals [35,56]. A sufficient condition, namely holonomicity, on the existence of telescopers was first given by Zeilberger in 1990 using Bernstein's theory of holonomic D-modules [11]. Wilf and Zeilberger in [64] proved that telescopers exist for proper hypergeometric terms. However, holonomicity and properness are only sufficient conditions. Abramov and Le [6] solved the existence problem of telescopers for rational functions in two discrete variables. This work was soon extended to the hypergeometric case by Abramov [5], the q-hypergeometric case in [22], and the mixed rational and hypergeometric case in [16,20]. All of the above work only focused on the problem for bivariate functions of a special class. The criteria on the existence of telescopers beyond the bivariate case were given in [17-19]. We will solve in this paper the existence problem of telescopers for general rational functions in several discrete variables.

1.2 The main results

From now on, we assume that \mathbb{F} is a computational field of characteristic zero. We now present our main results on the SET problem, rational summability problem, and existence problem of telescopers for rational functions in several variables.

1.2.1 Algorithms for the SET problem

Given two polynomials $p, q \in \mathbb{F}[\mathbf{x}]$, we say that p is shift equivalent to q over \mathbb{F} if there exist $a_{1}, \ldots, a_{m} \in \mathbb{F}$ such that

$$
p\left(x_{1}+a_{1}, \ldots, x_{m}+a_{m}\right)=q\left(x_{1}, \ldots, x_{m}\right) .
$$

We call the set $\left\{\mathbf{a} \in \mathbb{F}^{m} \mid p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})\right\}$ the dispersion set of p and q over \mathbb{F}, denoted by $F_{p, q}$. The Shift Equivalence Testing (SET) problem is to decide whether the dispersion set $F_{p, q}$ is empty or not. Write $p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})=\sum_{\boldsymbol{\alpha} \in \boldsymbol{\Lambda}} c_{\boldsymbol{\alpha}}(\mathbf{a}) \mathbf{x}^{\boldsymbol{\alpha}}$ with $\boldsymbol{\Lambda}$ being a finite subset of \mathbb{N}^{m}. In general, the coefficients $c_{\boldsymbol{\alpha}}(\mathbf{a})$ are polynomials in a that may not be linear. So it seems that we need to solve a polynomial system in order to determine the set $F_{p, q}$. However, Grigoriev (G) in $[32,33]$ proved that $F_{p, q}$ is actually a linear variety and he also gave a recursive algorithm for determining this variety using the following relation

$$
F_{p, q}=\left(\bigcap_{i=1}^{m} F_{\partial_{x_{i}}(p), \partial_{x_{i}}(q)}\right) \cap\left\{\mathbf{a} \in \mathbb{F}^{m} \mid p(\mathbf{a})=q(\mathbf{0})\right\},
$$

where $\partial_{x_{i}}$ denotes the partial derivative with respect to x_{i}. Since partial derivations decrease the degree of polynomials, the SET problem boils down to solving a linear system. Another way to
derive the linear system that defines $F_{p, q}$ was given by Kauers and Schneider (KS) in [40] with applications in solving linear partial difference equations. The idea is to compute the radical of the ideal I generated by the set $\left\{c_{\boldsymbol{\alpha}}(\mathbf{a})\right\}_{\boldsymbol{\alpha} \in \boldsymbol{\Lambda}}$ in $\mathbb{F}[\mathbf{a}]$ via Gröbner basis method. A more efficient algorithm was given by Dvir, Oliveira and Shpilka (DOS) in $[25,26]$. They reduced the SET problem to the PIT problem, then solved the latter one by randomized algorithms. Inspired by the DOS algorithm, we now present a general scheme for designing algorithms to solve the SET problem.

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ and $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ be two vectors in \mathbb{N}^{m}. We say $\boldsymbol{\alpha} \geq \boldsymbol{\beta}$ if $\alpha_{i} \geq \beta_{i}$ for all $1 \leq i \leq m$ and we denote the sum $\sum_{i=1}^{m} \alpha_{i}$ by $|\boldsymbol{\alpha}|$. Let $\operatorname{Supp}_{\mathbf{x}}(p)$ denote the support of p consisting of monomials \mathbf{x}^{α} whose corresponding coefficients in p are nonzero.

Definition 1.1 (Admissible cover). Let $S_{p, q}=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \mid \mathbf{x}^{\boldsymbol{\alpha}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))\right\} \subseteq \mathbb{F}[\mathbf{a}] . A$ collection $\left\{S_{0}, S_{1}, \ldots, S_{k}\right\}$ of subsets is called a cover of $S_{p, q}$ if $S_{p, q}$ is the union of $S_{0}, S_{1}, \ldots, S_{k}$. Such a cover $\left\{S_{0}, S_{1}, \ldots, S_{k}\right\}$ is called an admissible cover of $S_{p, q}$ if it satisfies the following two conditions:
(1) All polynomials in S_{0} are of degree in a at most one.
(2) For all $\ell=1,2, \ldots, k$, if $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{\ell}$, then $c_{\boldsymbol{\beta}}(\mathbf{a}) \in \cup_{i=0}^{\ell-1} S_{i}$ for all $\boldsymbol{\beta} \in \mathbb{N}^{m}$ with $\boldsymbol{\beta}>\boldsymbol{\alpha}$ and $\mathbf{x}^{\boldsymbol{\beta}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$.

Without loss of generality, we may assume that the two given polynomials p and q in the SET problem are of the same degree d in \mathbf{x}.

Definition 1.2 (Linearization). Let $p=p_{0}+p_{1}+\cdots+p_{d}$ be the homogeneous decomposition of $p \in \mathbb{F}[\mathbf{x}]$ in \mathbf{x}. For a vector $\mathbf{s} \in \mathbb{F}^{m}$, we call the linear polynomial $p_{0}(\mathbf{x})+p_{1}(\mathbf{x})+\sum_{i=2}^{d} p_{i}(\mathbf{s})$ the linearization of p at \mathbf{s}, denoted by $L_{\mathbf{x}=\mathbf{s}}(p)$. Note that $L_{\mathbf{x}=\mathbf{s}}(p)=p$ if $d \leq 1$.

For a polynomial set $P \subseteq \mathbb{F}[\mathbf{x}]$, we let $L_{\mathbf{x}=\mathbf{s}}(P)=\left\{L_{\mathbf{x}=\mathbf{s}}(p) \mid p \in P\right\}$ and $\mathbb{V}_{\mathbb{F}}(P)=\left\{\mathbf{a} \in \mathbb{F}^{m} \mid\right.$ $p(\mathbf{a})=0$ for all $p \in P\}$. Our first main result says that any admissible cover of $S_{p, q}$ leads to an algorithm for solving the polynomial system $S_{p, q}$ which only requires solving several linear systems.

Theorem 1.3. Let $S_{p, q}=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \mid \mathbf{x}^{\boldsymbol{\alpha}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))\right\}$. If $\left\{S_{0}, S_{1}, \ldots, S_{k}\right\}$ is an admissible cover of $S_{p, q}$, then for all $\ell=1, \ldots, k$, we have either $\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell-1} S_{i}\right)=\varnothing$ or

$$
\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell} S_{i}\right)=\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell} L_{\mathbf{a}=\mathbf{s}}\left(S_{i}\right)\right) \quad \text { for any } \mathbf{s} \in \mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell-1} S_{i}\right)
$$

In particular, the covers $\left\{S_{0}^{D}, S_{1}^{D}, \ldots, S_{d}^{D}\right\}$ and $\left\{S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}\right\}$ of $S_{p, q}$ are admissible, where

$$
S_{i}^{D}:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{p, q} \mid \operatorname{deg}_{\mathbf{a}}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)=i\right\} \quad \text { and } \quad S_{i}^{H}:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{p, q}| | \boldsymbol{\alpha} \mid=d-i\right\}
$$

We call the above two typical admissible covers a-degree cover and x-homogeneous cover of $S_{p, q}$ respectively. The latter one corresponds to the DOS algorithm. We illustrate these two admissible covers via a concrete example.

Example 1.4. Let $p=x^{4}+x^{3} y+x y^{2}+z^{2}$ and $q=p(x, y+1, z+2)+x y$. By collecting the coefficients of $p(x+a, y+b, z+c)-q(x, y, z)$ with respect to the variables x, y, z, we get the set $S_{p, q}$. Then the \mathbf{a}-degree cover and \mathbf{x}-homogeneous cover of $S_{p, q}$ are

1.2.2 Reduction for rational summability

The rational summability problem has been solved in the univariate and bivariate cases $[1,2,21,36]$. In order to address the problem in the general multivariate case, it suffices to provide a method that reduces the problem in m variables to that in fewer variables. The reduction method relies on the theory of isotropy groups of polynomials introduced by Sato in 1960s [51]. The computation of isotropy groups needs solving the SET problem over integers, for which we can use polynomial-time algorithms for computing the Hermite normal forms of an integer matrix [37].

Let $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right\rangle$ be the free abelian multiplicative group generated by the shift operators $\sigma_{x_{1}}, \ldots, \sigma_{x_{m}}$ that acts on $\mathbb{F}(\mathbf{x})$. For any $\tau \in G$, define the difference operator $\Delta_{\tau}(g)=\tau(g)-g$ for any $g \in \mathbb{F}(\mathbf{x})$. Let $f \in \mathbb{F}[\mathbf{x}]$ and H be a subgroup of G. The set

$$
[f]_{H}:=\{\sigma(f) \mid \sigma \in H\}
$$

is called the H-orbit at f. The isotropy group H_{f} of f in H is defined as

$$
H_{f}:=\{\sigma \in H \mid \sigma(f)=f\} .
$$

Note that H_{f} is a free abelian group and the quotient group H / H_{f} is also free by [51, Lemma A-3]. The isotropy groups of polynomials will play an important role in the reduction for rational summability. A basis of the isotropy group of a polynomial can be computed by any algorithm for the SET problem over integers.

Similar to the bivariate case, we also use Abramov's reduction [2,3] repeatedly to decompose $f \in \mathbb{F}(\mathbf{x})$ into the form

$$
\begin{equation*}
f=\Delta_{\sigma_{x_{1}}}\left(u_{1}\right)+\cdots+\Delta_{\sigma_{x_{m}}}\left(u_{m}\right)+r \text { with } r=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \frac{a_{i, j}}{d_{i}^{j}}, \tag{1.1}
\end{equation*}
$$

where $u_{1}, \ldots, u_{m} \in \mathbb{F}(\mathbf{x}), a_{i, j} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\hat{\mathbf{x}}_{1}=\left\{x_{2}, \ldots, x_{m}\right\}, d_{i} \in \mathbb{F}[\mathbf{x}]$ with $\operatorname{deg}_{x_{1}}\left(a_{i, j}\right)<$ $\operatorname{deg}_{x_{1}}\left(d_{i}\right)$ and the d_{i} 's are monic irreducible polynomials in distinct $\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right\rangle$-orbits. The following lemma reduces the rational summability problem from general rational functions to simple fractions.

Lemma 1.5. Let f be as in (1.1). Then f is summable in $\mathbb{F}(\mathbf{x})$ if and only if each $a_{i, j} / d_{i}^{j}$ is summable in $\mathbb{F}(\mathbf{x})$.

We now only need to study the rational summability problem for rational functions of the form

$$
\begin{equation*}
f=\frac{a}{d^{j}}, \tag{1.2}
\end{equation*}
$$

where $j \in \mathbb{N} \backslash\{0\}, a \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ and $d \in \mathbb{F}[\mathbf{x}]$ is irreducible with $\operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)$. The following theorem further reduces the problem in m variables to another similar problem in r variables, where r is the rank of the isotropy group that is strictly less than m.

Theorem 1.6 (Summability criterion). Let $f=a / d^{j} \in \mathbb{F}(\mathbf{x})$ be of the form (1.2). Let $\left\{\tau_{i}\right\}_{i=1}^{r}(1 \leq$ $r<m$) be a basis of the free group G_{d} (take $\tau_{1}=\mathbf{1}$, if $G_{d}=\{\mathbf{1}\}$). Then f is summable in $\mathbb{F}(\mathbf{x})$ if and only if

$$
a=\Delta_{\tau_{1}}\left(b_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(b_{r}\right)
$$

for some $b_{i} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ and $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for all $1 \leq i \leq r$.
Note that the above reduced problem is related to the operators $\tau_{1}, \ldots, \tau_{r}$ in the isotropy group G_{d}. In order to turn back to the usual shifts, we can construct an \mathbb{F}-automorphism ϕ of $\mathbb{F}(\mathbf{x})$ such that a is $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if and only if each $\phi(a)$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right)$-summable in $\mathbb{F}(\mathbf{x})$. So the rational summability problem in m variables can be completely reduced to the same problem in fewer variables. Combining the existing methods in the univariate case, we now obtain a complete solution to the rational summability problem for multivariate rational functions.

1.2.3 Reduction for existence of telescopers

The existence problem of telescoper can be viewed as a parameterization of the rational summabilty problem. The latter problem is equivalent to testing whether the identity operator is a telescoper or not. Similar to the strategy used in the rational summability problem, we now provide a method for reducing the existence problem of telescoper in $m+1$ variables to that in fewer variables.

For a rational function $f(t, \mathbf{x}) \in \mathbb{F}(\mathbf{x})$ with $\mathbb{F}=\mathbb{K}(t)$, the existence problem of telescopers for f can also be reduced to simple fractions of the form a / d^{j} as in (1.2). The second reduction of the number of variables also relies on the structure of isotropy groups. Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right\rangle$ be the group generated by $\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{m}}$ and $G_{t, d}$ be the isotropy group of d in G_{t}. Then the quotient $\operatorname{group} G_{t, d} / G_{d}$ is still a free abelian group with $\operatorname{rank}\left(G_{t, d} / G_{d}\right) \leq 1$. If $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, then we show that f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right)$ if and only if f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{m}}\right)$-summable in $\mathbb{F}(\mathbf{x})$. So in this case, the existence problem of telescopers for f is equivalent to the rational summability problem. If $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$, we have the following existence criterion.

Theorem 1.7 (Existence criterion). Let $f=a / d^{j} \in \mathbb{K}(t, \mathbf{x})$ as above with $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$. Let $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{r}\right\}(1 \leq r<m)$ be a basis of $G_{t, d}$ such that $G_{t, d} / G_{d}=\left\langle\bar{\tau}_{0}\right\rangle$ and let $\left\{\tau_{1}, \ldots, \tau_{r}\right\}$ be a basis of G_{d} (take $\tau_{1}=\mathbf{1}$, if $G_{d}=\{\mathbf{1}\}$). Then f has a telescoper of type ($\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{m}}$) if and only if there exists a nonzero operator $L=\sum_{i=0}^{\rho} \ell_{i} \tau_{0}^{i}$ with $\ell_{i} \in \mathbb{K}(t)$ such that

$$
L(a)=\Delta_{\tau_{1}}\left(b_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(b_{r}\right)
$$

for some $b_{i} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ and $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for $1 \leq i \leq r$.
Similar to the summability problem, after a suitable transformation of rational functions, the existence problem of telescopers in $m+1$ variables can also be reduced to that in fewer variables. Since the bivariate case has been solved in [6], we now have a complete solution to the existence problem of telescopers for rational functions in several discrete variables.

1.3 An example

We now show an example to illustrate the main steps of deciding the rational summability problem with the help of algorithms for the SET problem over integers.

Let f be a rational function in $\mathbb{Q}(x, y, z)$ of the form

$$
\begin{aligned}
f= & \frac{-z^{2}+x}{x^{2}+2 x y+z^{2}}+\frac{x-y-2 z}{x^{2}+2 x y+z^{2}+2 x}+\frac{z^{2}+y}{x^{2}+2 x y+z^{2}+8 x+2 y-2 z+8} \\
& +\frac{x+z}{(x-3 y)^{2}(y+z)+1}+\left(y+\frac{z}{y^{2}+z-1}-\frac{1}{y^{2}+z}\right) \frac{1}{(x+2 y+z)^{2}} .
\end{aligned}
$$

Let $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$ be the free abelian group generated by the shift operators $\sigma_{x}, \sigma_{y}, \sigma_{z}$. In order to decide whether f is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable in $\mathbb{Q}(x, y, z)$, the first step is so-called orbital decomposition, where we first compute the irreducible partial fraction decomposition of f with respect to x and then classify all irreducible factors of the denominator of f according to the shift equivalence relation. Applying algorithms for the partial fraction decomposition and the SET problem over integers, we obtain the orbital decomposition $f=f_{1}+f_{2}+f_{3}$, where
$f_{1}=\frac{x-z^{2}}{d_{1}}+\frac{x-y-2 z}{\sigma_{y}\left(d_{1}\right)}+\frac{y+z^{2}}{\sigma_{x} \sigma_{y}^{3} \sigma_{z}^{-1}\left(d_{1}\right)}, \quad f_{2}=\frac{x+z}{d_{2}} \quad$ and $\quad f_{3}=\left(y+\frac{z}{y^{2}+z-1}-\frac{1}{y^{2}+z}\right) \frac{1}{d_{3}^{2}}$
with $d_{1}=x^{2}+2 x y+z^{2}, d_{2}=(x-3 y)^{2}(y+z)+1$ and $d_{3}=x+2 y+z$. Here f_{1}, f_{2}, f_{3} are three orbital components of f, since any two elements of d_{1}, d_{2}, d_{3} are not shift equivalent. By Lemma 1.5, we have f is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable in $\mathbb{Q}(x, y, z)$ if and only if each f_{i} is summable.

The second step is using Abramov's reduction to reduce the summability problem from a general rational function to simple fractions. Since f_{2}, f_{3} are already simple fractions, we only need to reduce f_{1}. For any $a, d \in \mathbb{F}(x, y, z)$ and any integer $k \in \mathbb{Z}$, Abramov's reduction decomposes $a / \sigma^{k}(b)$ as

$$
\frac{a}{\sigma^{k}(b)}=\sigma(h)-h+\frac{\sigma^{-k}(a)}{b},
$$

where $h=0$ if $k=0, h=\sum_{i=0}^{k-1} \frac{\sigma^{i-k}(a)}{\sigma^{2}(b)}$ if $k>0$ and $h=-\sum_{i=0}^{-k-1} \frac{\sigma^{i}(a)}{\sigma^{i+k}(b)}$ if $k<0$. Applying the reduction formula to f_{1} with $\sigma=\sigma_{x}, \sigma_{y}, \sigma_{z}$ successively yields

$$
f_{1}=\Delta_{x}\left(u_{1}\right)+\Delta_{y}\left(v_{1}\right)+\Delta_{z}\left(w_{1}\right)+r_{1} \text { with } r_{1}=\frac{2 x-1}{d_{1}}
$$

for some $u_{1}, v_{1}, w_{1} \in \mathbb{Q}(x, y, z)$. Then f_{1} is summable if and only if r_{1} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable.
The third step is using the summability criterion to reduce the summability problem into few variables. For r_{1}, the isotropy group of d_{1} in G is $G_{d_{1}}=\{\mathbf{1}\}$. By Theorem 1.6, r_{1} is summable if and only if its numerator is zero. Hence r_{1} is not ($\sigma_{x}, \sigma_{y}, \sigma_{z}$)-summable and neither are f_{1} and f. For f_{2}, the isotropy group of d_{2} in G is $G_{d_{2}}=\{\tau\}$ with $\tau=\sigma_{x}^{3} \sigma_{y} \sigma_{z}^{-1}$. By Theorem 1.6, we see that f_{2} is summable in $\mathbb{Q}(x, y, z)$ if and only if $a_{2}=x+z$ is (τ)-summable in $\mathbb{Q}(x, y, z)$. Since $a_{2}=x+z=\Delta_{\tau}(b)$ with $b=\frac{1}{9}(x-3)(2 x+3 z)$, so a_{2} is (τ)-summable, which implies that f_{2} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable. Since $f_{2}=\Delta_{\tau}\left(\frac{b}{d_{2}}\right)$, its certificates can be obtained by Abramov's reduction. For f_{3}, a basis of the isotropy group $G_{d_{3}}$ is $\left\{\tau_{1}, \tau_{2}\right\}$, where $\tau_{1}=\sigma_{x}^{2} \sigma_{y}^{-1}$ and $\tau_{2}=\sigma_{x} \sigma_{z}^{-1}$. Construct a \mathbb{Q}-automorphism ϕ_{3} of $\mathbb{Q}(x, y, z)$ as follows

$$
\phi_{3}(h(x, y, z))=h(2 x+y,-x,-y+z),
$$

for any $h \in \mathbb{Q}(x, y, z)$. It can be checked that $\phi_{3} \circ \tau_{1}=\sigma_{x} \circ \phi_{3}$ and $\phi_{3} \circ \tau_{2}=\sigma_{y} \circ \phi_{3}$. So $a_{3}=f_{3} d_{3}^{2}$ is $\left(\tau_{1}, \tau_{2}\right)$-summable in $\mathbb{Q}(x, y, z)$ if and only if $\phi_{3}\left(a_{3}\right)$ is $\left(\sigma_{x}, \sigma_{y}\right)$-summable in $\mathbb{Q}(x, y, z)$. This reduces the summability problem in three variables to the summability problem in two variables. By induction, we get $\phi_{3}\left(a_{3}\right)$ is not (σ_{x}, σ_{y})-summable. Therefore f_{3} is not ($\sigma_{x}, \sigma_{y}, \sigma_{z}$)-summable. In this case, f_{3} can be decomposed into the sum of a summable part and a non-summable one:

$$
f_{3}=\Delta_{x}\left(u_{3}\right)+\Delta_{y}\left(v_{3}\right)+\Delta_{z}\left(w_{3}\right)+\frac{z}{\left(y^{2}+z\right) d_{3}^{2}}
$$

for some $u_{3}, v_{3}, w_{3} \in \mathbb{Q}(x, y, z)$.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we define the existence problem of telescopers and the summability problem precisely. We present a general scheme for designing algorithms to solve the shift equivalence testing problem in Section 3, and compare our new algorithms with the other known algorithms in Appendix. In Section 4, we first recall the notion of isotropy groups of polynomials and their basic properties, and then introduce orbital decompositions for rational functions. We apply orbital decompositions in Section 5 to reduce the rational summability problem for general rational functions to that for simple fractions. After this, we present a criterion on the summability of such simple fractions. In Section 6, we again use the structure of isotropy groups and orbital decompositions to derive criteria for the existence of telescopers for rational functions in variables t and \mathbf{x}.

2 Preliminaries

Through out the paper, let \mathbb{K} be a field of characteristic zero and $\mathbb{K}(t, \mathbf{x})$ be the field of rational functions in t and $\mathbf{x}=\left\{x_{1}, \ldots, x_{m}\right\}$ over \mathbb{K}. For each $v \in \mathbf{v}=\left\{t, x_{1}, \ldots, x_{m}\right\}$, the shift operator σ_{v} with respect to v is defined as the \mathbb{K}-automorphism of $\mathbb{K}(\mathbf{v})$ such that

$$
\sigma_{v}(v)=v+1 \text { and } \sigma_{v}(w)=w \text { for all } w \in \mathbf{v} \backslash\{v\} .
$$

Let $\mathcal{R}:=\mathbb{K}(\mathbf{v})\left\langle S_{t}, S_{x_{1}}, \ldots, S_{x_{m}}\right\rangle$ denote the ring of linear recurrence operators over $\mathbb{K}(\mathbf{v})$, in which $S_{v_{i}} S_{v_{j}}=S_{v_{j}} S_{v_{i}}$ for all $v_{i}, v_{j} \in \mathbf{v}$ and $S_{v} f=\sigma_{v}(f) S_{v}$ for any $f \in \mathbb{K}(\mathbf{v})$ and $v \in \mathbf{v}$. The action of an operator $L=\sum_{i_{0}, i_{1}, \ldots, i_{m} \geq 0} a_{i_{0}, i_{1}, \ldots, i_{m}} S_{t}^{i_{0}} S_{x_{1}}^{i_{1}} \cdots S_{x_{m}}^{i_{m}} \in \mathcal{R}$ on a rational function $f \in \mathbb{K}(\mathbf{v})$ is defined as

$$
L(f)=\sum_{i_{0}, i_{1}, \ldots, i_{m} \geq 0} a_{i_{0}, i_{1}, \ldots, i_{m}} \sigma_{t}^{i_{0}} \sigma_{x_{1}}^{i_{1}} \cdots \sigma_{x_{m}}^{i_{m}}(f) .
$$

For each $v \in \mathbf{v}$, the difference operator Δ_{v} with respect to v is defined by $\Delta_{v}=S_{v}-\mathbf{1}$, where $\mathbf{1}$ stands for the identity map on $\mathbb{K}(\mathbf{v})$.

We now introduce the notion of telescopers for rational functions in $\mathbb{K}(t, \mathbf{x})$.
Definition 2.1 (Telescoper). Let n be a positive integer such that $1 \leq n \leq m$ and let $f \in \mathbb{K}(t, \mathbf{x})$ be a rational function. A nonzero linear recurrence operator $L \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ is called a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ for f if there exist $g_{1}, \ldots, g_{n} \in \mathbb{K}(t, \mathbf{x})$ such that

$$
L(f)=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right)
$$

The rational functions g_{1}, \ldots, g_{n} are called the certificates of L.

Problem 2.2 (Existence Problem of Telescopers). Given a rational function $f \in \mathbb{K}(t, \mathbf{x})$ and an integer n with $1 \leq n \leq m$, decide the existence of telescopers of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ for f.

In order to detect the existence of telescopers for $f \in \mathbb{K}(t, \mathbf{x})$, we first need to decide whether $L=\mathbf{1}$ is a telescoper for f. This is equivalent to the following summability problem of f in $\mathbb{F}(\mathbf{x})$ with $\mathbb{F}=\mathbb{K}(t)$.

Definition 2.3 (Summability). Let \mathbb{F} be a field of characteristic zero and n be a positive integer such that $1 \leq n \leq m$. A rational function $f \in \mathbb{F}(\mathbf{x})$ is called $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if there exist $g_{1}, \ldots, g_{n} \in \mathbb{F}(\mathbf{x})$ such that

$$
f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right) .
$$

Problem 2.4 (Rational Summability Problem). Given a rational function $f \in \mathbb{F}(\mathbf{x})$ and an integer n with $1 \leq n \leq m$, decide whether or not f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{F}(\mathbf{x})$.

The main idea of solving the summability problem is using mathematical induction to reduce the number of difference operators in this problem. To say explicitly, we shall reduce the ($\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$)summability problem for $f \in \mathbb{F}(\mathbf{x})$ to the ($\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}$)-summability problem for another rational function $a \in \mathbb{F}(\mathbf{x})$, where r is smaller than n and the base field $\mathbb{F}(\mathbf{x})$ in the summability problem is unchanged. Similarly, we shall reduce the existence problem of telescopers of type ($\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$) for $f \in \mathbb{K}(t, \mathbf{x})$ to the existence problem of telescopers of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right)$ for some rational function $a \in \mathbb{K}(t, \mathbf{x})$.

We introduce below a general definition of the summability problem and existence problem of telescopers, which plays a role of bridge in the method of mathematical induction for solving Problems 2.4 and 2.2. Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ be the group generated by the shift operators $\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$ under the operation of composition of functions. Then G_{t} is a free abelian group. For any $\tau \in G_{t}$, the difference operator Δ_{τ} is defined by

$$
\Delta_{\tau}=S_{t}^{i_{0}} S_{x_{1}}^{i_{1}} \cdots S_{x_{n}}^{i_{n}}-\mathbf{1} \quad \text { if } \tau=\sigma_{t}^{i_{0}} \sigma_{x_{1}}^{i_{1}} \cdots \sigma_{x_{n}}^{i_{n}} .
$$

For short, we use Δ_{v} to denote $\Delta_{\sigma_{v}}$ for each $v \in \mathbf{v}$. A finite subset $\left\{\tau_{1}, \ldots, \tau_{r}\right\}$ of G_{t} is said to be \mathbb{Z}-linearly independent if for all $a_{1}, \ldots, a_{r} \in \mathbb{Z}$, we have

$$
\tau_{1}^{a_{1}} \cdots \tau_{r}^{a_{r}}=1 \quad \Rightarrow \quad a_{1}=a_{2}=\cdots=a_{r}=0
$$

Let $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ be the subgroup of G_{t} generated by shift operators $\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$. Let $\left\{\tau_{1}, \ldots, \tau_{r}\right\}(1 \leq r \leq n)$ be a family of \mathbb{Z}-linearly independent elements in G. In general, a rational function $f \in \mathbb{F}(\mathbf{x})$ is called $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if

$$
f=\Delta_{\tau_{1}}\left(g_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(g_{r}\right)
$$

for some $g_{1}, \ldots, g_{r} \in \mathbb{F}(\mathbf{x})$. Choose an element $\tau_{0}=\sigma_{t}^{k_{0}} \sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}} \in G_{t}$ such that k_{0} is nonzero. Then $\tau_{0}, \tau_{1}, \ldots, \tau_{r}$ are \mathbb{Z}-linearly independent in G_{t}. Let $T_{0}=S_{t}^{k_{0}} S_{x_{1}}^{k_{1}} \cdots S_{x_{n}}^{k_{n}} \in \mathcal{R}$ be the operator corresponding to τ_{0}. We say a nonzero operator $L \in \mathbb{K}(t)\left\langle T_{0}\right\rangle$ is a telescoper of type ($\tau_{0} ; \tau_{1}, \ldots, \tau_{r}$) for $f \in \mathbb{K}(t, \mathbf{x})$ if $L(f)$ is $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable in $\mathbb{K}(t, \mathbf{x})$.

Let R be a ring and $\sigma: R \rightarrow R$ be a ring homomorphism of R. The pair (R, σ) is called a difference ring. If R is a field, we call the pair (R, σ) a difference field. Let $\left(R_{1}, \sigma_{1}\right)$ and $\left(R_{2}, \sigma_{2}\right)$
be two difference rings and $\phi: R_{1} \rightarrow R_{2}$ be a ring homomorphism. If ϕ satisfies the property that $\phi \circ \sigma_{1}=\sigma_{2} \circ \phi$, that means the following diagram

commutes, then ϕ is called a difference homomorphism. If in addition ϕ is a bijection, then its inverse ϕ^{-1} is also a difference homomorphism. In this case, we call ϕ a difference isomorphism. The notion of difference isomorphisms will be used to state our summability criteria and the existence criteria of telescopers.

An operator $L \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ is called a common left multiple of operators $L_{1}, \ldots, L_{r} \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ if there exist $R_{1}, \ldots, R_{r} \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ such that

$$
L=R_{1} L_{1}=\cdots=R_{r} L_{r} .
$$

Since $\mathbb{K}(t)\left\langle S_{t}\right\rangle$ is a left Euclidean domain, such an operator L always exists. Among all of such multiples, the monic one of smallest degree in S_{t} is called the least common left multiple (LCLM). Efficient algorithms for computing LCLM have been developed in $[7,8]$.

Remark 2.5. Let $f=f_{1}+\cdots+f_{r}$ with $f_{i} \in \mathbb{K}(t, \mathbf{x})$. If each f_{i} has a telescoper L_{i} of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ for $i=1, \ldots, r$, then the $L C L M$ of L_{i} 's is a telescopoer of the same type for f. This fact follows from the commutativity between operators in $\mathbb{K}(t)\left\langle S_{t}\right\rangle$ and the difference operators $\Delta_{x_{i}}$'s.

3 Shift equivalence testing of polynomials

In this section, we first state the problem of Shift Equivalence Testing (SET) and give an overview of our algorithm for solving SET problem in Section 3.1. The idea of our algorithm is inspired by the DOS algorithm [25, 26]. Then we develop a general scheme for designing algorithms to solve the SET problem, whose proof is given in Section 3.2. More precisely, we introduce admissible covers of the associated polynomial system with the SET problem and prove that every admissible cover corresponds to an algorithm for solving the SET problem. In Section 3.3, we give two special admissible covers in practice, one of which corresponds to the DOS algorithm.

3.1 Overview of the general algorithm

Let \mathbb{F} be a field of characteristic zero and let $\mathbb{F}[\mathbf{x}]$ be the ring of polynomials in $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ over \mathbb{F}. Two polynomials $p, q \in \mathbb{F}[\mathbf{x}]$ are said to be shift equivalent if there exist $a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that

$$
p\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right) .
$$

The set $\left\{\mathbf{a} \in \mathbb{F}^{n} \mid p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})\right\}$ is called the dispersion set of p and q over \mathbb{F}, denoted by $F_{p, q}$. Then the problem of Shift Equivalence Testing can be stated as follows.

Problem 3.1 (Shift Equivalence Testing Problem). Given $p, q \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, decide whether there exists $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$ such that

$$
p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})
$$

If such a vector a exists, compute the dispersion set of p and q over \mathbb{F}.

Recall basic properties of the dispersion set in [25].
Lemma 3.2. (See [25, Observation 4.2 and Lemma 4.4]) Let $p, q \in \mathbb{F}[\mathbf{x}]$. Then
(1) $F_{p, p}$ is a linear subspace of \mathbb{F}^{n} over \mathbb{F}.
(2) $F_{p, q}=\mathbf{a}+F_{p, p}$ for any $\mathbf{a} \in F_{p, q}$ if $F_{p, q} \neq \emptyset$.

A related problem is testing the shift equivalence over integers, i.e. deciding whether there exists a vector $\mathbf{a} \in \mathbb{Z}^{n}$ such that $p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})$. We denote the set $\left\{\mathbf{a} \in \mathbb{Z}^{n} \mid p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})\right\}$ by $Z_{p, q}$. The computation of $Z_{p, q}$ will play an important role in the next sections where we study the rational summability problem and the existence problem of telescopers. By Lemma 3.2, we know $F_{p, q}$ is a linear variety over \mathbb{F}. Once the computation of $F_{p, q}$ boils down to solving linear systems, we can also compute $Z_{p, q}$ by combining the same methods for the SET problem over \mathbb{F} and any algorithm for computing integer solutions of linear systems.

In the univariate case, the SET problem was solved by computing the resultant of two polynomials [1]. In the multivariate case, there are three different methods for solving the SET problem in the literature. In 1996, Grigoriev first gave a recursive algorithm (G) for the SET problem in [32, 33]. In 2010, motivated by solving linear partial difference equations, another algorithm (KS) for computing $Z_{p, q}$ via the Gröbner basis method was given by Kauers and Schneider in [40]. In 2014, a new algorithm with better complexity was given by Dvir, Oliveira and Shpilka (DOS) in $[25,26]$. We have implemented all of the three algorithms in Maple and the experimental comparison is tabulated in the appendix. The timings indicate that the DOS algorithm is the most efficient one among the three methods in practice.

From the relation $p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})$ in the SET problem, we obtain a polynomial system by collecting coefficients of the polynomial $p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})$ in \mathbf{x}. So a direct approach to the SET problem is solving this polynomial system. Without exploring the hidden structure of the polynomial system, this naive approach could be very in-efficient. The common idea of the above three methods is to find the defining linear system of $F_{p, q}$, which avoids solving the polynomial system directly. To do this, the DOS algorithm finds an appropriate finite cover of the polynomial system. Then it reduces the SET problem into solving several linear systems successively by evaluating the non-linear part of polynomials. This kind of evaluation is called the linearization of polynomials, whose definition will be strictly stated below.

We first introduce some notations for later use. For any two vectors $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \boldsymbol{\beta}=$ $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, we say $\boldsymbol{\alpha} \geq \boldsymbol{\beta}$ if and only if $\alpha_{i} \geq \beta_{i}$ for all $1 \leq i \leq n$. This defines a partial order on \mathbb{N}^{n}. For a subset $\mathbf{y}=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ of $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $\hat{\mathbf{y}}:=\mathbf{x} \backslash \mathbf{y}$, let $f(\mathbf{x})=\sum_{\alpha} c_{\boldsymbol{\alpha}}(\hat{\mathbf{y}}) \mathbf{y}^{\boldsymbol{\alpha}} \in \mathbb{F}[\hat{\mathbf{y}}][\mathbf{y}]$. Let $H_{\mathbf{y}}^{d}(f(\mathbf{x}))$ denote the homogeneous component of $f(\mathbf{x})$ of degree d in \mathbf{y} and let $\operatorname{Supp}_{\mathbf{y}}(f)$ denote the set $\left\{\mathbf{y}^{\boldsymbol{\alpha}} \mid c_{\alpha}(\hat{\mathbf{y}}) \neq 0\right\}$, which consists of non-zero monomials of $f(\mathbf{x})$. For simplicity, when $\mathbf{y}=\mathbf{x}$, we write $H_{\mathbf{y}}^{\ell}(f(\mathbf{x}))$ as $H^{\ell}(f(\mathbf{x}))$ and $\operatorname{Supp}_{\mathbf{y}}(f)$ as $\operatorname{Supp}(f)$. For a subset $S \subseteq \mathbb{F}[\mathbf{x}]$, let $\mathbb{V}_{\mathbb{F}}(S)$ be the zero set $\left\{\mathbf{s} \in \mathbb{F}^{n} \mid f(\mathbf{s})=0, \forall f \in S\right\}$.
Definition 3.3 (Linearization, Definition 1.2, restated). Let $f(\mathbf{x})=H_{\mathbf{y}}^{0}(f)(\mathbf{y})+H_{\mathbf{y}}^{1}(f)(\mathbf{y})+\cdots+$ $H_{\mathbf{y}}^{d}(f)(\mathbf{y})$ be the homogeneous decomposition of $f \in \mathbb{F}[\mathbf{x}]=\mathbb{F}[\hat{\mathbf{y}}][\mathbf{y}]$. For a vector $\mathbf{s} \in \mathbb{F}^{m}$, we call the linear polynomial $H_{\mathbf{y}}^{0}(f)(\mathbf{y})+H_{\mathbf{y}}^{1}(f)(\mathbf{y})+\sum_{i=2}^{d} H_{\mathbf{y}}^{i}(f)(\mathbf{s})$ the linearization of f at \mathbf{s} with respect to \mathbf{y}, denoted by $L_{\mathbf{y}=\mathbf{s}}(f)$. Note that $L_{\mathbf{y}=\mathbf{s}}(f)=f$ if $d \leq 1$. For a polynomial set $S \subseteq \mathbb{F}[\mathbf{x}]$, let $L_{\mathbf{y}=\mathbf{s}}(S):=\left\{L_{\mathbf{y}=\mathrm{s}}(f) \mid f \in S\right\}$ be the linerization of S.

Now let us explain how our algorithm works. In order to compute $F_{p, q}$, we first write

$$
p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})=\sum_{\alpha \in \Lambda} c_{\boldsymbol{\alpha}}(\mathbf{a}) \mathbf{x}^{\boldsymbol{\alpha}},
$$

where $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in \mathbb{F}[\mathbf{a}]$ and Λ is a finite subset of \mathbb{N}^{n}. Let

$$
\begin{equation*}
S:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in \mathbb{F}[\mathbf{a}] \mid c_{\boldsymbol{\alpha}}(\mathbf{a}) \text { is the coefficient of } \mathbf{x}^{\boldsymbol{\alpha}} \text { in } p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})\right\} . \tag{3.1}
\end{equation*}
$$

Then $F_{p, q}=\mathbb{V}_{\mathbb{F}}(S)$ is the zero set of S in \mathbb{F}^{n}. First, we classify all polynomials in S according to their total degrees in \mathbf{a} and write $S=S_{0}^{D} \cup \cdots \cup S_{d^{\prime}}^{D}$, where $d^{\prime}=\operatorname{deg}_{\mathbf{a}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$ and

$$
S_{i}^{D}=\left\{c_{\alpha}(\mathbf{a}) \in S \mid \operatorname{deg}_{a}\left(c_{\alpha}(\mathbf{a})\right)=i\right\}
$$

for $i=0, \ldots, d^{\prime}$. Then $\mathbb{V}_{\mathbb{F}}(S)=\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{d^{\prime}} S_{i}^{D}\right)$. We may assume that $S_{0}^{D}=\emptyset$, otherwise p, q are not shift equivalent and return $F_{p, q}=\emptyset$. If $S_{0}^{D} \cup S_{1}^{D}$ has no solution in \mathbb{F}^{n}, return $F_{p, q}=\emptyset$. Otherwise take an arbitrary solution $\mathbf{s}^{(0)} \in \mathbb{V}_{\mathbb{F}}\left(S_{0}^{D} \cup S_{1}^{D}\right)$. Note that all polynomials in $S_{0}^{D} \cup S_{1}^{D}$ are linear. We shall prove that the non-linear system $S_{0}^{D} \cup S_{1}^{D} \cup S_{2}^{D}$ has same solutions as its linearization $S_{0}^{D} \cup S_{1}^{D} \cup L_{\mathbf{a}=\mathbf{s}^{(0)}}\left(S_{2}^{D}\right)$ at the point $\mathbf{s}^{(0)}$. If the latter linear system has no solution, return $F_{p, q}=\emptyset$. Otherwise, take an arbitrary solution $\mathbf{s}^{(1)} \in \mathbb{V}_{\mathbb{F}}\left(S_{0}^{D} \cup S_{1}^{D} \cup L_{\mathbf{a}=\mathbf{s}^{(0)}}\left(S_{2}^{D}\right)\right)$ by solving the linear system. Then consider the linearization of $\cup_{i=0}^{3} S_{i}^{D}$ at $\mathbf{s}^{(1)}$ and we shall prove that $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{3} S_{i}^{D}\right)=\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{3} L_{\mathbf{a}=\mathbf{s}^{(1)}}\left(S_{i}^{D}\right)\right)$. Continue the above process. We will finally find an equivalent linear system of the polynomial system $S=\cup_{i=0}^{d^{\prime}} S_{i}^{D}$ by linearization.
Example 3.4. Let $p=x^{2}+2 x y+y^{2}+2 x+6 y$ and $q=x^{2}+2 x y+y^{2}+4 x+8 y+11$ be two polynomials in $\mathbb{Q}[x, y]$. Decide whether p, q are shift equivalent with respect to x, y. Since

$$
p(x+a, y+b)-q(x, y)=(2 a+2 b-2) \cdot x+(2 a+2 b-2) \cdot y+\left(a^{2}+2 a b+b^{2}+2 a+6 b-11\right)
$$

we have $S=S_{1}^{D} \cup S_{2}^{D}$, where $S_{1}^{D}=\{2 a+2 b-2\}$ and $S_{2}^{D}=\left\{a^{2}+2 a b+b^{2}+2 a+6 b-11\right\}$. Take an arbitrary solution $(a, b)=(1,0)$ of S_{1}^{D}. The linearization of S_{2}^{D} at $(1,0)$ is

$$
L_{(a, b)=(1,0)}\left(S_{2}^{D}\right)=\left\{1^{2}+2 \cdot 1 \cdot 0+0^{2}+2 a+6 b-11\right\}=\{2 a+6 b-10\} .
$$

In this example, the linear system $S_{1}^{D} \cup L_{(a, b)=(1,0)}\left(S_{2}^{D}\right)$ is indeed equivalent to the polynomial system $S_{1}^{D} \cup S_{2}^{D}$. So $F_{p, q}=\mathbb{V}_{\mathbb{F}}\left(S_{1}^{D} \cup L_{(a, b)=(0,1)}\left(S_{2}^{D}\right)\right)=\{(-1,2)\}$.

Since shift operations do not change the total degree in \mathbf{x}, the homogeneous components of both sides of $p(\mathbf{x}+\mathbf{a})=q(\mathbf{x})$ with respect to \mathbf{x} must be equal. The homogeneous decomposition of $p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})$ yields another cover $\left\{S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}\right\}$ of S, where $d=\max \left\{\operatorname{deg}_{\mathbf{x}}(p(\mathbf{x})), \operatorname{deg}_{\mathbf{x}}(q(\mathbf{x}))\right\}$ and

$$
S_{i}^{H}:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S \mid c_{\boldsymbol{\alpha}}(\mathbf{a}) \text { is the coefficient of } \mathbf{x}^{\boldsymbol{\alpha}} \text { in } H_{\mathbf{x}}^{d-i}(p(\mathbf{x}+\mathbf{a}))-H_{\mathbf{x}}^{d-i}(q(\mathbf{x}))\right\}
$$

for $i=0,1, \ldots, d$. In the DOS algorithm, they first introduced the above method of linearization to solve the polynomial system $S=S_{0}^{H} \cup S_{1}^{H} \cup \cdots \cup S_{d}^{H}$ and proved the correctness of their algorithm by using formal partial derivatives. In Example 3.4, $S=S_{1}^{D} \cup S_{2}^{D}=S_{1}^{H} \cup S_{2}^{H}$, where $S_{i}^{H}=S_{i}^{D}$ for $i=1,2$. In general, these two covers are different, see Example 1.4. A natural question is for which cover, we can use the method of linearization to compute the dispersion set. One answer is the admissible cover defined below. In fact, the above two covers $\left\{S_{0}^{D}, S_{1}^{D}, \ldots, S_{d^{\prime}}^{D}\right\}$ and $\left\{S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}\right\}$ are both admissible, which will be proved in Section 3.3.

Definition 3.5 (Admissible cover, Definition 1.1, restated). Let $S \subseteq \mathbb{F}[\mathbf{a}]$ be as in (3.1). A collection $\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}$ of subsets is called a cover of S if S is the union of $S_{0}, S_{1}, \ldots, S_{m}$. Such a cover $\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}$ is called an admissible cover of S if it satisfies the following two conditions:
(1) All polynomials in S_{0} are of degree at most one in \mathbf{a}.
(2) For every $\ell=1,2, \ldots, m$, if $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{\ell}$, then $c_{\boldsymbol{\beta}}(\mathbf{a}) \in \cup_{i=0}^{\ell-1} S_{i}$ for all $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta}>\boldsymbol{\alpha}$ and $\mathbf{x}^{\boldsymbol{\beta}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$.

A general algorithm for solving SET problem via the method of linearization is as follows. This algorithm inherits one feature of the DOS algorithm: it could be early terminated when p, q are not shift equivalent. If two nonzero polynomials $p(\mathbf{x})$ and $q(\mathbf{x})$ are shift equivalent, then they have the same degree d in x and $H^{d}(p(\mathbf{x}))=H^{d}(q(\mathbf{x}))$, which means $\operatorname{deg}(p(\mathbf{x})-q(\mathbf{x}))<\operatorname{deg}(p(\mathbf{x}))$. Therefore, we can check the degree condition at the beginning of the algorithm for better efficiency.

```
Algorithm 3.6 (Shift Equivalence Testing). \(\operatorname{ShiftEquivalent(~} p, q,\left[x_{1}, \ldots, x_{n}\right]\) ).
INPUT: two multivariate polynomials \(p, q \in \mathbb{F}[\mathbf{x}]\);
OUTPUT: the dispersion set \(F_{p, q}\);
1 if \(p(\mathbf{x})=q(\mathbf{x})=0\), return \(\mathbb{F}^{n}\).
2 if \(\operatorname{deg}(p(\mathbf{x})-q(\mathbf{x})) \geq \operatorname{deg}(p(\mathbf{x}))\), return \(\}\).
3 set \(S:=\operatorname{Coefficients}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}), \mathbf{x}) \subseteq \mathbb{F}[\mathbf{a}]\).
4 let \(\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}\) be an admissible cover of \(S\).
\(5 \quad\) set \(\mathbf{s}^{(0)}:=\mathbf{0}\).
6 for \(\ell=0, \ldots, m\) do
\(7 \quad\) set \(L:=\cup_{i=0}^{\ell} L_{\mathbf{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)\).
8 solve the linear system in a defined by \(L\).
9 if the linear system \(L\) has no solution, return \(\}\).
10 else there is a special solution \(\mathbf{s}^{\prime} \in \mathbb{F}^{n}\), set \(\mathbf{s}^{(\ell+1)}:=\mathbf{s}^{\prime}\).
11 return solutions of the linear system defined by \(L\).
```

The correctness of Algorithm 3.6 is guaranteed by the following theorem.
Theorem 3.7 (Theorem 1.3, restated). If the cover $\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}$ of S is admissible, then for all $\ell=0,1, \ldots, m$, we have either $\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell-1} S_{i}\right)=\varnothing$ or

$$
\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell} S_{i}\right)=\mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell} L_{\mathrm{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)\right) \quad \text { for any } \mathbf{s}^{(\ell)} \in \mathbb{V}_{\mathbb{F}}\left(\bigcup_{i=0}^{\ell-1} S_{i}\right)
$$

The proof of Theorem 3.7 will be given in the next subsection.

3.2 Proof of correctness of Theorem 3.7

Before proving Theorem 3.7, we need several lemmas to explore the inner structure of polynomials $c_{\alpha}(\mathbf{a})$ in S. First we give an explicit expression of the non-constant homogeneous components of $c_{\alpha}(\mathbf{a})$ and find a recurrence relation among the homogeneous components. Then we explain the role of adimissible cover and the magic of linearization in Algorithm 3.6. Finally, we prove Theorem 3.7 by induction on ℓ.

For a vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, let $|\boldsymbol{\alpha}|:=\sum_{i=1}^{n} \alpha_{i}$ and $\binom{|\boldsymbol{\alpha}|}{\boldsymbol{\alpha}}:=\frac{|\boldsymbol{\alpha}|!}{\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!}$. Let $\partial_{x_{i}}$ denote the partial derivative with respect to x_{i} and ∂^{α} denote $\left(\partial_{x_{1}}\right)^{\alpha_{1}}\left(\partial_{x_{2}}\right)^{\alpha_{2}} \cdots\left(\partial_{x_{n}}\right)^{\alpha_{n}}$. For a vector $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$, we use $D_{\mathbf{a}}$ to denote the directional derivative in the direction of \mathbf{a}, i.e. $D_{\mathbf{a}}:=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$. Then for any $k \in \mathbb{N}^{+}$,

$$
D_{\mathbf{a}}^{k}:=\left(D_{\mathbf{a}}\right)^{k}=\sum_{|\alpha|=k}\binom{k}{\alpha} \mathbf{a}^{\alpha} \partial^{\alpha}
$$

by the multinomial theorem since $\partial_{x_{i}}$ and $\partial_{x_{j}}$ commute.
By the directional derivative and Taylor's expansion, the homogeneous components of polynomials in S_{ℓ}^{H} can be expressed as follows.

Lemma 3.8. (See [25, Lemma 3.5]) Let $d:=\max \left\{\operatorname{deg}_{\mathbf{x}}(p(\mathbf{x})), \operatorname{deg}_{\mathbf{x}}(q(\mathbf{x}))\right\}$. For any $k \in \mathbb{N}$ and $\ell \in\{0,1, \ldots, d\}$, we have

$$
\begin{equation*}
H_{\mathbf{x}}^{d-\ell}(p(\mathbf{x}+\mathbf{a}))-H_{\mathbf{x}}^{d-\ell}(q(\mathbf{x}))=\sum_{i=0}^{\ell} \frac{1}{i!} D_{\mathbf{a}}^{i}\left(H_{\mathbf{x}}^{d-\ell+i}(p(\mathbf{x}))\right)-H_{\mathbf{x}}^{d-\ell}(q(\mathbf{x})) \tag{3.2}
\end{equation*}
$$

and

$$
H_{\mathbf{a}}^{k}\left(H_{\mathbf{x}}^{d-\ell}(p(\mathbf{x}+\mathbf{a}))-H_{\mathbf{x}}^{d-\ell}(q(\mathbf{x}))\right)= \begin{cases}\frac{1}{k!} D_{\mathbf{a}}^{k}\left(H_{\mathbf{x}}^{d-\ell+k}(p(\mathbf{x}))\right), & \text { if } k \geq 1 \tag{3.3}\\ H_{\mathbf{x}}^{d-\ell}(p(\mathbf{x}))-H_{\mathbf{x}}^{d-\ell}(q(\mathbf{x})), & \text { if } k=0\end{cases}
$$

Moreover, for any $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S$ and $k \geq 1, H_{\mathbf{a}}^{k}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)$ is the coefficient of $\mathbf{x}^{\boldsymbol{\alpha}}$ in $\frac{1}{k!} D_{\mathbf{a}}^{k}\left(H_{\mathbf{x}}^{|\boldsymbol{\alpha}|+k}(p)\right)$.
Proof. Note that $c_{\boldsymbol{\alpha}}(\mathbf{a})$ is exactly the coefficient of $\mathbf{x}^{\boldsymbol{\alpha}}$ in $H_{\mathbf{x}}^{|\boldsymbol{\alpha}|}(p(\mathbf{x}+\mathbf{a}))-H_{\mathbf{x}}^{|\boldsymbol{\alpha}|}(q(\mathbf{x}))$, so it is sufficient to prove Equations (3.2) and (3.3). By Taylor's expansion, we have

$$
p(\mathbf{x}+\mathbf{a})=\sum_{i=0}^{d} \frac{1}{i!} D_{\mathbf{a}}^{i}(p)(\mathbf{x})=\sum_{i=0}^{d} \sum_{j=0}^{d} \frac{1}{i!} D_{\mathbf{a}}^{i}\left(H_{\mathbf{x}}^{j}(p)\right)(\mathbf{x})
$$

Note that if $D_{\mathbf{a}}^{i}\left(H_{\mathbf{x}}^{j}(p)\right)$ is not equal to zero, then it is homogeneous of degree $j-i$ in \mathbf{x}. Consequently, we obtain Equation (3.2). Moreover, note that $D_{\mathbf{a}}^{i}\left(H_{\mathbf{x}}^{d-\ell+i}(p)\right)(\mathbf{x})$ is homogeneous of degree i with respect to a. So we get Equation (3.3), which completes the proof.

Then we write

$$
\frac{1}{k!} D_{\mathbf{a}}^{k}\left(H_{\mathbf{x}}^{|\boldsymbol{\alpha}|+k}(p(\mathbf{x}))\right)=\frac{1}{k!} \sum_{|\boldsymbol{\beta}|=k}\binom{k}{\boldsymbol{\beta}} \mathbf{a}^{\boldsymbol{\beta}} \boldsymbol{\partial}^{\boldsymbol{\beta}}\left(H_{\mathbf{x}}^{|\boldsymbol{\alpha}|+k}(p(\mathbf{x}))\right)
$$

Dropping the terms except $H^{k}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \cdot \mathbf{x}^{\boldsymbol{\alpha}}$ in the above polynomial, we can get

$$
\begin{equation*}
H^{k}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \cdot \mathbf{x}^{\boldsymbol{\alpha}}=\frac{1}{k!} \sum_{|\boldsymbol{\beta}|=k}\binom{k}{\boldsymbol{\beta}} \mathbf{a}^{\boldsymbol{\beta}} \boldsymbol{\partial}^{\boldsymbol{\beta}}\left(\left[\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right](p(\mathbf{x})) \cdot \mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right) \tag{3.4}
\end{equation*}
$$

where $\left[\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right](p(\mathbf{x}))$ denotes the coefficient of $\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}$ in $p(\mathbf{x})$. Therefore, for any $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, we can write $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x})):=\sum_{|\boldsymbol{\beta}|=k}\binom{k}{\boldsymbol{\beta}} \mathbf{a}^{\boldsymbol{\beta}} \boldsymbol{\partial}^{\boldsymbol{\beta}}\left(\left[\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right)$ to generalize the notation $D_{\mathbf{a}}^{k}(f(\mathbf{x}))$ in form, and the following lemma is derived straightforward.

Lemma 3.9. Let $k \in \mathbb{N}^{+}$and $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S$. Then we have $H^{k}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \cdot \mathbf{x}^{\boldsymbol{\alpha}}=\frac{1}{k!} D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(p(\mathbf{x}))$.
For the directional derivative, we know $D_{\mathbf{a}}^{k}(f(\mathbf{x}))=\left(D_{\mathbf{a}}^{1}\right)^{k}(f(\mathbf{x}))$. However $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))$ may be different from $\left(D_{\mathbf{a}, \boldsymbol{\alpha}}^{1}\right)^{k}(f(\mathbf{x}))$, as the following example shows.

Example 3.10. Let $\mathbb{F}=\mathbb{Q}$, $p(x, y), q(x, y) \in \mathbb{Q}[x, y]$ with $p(x, y)=x^{3}+y^{3}$ and $q(x, y)=p(x, y)+1$. Expanding $p(x+a, y+b)-q(x, y)$, we have $p(x+a, y+b)-q(x, y)=3 a \cdot x^{2}+3 b \cdot y^{2}+3 a^{2} \cdot x+$ $3 b^{2} \cdot y+\left(a^{3}+b^{3}-1\right)$. Then we have $c_{(1,0)}(a, b)=3 a^{2}$,

$$
\begin{aligned}
D_{(a, b),(1,0)}^{1}(p(\mathbf{x}))= & \sum_{i+j=1}\binom{1}{(i, j)} a^{i} b^{j} \cdot \partial_{x}^{i} \partial_{y}^{j}\left(\left[x^{1+i} y^{0+j}\right](p(x, y)) \cdot x^{1+i} y^{0+j}\right) \\
= & \binom{1}{(1,0)} a \cdot \partial_{x}\left(\left[x^{2}\right](p(x, y)) \cdot x^{2}\right)+\binom{1}{(0,1)} b \cdot \partial_{y}([x y](p(x, y)) \cdot x y)=0, \\
D_{(a, b),(1,0)}^{2}(p(\mathbf{x}))= & \sum_{i+j=2}\binom{2}{(i, j)} a^{i} b^{j} \cdot \partial_{x}^{i} \partial_{y}^{j}\left(\left[x^{1+i} y^{0+j}\right](p(x, y)) \cdot x^{1+i} y^{0+j}\right) \\
= & \binom{2}{(2,0)} a^{2} \cdot \partial_{x}^{2}\left(\left[x^{3}\right](p(x, y)) \cdot x^{3}\right)+\binom{2}{(1,1)} a b \cdot \partial_{x} \partial_{y}\left(\left[x^{2} y\right](p(x, y)) \cdot x^{2} y\right) \\
& +\binom{2}{(0,2)} b^{2} \cdot \partial_{y}^{2}\left(\left[x y^{2}\right](p(x, y)) \cdot x y^{2}\right) \\
= & \frac{2!}{0!2!} a^{2} \cdot \partial_{x}^{2}\left(x^{3}\right)=6 a^{2} x
\end{aligned}
$$

and $\left(D_{(a, b),(1,0)}^{1}\right)^{2}(p(\mathbf{x}))=D_{(a, b),(1,0)}^{1}(0)=0$. Therefore, we can check that $H^{k}\left(c_{(1,0)}(a, b)\right) \cdot x$ is equal to $\frac{1}{k!} D_{(a, b),(1,0)}^{k}(p(x, y))$ for $k=1,2$, but $D_{(a, b),(1,0)}^{2}(p(\mathbf{x}))$ is not equal to $\left(D_{(a, b),(1,0)}^{1}\right)^{2}(p(\mathbf{x}))$.

Now we rewrite the expression of $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f)$ and present the recurrence relation for $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f)$.
Lemma 3.11. Let $\mathbf{a} \in \mathbb{F}^{n}, \boldsymbol{\alpha} \in \mathbb{N}^{n}, k, \ell \in \mathbb{N}^{+}$and $f \in \mathbb{F}[\mathbf{x}]$. Let $\mathbf{e}_{i} \in \mathbb{N}^{n}$ denote a unit vector with the i-th component being one and others being zero. Then we have:
(1) $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))=\sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \mathbf{a}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}} \boldsymbol{\partial}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}}\left(\left[\mathbf{x}^{\boldsymbol{\alpha}+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\boldsymbol{\alpha}+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}}\right)$.
(2) $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k+\ell}(f(\mathbf{x}))=\sum_{|\boldsymbol{\beta}|=\ell}\binom{\ell}{\boldsymbol{\beta}} \mathbf{a}^{\boldsymbol{\beta}} \boldsymbol{\partial}^{\boldsymbol{\beta}}\left(D_{\mathbf{a}, \boldsymbol{\alpha}+\boldsymbol{\beta}}^{k}(f(\mathbf{x}))\right)$.

Proof. (1): note that for any $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $|\boldsymbol{\beta}|=k, \boldsymbol{\beta}$ can be expressed as a sum of k unit vectors. Moreover, there are $\binom{k}{\boldsymbol{\beta}}$ different k-tuples $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ such that $\boldsymbol{\beta}=\sum_{i=1}^{k} \mathbf{e}_{j_{i}}$. Then combining the definition of $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))$, we can get (1).
(2): applying (1) twice, we have

$$
\begin{aligned}
& \begin{array}{l}
D_{\mathbf{a} \boldsymbol{\alpha}}^{k+\ell}(f(\mathbf{x})) \\
=
\end{array} \\
& \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \sum_{j_{k+1}=1}^{n} \cdots \sum_{j_{k+\ell}=1}^{n} \mathbf{a}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}} \boldsymbol{o}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}} \\
&\left(\left[\mathbf{x}^{\alpha+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\alpha+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}}\right) \\
&= \sum_{j_{k+1}=1}^{n} \cdots \sum_{j_{k+\ell}=1}^{n} \mathbf{a}^{\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}} \boldsymbol{o}^{\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}} \\
&\left(\sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \mathbf{a}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}} \boldsymbol{\partial}^{\sum_{i=1}^{k} \mathbf{e}_{j_{i}}}\left(\left[\mathbf{x}^{\boldsymbol{\alpha}+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\boldsymbol{\alpha}+\sum_{i=1}^{k} \mathbf{e}_{j_{i}}+\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}}\right)\right) \\
&= \sum_{j_{k+1}=1}^{n} \cdots \sum_{j_{k+\ell}=1}^{n} \mathbf{a}^{\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}} \boldsymbol{o}^{\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}}\left(D_{\mathbf{a}, \boldsymbol{\alpha}+\sum_{i=k+1}^{k}}^{k+\ell} \mathbf{e}_{j_{i}}(f(\mathbf{x}))\right) .
\end{aligned}
$$

Then as the proof of (1), we can finally obtain (2) by set $\boldsymbol{\beta}=\sum_{i=k+1}^{k+\ell} \mathbf{e}_{j_{i}}$.

Example 3.12. Let $\mathbb{F}=\mathbb{Q}$ and $p=x^{4}+x^{2} y+y^{3} \in \mathbb{Q}[x, y]$. After expanding, we get $p(x+a, y+b)=$ $x^{4}+4 a \cdot x^{3}+x^{2} y+y^{3}+\left(6 a^{2}+b\right) \cdot x^{2}+2 a \cdot x y+3 b \cdot y^{2}+\left(4 a^{3}+2 a b\right) \cdot x+\left(a^{2}+3 b^{2}\right) \cdot y+\left(a^{4}+a^{2} b+b^{3}\right)$. All terms of $p(x+a, y+b)$ are listed in the following figure.

$\operatorname{Taking} q(x, y)=0$ in Lemma 3.9, we get $D_{(a, b),(i, j)}^{k}(p(x, y))=k!H_{(a, b)}^{k}\left(\left[x^{i} y^{j}\right](p(x+a, y+b))\right) \cdot x^{i} y^{j}$ for all $k \geq 1$. So we can read $D_{(a, b),(i, j)}^{k}(p(x, y))$ from the this figure. For instance,
$D_{(a, b),(0,1)}^{2}(p(x, y))=2!\cdot\left(a^{2}+3 b^{2}\right) \cdot y, D_{(a, b),(1,1)}^{1}(p(x, y))=2 a \cdot x y$ and $D_{(a, b),(0,2)}^{1}(p(x, y))=3 b \cdot y^{2}$.
Taking $k=\ell=1$ in Lemma 3.11 (2), we obtain a recurrence relation among these three terms:

$$
\begin{aligned}
D_{(a, b),(0,1)}^{2}(p(x, y)) & =\sum_{i+j=1}\binom{1}{(i, j)} a^{i} b^{j} \partial_{x}^{i} \partial_{y}^{j}\left(D_{(a, b),(i, 1+j)}^{1}(p(x, y))\right) \\
& =\binom{1}{(1,0)} a \partial_{x}\left(D_{(a, b),(1,1)}^{1}(p(x, y))\right)+\binom{1}{(0,1)} b \partial_{y}\left(D_{(a, b),(0,2)}^{1}(p(x, y))\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
2\left(a^{2}+3 b^{2}\right) y=a \partial_{x}(2 a x y)+b \partial_{y}\left(3 b y^{2}\right) \tag{3.5}
\end{equation*}
$$

By the definition of $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(p)$ and Lemma 3.9, we get

$$
\begin{equation*}
2\left(a^{2}+3 b^{2}\right) y=a^{2} \partial_{x}^{2}\left(x^{2} y\right)+2 a b \partial_{x} \partial_{y}\left(0 \cdot x y^{2}\right)+b^{2} \partial_{y}^{2}\left(y^{3}\right) \tag{3.6}
\end{equation*}
$$

Note that the term x^{4} does not involve in the above two equations (3.5) and (3.6) because $y \nmid x^{4}$. In this example, the term x^{4} only affects all terms in the blue branch, such as $3!\cdot 4 a^{3} x=a^{3} \partial_{x}^{3}\left(x^{4}\right)$.

Without introducing the notation $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}$, by Lemma 3.8 (or Lemma 3.5 in [25]) we only get "global" relations, such as

$$
2!\cdot H_{(a, b)}^{2}\left(H_{(x, y)}^{1}(p(x+a, y+b))\right)=D_{(a, b)}^{2}\left(H_{(x, y)}^{1+2}(p(x, y))\right)
$$

This implies two relations among the rows (instead of the points) in the figure:

$$
\begin{aligned}
2\left(2 a b x+a^{2} y+3 b^{2} y\right) & =\left(a \partial_{x}+b \partial_{y}\right)^{2}\left(x^{2} y+0 \cdot x y^{2}+y^{3}\right) \\
& =\left(a \partial_{x}+b \partial_{y}\right)\left(b x^{2}+2 a x y+3 b y^{2}\right)
\end{aligned}
$$

From Observation 3.4 in [25], we know if $D_{\mathbf{a}}^{1}(f(\mathbf{x}))=D_{\mathbf{b}}^{1}(f(\mathbf{x}))$, then $D_{\mathbf{a}}^{k}(f(\mathbf{x}))=D_{\mathbf{b}}^{k}(f(\mathbf{x}))$ for all $k \geq 1$. Now we show that $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))$ can be determined by $D_{\mathbf{a}, \boldsymbol{\beta}}^{1}(f(\mathbf{x}))$ for all $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\beta}|=|\boldsymbol{\alpha}|+k-1$. This is why we introduce the second condition in the definition of admissible cover.

Lemma 3.13. Let $\mathbf{a}, \mathbf{b} \in \mathbb{F}^{n}$, $\boldsymbol{\alpha} \in \mathbb{N}^{n}, k \in \mathbb{N}^{+}$and $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$. If $D_{\mathbf{a}, \boldsymbol{\beta}}^{1}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\beta}}^{1}(f(\mathbf{x}))$ for all $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\beta}|=|\boldsymbol{\alpha}|+k-1$, then we have $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\alpha}}^{k}(f(\mathbf{x}))$.

Proof. The proof is by induction on k. It is clear to see that the lemma is true for $k=1$. Now assume the equality holds for k. For $k+1$, assume that $D_{\mathbf{a}, \boldsymbol{\beta}}^{1}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\beta}}^{1}(f(\mathbf{x}))$ for all $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\beta}|=|\boldsymbol{\alpha}|+(k+1)-1$. We have $D_{\mathbf{a}, \boldsymbol{\alpha}}^{k+1}(f(\mathbf{x}))=\sum_{i=1}^{n} \mathbf{a}^{\mathbf{e}_{i}} \boldsymbol{\partial}^{\mathbf{e}_{i}}\left(D_{\mathbf{a}, \boldsymbol{\alpha}+\mathbf{e}_{i}}^{k}(f(\mathbf{x}))\right)$ by Lemma 3.11 (2). Note that for all $\gamma \in \mathbb{N}^{n}$ with $\gamma \geq \boldsymbol{\alpha}+\mathbf{e}_{i}$ and $|\gamma|=\left|\boldsymbol{\alpha}+\mathbf{e}_{i}\right|+k-1$, we have $\boldsymbol{\gamma} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\gamma}|=|\boldsymbol{\alpha}|+(k+1)-1$. Thus by assumption we have $D_{\mathbf{a}, \boldsymbol{\gamma}}^{1}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\gamma}}^{1}(f(\mathbf{x}))$. It follows from the inductive hypothesis that $D_{\mathbf{a}, \boldsymbol{\alpha}+\mathbf{e}_{i}}^{k}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\alpha}+\mathbf{e}_{i}}^{k}(f(\mathbf{x}))$. So

$$
\begin{aligned}
D_{\mathbf{a}, \boldsymbol{\alpha}}^{k+1}(f(\mathbf{x})) & =\sum_{i=1}^{n} \mathbf{a}^{\mathbf{e}_{i}} \boldsymbol{\partial}^{\mathbf{e}_{i}}\left(D_{\mathbf{b}, \boldsymbol{\alpha}+\mathbf{e}_{i}}^{k}(f(\mathbf{x}))\right) \\
& =\sum_{i=1}^{n} \mathbf{a}^{\mathbf{e}_{i}} \boldsymbol{\partial}^{\mathbf{e}_{i}}\left(\sum_{|\gamma|=k}\binom{k}{\gamma} \mathbf{b}^{\gamma} \boldsymbol{\partial}^{\gamma}\left(\left[\mathbf{x}^{\alpha+\mathbf{e}_{i}+\gamma}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\alpha+\mathbf{e}_{i}+\boldsymbol{\gamma}}\right)\right) \\
& =\sum_{|\gamma|=k}\binom{k}{\gamma} \mathbf{b}^{\gamma} \boldsymbol{\partial}^{\gamma}\left(\sum_{i=1}^{n} \mathbf{a}^{\mathbf{e}_{i}} \boldsymbol{\partial}^{\mathbf{e}_{i}}\left(\left[\mathbf{x}^{\alpha+\gamma+\mathbf{e}_{i}}\right](f(\mathbf{x})) \cdot \mathbf{x}^{\alpha+\gamma+\mathbf{e}_{i}}\right)\right) \\
& =\sum_{|\gamma|=k}\binom{k}{\gamma} \mathbf{b}^{\gamma} \boldsymbol{\partial}^{\gamma} D_{\mathbf{a}, \boldsymbol{\alpha}+\boldsymbol{\gamma}}^{1}(f(\mathbf{x})) .
\end{aligned}
$$

Because $\boldsymbol{\alpha}+\boldsymbol{\gamma} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\alpha}+\boldsymbol{\gamma}|=|\boldsymbol{\alpha}|+|\boldsymbol{\gamma}|=|\boldsymbol{\alpha}|+(k+1)-1$, we have $D_{\mathbf{a}, \boldsymbol{\alpha}+\boldsymbol{\gamma}}^{1}(f(\mathbf{x}))=D_{\mathbf{b}, \boldsymbol{\alpha}+\boldsymbol{\gamma}}^{1}(f(\mathbf{x}))$ by assumption. Applying Lemma 3.11 (2) again, the proof is completed.

Combining Lemma 3.9 and the above lemma, we get the following lemma immediately.
Lemma 3.14. Let $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S, k \in \mathbb{N}$ with $k \geq 2$ and $\mathbf{r}, \mathbf{s} \in \mathbb{F}^{n}$. If

$$
H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{r})=H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{s}) \quad \text { for all } \boldsymbol{\beta} \in \mathbb{N}^{n} \text { with } \boldsymbol{\beta} \geq \boldsymbol{\alpha} \text { and }|\boldsymbol{\beta}|=|\boldsymbol{\alpha}|+k-1
$$

then we have

$$
H^{k}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{r})=H^{k}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{s})
$$

Now we are ready to show that for an admissible cover, the linearization does not change the zero set of the polynomial system S.

Lemma 3.15. Let $\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}$ be an admissible cover of S and $\ell \in\{0,1, \ldots, m\}$. If there exist $\mathbf{r}, \mathbf{s} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right)$, then for all $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in \cup_{i=0}^{\ell} S_{i}$ we have

$$
\begin{equation*}
L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{a})=L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{a}) . \tag{3.7}
\end{equation*}
$$

Furthermore, we have $c_{\boldsymbol{\alpha}}(\mathbf{r})=L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{r})$.
Proof. Since $c_{\alpha}(\mathbf{r})=L_{\mathbf{a}=\mathbf{r}}\left(c_{\alpha}\right)(\mathbf{r})$, it is sufficient to prove Equation (3.7) by induction on ℓ.
For $\ell=0$, we have $\operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \leq 1$ by Definition 3.5, so $L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{a})=c_{\boldsymbol{\alpha}}(\mathbf{a})=L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{a})$.
For $\ell>0$, suppose the lemma holds for smaller ℓ. Then it is sufficient to show that $H^{k}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{r})=$ $H^{k}\left(c_{\alpha}\right)(\mathbf{s})$ for all $k \in \mathbb{N}$ with $k \geq 2$. By Lemma 3.14, we know the proof is completed by showing that $H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{r})=H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{s})$ for $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta} \geq \boldsymbol{\alpha}$ and $|\boldsymbol{\beta}|=|\boldsymbol{\alpha}|+k-1$. Because $|\boldsymbol{\beta}| \geq$ $|\boldsymbol{\alpha}|+2-1>|\boldsymbol{\alpha}|$, we have $\boldsymbol{\beta}>\boldsymbol{\alpha}$. Then we get either $c_{\boldsymbol{\beta}}(\mathbf{a}) \in \cup_{i=0}^{\ell-1} S_{i}$ or $c_{\boldsymbol{\beta}}(\mathbf{a})=0$ by Definition 3.5.

For $\ell-k+1 \leq \ell-2+1 \leq \ell-1$, we have $\mathbf{r}, \mathbf{s} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right) \subseteq \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-k+1} S_{i}\right)$. This means \mathbf{r} and \mathbf{s} are zeros of all polynomials $c_{\boldsymbol{\beta}}(\mathbf{a}) \in S_{\ell-k+1}$. Then we have

$$
\begin{equation*}
L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{r})=c_{\boldsymbol{\beta}}(\mathbf{r})=0 \quad \text { and } \quad L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{s})=0 \tag{3.8}
\end{equation*}
$$

On the other hand, $\mathbf{r}, \mathbf{s} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{(\ell-k+1)-1} S_{i}\right)$ because $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-k+1} S_{i}\right) \subseteq \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{(\ell-k+1)-1} S_{i}\right)$. By the inductive hypothesis with $\ell-k+1$, we get $L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{a})=L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{a})$. So

$$
\begin{equation*}
H^{0}\left(L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)\right)=H^{0}\left(L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)\right) \tag{3.9}
\end{equation*}
$$

Note that $H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{a})=H^{1}\left(L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)\right)(\mathbf{a})=H^{1}\left(L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)\right)(\mathbf{a})$. Combining the equations (3.8) and (3.9), we have

$$
\begin{aligned}
H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{r}) & =H^{1}\left(L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)\right)(\mathbf{r})=-H^{0}\left(L_{\mathbf{a}=\mathbf{r}}\left(c_{\boldsymbol{\beta}}\right)\right) \\
& =-H^{0}\left(L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)\right)=H^{1}\left(L_{\mathbf{a}=\mathbf{s}}\left(c_{\boldsymbol{\beta}}\right)\right)(\mathbf{s})=H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{s}),
\end{aligned}
$$

which completes the proof.
Proof of Theorem 3.7. We shall prove the theorem by induction on ℓ.
For $\ell=0$, we know any $c_{\boldsymbol{\alpha}}(\mathbf{a})$ in S_{0} satisfies $\operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \leq 1$ by Definition 3.5. Thus we have $L_{\mathbf{a}=\mathbf{s}^{(0)}}\left(S_{0}\right)=S_{0}$ and $\mathbb{V}_{\mathbb{F}}\left(S_{0}\right)=\mathbb{V}_{\mathbb{F}}\left(L_{\mathbf{a}=\mathbf{s}^{(0)}}\left(S_{0}\right)\right)$.

For $\ell>0$, assume the theorem holds for $\ell-1$, i.e., $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right)=\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} L_{\mathbf{a}=\mathbf{s}}^{(\ell-1)}\left(S_{i}\right)\right)$. Taking $\mathbf{r}, \mathbf{s}=\mathbf{s}^{(\ell-1)}, \mathbf{s}^{(\ell)} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-2} S_{i}\right)$ in Lemma 3.15, we know that the linearizations of $c_{\boldsymbol{\beta}}(\mathbf{a})$ at $\mathbf{s}^{(\ell)}$ and $\mathbf{s}^{(\ell-1)}$ are equal for all $c_{\boldsymbol{\beta}}(\mathbf{a}) \in \cup_{i=0}^{\ell-1} S_{i}$. This means $\cup_{i=0}^{\ell-1} L_{\mathbf{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)=\cup_{i=0}^{\ell-1} L_{\mathbf{a}=\mathbf{s}^{(\ell-1)}}\left(S_{i}\right)$. Then we have

$$
\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell} L_{\mathbf{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)\right) \subseteq \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} L_{\mathbf{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)\right)=\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} L_{\mathbf{a}=\mathbf{s}^{(\ell-1)}}\left(S_{i}\right)\right)=\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right),
$$

where the last equality follows from the inductive hypothesis. Note that $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell} S_{i}\right)$ is also a subset of $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right)$. So we only need to prove that for all $\mathbf{r} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right)$,

$$
\begin{equation*}
\mathbf{r} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell} S_{i}\right) \quad \text { if and only if } \quad \mathbf{r} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell} L_{\mathbf{a}=\mathbf{s}^{(\ell)}}\left(S_{i}\right)\right) \tag{3.10}
\end{equation*}
$$

Because $s^{(\ell)} \in \mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{\ell-1} S_{i}\right)$, we have $c_{\boldsymbol{\alpha}}(\mathbf{r})=L_{\mathbf{a}=\mathbf{s}}{ }^{(\ell)}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{r})$ for all $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in \cup_{i=0}^{\ell} S_{i}$ by Lemma 3.15. Then the claim (3.10) follows immediately.

The main distinction between the reasoning of our general scheme and the DOS algorithm can be shown in Lemma 3.14. In [25], Lemma 3.5 proves Equation (3.2) which we extend to Lemmas 3.8 and 3.9. Observation 3.4 in [25] is generalized by Lemma 3.13. The subsequent proof for the correctness of the DOS algorithm can be summarized by the lemma below. Then the rest steps for proving Theorem 3.7 and the correctness of the DOS algorithm are similar.

Lemma 3.16. Let $d:=\max \left\{\operatorname{deg}_{\mathbf{x}}(p(\mathbf{x})), \operatorname{deg}_{\mathbf{x}}(q(\mathbf{x}))\right\}, i \in\{0,1, \ldots, d\}, k \in \mathbb{N}$ with $k \geq 2$ and $\mathbf{r}, \mathbf{s} \in \mathbb{F}^{n}$. If

$$
H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{r})=H^{1}\left(c_{\boldsymbol{\beta}}\right)(\mathbf{s}) \quad \text { for all } c_{\boldsymbol{\beta}}(\mathbf{a}) \in S_{i-k+1}^{H}
$$

then we have

$$
H^{k}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{r})=H^{k}\left(c_{\boldsymbol{\alpha}}\right)(\mathbf{s}) \quad \text { for all } c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{i}^{H}
$$

Given two points \mathbf{r} and \mathbf{s} in \mathbb{F}^{n}, we use diagrams to explain how Lemma 3.14 makes the statement more precise than this lemma for the case where $d=\operatorname{deg}_{\mathbf{x}}(p)=\operatorname{deg}_{\mathbf{x}}(q)=4$ and $n=2$. Let $p(x+a, y+b)-q(x, y)=\sum_{(\alpha, \beta) \in \Lambda} c_{(\alpha, \beta)}(a, b) x^{\alpha} y^{\beta}$. For the k-th homogeneous component of $c_{(\alpha, \beta)}$, if its values at \mathbf{r} and \mathbf{s} are equal, we draw a point at position (α, β, k) in the space. Furthermore, if $H^{k}\left(c_{(\alpha, \beta)}\right)(\mathbf{r})=H^{k}\left(c_{(\alpha, \beta)}\right)(\mathbf{s})$ for all $(\alpha, \beta) \in \mathbb{N}^{2}$ such that the sum of α and β is a fixed constant i, which means there are points (α, β, k) on the same line, then we draw a segment to connect them each other. Note that the degree of any polynomials in S_{d-i}^{H} is no more than i, which will be proved exactly in Lemma 3.18. Lemma 3.16 implies that the dark green segment on one triangle face can conclude all the segments on this face with $k \geq 2$ in Figure 3.1. For a more exact results as Figure 3.2 shows, Lemma 3.14 tells us that on one triangle face, every point with $k \geq 2$ can be deduced from the part of dark green segment which is cut out by two dotted line from this point. For example, Point A can be inferred from Segment ℓ.

Figure 3.1: Graph for Lemma 3.14

Figure 3.2: Graph for Lemma 3.16

3.3 Two special admissible covers

By Theorem 3.7, we see that any admissible cover of the polynomial system S corresponds to an algorithm for solving the SET problem via linear system solving. We now present two special admissible covers. The first admissible cover defined below is classifying the polynomial system S according to their degree in a, which is called the \mathbf{a}-degree cover.
Theorem 3.17 (a-degree cover, Theorem 1.3, restated). Let d^{\prime} be the degree of $p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})$ with respect to \mathbf{a}. Let $S_{i}^{D}:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S \mid \operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)=i\right\}$. Then the cover $\left\{S_{0}^{D}, S_{1}^{D}, \ldots, S_{d^{\prime}}^{D}\right\}$ of S is admissible.

Proof. Let us check this cover satisfies two conditions mentioned in Definition 3.5. The condition (1) can be checked directly by definition. As for (2), assume that $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{\ell}^{D}$ and $\boldsymbol{\beta}$ is an arbitrary vector in \mathbb{N}^{n} with $\boldsymbol{\beta}>\boldsymbol{\alpha}$ and $\mathbf{x}^{\boldsymbol{\beta}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$. We will argue by contradiction that $\operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)>\operatorname{deg}\left(c_{\boldsymbol{\beta}}(\mathbf{a})\right)$. By assumption, we know that $\operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)=\ell$. If there is a monomial $\mathbf{a}^{\boldsymbol{\gamma}} \in \operatorname{Supp}\left(c_{\boldsymbol{\beta}}(\mathbf{a})\right)$ with $|\boldsymbol{\gamma}| \geq \ell$, then by Equation (3.4), we have $\mathbf{x}^{\boldsymbol{\gamma}+\boldsymbol{\beta}} \in \operatorname{Supp}(p(\mathbf{x}))$. Since $|\gamma+\boldsymbol{\beta}-\boldsymbol{\alpha}| \geq|\boldsymbol{\beta}|-|\boldsymbol{\alpha}|>0$, we obtain $\mathbf{a}^{\boldsymbol{\gamma}+\boldsymbol{\beta}-\boldsymbol{\alpha}} \in \operatorname{Supp}\left(H^{|\boldsymbol{\gamma}+\boldsymbol{\beta}-\boldsymbol{\alpha}|}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)\right) \in \operatorname{Supp}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right)$ by Equation (3.4). However, note that $\boldsymbol{\beta}>\boldsymbol{\alpha}$ implies $|\boldsymbol{\beta}|>|\boldsymbol{\alpha}|$, so $|\boldsymbol{\gamma}+\boldsymbol{\beta}-\boldsymbol{\alpha}|=|\gamma|+|\boldsymbol{\beta}|-|\boldsymbol{\alpha}|>\ell$, which leads to a contradiction to the fact that ℓ is the degree of $c_{\boldsymbol{\alpha}}(\mathbf{a})$.

Note that $\boldsymbol{\beta}>\boldsymbol{\alpha}$ implies $|\boldsymbol{\beta}|>|\boldsymbol{\alpha}|$. This inspires the second admissible cover called the x -homogeneous cover. Before we prove it, we first present a useful lemma.

Lemma 3.18. Let $d:=\operatorname{deg}(p(\mathbf{x}))$. For any $\boldsymbol{\alpha} \in \mathbb{N}^{n}$ with $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S$, we have $\operatorname{deg}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \leq d-|\boldsymbol{\alpha}|$.
Proof. Note that $\left[\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}}\right](p(\mathbf{x})) \neq 0$ yields $|\boldsymbol{\alpha}+\boldsymbol{\beta}| \leq d$, so $k=|\boldsymbol{\beta}| \leq d-|\boldsymbol{\alpha}|$ in Equation (3.4). That is to say, $H^{k}\left(c_{\boldsymbol{\alpha}}(\mathbf{a})\right) \cdot \mathbf{x}^{\boldsymbol{\alpha}}=0$ if $k>d-|\boldsymbol{\alpha}|$. Then the conclusion follows.

Theorem 3.19 (\mathbf{x}-homogeneous cover, Theorem 1.3, restated). Let d be the maximal degree of $p(\mathbf{x})$ and $q(\mathbf{x})$. Let $S_{i}^{H}:=\left\{c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S| | \boldsymbol{\alpha} \mid=d-i\right\}$ for $i=0,1, \ldots, d$. Then the cover $\left\{S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}\right\}$ of S is admissible.
Proof. We first show that $\left\{S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}\right\}$ is exactly a cover of S. It is sufficient to show that S is a subset of $\cup_{i=0}^{d} S_{i}^{H}$. This is true because we have $\mathbf{x}^{\boldsymbol{\alpha}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})) \subseteq \operatorname{Supp}(p(\mathbf{x})) \cup$ $\operatorname{Supp}(q(\mathbf{x}))$ for arbitrary $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S$ and then $0 \leq|\boldsymbol{\alpha}| \leq d$.

Then we check this cover is admissible. If there exists $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{0}^{H}$ with a nonlinear monomial $\mathbf{a}^{\boldsymbol{\beta}}$, then we have $\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}} \in \operatorname{Supp}(p(\mathbf{x}))$ by Equation (3.4). For $|\boldsymbol{\beta}| \geq 2$, there is a unit vector $\mathbf{e}_{j} \in \mathbb{N}^{n}$ such that $\mathbf{e}_{j}<\boldsymbol{\alpha}+\boldsymbol{\beta}$. Thus $\mathbf{a}^{\mathbf{e}_{j}} \mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}-\mathbf{e}_{j}} \in \operatorname{Supp}_{\mathbf{x} \cup \mathbf{a}}\left(D_{\mathbf{a}, \boldsymbol{\alpha}+\boldsymbol{\beta}-\mathbf{e}_{j}}^{1}(p(\mathbf{x}))\right)$. By Lemma 3.9, $\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}-\mathbf{e}_{j}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$. However, $\left|\boldsymbol{\alpha}+\boldsymbol{\beta}-\mathbf{e}_{j}\right|=|\boldsymbol{\alpha}|+|\boldsymbol{\beta}|-\left|\mathbf{e}_{j}\right| \geq d+2-1>d$, which leads to a contradiction to the fact that $\left.\operatorname{deg}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})) \leq \max \left\{\operatorname{deg}_{\mathbf{x}}(p(\mathbf{x}))\right), \operatorname{deg}_{\mathbf{x}}(q(\mathbf{x}))\right\}=d$. So the condition (1) in Definition 3.5 is satisfied. Finally, for any $\ell=1,2, \ldots, d$, let $c_{\boldsymbol{\alpha}}(\mathbf{a}) \in S_{\ell}^{H}$. Then for all $\boldsymbol{\beta} \in \mathbb{N}^{n}$ with $\boldsymbol{\beta}>\boldsymbol{\alpha}$ and $\mathbf{x}^{\boldsymbol{\beta}} \in \operatorname{Supp}_{\mathbf{x}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))$, we have $|\boldsymbol{\beta}|>|\boldsymbol{\alpha}|=d-\ell$, so $c_{\boldsymbol{\beta}}(\mathbf{a}) \in S_{d-|\boldsymbol{\beta}|}^{H} \subseteq \cup_{i=0}^{\ell-1} S_{i}^{H}$. Therefore, $S_{0}^{H}, S_{1}^{H}, \ldots, S_{d}^{H}$ also satisfy the condition (2) in Definition 3.5 and the proof is complete.

This is the cover defined in the DOS algorithm and we call it \mathbf{x}-homogeneous cover. So far, we prove the correctness of the DOS algorithm in a more general way.

After introducing two special admissible covers, we would like to compare them and explain their connection. For simplicity, we always assume $H_{\mathbf{x}}^{d}(p(\mathbf{x}+\mathbf{a}))=H_{\mathbf{x}}^{d}(q(\mathbf{x}))$ with $\operatorname{deg}(p(\mathbf{x}))=$ $\operatorname{deg}(q(\mathbf{x}))=d$ in our following discussion. Then $S_{0}^{H}=\varnothing$. We get $\operatorname{deg}_{\mathbf{a}}(p(\mathbf{x}+\mathbf{a})-q(\mathbf{x}))=d$ by Equation (3.4). Lemma 3.18 yields $S_{\ell}^{H} \subseteq \cup_{i=0}^{\ell} S_{i}^{D}$. Hence the connection between two different covers is like the following figure.

Now we give some examples to show our different algorithms with different admissible covers.
Example 3.20. Let $\mathbb{F}=\mathbb{Q}, p_{i}(x, y, z), q_{i}(x, y, z) \in \mathbb{Q}[x, y, z], i=1,2$ with $p_{1}(x, y, z)=x^{4}+x^{2} y+y^{2}$, $q_{1}(x, y, z)=p_{2}(x, y+1, z+2)+z, p_{2}(x, y, z)=x^{4}+x^{3} y+x y^{2}+z^{2}$ and $q_{2}(x, y, z)=p_{2}(x, y+1, z+$ 2) $+x y$.
(1) Compute $F_{p_{1}, q_{1}}$. We expand $p_{1}(x+a, y+b, z+c)-q_{1}(x, y, z)$ and get that

$$
\begin{aligned}
& p_{1}(x+a, y+b, z+c)-q_{1}(x, y, z) \\
= & \left(4 a \cdot x^{3}\right)+\left(\left(6 a^{2}+b-1\right) \cdot x^{2}+2 a \cdot x y\right) \\
& +\left(\left(4 a^{3}+2 a b\right) \cdot x+\left(a^{2}+2 b-2\right) \cdot y-z\right)+\left(a^{4}+a^{2} b+b^{2}-1\right) .
\end{aligned}
$$

Then we can separate the coefficients of $p_{1}(x+a, y+b, z+c)-q_{1}(x, y, z)$ with respect to x, y and z in two different methods as following.

So we can get $F_{p_{1}, q_{1}}=\varnothing$ at once if we use \mathbf{a}-degree cover, while by \mathbf{x}-homogeneous cover, we will calculate until we get S_{3}^{H}.
(2) Compute $F_{p_{2}, q_{2}}$. We expand $p_{2}(x+a, y+b, z+c)-q_{2}(x, y, z)$ and get that

$$
\begin{aligned}
& p_{2}(x+a, y+b, z+c)-q_{2}(x, y, z) \\
= & \left((4 a+b-1) \cdot x^{3}+3 a \cdot x^{2} y\right) \\
& +\left(\left(6 a^{2}+3 a b\right) \cdot x^{2}+\left(3 a^{2}+2 b-3\right) \cdot x y+a \cdot y^{2}\right) \\
& +\left(\left(4 a^{3}+3 a^{2} b+b^{2}-1\right) \cdot x+\left(a^{3}+2 a b\right) \cdot y+(2 c-4) \cdot z\right) \\
& +\left(a^{4}+a^{3} b+a b^{2}+c^{2}-4\right) .
\end{aligned}
$$

Then we can separate the coefficients of $p_{2}(x+a, y+b, z+c)-q_{2}(x, y, z)$ with respect to x, y and z in two different methods as following.

So we can get $F_{p_{2}, q_{2}}=\varnothing$ if we use \mathbf{x}-homogeneous cover and calculate S_{2}^{H}, while by \mathbf{a}-degree cover, we have to solve $2 c-4=0$ needlessly.

4 Isotropy groups and orbital decompositions

In this section, we first recall the notion of isotropy groups under shifts, which plays a central role in the summability criteria and existence criteria of telescopers. Then we present different types of partial fraction decomposition of $\mathbb{F}(\mathbf{x})$ with respect to different orbital factorizations as in [17]. These decompositions can be computed via algorithms for the SET problem over integers and will be used in the next sections for simplifying the rational summability problem and the existence problem of telescopers.

4.1 Isotropy groups

Let $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ be the free abelian group generated by shift operators $\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$ and A be a subgroup of G. Let p be a multivariate polynomial in $\mathbb{F}[\mathbf{x}]$. The set

$$
[p]_{A}:=\{\sigma(p) \mid \sigma \in A\}
$$

is called the A-orbit of p. Two polynomials $p, q \in \mathbb{F}[\mathbf{x}]$ are said to be A-shift equivalent or A equivalent if $[p]_{A}=[q]_{A}$, denoted by $p \sim_{A} q$. The relation \sim_{A} is an equivalence relation.

Definition 4.1 (Sato's Isotropy Group [51]). Let A and p be defined as above. The set

$$
A_{p}:=\{\sigma \in A \mid \sigma(p)=p\}
$$

is a subgroup of A, called the isotropy group of p in A.
If two polynomials p, q in $\mathbb{F}[\mathbf{x}]$ are A-shift equivalent, then $A_{p}=A_{q}$. The following remark says that we can test the A-equivalence of polynomials and compute a basis of A_{p} by algorithms for the SET problem over integers in Section 3.

Remark 4.2. (1) Two polynomials $p, q \in \mathbb{F}[\mathbf{x}]$ are G-equivalent if and only if there exists $\sigma \in G$ such that $\sigma(p)=q$. Therefore, the G-equivalence relation of p, q can be obtained via the computation of $Z_{p, q}$ in Section 3. When $p=q$, the group G_{p} is isomorphic to $Z_{p, p}$. Both of them are free abelian groups and a basis G_{p} can be given by a basis of $Z_{p, p}$.
(2) When $A=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right\rangle$ with $1 \leq r \leq n$, we can view p, q as polynomials in x_{1}, \ldots, x_{r} and the other variables are parameters. Then the A-equivalence relation of p, q and a basis of the isotropy A_{p} are also available by algorithms in Section 3.
(3) In general, let $A=\left\langle\tau_{1}, \ldots, \tau_{r}\right\rangle$, where $\left\{\tau_{1}, \ldots, \tau_{r}\right\}(1 \leq r \leq n)$ are \mathbb{Z}-linearly independent. We can use Proposition 5.12 to construct a difference isomorphism between $\left(\mathbb{F}(\mathbf{x}), \tau_{i}\right)$ and $\left(\mathbb{F}(\mathbf{x}), \sigma_{x_{i}}\right)$ such that $\phi \circ \tau_{i}=\sigma_{x_{i}} \circ \phi$ for $1 \leq i \leq r$. Write $B=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right\rangle$, then p and q are A-equivalent if and only if $\phi(p)$ is B-equivalent to $\phi(q)$. Furthermore, we have $\tau_{1}^{a_{1}} \cdots \tau_{r}^{a_{r}} \in A_{p}$ if and only if $\sigma_{x_{1}}^{a_{r}} \cdots \sigma_{x_{r}}^{a_{r}} \in B_{\phi(p)}$ for any $a_{1}, \ldots, a_{r} \in \mathbb{Z}$.

A structure property of the quotient group G / G_{p} is given by Sato [51, Lemma A-3] as follows.
Lemma 4.3. G / G_{p} is a free abelian group.
If $p \in \mathbb{F}[\mathbf{x}] \backslash \mathbb{F}$ is a non-constant polynomial, then G_{p} is a proper subgroup of G. By Lemma 4.3, we have $\operatorname{rank}\left(G_{p}\right)<\operatorname{rank}(G)$, where $\operatorname{rank}(G)$ denotes the rank of the free abelian group G. This property about the rank of isotropy groups plays a key rule in the reduction method of solving rational summability problem and the existence problem of telescopers.

If $n>1$, let $H=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right\rangle$ be the subgroup of G generated by $\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}$. The isotropy group of p in H is $H_{p}=\{\tau \in H \mid \tau(p)=p\}$. By Lemma 4.3, both G / G_{p} and H / H_{p} are free abelian groups. So the rank of G_{p} and H_{p} are strictly less than that of G and H respectively if p has positive degree in x_{1}.

Lemma 4.4. G_{p} / H_{p} is a free abelian group of $\operatorname{rank}\left(G_{p} / H_{p}\right) \leq 1$.
Proof. Define a group homomorphism $\varphi: G_{p} / H_{p} \rightarrow \mathbb{Z}$ by

$$
\sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}} H_{p} \mapsto k_{n} .
$$

It can be verified that φ is well-defined. For any $\tau_{1}, \tau_{2} \in G_{p}$, if they are in the same coset of H_{p} in G_{p}, then $\tau_{1} \tau_{2}^{-1} \in H_{p}$. This implies $\tau_{1} \tau_{2}^{-1} \in H$ and hence $\varphi\left(\tau_{1} H_{p}\right)=\varphi\left(\tau_{2} H_{p}\right)$. Moreover, the converse is true since $G_{p} \cap H=H_{p}$. So φ is injective. Then we have $G_{p} / H_{p} \cong \operatorname{im} \varphi=k \mathbb{Z}$ for some integer $k \in \mathbb{Z}$. So G_{p} / H_{p} is a free abelian group generated by $\varphi^{-1}(k)$.

Example 4.5. Consider polynomials in $\mathbb{Q}[x, y, z]$. Let $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$ and $H=\left\langle\sigma_{x}, \sigma_{y}\right\rangle$.
(1) For $p=x^{2}+2 x y+z^{2}$, we have $G_{p}=H_{p}=\{\mathbf{1}\}$.
(2) For $p=(x-3 y)^{2}(y+z)+1$, we have $G_{p}=\langle\tau\rangle$ and $H_{p}=\{\mathbf{1}\}$, where $\tau=\sigma_{x}^{3} \sigma_{y} \sigma_{z}^{-1}$. So $G_{p} / H_{p}=\langle\bar{\tau}\rangle$, where $\bar{\tau}=\tau H_{p}$ denotes the coset in G_{p} / H_{p} repesented by $\tau \in G_{p}$.
(3) Let $p=x+2 y+z$, we have $G_{p}=\left\langle\tau_{1}, \tau_{2}\right\rangle$ and $H_{p}=\left\langle\tau_{2}\right\rangle$, where $\tau_{1}=\sigma_{x} \sigma_{y}^{-1} \sigma_{z}$ and $\tau_{2}=\sigma_{x}^{2} \sigma_{y}^{-1}$. So $G_{p} / H_{p}=\left\langle\bar{\tau}_{1}\right\rangle$.

4.2 Orbital decompositions

A polynomial $p \in \mathbb{F}[\mathbf{x}]$ is said to be monic if the leading coefficient of p is 1 under a fix monomial order. Let $\hat{\mathbf{x}}_{1}$ denote the $m-1$ variables x_{2}, \ldots, x_{m}. For any subgroup A of $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ and any polynomial Q in $\mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$, one can classify all of monic irreducible factors in x_{1} of Q into distinct A-orbits which leads to a factorization

$$
Q=c \cdot \prod_{i=1}^{I} \prod_{j=1}^{J_{i}} \tau_{i, j}\left(d_{i}\right)^{e_{i, j}}
$$

where $c \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right), I, J_{i}, e_{i, j} \in \mathbb{N}, \tau_{i, j} \in A, d_{i} \in \mathbb{F}[\mathbf{x}]$ being monic irreducible polynomials in distinct A orbits, and for each $i, \tau_{i, j}\left(d_{i}\right) \neq \tau_{i, j^{\prime}}\left(d_{i}\right)$ if $1 \leq j \neq j^{\prime} \leq J_{i}$. With respect to this fixed representation, we have the unique irreducible partial fraction decomposition for a rational function $f=P / Q \in$ $\mathbb{F}(\mathbf{x})$ of the form

$$
\begin{equation*}
f=p+\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \sum_{\ell=1}^{e_{i, j}} \frac{a_{i, j, \ell}}{\tau_{i, j}\left(d_{i}\right)^{\ell}}, \tag{4.1}
\end{equation*}
$$

where $p, a_{i, j, \ell} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(a_{i, j, \ell}\right)<\operatorname{deg}_{x_{1}}\left(d_{i}\right)$ for all i, j, ℓ. Note that the representation in (4.1) depends on the choice of representatives d_{i} in distinct A-orbits. However, the sum $\sum_{j=1}^{J_{i}} \frac{a_{i, j, \ell}}{\tau_{i, j}\left(d_{i}\right)^{\ell}}$ only depends on the multiplicity ℓ and the orbit $\left[d_{i}\right]_{A}$ instead of its representative d_{i}. Based on this fact, we shall formulate a unique decomposition of a rational function with respect to the group A. In this sense, we can decompose $\mathbb{F}(\mathbf{x})$ as a vector space over $\mathbb{E}=\mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)$.

Given an irreducible polynomial $d \in \mathbb{F}[\mathbf{x}]$ with $\operatorname{deg}_{x_{1}}(d)>0$ and $j \in \mathbb{N}^{+}$, we define a subspace of $\mathbb{F}(\mathbf{x})$

$$
\begin{equation*}
V_{[d]_{A}, j}=\operatorname{Span}_{\mathbb{E}}\left\{\left.\frac{a}{\tau(d)^{j}} \right\rvert\, a \in \mathbb{E}\left[x_{1}\right], \tau \in A, \operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)\right\} . \tag{4.2}
\end{equation*}
$$

For any fraction in $V_{[d]_{A}, j}$, the irreducible factors of its denominator are in the same A-orbit as d. Let $V_{0}=\mathbb{E}\left[x_{1}\right]$ denote the set of all polynomials in x_{1}. By the irreducible partial fraction decomposition, any rational function $f \in \mathbb{F}(\mathbf{x})$ can be uniquely written in the form

$$
\begin{equation*}
f=f_{0}+\sum_{j} \sum_{[d]_{A}} f_{[d]_{A}, j}, \tag{4.3}
\end{equation*}
$$

where $f_{0} \in V_{0}$ and $f_{[d]_{A}, j}$ are in distint $V_{[d]_{A}, j}$ spaces. Let T_{A} be the set of all distinct A-orbits of monic irreducible polynomials in $\mathbb{F}[\mathbf{x}]$, whose degrees with respect to x_{1} are positive. Then $\mathbb{F}(\mathbf{x})$ has the following direct sum decomposition

$$
\begin{equation*}
\mathbb{F}(\mathbf{x})=V_{0} \bigoplus\left(\bigoplus_{j} \bigoplus_{[d]_{A}} V_{[d]_{A}, j}\right) \tag{4.4}
\end{equation*}
$$

where j runs over all positive integer and $[d]_{A}$ runs over all elements in T_{A}.
Definition 4.6. The decomposition (4.4) of $\mathbb{F}(\mathbf{x})$ is called the orbital decomposition of $\mathbb{F}(\mathbf{x})$ with respect to the variable x_{1} and the group A. If f is written in the form (4.3), we call f_{0} and $f_{[d]_{A}, j}$ orbital components of f with respect to x_{1} and A.

A key feature of subspaces $V_{[d]_{A}, j}$ is the A-invariant property. In the field of univariate rational functions, the orbital decomposition of $\mathbb{F}\left(x_{1}\right)$ with respect to the group $A=\left\langle\sigma_{x_{1}}\right\rangle$ was first given in [38] by Karr.

Lemma 4.7. If $f \in V_{[d]_{A}, j}$ and $P \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)[A]$, then $P(f) \in V_{[d]_{A}, j}$.
Proof. Let $f=\sum a_{i} / \tau_{i}(d)^{j}$ and $P=\sum p_{\sigma} \sigma$ with $p_{\sigma} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)$ and $\sigma \in A$. For any $\sigma \in A$, we have $\sigma \tau_{i}$ is still in A, because A is a group. Since the shift operators do not change the degree and multiplicity of a polynomial, we have $\operatorname{deg}_{x_{1}}\left(\sigma\left(a_{i}\right)\right)<\operatorname{deg}_{x_{1}}(d)$ and then $\frac{p_{\sigma} \sigma\left(a_{i}\right)}{\sigma\left(\tau_{i}(d)\right)^{j}}$ is in $V_{[d]_{A}, j}$. So $P(f) \in V_{[d]_{A}, j}$ by the linearity of the space.
Example 4.8. Let $\mathbb{F}=\mathbb{Q}, \mathbb{E}=\mathbb{Q}(y, z)$ and $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$. Consider the rational function f_{1} in $\mathbb{Q}(x, y, z)$ of the form

$$
f_{1}=\underbrace{\frac{x-z^{2}}{x^{2}+2 x y+z^{2}}}_{d_{1}:=d_{1,1}}+\underbrace{\frac{x-y-2 z}{x^{2}+2 x y+2 x+z^{2}}}_{d_{1,2}}+\underbrace{\frac{y+z^{2}}{x^{2}+2 x y+8 x+2 y+z^{2}-2 z+8}}_{d_{1,3}} .
$$

If $A=\left\langle\sigma_{x}\right\rangle$, then the orbital partial fraction decomposition of f_{1} is

$$
f_{1}=f_{1,1}+f_{1,2}+f_{1,3} \text { with } f_{1,1}=\frac{x-z^{2}}{d_{1,1}}, f_{1,2}=\frac{x-y-2 z}{d_{1,2}} \text { and } f_{1,3}=\frac{y+z^{2}}{d_{1,3}},
$$

where $f_{1, i} \in V_{\left[d_{1, i}\right]_{A}, 1}$ for $i=1,2,3$ and $d_{1}, d_{1,2}, d_{1,3}$ are in distinct $\left\langle\sigma_{x}\right\rangle$-orbits. If $A=\left\langle\sigma_{x}, \sigma_{y}\right\rangle$, then the orbital partial fraction decomposition of f_{1} is

$$
f_{1}=f_{1,1}+f_{1,2} \text { with } f_{1,1}=\frac{x-z^{2}}{d_{1}}+\frac{x-y-2 z}{\sigma_{y}\left(d_{1}\right)} \text { and } f_{1,2}=\frac{y+z^{2}}{d_{1,3}} \text {, }
$$

where $f_{1,1} \in V_{\left[d_{1}\right]_{A}, 1}, f_{1,2} \in V_{\left[d_{1,3}\right]_{A}, 1}$ and $d_{1}, d_{1,3}$ are in distinct $\left\langle\sigma_{x}, \sigma_{y}\right\rangle$-orbits. If $A=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$, then $f_{1} \in V_{\left[d_{1}\right]_{A}, 1}$ is one component in the orbital decomposition. Because

$$
f_{1}=\frac{x-z^{2}}{d_{1}}+\frac{x-y-2 z}{\sigma_{y}\left(d_{1}\right)}+\frac{y+z^{2}}{\sigma_{x} \sigma_{y}^{3} \sigma_{z}^{-1}\left(d_{1}\right)} .
$$

Example 4.9. Let $\mathbb{F}=\mathbb{Q}$ and $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$. Consider the rational function $f=f_{1}+f_{2}+f_{3}$ in $\mathbb{Q}(x, y, z)$ with f_{1} given in Example 4.8,

$$
f_{2}=\underbrace{\frac{x+z}{(x-3 y)^{2}(y+z)+1}}_{d_{2}} \text { and } f_{3}=\left(y+\frac{z}{y^{2}+z-1}-\frac{1}{y^{2}+z}\right) \frac{1}{(\underbrace{x+2 y+z}_{d_{3}})^{2}} .
$$

If $A=G$, then the orbital partial fraction decomposition of f is

$$
f=f_{1}+f_{2}+f_{3} \quad \text { with } \quad f_{i} \in V_{\left[d_{i}\right]_{G}, 1} \text { for } i=1,2 \text { and } f_{3} \in V_{\left[d_{3}\right]_{G}, 2},
$$

where d_{1}, d_{2}, d_{3} are in distinct $\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$-orbits.

5 Rational summability problem

In this section, we solve the rational summability problem for mulitivariate rational functions and design an algorithm for rational summability testing. In Section 5.1 we use a special orbital decomposition in Section 4.2 to reduce the summmability problem of a general rational function to its orbital components and then further to simple frations by Abramov's reduction. In Section 5.2, we use the structure of isotropy groups to reduce the number of variables in the summability problem inductively.

5.1 Orbital reduction for summability

Let f be a rational function in $\mathbb{F}(\mathbf{x})$, where $\mathbf{x}=\left\{x_{1}, \ldots, x_{m}\right\}$. Let n be an integer such that $1 \leq$ $n \leq m$. We consider the ($\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$)-summability problem of f in $\mathbb{F}(\mathbf{x})$. Let $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$. Taking $\mathbb{E}=\mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)$ and $A=G$ in equality (4.2), we get the subspace $V_{[d]_{G}, j}$ of $\mathbb{F}(\mathbf{x})$

$$
V_{[d]_{G}, j}=\operatorname{Span}_{\mathbb{E}}\left\{\left.\frac{a}{\tau(d)^{j}} \right\rvert\, a \in \mathbb{E}\left[x_{1}\right], \tau \in G, \operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)\right\} .
$$

where $j \in \mathbb{N}^{+}$and $d \in \mathbb{E}[\mathbf{x}]$ is irreducible with $\operatorname{deg}_{x_{1}}(d)>0$. According to Equation (4.3), f can be decomposed into the form

$$
\begin{equation*}
f=f_{0}+\sum_{j} \sum_{[d]_{G}} f_{[d]_{G}, j} \tag{5.1}
\end{equation*}
$$

where $f_{0} \in V_{0}=\mathbb{E}\left[x_{1}\right]$ and $f_{[d]_{G}, j}$ are in distint $V_{[d]_{G}, j}$ spaces. The orbital decomposition (4.4) of $\mathbb{F}(\mathbf{x})$ with respect to the group G is as follows

$$
\begin{equation*}
\mathbb{F}(\mathbf{x})=V_{0} \bigoplus\left(\bigoplus_{j \in \mathbb{N}^{+}} \bigoplus_{[d]_{G} \in T_{G}} V_{[d]_{G}, j}\right) \tag{5.2}
\end{equation*}
$$

Lemma 5.1. Let $f \in \mathbb{F}(\mathbf{x})$. Then f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable if and only if f_{0} and each $f_{[d]_{G}, j}$ are $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for all $[d]_{G} \in T_{G}$ and $j \in \mathbb{N}^{+}$.

Proof. The sufficiency is due to the linearity of difference operators $\Delta_{x_{i}}$. For the necessity, suppose $f=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g^{(i)}\right)$ with $g^{(i)} \in \mathbb{F}(\mathbf{x})$. By the orbital decomposition of rational functions (5.1), we can write $f, g^{(i)}$ in the form

$$
f=f_{0}+\sum_{j} \sum_{[d]_{G}} f_{[d]_{G}, j} \quad \text { and } \quad g^{(i)}=g_{0}^{(i)}+\sum_{j} \sum_{[d]_{G}} g_{[d]_{G}, j}^{(i)} \text { for } 1 \leq i \leq n .
$$

By the linearity of $\Delta_{x_{i}}$, we see

$$
f=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{0}^{(i)}\right)+\sum_{j} \sum_{[d]_{G}}\left(\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{[d]_{G}, j}^{(i)}\right)\right) .
$$

By Lemma 4.7, it is another expression of f with respect to $V_{[d]_{G}, j}$. Such a decomposition is unique, so $f_{0}=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{0}^{(i)}\right)$ and $f_{[d]_{G}, j}=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{[d]_{G}, j}^{(i)}\right)$, which are $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable.

Using Lemma 5.1, we can reduce the summability problem of a rational function to its orbital components. Note that polynomials in x_{1} are always $\left(\sigma_{x_{1}}\right)$-summable. Thus Problem 2.4 can be reduced to that for rational functions in $V_{[d]_{G}, j}$, which are of the form

$$
\begin{equation*}
f=\sum_{\tau} \frac{a_{\tau}}{\tau(d)^{j}}, \tag{5.3}
\end{equation*}
$$

where $\tau \in G, a_{\tau} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], d \in \mathbb{F}[\mathbf{x}]$ with $\operatorname{deg}_{x_{1}}\left(a_{\tau}\right)<\operatorname{deg}_{x_{1}}(d)$ and d is irreducible in x_{1} over $\mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)$.

Let σ be an automorphism on $\mathbb{F}(\mathbf{x})$ and $a, b \in \mathbb{F}(\mathbf{x})$. Then for any integer $k \in \mathbb{Z}$, we have the reduction formula

$$
\begin{equation*}
\frac{a}{\sigma^{k}(b)}=\sigma(h)-h+\frac{\sigma^{-k}(a)}{b}, \tag{5.4}
\end{equation*}
$$

where $h=0$ if $k=0, h=\sum_{i=0}^{k-1} \frac{\sigma^{i-k}(a)}{\sigma^{i}(b)}$ if $k>0$ and $h=-\sum_{i=0}^{-k-1} \frac{\sigma^{i}(a)}{\sigma^{i+k}(b)}$ if $k<0$. For any $\tau=\sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}} \in G$, applying the reduction formula (5.4) with $\sigma=\sigma_{x_{i}}$ for $i=1, \ldots, n$, we get

$$
\begin{equation*}
\frac{a}{\sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}}(b)}=\sum_{i=1}^{n}\left(\sigma_{x_{i}}\left(h_{i}\right)-h_{i}\right)+\frac{\sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n}}^{-k_{n}}(a)}{b} \tag{5.5}
\end{equation*}
$$

where

$$
h_{i}=\left\{\begin{array}{cl}
0, & \text { if } k_{i}=0 \\
\sum_{\ell=0}^{k_{i}-1} \frac{\sigma_{x_{i}}^{\ell-k_{i}} \sigma_{x_{i-1}}^{-k_{i-1}} \cdots \sigma_{x_{1}}^{-k_{1}}(a)}{\sigma_{x_{i}}^{\ell} \sigma_{x_{i+1}+1}^{k_{i+1}} \cdots \sigma_{x_{n}}^{k_{n}}(b)}, & \text { if } k_{i}>0, \\
-\sum_{\ell=0}^{-k_{i}-1} \frac{\sigma_{x_{i}}^{\ell} \sigma_{x_{i-1}}^{-k_{i-1}} \cdots \sigma_{x_{1}}^{-k_{1}}(a)}{\sigma_{x_{i}}^{\ell+k_{i}} \sigma_{x_{i+1}}^{k_{i+1} \cdots \sigma_{x_{n}}^{k_{n}}(b)},} & \text { if } k_{i}<0
\end{array}\right.
$$

for $i=1, \ldots, n$. The equation (5.5) is called the ($\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$)-reduction formula. Rewriting every fraction of f in (5.3) by the reduction formula (5.5), we get the following lemma.
Lemma 5.2. Let $f \in V_{[d]_{G}, j}$ be in the form (5.3). Then we can decompose it into the form

$$
\begin{equation*}
f=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+r \text { with } r=\frac{a}{d^{j}}, \tag{5.6}
\end{equation*}
$$

where $g_{i} \in \mathbb{F}(\mathbf{x})$, $a=\sum_{\tau} \tau^{-1}\left(a_{\tau}\right)$ with $\operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)$. In particular, f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ summable if and only if r is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable.
Example 5.3. Consider the rational function $f_{1} \in \mathbb{Q}(x, y, z)$ given in Example 4.8. Then $f_{1} \in$ $V_{\left[d_{1}\right]_{G}, 1}$ and it can be written as

$$
f_{1}=\frac{x-z^{2}}{d_{1}}+\frac{x-y-2 z}{\sigma_{y}\left(d_{1}\right)}+\frac{y+z^{2}}{\sigma_{x} \sigma_{y}^{3} \sigma_{z}^{-1}\left(d_{1}\right)},
$$

where $d_{1}=x^{2}+2 x y+z^{2}$. By applying the $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-reduction formula, we have

$$
f_{1}=\Delta_{x}\left(u_{1}\right)+\Delta_{y}\left(v_{1}\right)+\Delta_{z}\left(w_{1}\right)+r_{1} \text { with } r_{1}=\frac{2 x-1}{d_{1}}
$$

where

$$
u_{1}=\frac{y+z^{2}}{\sigma_{y}^{3} \sigma_{z}^{-1}\left(d_{1}\right)}, v_{1}=\frac{x-y+1-2 z}{d_{1}}+\sum_{\ell=0}^{2} \frac{y+\ell-3+z^{2}}{\sigma_{y}^{\ell} \sigma_{z}^{-1}\left(d_{1}\right)}, w_{1}=-\frac{y-3+z^{2}}{\sigma_{z}^{-1}\left(d_{1}\right)} .
$$

Then f_{1} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable if and only if r_{1} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable.
The results in Lemmas 5.1 and 5.2 are summarized as follows. The following lemma reduces the rational summability problem from general rational functions to simple fractions.
Corollary 5.4 (Lemma 1.5, restated). Let $f \in \mathbb{F}(\mathbf{x})$. Then we can decompose f into the form

$$
\begin{equation*}
f=\sum_{i=1}^{n} \Delta_{\sigma_{x_{1}}}\left(g_{i}\right)+r \text { with } r=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \frac{a_{i, j}}{d_{i}^{j}}, \tag{5.7}
\end{equation*}
$$

where $g_{i} \in \mathbb{F}(\mathbf{x}), a_{i, j} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], d_{i} \in \mathbb{F}[\mathbf{x}]$ with $\operatorname{deg}_{x_{1}}\left(a_{i, j}\right)<\operatorname{deg}_{x_{1}}\left(d_{i}\right)$ and the d_{i} 's are monic irreducible polynomials in distinct G-orbits. Furthermore, f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable if and only if each $a_{i, j} / d_{i}^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for all i, j with $1 \leq i \leq I$ and $1 \leq j \leq J_{i}$.

5.2 Summability criteria

By Corollary 5.4, we reduce the rational summability problem to that for simple fractions

$$
\begin{equation*}
f=\frac{a}{d^{j}}, \tag{5.8}
\end{equation*}
$$

where $j \in \mathbb{N} \backslash\{0\}, a \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ and $d \in \mathbb{F}[\mathbf{x}]$ is irreducible with $\operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)$. In this section, we shall present a criterion on the summability for such simple fractions.

For the univariate summability problem, we recall the following well known result in $[2,4,10$, $46,48,50]$. Since the univariate case is the base of our induction method, we give a proof for the sake of completeness.

Lemma 5.5. Let $f \in \mathbb{F}(\mathbf{x})$ be of the form (5.8). Then f is $\left(\sigma_{x_{1}}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if and only if $a=0$.

Proof. The sufficiency is trivial since $f=\Delta_{x_{1}}(0)$. To show the necessity, suppose f is $\left(\sigma_{x_{1}}\right)$ summable but $a \neq 0$. Since $f=a / d^{j} \in V_{[d]_{G}, j}$, by the proof of Lemma 5.1 we can further assume $f=\Delta_{x_{1}}(g)$ for some $g \in V_{[d] G, j}$. Write g in the form $g=\sum_{i=\ell_{0}}^{\ell_{1}} a_{i} / \sigma_{x_{1}}^{i}(d)^{j}$ with $a_{\ell_{0}} a_{\ell_{1}} \neq 0$. Then

$$
f=\Delta_{x_{1}}(g)=\sum_{i=\ell_{0}}^{\ell_{1}+1} \frac{\tilde{a}_{i}}{\sigma_{x_{1}}^{i}(d)^{j}},
$$

where $\tilde{a}_{i}=\sigma_{x_{1}}\left(a_{i-1}\right)-a_{i}$ for $\ell_{0}+1 \leq i \leq \ell_{1}, \tilde{a}_{\ell_{0}}=-a_{\ell_{0}}$ and $\tilde{a}_{\ell_{1}+1}=\sigma_{x_{1}}\left(a_{\ell_{1}}\right)$. Note that $\tilde{a}_{\ell_{0}}$ and $\tilde{a}_{\ell_{1}+1}$ are nonzero. For any integer $i \in \mathbb{Z}, \sigma_{x_{1}}^{i}(d)$ is still an irreducible polynomial. However, there is only one irreducible factor in the denominator of $f=a / d^{j}$. So we must have $\sigma_{x_{1}}^{i}(d)=d$ for some nonzero integer i. It implies that d is free of x_{1}. This is a contradiction because d has positive degree in x_{1}.

For the multivariate summability problem with $n>1$, let $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ and $H=$ $\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right\rangle$. The isotropy group of the polynomial d in G and H are denoted by G_{d} and H_{d}, respectively, i.e.,

$$
G_{d}=\{\tau \in G \mid \tau(d)\} \quad \text { and } \quad H_{d}=\{\tau \in H \mid \tau(d)=d\} .
$$

By Lemma 4.4, we know either $\operatorname{rank}\left(G_{d} / H_{d}\right)=0$ or $\operatorname{rank}\left(G_{d} / H_{d}\right)=1$.
When $\operatorname{rank}\left(G_{d} / H_{d}\right)=0$, the summability problem in n variables can be reduced to that in $n-1$ variables.

Lemma 5.6. Let $f=a / d^{j} \in \mathbb{F}(\mathbf{x})$ be of the form (5.8). If $n>1$ and $\operatorname{rank}\left(G_{d} / H_{d}\right)=0$, then f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if and only if f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable in $\mathbb{F}(\mathbf{x})$.

Proof. The sufficiency is obvious by definition. For the necessity, suppose f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ summable but not $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable. By the orbital decomposition of f in (5.2) and Lemma 5.1, we get

$$
\begin{equation*}
f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right) \tag{5.9}
\end{equation*}
$$

with g_{1}, \ldots, g_{n} in the same subspace $V_{[d]_{G}, j}$ as f. As an analogue to (5.6) in $n-1$ variables x_{1}, \ldots, x_{n-1}, we can decompose g_{n} as

$$
\begin{equation*}
g_{n}=\sum_{i=1}^{n-1} \Delta_{x_{i}}\left(u_{i}\right)+\sum_{\ell=0}^{\rho} \frac{\lambda_{\ell}}{\sigma_{x_{n}}^{\ell}(\mu)^{j}}, \tag{5.10}
\end{equation*}
$$

where $u_{i} \in \mathbb{F}(\mathbf{x}), \rho \in \mathbb{N}, \lambda_{\ell} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], \mu \in \mathbb{F}[\mathbf{x}]$ with $\operatorname{deg}_{x_{1}}\left(\lambda_{\ell}\right)<\operatorname{deg}_{x_{1}}(d)$ and μ is in the same G-orbit as d.

Furthermore, we can assume $\lambda_{0} \lambda_{\rho} \neq 0$ and each nonzero $\lambda_{\ell} / \sigma_{x_{n}}^{\ell}(\mu)^{j}$ is not $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$ summable. Substituting g_{n} in (5.10) into (5.9), we get

$$
\begin{equation*}
f+\sum_{\ell=0}^{\rho+1} \frac{\tilde{\lambda}_{\ell}}{\sigma_{x_{n}}^{\ell}(\mu)^{j}}=\sum_{i=1}^{n-1} \Delta_{x_{i}}\left(h_{i}\right) \tag{5.11}
\end{equation*}
$$

where $\tilde{\lambda}_{0}=\lambda_{0}, \tilde{\lambda}_{\rho+1}=-\sigma_{x_{n}}\left(\lambda_{\rho}\right), \tilde{\lambda}_{\ell}=\lambda_{\ell}-\sigma_{x_{n}}\left(\lambda_{\ell-1}\right)$ for all $1 \leq \ell \leq \rho$ and $h_{i}=g_{i}+\Delta_{x_{n}}\left(u_{i}\right)$ for all $1 \leq i \leq n-1$.

Since $\operatorname{rank}\left(G_{d} / H_{d}\right)=0$ and $G_{d}=G_{\mu}$, it follows that all $\sigma_{x_{n}}^{\ell}(\mu)$ with $\ell \in \mathbb{Z}$ are in distinct H orbits. In particular, $[\mu]_{H},\left[\sigma_{x_{n}}(\mu)\right]_{H} \ldots,\left[\sigma_{x_{n}}^{\rho+1}(\mu)\right]_{H}$ are distinct H-orbits. On the other hand, the left hand side of (5.11) is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable, but $\tilde{\lambda}_{0} / \mu^{j}$ is not $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable according to the assumption. By Lemma 5.1 (in $n-1$ variables), the only choice is that $\mu \sim_{H} d$. Similarly, $\sigma_{x_{n}}^{\rho+1}(\mu) \sim_{H} d$ and hence $\mu \sim_{H} \sigma_{x_{n}}^{\rho+1}(\mu)$. This leads to a contradiction since ρ is a nonnegative integer.

Lemma 5.7. Let $f \in \mathbb{F}(\mathbf{x})$ and K be a subgroup of $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ with rank $r(1 \leq r \leq n)$. If $\left\{\sigma_{i}\right\}_{i=1}^{r}$ and $\left\{\tau_{i}\right\}_{i=1}^{r}$ are two bases of K, then f is $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$-summable if and only if f is $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable.

To prove the basis exchange property of summability problem in Lemma 5.7, we first show the following lemma. It can be seen as an variant of the reduction formula (5.5). Since it is useful in computation, we give a strict proof by induction.

Lemma 5.8. Let $\sigma_{1}, \ldots, \sigma_{r}$ be elements in G and $K=\left\langle\sigma_{1}, \ldots, \sigma_{r}\right\rangle$ be the subgroup of G generated by $\sigma_{1}, \ldots, \sigma_{r}$. Then for every $\tau \in K$,

$$
\tau-\mathbf{1}=\left(\sigma_{1}-\mathbf{1}\right) \tilde{\sigma}_{1}+\cdots+\left(\sigma_{r}-\mathbf{1}\right) \tilde{\sigma}_{r}
$$

for some $\tilde{\sigma}_{i} \in \mathbb{F}[K]$.
Proof. We prove this lemma by induction on the number of σ_{i}. If $r=1$, then $\tau=\sigma_{1}^{k_{1}}$ for some $k_{1} \in \mathbb{Z}$. We have $\sigma_{1}^{k_{1}}-\mathbf{1}=\left(\sigma_{1}-\mathbf{1}\right) \mu$, where $\mu=0$ if $k_{1}=0, \mu=\sum_{i=0}^{k_{1}-1} \sigma_{1}^{i}$ if $k_{1}>0$ and $\mu=-\sum_{i=0}^{-k_{1}-1} \sigma_{1}^{i+k_{1}}$ if $k_{1}<0$. If $r \geq 2$, assume that the conclusion holds for $r-1$. Write $\tau=\sigma_{1}^{k_{1}} \cdots \sigma_{r}^{k_{r}}$ for some $k_{1}, \ldots, k_{r} \in \mathbb{Z}$. Then

$$
\tau-\mathbf{1}=\left(\sigma_{1}^{k_{1}}-\mathbf{1}\right) \sigma_{2}^{k_{2}} \cdots \sigma_{r}^{k_{r}}+\left(\sigma_{2}^{k_{2}} \cdots \sigma_{r}^{k_{r}}-\mathbf{1}\right)
$$

If $\sigma_{2}^{k_{2}} \cdots \sigma_{r}^{k_{r}}=\mathbf{1}$, then we are done. Otherwise, by the inductive hypothesis, we get $\tau-\mathbf{1}=$ $\left(\sigma_{1}-\mathbf{1}\right) \tilde{\sigma}_{1}+\cdots+\left(\sigma_{r}-\mathbf{1}\right) \tilde{\sigma}_{r}$ for some $\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{r} \in \mathbb{F}[K]$. In fact, the above argument gives the following explicit expression

$$
\tilde{\sigma}_{i}=\left\{\begin{array}{cl}
0 & \text { if } k_{i}=0 \\
\sum_{\ell=0}^{k_{i}-1} \sigma_{i}^{\ell} \sigma_{i+1}^{k_{i+1}} \cdots \sigma_{r}^{k_{r}} & \text { if } k_{i}>0 \\
-\sum_{\ell=0}^{-k_{i}-1} \sigma_{i}^{\ell+k_{i}} \sigma_{i+1}^{k_{i+1}} \cdots \sigma_{r}^{k_{r}} & \text { if } k_{i}<0
\end{array}\right.
$$

for $i=1, \ldots, r$.

Proof of Lemma 5.7. Suppose f is $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable. This means

$$
\begin{equation*}
f=\Delta_{\tau_{1}}\left(h_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(h_{r}\right), \tag{5.12}
\end{equation*}
$$

for some $h_{1}, \ldots, h_{r} \in \mathbb{F}(\mathbf{x})$. For each $i=1, \ldots, r$, since $\tau_{i} \in\left\langle\sigma_{1}, \ldots, \sigma_{r}\right\rangle$, it follows from Lemma 5.8 that $\tau_{i}-\mathbf{1}=\left(\sigma_{1}-\mathbf{1}\right) \tilde{\sigma}_{i, 1}+\cdots+\left(\sigma_{r}-\mathbf{1}\right) \tilde{\sigma}_{i, r}$ for some $\tilde{\sigma}_{i, j} \in \mathbb{F}[K]$ with K being the subgroup generated by $\sigma_{1}, \ldots, \sigma_{r}$. Applying this operator to h_{i} yields that

$$
\begin{equation*}
\Delta_{\tau_{i}}\left(h_{i}\right)=\Delta_{\sigma_{1}}\left(h_{i, 1}\right)+\cdots+\Delta_{\sigma_{r}}\left(h_{i, r}\right), \tag{5.13}
\end{equation*}
$$

where $h_{i, j}=\tilde{\sigma}_{i, j}\left(h_{i}\right)$ for $j=1, \ldots, r$. Combining Equations (5.12) and (5.13), we have

$$
f=\sum_{i=1}^{r} \Delta_{\tau_{i}}\left(h_{i}\right)=\sum_{i=1}^{r} \sum_{j=1}^{r} \Delta_{\sigma_{j}}\left(h_{i, j}\right)=\sum_{j=1}^{r} \Delta_{\sigma_{j}}\left(\sum_{i=1}^{r} h_{i, j}\right),
$$

where the last equality follows from the linearity of $\Delta_{\sigma_{j}}$. Thus f is $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$-summable. Similarly, the other direction is also true.

Theorem 5.9 (Theorem 1.6, restated). Let $f=a / d^{j} \in \mathbb{F}(\mathbf{x})$ be of the form (5.8). Let $\left\{\tau_{i}\right\}_{i=1}^{r}(1 \leq$ $r<n)$ be a basis of G_{d} (take $\tau_{1}=\mathbf{1}$, if $\left.G_{d}=\{\mathbf{1}\}\right)$. Then f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable if and only if

$$
a=\Delta_{\tau_{1}}\left(b_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(b_{r}\right)
$$

for some $b_{i} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for all $1 \leq i \leq r$.
Proof. The sufficiency follows from the fact that $f=\sum_{i=1}^{r} \Delta_{\tau_{i}}\left(b_{i} / d^{j}\right)$ and Lemma 5.8. For the necessity, we proceed by induction on n. If $n=1$, then G_{d} is a trivial group and the univariate case follows from Lemma 5.5. If $n>1$, suppose the inductive hypothesis is true for $n-1$ as follows.

If $\left\{\theta_{i}\right\}_{i=1}^{s}$ is a basis of H_{d}, then f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable if and only if $a=\sum_{i=1}^{s} \Delta_{\theta_{i}}\left(b_{i}\right)$ for some $b_{i} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for all $1 \leq i \leq s$.

Now we proceed by a case distinction according to the rank of G_{d} / H_{d}. If $\operatorname{rank}\left(G_{d} / H_{d}\right)=0$, then $H_{d}=G_{d}$. The conclusion follows from Lemma 5.6 and the inductive hypothesis. If $\operatorname{rank}\left(G_{d} / H_{d}\right)=$ 1, by Lemma 5.7, we may assume $\left\{\tau_{i}\right\}_{i=1}^{r}$ is a basis of G_{d} such that $H_{d}=\left\langle\tau_{1}, \ldots, \tau_{r-1}\right\rangle$ and $G_{d} / H_{d}=\left\langle\bar{\tau}_{r}\right\rangle$. In here, $\bar{\tau}_{r}$ represents the element $\tau_{r} H_{d}$ with $\tau_{r} \in G_{d}$. Then we can choose $\tau_{r}=\sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n-1}}^{-k_{n-1}} \sigma_{x_{n}}^{k_{n}}$ such that k_{n} is a positive integer. Otherwise, replace τ_{r} by τ_{r}^{-1}. Since $\bar{\tau}_{r}$ is a generator of G_{d} / H_{d}, we have k_{n} is the smallest positive integer such that $\sigma_{x_{n}}^{k_{n}}(d) \sim_{H} d$.

By the decomposition (4.4), we can assume $f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right)$ with $g_{i} \in V_{[d]}, j$. In here, g_{n} can be decomposed as

$$
g_{n}=\sum_{i=1}^{n-1} \Delta_{x_{i}}\left(u_{i}\right)+\sum_{\ell=0}^{k_{n}-1} \frac{\lambda_{\ell}}{\sigma_{x_{n}}^{\ell}(d)^{j}},
$$

where $u_{i} \in \mathbb{F}(\mathbf{x})$ and $\lambda_{\ell} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(\lambda_{\ell}\right)<\operatorname{deg}_{x_{1}}(d)$. Then we have

$$
\begin{equation*}
f-\Delta_{x_{n}}\left(\sum_{\ell=0}^{k_{n}-1} \frac{\lambda_{\ell}}{\sigma_{x_{n}}^{\ell}(d)^{j}}\right)=\sum_{i=1}^{n-1} \Delta_{x_{i}}\left(h_{i}\right), \tag{5.14}
\end{equation*}
$$

where $h_{i}=g_{i}+\Delta_{x_{n}}\left(u_{i}\right)$. Note that $\sigma_{x_{n}}^{k_{n}}(d)=\sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n-1}}^{k_{n-1}}(d)$ and apply the reduction formula (5.5) to simplify (5.14). We get

$$
\begin{equation*}
\tilde{f}:=\sum_{\ell=0}^{k_{n}-1} \frac{\tilde{\lambda}_{\ell}}{\sigma_{x_{n}}^{\ell}(d)^{j}}=\sum_{i=1}^{n-1} \Delta_{x_{i}}\left(\tilde{h}_{i}\right), \tag{5.15}
\end{equation*}
$$

where $\tilde{h}_{i} \in \mathbb{F}(\mathbf{x}), \tilde{\lambda}_{0}=a+\lambda_{0}-\sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n-1}}^{-k_{n-1}} \sigma_{x_{n}}\left(\lambda_{k_{n}-1}\right)$ and $\tilde{\lambda}_{\ell}=\lambda_{\ell}-\sigma_{x_{n}}\left(\lambda_{\ell-1}\right)$ for $1 \leq \ell \leq k_{n}-1$.
Note that $[d]_{H},\left[\sigma_{x_{n}}(d)\right]_{H}, \ldots,\left[\sigma_{x_{n}}^{k_{n}-1}(d)\right]_{H}$ are distinct H-orbits due to the minimality of k_{n}. From the equation (5.15), \tilde{f} is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable. So by Lemma 5.1, each $\frac{\tilde{\lambda}_{\ell}}{\sigma_{x_{n}}(d)^{j}}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n-1}}\right)$-summable for $0 \leq \ell \leq k_{n}-1$. Let W denote the vector subspace of $\mathbb{F}(\mathbf{x})$ over \mathbb{F} consisting of all elements in the form of $\sum_{i=1}^{r-1} \Delta_{\tau_{i}}\left(b_{i}\right)$ with $b_{i} \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ and $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$. (If $r=1$, take $W=\{0\}$.) If two rational functions $g, h \in \mathbb{F}(\mathbf{x})$ satisfy the property that $g-h \in W$, we say g, h are congruent modulo W, denoted by $g \equiv h(\bmod W)$. Since $H_{d}=H_{\sigma_{x_{n}}(d)}$, we apply the inductive hypothesis to conclude that

$$
\begin{cases}0 \equiv a+\lambda_{0}-\sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n-1}}^{-k_{n-1}} \sigma_{x_{n}}\left(\lambda_{k_{n}-1}\right) & (\bmod W) \\ 0 \equiv \lambda_{1}-\sigma_{x_{n}}\left(\lambda_{0}\right) & (\bmod W) \\ \quad \vdots & (\bmod W) \\ 0 \equiv \lambda_{k_{n}-1}-\sigma_{x_{n}}\left(\lambda_{k_{n}-2}\right) & \end{cases}
$$

Since W is G-invariant, it follows from the equations that

$$
a \equiv \sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n-1}}^{-k_{n-1}} \sigma_{x_{n}}^{k_{n}}\left(\lambda_{0}\right)-\lambda_{0} \equiv \Delta_{\tau_{r}}\left(\lambda_{0}\right) \quad(\bmod W)
$$

This completes the proof.
Remark 5.10. For the bivariate case with $n=2$, Theorem 5.9 coincides with the known criterion in [36, Theorem 3.3]. In this case, $\operatorname{rank}\left(G_{d}\right) \leq 1$ and $H_{d}=\{\mathbf{1}\}$. If $\operatorname{rank}\left(G_{d}\right)=0$, then a / d^{j} is $\left(\sigma_{x_{1}}, \sigma_{x_{2}}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if and only if $a=0$. If $\operatorname{rank}\left(G_{d}\right)=1$ and G_{d} is generated by $\tau=\sigma_{x_{1}}^{\ell_{1}} \sigma_{x_{2}}^{-\ell_{2}} \in G$ for some $\ell_{2} \neq 0$, then a / d^{j} is $\left(\sigma_{x_{1}}, \sigma_{x_{2}}\right)$-summable if and only if $a=\sigma_{x_{1}}^{\ell_{1}} \sigma_{x_{2}}^{-\ell_{2}}(b)-b$ for some $b \in \mathbb{F}\left(\hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}(b)<\operatorname{deg}_{x_{1}}(d)$.

Example 5.11. Let $f=1 /\left(x_{1}^{s}+\cdots+x_{n}^{s}\right) \in \mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ with $s, n \in \mathbb{N} \backslash\{0\}$. Let G_{d} be the isotropy group of $d=x_{1}^{s}+\cdots+x_{n}^{s}$ in $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$. Decide the $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summability of f in $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$.
(1) If $s=1$ and $n>1$, then d is irreducible. The rank of G_{d} is $n-1$ and one basis is given by $\tau_{1}, \ldots, \tau_{n-1}$ with $\tau_{i}=\sigma_{x_{i}} \sigma_{x_{i+1}}^{-1}$ for $i=1, \ldots, n-1$. Since $1=\tau_{1}\left(x_{1}\right)-x_{1}$, it follows that f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable. In fact, we have

$$
\frac{1}{x_{1}+\cdots+x_{n}}=\Delta_{x_{1}}\left(\frac{x_{1}}{x_{1}+\cdots+x_{n}}\right)+\Delta_{x_{2}}\left(\frac{-x_{1}-1}{x_{1}+\cdots+x_{n}}\right) .
$$

This means f is $\left(\sigma_{x_{1}}, \sigma_{x_{2}}\right)$-summable, so is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable.
(2) If $s \geq 1$ and $n=1$, then $f=1 / x_{1}^{s}$. Since the isotropy group of x_{1} in $\left\langle\sigma_{x_{1}}\right\rangle$ is $\{\mathbf{1}\}$, by Theorem 5.9, we get f is not $\left(\sigma_{x_{1}}\right)$-summable.
(3) If $s>1$ and $n=2$, then $f=1 /\left(x_{1}^{s}+x_{2}^{s}\right)=\sum_{j=1}^{s} a_{j} /\left(x_{1}-\beta_{j} x_{2}\right)$, where β_{j} 's are distinct roots of $z^{s}=-1$ and $a_{j}=1 / s\left(\beta_{j} x_{2}\right)^{s-1}$. There exists $j \in\{1, \ldots, s\}$ such that $\beta_{j} \notin \mathbb{Z}$. Then for $d_{j}=x_{1}-\beta_{j} x_{2}$, we have $G_{d_{j}}=\{\mathbf{1}\}$. So a_{j} / d_{j} is not $\left(\sigma_{x_{1}}, \sigma_{x_{2}}\right)$-summable in $\mathbb{C}\left(x_{1}, x_{2}\right)$ and by Lemma 5.1, neither is f. Hencef is not ($\sigma_{x_{1}}, \sigma_{x_{2}}$)-summable in $\mathbb{Q}\left(x_{1}, x_{2}\right)$. This result has appeared in [21, Example 3.8].
(4) If $s>1$ and $n>2$, then d is irreducible. Since $G_{d}=\{\mathbf{1}\}$, by Theorem 5.9, we get f is not $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable.

Now we only need to transfer the $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summability problem into the $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right)$ summability problem.

Proposition 5.12. Let $\left\{\tau_{i}\right\}_{i=1}^{r}(1 \leq r \leq n)$ be a family of linearly independent elements in $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$. Then there exists an \mathbb{F}-automorphism ϕ of $\mathbb{F}(\mathbf{x})$ such that ϕ is a difference isomorphism between the difference fields $\left(\mathbb{F}(\mathbf{x}), \tau_{i}\right)$ and $\left(\mathbb{F}(\mathbf{x}), \sigma_{x_{i}}\right)$ for all $i=1, \ldots, r$. Therefore, for any $f \in \mathbb{F}(\mathbf{x})$, f is $\left(\tau_{1}, \ldots, \tau_{r}\right)$-summable in $\mathbb{F}(\mathbf{x})$ if and only if $\phi(f)$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right)$-summable in $\mathbb{F}(\mathbf{x})$.

Proof. Assume $\tau_{i}=\sigma_{x_{1}}^{a_{i, 1}} \cdots \sigma_{x_{m}}^{a_{i, m}}$ with $a_{i, j}=0$ if $j>n$ and write $\alpha_{i}=\left(a_{i, 1}, \ldots, a_{i, m}\right) \in \mathbb{Z}^{m}$ viewed as a vector in \mathbb{Q}^{m} for $i=1, \ldots, r$. Then $\alpha_{1}, \ldots, \alpha_{r}$ are linearly independent over \mathbb{Q}. So we can find the other vectors $\alpha_{r+1}, \ldots, \alpha_{m}$ such that $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ forms a basis of \mathbb{Q}^{m}. Let $\alpha_{i}=\left(a_{i, 1}, \ldots, a_{i, m}\right)$ for $i=r+1, \ldots, m$ and $A=\left(a_{i, j}\right) \in \mathbb{Q}^{m \times m}$. Then A is an invertible matrix. Thus we define an \mathbb{F}-automorphism $\phi: \mathbb{F}(\mathbf{x}) \rightarrow \mathbb{F}(\mathbf{x})$ by

$$
\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)\right):=\left(x_{1}, \ldots, x_{m}\right) A .
$$

Let $u_{j}:=\phi\left(x_{j}\right)=\sum_{i=1}^{m} a_{i, j} x_{i}$ for all $1 \leq j \leq m$. Then ϕ satisfies the relation $\phi \circ \tau_{i}=\sigma_{x_{i}} \circ \phi$ for all $i=1, \ldots, r$, which means the following diagrams

are commutative. This is true since for any $f \in \mathbb{F}\left(x_{1}, \ldots, x_{m}\right)$, we have

$$
\begin{aligned}
\phi\left(\tau_{i}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)\right. & =\phi\left(f\left(x_{1}+a_{i, 1}, \ldots, x_{m}+a_{i, m}\right)\right) \\
& =f\left(u_{1}+a_{i, 1}, \ldots, u_{m}+a_{i, m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{x_{i}}\left(\phi\left(f\left(x_{1}, \ldots, x_{m}\right)\right)\right. & =\sigma_{x_{i}}\left(f\left(u_{1}, \ldots, u_{m}\right)\right) \\
& =f\left(u_{1}+a_{i, 1}, \ldots, u_{m}+a_{i, m}\right) .
\end{aligned}
$$

It follows that

$$
f=\sum_{i=1}^{r} \Delta_{\tau_{i}}\left(g_{i}\right) \quad \Longleftrightarrow \quad \phi(f)=\sum_{i=1}^{r} \Delta_{x_{i}}\left(\phi\left(g_{i}\right)\right)
$$

whenever $f, g_{1}, \ldots, g_{r} \in \mathbb{F}(\mathbf{x})$. This proves our assertion.
Combining Theorem 5.9 and Proposition 5.12, the summability problem 2.4 in n variables can be reduced to that in fewer variables. So we can design the following recursive algorithm for testing $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summability of multivariate rational functions. Furthermore, the ($\tau_{1}, \ldots, \tau_{n}$)summability problem can also be solved via the transformation in Proposition 5.12.

Algorithm 5.13 (Rational Summability Testing). IsSummable ($\left.f,\left[x_{1}, \ldots, x_{n}\right]\right)$.
INPUT: a multivariate rational function $f \in \mathbb{F}(\mathbf{x})$ and a list $\left[x_{1}, \ldots, x_{n}\right]$ of variable names; OUTPUT: certificates g_{1}, \ldots, g_{n} for f if f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{F}(\mathbf{x})$; false otherwise.
1 using shift equivalence testing and partial fraction decomposition, decompose f into $f=f_{0}+$ $\sum_{j \in \mathbb{N}^{+}} \sum_{[d]_{G}} f_{[d]_{G}, j}$ as in Equation (5.1).
apply the reduction to f_{0} and each nonzero component $f_{[d]_{G}, j}$ such that

$$
f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right)+r \text { with } r=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \frac{a_{i, j}}{d_{i}^{j}}
$$

where $a_{i, j} / d_{i}^{j}$ is the remainder of $f_{\left[d_{i}\right]_{G}, j}$ described in Lemma 5.2.
if $r=0$, then return g_{1}, \ldots, g_{n}.
for $i=1, \ldots, I$ do
compute a basis $\tau_{i, 1}, \ldots, \tau_{i, r_{i}}$ for the isotropy group $G_{d_{i}}$ of d_{i}.
for $j=1, \ldots, J_{i}$ do
if $n=1$ or $G_{d_{i}}=\{\mathbf{1}\}$ then
return false if $a_{i, j} \neq 0$.
else
find an \mathbb{F}-automorphism ϕ_{i} of $\mathbb{F}(\mathbf{x})$ given in Proposition 5.12 such that $\phi_{i} \circ \tau_{i, \ell}=\sigma_{x_{\ell}} \circ \phi_{i}$ for $\ell=1, \ldots, r_{i}$. $\operatorname{set} \tilde{a}_{i, j}=\phi_{i}\left(a_{i, j}\right)$.
IsSummable $\left(\tilde{a}_{i, j},\left[x_{1}, \ldots, x_{r_{i}}\right]\right)$.
if $\tilde{a}_{i, j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{r_{i}}}\right)$-summable in $\mathbb{F}(\mathbf{x})$, let

$$
\tilde{a}_{i, j}=\Delta_{x_{1}}\left(\tilde{b}_{i, j}^{(1)}\right)+\cdots+\Delta_{x_{r_{i}}}\left(\tilde{b}_{i, j}^{\left(r_{i}\right)}\right)
$$

return false otherwise. applying ϕ_{i}^{-1} to the previous equation yields that

$$
a_{i, j}=\Delta_{\tau_{i, 1}}\left(b_{i, j}^{(1)}\right)+\cdots+\Delta_{\tau_{i, r_{i}}}\left(b_{i, j}^{\left(r_{i}\right)}\right)
$$

where $\left(b_{i, j}^{(1)}, \ldots, b_{i, j}^{\left(r_{i}\right)}\right)=\left(\phi_{i}^{-1}\left(\tilde{b}_{i, j}^{(1)}\right), \ldots, \phi_{i}^{-1}\left(\tilde{b}_{i, j}^{\left(r_{i}\right)}\right)\right)$.
using Lemma 5.8 to compute $h_{i, j}^{(1)}, \ldots, h_{i, j}^{(n)} \in \mathbb{F}(\mathbf{x})$ such that

$$
\frac{a_{i, j}}{d_{i}^{j}}=\sum_{\ell=1}^{r_{i}} \Delta_{\tau_{i, \ell}}\left(\frac{b_{i, j}^{(\ell)}}{d_{i}^{j}}\right)=\sum_{\ell=1}^{n} \Delta_{x_{\ell}}\left(h_{i, j}^{(\ell)}\right)
$$

update $g_{\ell}=g_{\ell}+h_{i, j}^{(\ell)}$ for $\ell=1, \ldots, n$.
return g_{1}, \ldots, g_{n}.
Example 5.14. Let $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$ and $f=f_{1}+f_{2}+f_{3} \in \mathbb{Q}(x, y, z)$ be the same as in Example 4.9.
(1) After the $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-reduction for f_{1}, see Example 5.3, we get

$$
\begin{equation*}
f_{1}=\Delta_{x}\left(u_{1}\right)+\Delta_{y}\left(v_{1}\right)+\Delta_{z}\left(w_{1}\right)+r_{1} \text { with } r_{1}=\frac{2 x-1}{d_{1}} \tag{5.16}
\end{equation*}
$$

where $u_{1}, v_{1}, w_{1} \in \mathbb{Q}(x, y, z)$ and $d_{1}=x^{2}+2 x y+z^{2}$. By Example 4.5 (1), the isotropy group $G_{d_{1}}=\{\mathbf{1}\}$ is trivial. By Theorem 5.9, we see r_{1} is $\operatorname{not}\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable because its numerator $a_{1}=2 x-1$ is not zero. Hence f_{1} is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable.
(2) For $f_{2}=a_{2} / d_{2}$ with $a_{2}=x+z$ and $d_{2}=(x-3 y)^{2}(y+z)+1$, we know from Example 4.5 (2) that a basis of $G_{d_{2}}$ is $\left\{\sigma_{x}^{3} \sigma_{y} \sigma_{z}^{-1}\right\}$. For any $\{\mu, \nu\} \subseteq\{x, y, z\}$, since the isotropy group of d_{2} in $\left\langle\sigma_{\mu}, \sigma_{\nu}\right\rangle$ is trivial, we get that f_{2} is not $\left(\sigma_{\mu}, \sigma_{\nu}\right)$-summable in $\mathbb{Q}(x, y, z)$. By Theorem 5.9, we see f_{2} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable in $\mathbb{Q}(x, y, z)$ if and only if a_{2} is (τ)-summable in $\mathbb{Q}(x, y, z)$ with $\tau=\sigma_{x}^{3} \sigma_{y} \sigma_{z}^{-1}$. Choose one \mathbb{Q}-automorphism ϕ_{2} of $\mathbb{Q}(x, y, z)$ given in Proposition 5.12 as follows

$$
\phi_{2}(h(x, y, z))=h(3 x, x+y,-x+z)
$$

for any $h \in \mathbb{Q}(x, y, z)$. Then $\phi_{2} \circ \tau=\sigma_{x} \circ \phi_{2}$. Hence a_{2} is (τ)-summable in $\mathbb{Q}(x, y, z)$ if and only if $\phi_{2}\left(a_{2}\right)$ is $\left(\sigma_{x}\right)$-summable in $\mathbb{Q}(x, y, z)$. Since

$$
\begin{equation*}
\phi_{2}\left(a_{2}\right)=2 x+z=\Delta_{x}((x-1)(x+z)) \tag{5.17}
\end{equation*}
$$

is $\left(\sigma_{x}\right)$-summable, it follows that f_{2} is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable. In fact, applying ϕ_{2}^{-1} to Equation (5.17) yields that

$$
a_{2}=x+z=\Delta_{\tau}(b) \text { with } b=\frac{1}{9}(x-3)(2 x+3 z)
$$

By Lemma 5.8, we have

$$
\begin{equation*}
f_{2}=\Delta_{\tau}\left(\frac{b}{d_{2}}\right)=\Delta_{x}\left(u_{2}\right)+\Delta_{y}\left(v_{2}\right)+\Delta_{z}\left(w_{2}\right) \tag{5.18}
\end{equation*}
$$

where $u_{2}=\sum_{\ell=0}^{2} \sigma_{x}^{\ell} \sigma_{y} \sigma_{z}^{-1}\left(\frac{b}{d_{2}}\right), v_{2}=\sigma_{z}^{-1}\left(\frac{b}{d_{2}}\right)$ and $w_{2}=-\sigma_{z}^{-1}\left(\frac{b}{d_{2}}\right)$.
(3) For $f_{3}=a_{3} / d_{3}^{2}$ with $a_{3}=y+z /\left(y^{2}+z-1\right)-1 /\left(y^{2}+z\right)$ and $d_{3}=x+2 y+z$, we know from Example 4.5 (2) that a basis of $G_{d_{3}}$ is $\left\{\tau_{1}, \tau_{2}\right\}$, where $\tau_{1}=\sigma_{x}^{2} \sigma_{y}^{-1}$, $\tau_{2}=\sigma_{x} \sigma_{z}^{-1}$. To decide the $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summability of f_{3}, we construct a \mathbb{Q}-automorphism ϕ_{3} of $\mathbb{Q}(x, y, z)$ such that $\phi_{3} \circ \tau_{1}=\sigma_{x} \circ \phi_{3}$ and $\phi_{3} \circ \tau_{2}=\sigma_{y} \circ \phi_{3}$ as follows

$$
\phi_{3}(h(x, y, z))=h(2 x+y,-x,-y+z)
$$

for any $h \in \mathbb{Q}(x, y, z)$. Then it remains to decide the $\left(\sigma_{x}, \sigma_{y}\right)$-summability of

$$
\phi_{3}\left(a_{3}\right)=-x+\underbrace{\frac{z-y}{x^{2}-y+z-1}}_{\sigma_{y}(\tilde{d})}-\underbrace{\frac{1}{x^{2}-y+z}}_{\tilde{d}}
$$

in $\mathbb{Q}(x, y, z)$. So we use $\left(\sigma_{x}, \sigma_{y}\right)$-reduction to reduce $\phi_{3}\left(a_{3}\right)$ and obtain

$$
\begin{equation*}
\phi_{3}\left(a_{3}\right)=\Delta_{x}\left(\tilde{b}_{1}\right)+\Delta_{y}\left(\tilde{b}_{2}\right)+\frac{z-y}{x^{2}-y+z} \tag{5.19}
\end{equation*}
$$

where $\tilde{b}_{1}=-\frac{1}{2} x(x-1)$ and $\tilde{b}_{2}=\frac{z-y+1}{x^{2}-y+z}$. Since the isotropy group of \tilde{d} in $\left\langle\sigma_{x}, \sigma_{y}\right\rangle$ is trivial, $\phi_{3}\left(a_{3}\right)$ is not $\left(\sigma_{x}, \sigma_{y}\right)$-summable. Hence f_{3} is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable. Even so, in this case, using the above calculation, we can further decompose f_{3} into a summable part and a remainder. Let us see how to do this. Starting from the decomposition (5.19) of $\phi_{3}\left(a_{3}\right)$ with respect to the $\left(\sigma_{x}, \sigma_{y}\right)$-summability problem, we apply ϕ_{3}^{-1} to both sides of this decomposition to obtain that

$$
a_{3}=\Delta_{\tau_{1}}\left(b_{1}\right)+\Delta_{\tau_{2}}\left(b_{2}\right)+\frac{z}{y^{2}+z}
$$

where $b_{1}=\phi_{3}^{-1}\left(\tilde{b}_{2}\right)=-\frac{1}{2} y(y+1)$ and $b_{2}=\phi_{3}^{-1}\left(\tilde{b}_{2}\right)=\frac{z+1}{y^{2}+z}$. By Lemma 5.8 with $\tau=\tau_{1}, \tau_{2}$, we have

$$
\begin{align*}
f_{3}=\frac{a_{3}}{d_{3}^{2}} & =\Delta_{\tau_{1}}\left(\frac{b_{1}}{d_{3}^{2}}\right)+\Delta_{\tau_{2}}\left(\frac{b_{2}}{d_{3}^{2}}\right)+\underbrace{\frac{z}{\left(y^{2}+z\right) d_{3}^{2}}}_{r_{3}} \\
& =\Delta_{x}\left(u_{3}\right)+\Delta_{y}\left(v_{3}\right)+\Delta_{z}\left(w_{3}\right)+r_{3}, \tag{5.20}
\end{align*}
$$

where $u_{3}=\sum_{\ell=0}^{1} \sigma_{x}^{\ell} \sigma_{y}^{-1}\left(\frac{b_{1}}{d_{3}^{2}}\right)+\sigma_{z}^{-1}\left(\frac{b_{2}}{d_{3}^{2}}\right), v_{3}=-\sigma_{y}^{-1}\left(\frac{b_{1}}{d_{3}^{2}}\right)$ and $w_{3}=-\sigma_{z}^{-1}\left(\frac{b_{2}}{d_{3}^{2}}\right)$.
(4) For $f=f_{1}+f_{2}+f_{3}$, from Example 4.9 we know f_{1}, f_{2}, f_{3} are in distinct $V_{[d]_{G}, j}$ spaces. Since f_{1} is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable, it follows from Lemma 5.1 that f is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable. Moreover, combining Equations (5.16), (5.18) and (5.20), we decompose f into

$$
f=\Delta_{x}(u)+\Delta_{y}(v)+\Delta_{z}(w)+r \text { with } r=\frac{2 x-1}{d_{1}}+\frac{z}{\left(y^{2}+z\right) d_{3}^{2}},
$$

where $u=\sum_{i=1}^{2} u_{i}, v=\sum_{i=1}^{2} v_{i}$ and $w=\sum_{i=1}^{2} w_{i}$ are rational functions in $\mathbb{Q}(x, y, z)$.
As we discussed in the above example, given a rational function $f \in \mathbb{F}(\mathbf{x})$, we can compute rational functions $g_{1}, \ldots, g_{n}, r \in \mathbb{F}(\mathbf{x})$ such that

$$
f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right)+r
$$

satisfying the property that f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable if and only if $r=0$. This process can be achieved by induction on n. However, this remainder r is not unique, which depends on the choice of difference isomorphisms ϕ_{i}. So how to choose a minimal remainder r is still an open problem.

6 Existence problem of telescopers

Similar to the summability problem, there are mainly two steps of solving the existence problem 2.2 of telescopers. First we use the orbital decomposition and Abramov's reduction to simplify the existence problem in Section 6.1. Then in Section 6.2, we use the exponent separation introduced in [19] to further reduce the existence problem to simple fractions and use the summability criteria in Section 5.2 to derive the existence criteria.

6.1 Orbital reduction for existence of telescopers

Let f be a rational function in $\mathbb{K}(t, \mathbf{x})$, where $\mathbf{x}=\left\{x_{1}, \ldots, x_{m}\right\}$. Let n be an integer such that $1 \leq n \leq m$. We consider the existence problem of telescopers of type ($\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$) for the rational function f in $\mathbb{K}(t, \mathbf{x})$. Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ be the free abelian group generated by the shift operators $\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$. Taking $\mathbb{E}=\mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)$ and $A=G_{t}$ in Equality (4.2), we get

$$
V_{[d]_{G_{t}}, j}=\operatorname{Span}_{\mathbb{E}}\left\{\left.\frac{a}{\tau(d)^{j}} \right\rvert\, a \in \mathbb{E}\left[x_{1}\right], \tau \in G_{t}, \operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)\right\},
$$

where $j \in \mathbb{N}^{+}$and $d \in \mathbb{E}[\mathbf{x}]$ is irreducible with $\operatorname{deg}_{x_{1}}(d)>0$. Then f can be decomposed as

$$
\begin{equation*}
f=f_{0}+\sum_{j} \sum_{[d]_{G_{t}}} f_{[d]_{G_{t}}, j}, \tag{6.1}
\end{equation*}
$$

where $f_{0} \in V_{0}=\mathbb{E}\left[x_{1}\right]$ and $f_{[d]]_{t}, j}$ are in distint $V_{[d]_{G_{t}}, j}$ spaces. It induces the following orbital decomposition of $\mathbb{K}(t, \mathbf{x})$ with respect to the group G_{t}

$$
\mathbb{K}(t, \mathbf{x})=V_{0} \bigoplus\left(\bigoplus_{j \in \mathbb{N}^{+}} \bigoplus_{[d]]_{G_{t}} \in T_{G_{t}}} V_{[d]_{G_{t}}, j}\right)
$$

as a vector space over $\mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)$. This orbital decomposition is G_{t}-invariant. Moreover for any L in $\mathbb{K}(t)\left\langle S_{t}\right\rangle$, if $f \in V_{[d]_{G_{t}}, j}$, then $L(f) \in V_{[d]]_{G_{t}, j}}$. Note that such an operator L commutes with difference operator $\Delta_{x_{i}}$ for $i=1, \ldots, n$. So by Remark 2.5 and the similar argument as in the proof of Lemma 5.1, we arrive at the following lemma.

Lemma 6.1. Let $f \in \mathbb{K}(t, \mathbf{x})$. Then f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ in if and only if f_{0} and each $f_{[d]_{G_{t}},}$, have a telescoper of the same type for all $[d]_{G_{t}} \in T_{G_{t}}$ and $j \in \mathbb{N}^{+}$.

Since $f_{0} \in V_{0}=\mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ is always $\left(\sigma_{x_{1}}\right)$-summable, we have $L=1$ is a telescoper for f_{0}. As for an element in $V_{[d]_{G_{t}}, j}$, it can be written as

$$
\begin{equation*}
f=\sum_{\tau} \frac{a_{\tau}}{\tau(d)^{j}}, \tag{6.2}
\end{equation*}
$$

where $\tau \in G_{t}, a_{\tau} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], d \in \mathbb{K}[t, \mathbf{x}]$ with $\operatorname{deg}_{x_{1}}\left(a_{\tau}\right)<\operatorname{deg}_{x_{1}}(d)$ and d is irreducible in x_{1} over $\mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)$. Each $\tau \in G_{t}$ is in the form of $\tau=\sigma_{t}^{k_{0}} \sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}}$ for some $k_{0}, k_{1}, \ldots, k_{n} \in \mathbb{Z}$. Using the ($\left.\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-reduction formula (5.5), we get the following decomposition.

Lemma 6.2. Let $f \in V_{[d]_{G_{t}}, j}$ be in the form (6.2). Then we can decompose it into the form

$$
f=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+r \text { with } r=\sum_{\ell=0}^{\rho} \frac{a_{\ell}}{\sigma_{t}^{\ell}(\mu)^{j}},
$$

where $\rho \in \mathbb{N}, g_{i} \in \mathbb{K}(t, \mathbf{x}), a_{\ell} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], \mu \in \mathbb{K}[t, \mathbf{x}]$, $\operatorname{deg}_{x_{1}}\left(a_{\ell}\right)<\operatorname{deg}_{x_{1}}(d), \mu$ is in the same G_{t}-orbit as d, and $\sigma_{t}^{\ell}(\mu), \sigma_{t}^{\ell^{\prime}}(\mu)$ are not G-equivalent for $0 \leq \ell \neq \ell^{\prime} \leq \rho$. Therefore. f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ if and only if r has a telescoper of the same type.

Example 6.3. Let $\mathbb{K}=\mathbb{Q}, G_{t}=\left\langle\sigma_{t}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$ and $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$.
(1) Consider the rational function f in $\mathbb{Q}(t, x, y, z)$ of the form

$$
f=\frac{2 x-1}{d}+\frac{y}{\sigma_{t}(d)}+\frac{1}{\sigma_{t}^{3} \sigma_{x} \sigma_{y} \sigma_{z}(d)}
$$

where $d=x^{2}+2 x y+z^{2}+t$. Then $f \in V_{[d]_{G_{t}}, 1}$ and applying $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-reduction formula to f yields that

$$
\begin{equation*}
f=\Delta_{x}\left(u_{0}\right)+\Delta_{y}\left(v_{0}\right)+\Delta_{z}\left(w_{0}\right)+\frac{2 x-1}{d}+\frac{y}{\sigma_{t}(d)}+\frac{1}{\sigma_{t}^{3}(d)}, \tag{6.3}
\end{equation*}
$$

where

$$
u_{0}=\frac{1}{\sigma_{t}^{3} \sigma_{y} \sigma_{z}(d)}, v_{0}=\frac{1}{\sigma_{t}^{3} \sigma_{z}(d)} \text { and } w_{0}=\frac{1}{\sigma_{t}^{3}(d)} .
$$

Since there is no nonzero integer such that $\sigma_{t}^{s}(d)$ and d are G-equivalent, the equation (6.3) gives a required decomposition for f in Lemma 6.2.
(2) Consider the rational function f in $\mathbb{Q}(t, x, y, z)$ of the form

$$
f=\frac{1}{t(t+y+2 z) d}+\frac{y+z-1}{(t+3 z) \sigma_{t}(d)}-\frac{y+z}{(t+3 z) \sigma_{t} \sigma_{x}^{3} \sigma_{y}^{2}(d)},
$$

where $d=3 y+(x+z)^{2}+t$. Then $f \in V_{[d]_{G_{t}}, 1}$ and applying $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-reduction formula to f yields that

$$
\begin{equation*}
f=\Delta_{x}\left(u_{0}\right)+\Delta_{y}\left(v_{0}\right)+\Delta_{z}\left(w_{0}\right)+\frac{1}{t(t+y+2 z) d}+\frac{1}{(t+3 z) \sigma_{t}(d)} \tag{6.4}
\end{equation*}
$$

where

$$
u_{0}=-\sum_{\ell=0}^{2} \frac{y+z}{(t+3 z) \sigma_{t} \sigma_{x}^{\ell} \sigma_{y}^{2}(d)}, v_{0}=-\sum_{\ell=0}^{1} \frac{y+\ell-2+z}{(t+3 z) \sigma_{t} \sigma_{y}^{\ell}(d)} \text { and } w_{0}=0 .
$$

We claim that the equation (6.4) gives a required decomposition for f in Lemma 6.2. Since the isotropy group of d in G_{t} is $G_{t, d}=\left\langle\sigma_{t}^{3} \sigma_{y}^{-1}, \sigma_{x} \sigma_{z}^{-1}\right\rangle$, the minimal positive integer s such that $\sigma_{t}^{s}(d)$ and d are G-equivalent is $s=3$. So d and $\sigma_{t}(d)$ are not G-equivalent.

6.2 Criteria on the existence of telescopers

Combining Lemmas 6.1 and 6.2, we reduce the existence problem (2.2) to that for rational functions in the form

$$
\begin{equation*}
f=\sum_{i=0}^{I} \frac{a_{i}}{\sigma_{t}^{i}(d)^{j}}, \tag{6.5}
\end{equation*}
$$

where $j \in \mathbb{N} \backslash\{0\}, a_{i} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], d \in \mathbb{K}[t, \mathbf{x}], \operatorname{deg}_{x_{1}}\left(a_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ and d is irreducible such that $\sigma_{t}^{i}(d)$ and $\sigma_{t}^{i^{\prime}}(d)$ are not G-equivalent for $0 \leq i \neq i^{\prime} \leq I$.

Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ and $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ be a subgroup of G_{t}. Let G_{d} and $G_{t, d}$ be the isotropy groups of the polynomial d in G and G_{t}, respectively. By Lemma 4.4, the quotient group $G_{t, d} / G_{d}$ is free and of rank 0 or 1.

In the case of $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, the existence problem of telescopers is equivalent to the summability problem.

Lemma 6.4. Let $f \in \mathbb{K}(t, \mathbf{x})$ be in the form (6.5). If $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, then f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ if and only if each $a_{i} / \sigma_{t}^{i}(d)^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{K}(t, \mathbf{x})$ for $0 \leq i \leq I$.

Proof. Suppose that each $a_{i} / \sigma_{t}^{i}(d)^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for $0 \leq i \leq I$. By the linearity of difference operators $\Delta_{x_{i}}$, we see $L=\mathbf{1}$ is a telescoper for f. Conversely, assume that $L=\sum_{\ell=0}^{\rho} e_{\ell} S_{t}^{\ell}$ with $e_{\ell} \in \mathbb{K}(t)$ and $e_{0} \neq 0$ is a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ for f. Then we have

$$
L(f)=\sum_{\ell=0}^{\rho} \sum_{i=0}^{I} e_{\ell} \sigma_{t}^{\ell}\left(\frac{a_{i}}{\sigma_{t}^{i}(d)^{j}}\right)=\sum_{\ell=0}^{I+\rho}\left(\frac{\sum_{i=0}^{\ell} e_{i} \sigma_{t}^{i}\left(a_{\ell-i}\right)}{\sigma_{t}^{\ell}(d)^{j}}\right)
$$

is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable, where $e_{\ell}=0$ if $\ell>\rho$ and $a_{i}=0$ if $i>I$. Since $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, all $\sigma_{t}^{\ell}(d)$ with $\ell \in \mathbb{Z}$ are in distinct G-orbits. By Lemma 5.1, for any ℓ with $0 \leq \ell \leq \rho$, there exist $g_{\ell, 1}, \ldots, g_{\ell, n} \in \mathbb{K}(t, \mathbf{x})$ such that

$$
\begin{equation*}
\frac{\sum_{i=0}^{\ell} e \sigma_{t}^{i}\left(a_{\ell-i}\right)}{\sigma_{t}^{\ell}(d)^{j}}=\Delta_{x_{1}}\left(g_{\ell, 1}\right)+\cdots+\Delta_{x_{n}}\left(g_{\ell, n}\right) \tag{6.6}
\end{equation*}
$$

To show that each $a_{i} / \sigma_{t}^{i}(d)^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for $0 \leq i \leq I$, we proceed by induction. For $i=0$, substituting $\ell=0$ into (6.6), we get $a_{0} / d^{j}=\Delta_{x_{1}}\left(g_{0,1} / e_{0}\right)+\cdots+\Delta_{x_{n}}\left(g_{0, n} / e_{0}\right)$. Suppose we have $a_{i} / \sigma_{t}^{i}(d)^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for $i=0, \ldots, s-1$ with $s \leq I$. Taking $\ell=s$ in Equation (6.6) yields that

$$
\frac{a_{s}}{\sigma_{t}^{s}(d)^{j}}=\Delta_{x_{1}}\left(\frac{g_{s, 1}}{e_{0}}\right)+\cdots+\Delta_{x_{n}}\left(\frac{g_{s, n}}{e_{0}}\right)-\frac{1}{e_{0}} \sum_{i=1}^{s} e_{i} \sigma_{t}^{i}\left(\frac{a_{s-i}}{\sigma_{t}^{s-i}(d)^{j}}\right) .
$$

By the inductive hypothesis, we have $a_{s-i} / \sigma_{t}^{s-i}(d)^{j}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable for $1 \leq i \leq s$. Note that $e_{i} \in \mathbb{K}(t)$ is free of \mathbf{x}. Due to the commutativity between σ_{t} and $\sigma_{x_{i}}$ for $i=1, \ldots, n$, we get $\frac{1}{e_{0}} \sum_{i=1}^{s} e_{i} \sigma_{t}^{i}\left(\frac{a_{s-i}}{\sigma_{t}^{s-2}(d)^{j}}\right)$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable. Hence $a_{s} / \sigma_{t}^{s}(d)^{j}$ is also $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ summable.

Example 6.5. Continue the Example 6.3 (1) and write $f \in \mathbb{Q}(t, x, y, z)$ as

$$
f=\Delta_{x}\left(u_{0}\right)+\Delta_{y}\left(v_{0}\right)+\Delta_{z}\left(w_{0}\right)+r \text { with } r=\frac{2 x-1}{d}+\frac{y}{\sigma_{t}(d)}+\frac{1}{\sigma_{t}^{3}(d)},
$$

where $u_{0}, v_{0}, w_{0} \in \mathbb{Q}(t, x, y, z)$ and $d=x^{2}+2 x y+z^{2}+t$. Note that the isotropy groups $G_{t, d}=G_{d}=$ $\{\mathbf{1}\}$ are trivial. The first term $(2 x-1) / d$ of r is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable in $\mathbb{Q}(t, x, y, z)$ by the similar reason as in Example 5.14 (1). Since $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, we know from Lemma 6.4 that r does not have any telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and neither does f.

Lemma 6.6. Let $f=\sum_{i=1}^{I} a_{i} / \sigma_{t}^{i}(d)^{j} \in \mathbb{K}(t, \mathbf{x})$ be in the form (6.5). If $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$, then f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ if and only if each $a_{i} / \sigma_{t}^{i}(d)^{j}$ has a telescoper of the same type for $0 \leq i \leq I$.

Proof. Sufficiency follows from Remark 2.5. The proof of necessity is a natural generalization from the trivariate case [19, lemma 5.3] to the multivariate case. Suppose $L=\sum_{i=0}^{\ell} e_{i} S_{t}^{i} \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ is a telescoper for f. Since $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$, there is a minimal positive integer k_{0} such that $\sigma_{t}^{k_{0}}(d)=\sigma_{x_{1}}^{k_{1}} \cdots \sigma_{x_{n}}^{k_{n}}(d)$ for some integers k_{1}, \ldots, k_{n}. In the expression (6.5), we require that $\sigma_{t}^{i}(d)$ and $\sigma_{t}^{i^{\prime}}(d)$ are not G-equivalent for any $0 \leq i \neq i^{\prime} \leq I$. By the minimality of k_{0}, we may assume $f=\sum_{i=0}^{k_{0}-1} a_{i} / \sigma_{t}^{i}(d)^{j}$. The k_{0}-exponent separation of L (see [19, Section 4]) is defined as follows

$$
L=L_{0}+L_{1}+\cdots+L_{k_{0}-1},
$$

where $L_{i}=\sum_{j=0}^{\ell} e_{j k_{0}+i} S_{t}^{j k_{0}+i}$ and $e_{i}=0$ if $i>\ell$. Since $L(f)$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable, by Lemma 5.1 each orbital component of $L(f)$ is summable. So we have

$$
\left\{\begin{align*}
& L_{0} \frac{a_{0}}{d^{j}}+L_{k_{0}-1} \frac{a_{1}}{\sigma_{t}(d)^{j}}+\cdots+L_{1} \frac{a_{k_{0}-1}}{\sigma_{t}^{k_{0}-1}(d)^{j}} \equiv 0 \tag{6.7}\\
& L_{1} \frac{a_{0}}{d^{j}}+L_{0} \frac{a_{1}}{\sigma_{t}(d)^{j}}+\cdots+L_{2} \frac{a_{k_{0}-1}^{k_{0}}}{\sigma_{x}^{k_{0}-1}(d)^{j}} \equiv 0 \\
& \cdots \\
& L_{k_{0}-1} \frac{a_{0}}{d^{j}}+L_{k_{0}-2} \frac{a_{1}}{\sigma_{t}(d)^{j}}+\cdots+L_{0} \frac{a_{k_{0}-1}}{\sigma_{t}^{k_{0}-1}(d)^{j}} \equiv 0,
\end{align*}\right.
$$

where $f \equiv 0$ means f is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{K}(t, \mathbf{x})$. Taking

$$
\nu=\left[\frac{a_{0}}{d^{j}}, \frac{a_{1}}{\sigma_{t}(d)^{j}}, \ldots, \frac{a_{k_{0}-1}}{\sigma_{t}^{k_{0}-1}(d)^{j}}\right]^{T}
$$

then Equation (6.7) can be written as

$$
\mathcal{L}_{k_{0}} \cdot \mathcal{V} \equiv 0
$$

where

$$
\mathcal{L}_{k_{0}}=\left[\begin{array}{ccccc}
L_{0} & L_{k_{0}-1} & L_{k_{0}-2} & \cdots & L_{1} \\
L_{1} & L_{0} & L_{k_{0}-1} & \cdots & L_{2} \\
L_{2} & L_{1} & L_{0} & \cdots & L_{3} \\
\vdots & \vdots & \vdots & & \vdots \\
L_{k_{0}-1} & L_{k_{0}-2} & L_{k_{0}-3} & \cdots & L_{0}
\end{array}\right] .
$$

According to [19, Proposition 4.3], there exist non-zero operators $T_{0}, \ldots, T_{k_{0}-1} \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ and the matrix \mathcal{M} over $\mathbb{K}(t)\left\langle S_{t}\right\rangle$ such that

$$
\mathcal{M} \cdot \mathcal{L}_{k_{0}}=\operatorname{diag}\left(T_{0}, \ldots, T_{k_{0}-1}\right) .
$$

For each $0 \leq i \leq k_{0}-1$, we know T_{i} is a telescoper of type ($\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$) for $a_{i} / \sigma_{t}^{i}(d)^{j}$, because operators in $T_{i} \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ commute with the difference operators $\Delta_{x_{1}}, \ldots, \Delta_{x_{n}}$.

Now we consider the existence problem of telescopers for simple fractions in the form

$$
\begin{equation*}
f=\frac{a}{d^{j}} \tag{6.8}
\end{equation*}
$$

where $j \in \mathbb{N} \backslash\{0\}, a \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right], d \in \mathbb{K}[t, \mathbf{x}]$, $\operatorname{deg}_{x_{1}}(a)<\operatorname{deg}_{x_{1}}(d)$ and d is irreducible such that $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$.
Theorem 6.7 (Theorem 1.7, restated). Let $f \in \mathbb{K}(t, \mathbf{x})$ be as in (6.8). Let $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{r}\right\}(1 \leq r<$ $n)$ be a basis of $G_{t, d}$ such that $G_{t, d} / G_{d}=\left\langle\bar{\tau}_{0}\right\rangle$ and $\left\{\tau_{1}, \ldots, \tau_{r}\right\}$ is a basis of G_{d} (take $\tau_{1}=\mathbf{1}$, if $\left.G_{d}=\{\mathbf{1}\}\right)$. If $\tau_{0}=\sigma_{t}^{k_{0}} \sigma_{x_{1}}^{-k_{1}} \cdots \sigma_{x_{n}}^{-k_{n}}$, set $T_{0}=S_{t}^{k_{0}} S_{x_{1}}^{-k_{1}} \cdots S_{x_{n}}^{-k_{n}}$. Then f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ if and only if there exists a nonzero operator $L \in \mathbb{K}(t)\left\langle T_{0}\right\rangle$ such that

$$
L(a)=\Delta_{\tau_{1}}\left(b_{1}\right)+\cdots \Delta_{\tau_{r}}\left(b_{r}\right)
$$

for some $b_{i} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for $1 \leq i \leq r$.
Proof. Firstly, suppose that $L_{0}=\sum_{\ell=0}^{\rho} e_{\ell} T_{0}^{\ell} \in \mathbb{K}(t)\left\langle T_{0}\right\rangle$ is a nonzero operator such that $L_{0}(a)=$ $\sum_{i=1}^{r} \Delta_{\tau_{i}}\left(b_{i}\right)$ for some $b_{i} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$. Set $L=\sum_{\ell=0}^{\rho} e_{\ell} S_{t}^{\ell k_{0}}$. Then

$$
\begin{align*}
L(f) & =\sum_{\ell=0}^{\rho} \frac{e_{\ell} \sigma_{t}^{\ell k_{0}}(a)}{\sigma_{t}^{\ell k_{0}}(d)^{j}}=\sum_{\ell=0}^{\rho} \frac{e_{\ell} \sigma_{t}^{\ell k_{0}}(a)}{\sigma_{x_{1}}^{\ell k_{1}} \cdots \sigma_{x_{n}}^{\ell k_{n}}(d)^{j}} \\
& =\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+\frac{\sum_{\ell=0}^{\rho} e_{\ell} \sigma_{t}^{\ell k_{0}} \sigma_{x_{1}}^{-\ell k_{1}} \cdots \sigma_{x_{n}}^{-\ell k_{n}}(a)}{d^{j}} \text { for some } g_{i} \in \mathbb{K}(t, \mathbf{x}) \\
& =\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+\frac{L_{0}(a)}{d^{j}} \tag{6.9}\\
& \left.=\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+\frac{1}{d^{j}} \sum_{i=1}^{r}\left(\tau_{i}\left(b_{i}\right)-b_{i}\right)\right) \\
& =\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}\right)+\sum_{i=1}^{r}\left(\tau_{i}\left(\frac{b_{i}}{d^{j}}\right)-\frac{b_{i}}{d^{j}}\right) \\
& =\sum_{i=1}^{n} \Delta_{x_{i}}\left(g_{i}+h_{i}\right) \quad \text { for some } h_{i} \in \mathbb{K}(t, \mathbf{x}) . \tag{6.10}
\end{align*}
$$

The last equal sign follows from Lemma 5.8.
Conversely, let L be a telescoper of type ($\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}$) for f. By the k_{0}-exponent separation (see [19, Section 4]) of L and Lemma 5.1, without loss of generality, we assume $L=\sum_{\ell=0}^{\rho} e_{\ell} S_{t}^{\ell k_{0}} \in$ $\mathbb{K}(t)\left\langle S_{t}\right\rangle$ is a telescoper for f. Then

$$
L\left(\frac{a}{d^{j}}\right)=\sum_{\ell=0}^{\rho} \frac{e_{\ell} \sigma_{t}^{\ell k_{0}}(a)}{\sigma_{x_{1}}^{\ell k_{1}} \cdots \sigma_{x_{n}}^{\ell k_{n}}(d)^{j}}=\sum_{i=1}^{n} \Delta_{x_{i}}\left(h_{i}\right)+\frac{1}{d^{j}} h
$$

for some $h_{1}, \ldots, h_{n}, h \in \mathbb{K}(t, \mathbf{x})$ with

$$
\begin{equation*}
h=\sum_{\ell=0}^{\rho} e_{\ell} \sigma_{t}^{\ell k_{0}} \sigma_{x_{1}}^{-\ell k_{1}} \cdots \sigma_{x_{n}}^{-\ell k_{n}}(a)=\sum_{\ell=0}^{\rho} e_{\ell} \tau_{0}^{\ell}(a) . \tag{6.11}
\end{equation*}
$$

Since $L\left(a / d^{j}\right)$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable and $\left\{\tau_{1}, \ldots, \tau_{r}\right\}$ is a basis of G_{d}, by Theorem 5.9 with $\mathbb{F}=\mathbb{K}(t)$ we get

$$
\begin{equation*}
h=\Delta_{\tau_{1}}\left(b_{1}\right)+\cdots+\Delta_{\tau_{r}}\left(b_{r}\right) \tag{6.12}
\end{equation*}
$$

for some $b_{i} \in \mathbb{K}\left(t, \hat{\mathbf{x}}_{1}\right)\left[x_{1}\right]$ with $\operatorname{deg}_{x_{1}}\left(b_{i}\right)<\operatorname{deg}_{x_{1}}(d)$ for $1 \leq i \leq r$. Combining Equations (6.11) and (6.12) yields that a has a telescoper $L_{0}=\sum_{\ell=0}^{\rho} e_{\ell} T_{0}^{\ell}$ of type $\left(\tau_{0} ; \tau_{1}, \ldots, \tau_{r}\right)$.

Proposition 6.8. Let $\tau \in G_{t} \backslash G$ and $f=a / b$ with $a, b \in \mathbb{K}[t, \mathbf{x}]$ and $\operatorname{gcd}(a, b)=1$. Then there exist $e_{0}, \ldots, e_{r} \in \mathbb{K}(t)$, not all zero, such that $\sum_{i=0}^{r} e_{i} \tau^{i}(f)=0$ if and only if $b=b_{1} b_{2}$ with $b_{1} \in \mathbb{K}[t]$ and $b_{2} \in \mathbb{K}[t, \mathbf{x}]$ satisfying that $\tau\left(b_{2}\right)=b_{2}$.

Proof. First we suppose $b=b_{1} b_{2}$ with b_{1}, b_{2} satisfying the above conditions. Then for any $i \in \mathbb{N}$,

$$
\begin{equation*}
\tau^{i}(f)=\frac{\tau^{i}(a)}{\tau^{i}\left(b_{1} b_{2}\right)}=\frac{\tau^{i}(a)}{\tau^{i}\left(b_{1}\right) b_{2}}=\frac{\tau^{i}\left(a / b_{1}\right)}{b_{2}} . \tag{6.13}
\end{equation*}
$$

Note that $b_{1} \in \mathbb{K}[t]$ and the total degrees of the polynomials $\tau^{i}(a)$ in \mathbf{x} are the same as that of a. Thus all shifts of a / b_{1} lie in a finite dimensional linear space over $\mathbb{K}(t)$. So there exist $e_{0}, e_{1}, \ldots, e_{r} \in \mathbb{K}(t)$, not all zero, such that $\sum_{i=0}^{r} e_{i} \tau^{i}\left(a / b_{1}\right)=0$. This implies $\sum_{i=0}^{r} e_{i} \tau^{i}(f)=0$.

Conversely, suppose $\sum_{i=0}^{r} e_{i} \tau^{i}(f)=0$. Let b_{1} and b_{2} be the content and primitive part of b as a polynomial in \mathbf{x} over $\mathbb{K}(t)$. If $b_{2} \in \mathbb{K}$, then we have done. Now we assume that $b_{2} \notin \mathbb{K}$. Then all of its irreducible factors have positive total degree in \mathbf{x}. Assume that there exists an irreducible polynomial p such that $\tau(p) \neq p$. By Lemma 4.3, the quotient group $G_{t} / G_{t, p}$ is free, so is torsion free. So for any integer $i \neq 0, \tau^{i}(p) \neq p$. Among all of such irreducible factors of b_{2}, we can find one factor p such that $\tau^{i}(p) \nmid b_{2}$ for any integer $i<0$. Let s be the largest integer such that $\tau^{s}(p) \mid b_{2}$. Then the irreducible polynomial $\tau^{r+s}(p)$ divides $\tau^{r}\left(b_{2}\right)$, but $\tau^{r+s}(p) \nmid \tau^{i}\left(b_{2}\right)$ for any $0 \leq i \leq r-1$. Otherwise $\tau^{r+s-i}(p) \mid b_{2}$, which contradicts the choice of s. Therefore we have $\sum_{i=0}^{r} e_{i} \tau^{i}(f) \neq 0$, since p depends on \mathbf{x} and the coefficients e_{i} are in $\mathbb{K}(t)$. This leads to a contradiction. So every irreducible factor p of b_{2} satisfies the property that $\tau(p)=p$. This implies that $\tau\left(b_{2}\right)=b_{2}$.

Remark 6.9. For the completeness of our induction method, we state the existence criterion in the bivariate case, i.e., $n=1$. Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}\right\rangle, G=\left\langle\sigma_{x_{1}}\right\rangle$ and let $f \in \mathbb{K}(t, \mathbf{x})$ be in the form of (6.8) and $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$. Then there exists $\tau=\sigma_{t}^{s} \sigma_{x_{1}}^{k} \in G_{t, d}$ with $s>0$ such that $G_{t, d} / G_{d}=\langle\bar{\tau}\rangle$. Since the degree of d in x_{1} is positive, we have $G_{d}=\{\mathbf{1}\}$. By Theorem 6.7 and Proposition 6.8, we get f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}\right)$ if and only if $a=c / b$ with $c \in \mathbb{K}[t, \mathbf{x}]$, $b \in \mathbb{K}\left[t, \hat{\mathbf{x}}_{1}\right], \operatorname{gcd}(b, c)=1$, where b can be written as $b=b_{1} b_{2}$ with $b_{1} \in \mathbb{K}[t]$ and $b_{2} \in \mathbb{K}\left[t, \hat{\mathbf{x}}_{1}\right]$ such that $\tau\left(b_{2}\right)=b_{2}$. Note that if $m=n=1$, then $b \in \mathbb{K}[t]$. In this case, we get f always has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}\right)$. This is the result in [6, Theorem 1] and [20, Theorem 4.11].

Example 6.10. Let $f=1 /\left(t^{s}+x_{1}^{s}+\cdots+x_{n}^{s}\right) \in \mathbb{Q}\left(t, x_{1}, \ldots, x_{n}\right)$ with $s, n \in \mathbb{N} \backslash\{0\}$. Then $d=t^{s}+x_{1}^{s}+\cdots+x_{n}^{s}$ is irreducible over \mathbb{Q} if $n>1$. Let $G_{t, d}$ and G_{d} be the isotropy group of d in $G_{t}=\left\langle\sigma_{t}, \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$ and $G=\left\langle\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right\rangle$, respectively. Decide the existence of telescopers of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ for f.
(1) If $s=1$, then d is irreducible. Since $G_{t, d}=\langle\tau\rangle$ with $\tau=\sigma_{t} \sigma_{x_{1}}^{-1}$ and $G_{d}=\{\mathbf{1}\}$, we have $G_{t, d} / G_{d}=\langle\bar{\tau}\rangle$ and $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$. Observing that $\tau-1$ is an annihilator of the numerator of f, by Theorem 6.7 we get f has a telescoper. Indeed $L(f)=\Delta_{x_{1}}(f)+\Delta_{x_{2}}(0)+\cdots+\Delta_{x_{n}}(0)$, where $L=S_{t}-1$.
(2) If $s>1$ and $n=1$, then $f=1 /\left(t^{s}+x_{1}^{s}\right)=\sum_{j=1}^{s} a_{j} /\left(t-\beta_{j} x_{1}\right)$, where β_{j} 's are distinct roots of $z^{s}=-1$ and $a_{j}=1 / s\left(\beta_{j} x_{2}\right)^{s-1}$. There exists $j \in\{1, \ldots, s\}$ such that $\beta^{j} \notin \mathbb{Z}$. Then for $d_{j}=t-\beta_{j} x_{1}$, we have $G_{t, d_{j}}=G_{d_{j}}=\{\mathbf{1}\}$. So a_{j} / d_{j} is not $\sigma_{x_{1}}$-summable in $\mathbb{C}\left(t, x_{1}\right)$ and neither is f. By Lemma 6.4, we get f does not have any telescoper of type ($\sigma_{t}, \sigma_{x_{1}}$) in $\mathbb{C}(t)\left\langle S_{t}\right\rangle$. Hence f does not have any telescoper of the same type in $\mathbb{Q}(t)\left\langle S_{t}\right\rangle$.
(3) If $s>1$ and $n>2$, then d is irreducible. Since $G_{d}=\{\mathbf{1}\}$, by Theorem 5.9, we get f is not $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable. Since $G_{t, d}=\{\mathbf{1}\}$ and $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=0$, by Lemma 6.4, we get f does not have any telescoper.

Proposition 6.11. Let $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{r}\right\}(1 \leq r \leq n)$ be a family of \mathbb{Z}-linearly independent elements in G_{t} such that $\tau_{0} \in G_{t} \backslash G$ and $\left\{\tau_{1}, \ldots, \tau_{r}\right\} \subseteq G$. Then there exists a \mathbb{K}-automorphism φ of $\mathbb{K}(t, \mathbf{x})$ such that φ is a difference isomorphism between the difference fields $\left(\mathbb{K}(t, \mathbf{x}), \tau_{0}\right)$ and $\left(\mathbb{K}(t, \mathbf{x}), \sigma_{t}\right)$, and simultaneously a difference isomorphism between $\left(\mathbb{K}(t, \mathbf{x}), \tau_{i}\right)$ and $\left(\mathbb{K}(t, \mathbf{x}), \sigma_{x_{i}}\right)$ for all $i=1, \ldots, r$. Furthermore, for any $f \in \mathbb{K}(t, \mathbf{x})$, f has telescoper of type $\left(\tau_{0} ; \tau_{1}, \ldots, \tau_{r}\right)$ if and only if $\varphi(f)$ has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{r}}\right)$.
Proof. Let $\tau_{i}=\sigma_{t}^{a_{i, 0}} \sigma_{x}^{a_{i, 1}} \cdots \sigma_{x_{m}}^{a_{i, m}}$, where $a_{i, j}=0$ if $j>n$. Then $\alpha_{i}=\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, m}\right) \in$ \mathbb{Q}^{m+1} for $i=0,1, \ldots, r$. Since $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{r}$ are linearly independent over \mathbb{Q}, we can find vectors $\alpha_{r+1}, \ldots, \alpha_{m} \in \mathbb{Q}^{m+1}$ such that $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ is a basis of \mathbb{Q}^{m+1} over \mathbb{Q}. Write $\alpha_{i}=$ $\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, m}\right)$ for $i=r+1, \ldots, m$. Since $\tau_{0} \in G_{t} \backslash G$ and $\left\{\tau_{1}, \ldots, \tau_{r}\right\} \subseteq G$, we have $a_{0,0} \neq 0$ and $a_{i, 0}=0$ for $i=1, \ldots, r$. So we can further assume that $a_{i, 0}=0$ for $i=r+1, \ldots, m$. Let $A=\left(a_{i, j}\right) \in \mathbb{Q}^{(m+1) \times(m+1)}$ and then A is invertible. Let φ be a \mathbb{K}-automorphism of $\mathbb{K}(t, \mathbf{x})$ defined by

$$
\left(\varphi(t), \varphi\left(x_{1}\right), \ldots, \varphi\left(x_{m}\right)\right):=\left(t, x_{1}, \ldots, x_{m}\right) A
$$

Then $\varphi(t)=a_{0,0} \cdot t$ and $\varphi\left(x_{j}\right)=a_{0, j} \cdot t+\sum_{i=1}^{m} a_{i, j} \cdot x_{i}$ for $j=1, \ldots, m$. It can be checked that $\varphi \circ \tau_{0}=\sigma_{t} \circ \varphi$ and $\varphi \circ \tau_{i}=\sigma_{x_{i}} \circ \varphi$ for $1 \leq i \leq r$. This means the following diagrams are commutative.

Note that $\varphi(\mathbb{K}(t)) \subseteq \mathbb{K}(t)$. It follows that

$$
\sum_{\ell=0}^{\rho} e_{\ell}(t) \tau_{0}^{\ell}(f)=\sum_{i=1}^{r} \Delta_{\tau_{i}}\left(g_{i}\right) \Longleftrightarrow \sum_{\ell=0}^{\rho} e_{\ell}\left(a_{0,0} t\right) \sigma_{t}^{\ell}(\varphi(f))=\sum_{i=1}^{r} \Delta_{x_{i}}\left(\varphi\left(g_{i}\right)\right)
$$

whenever $e_{\ell}(t) \in \mathbb{K}(t)$ and $f, g_{i} \in \mathbb{K}(t, \mathbf{x})$. This completes our proof.

Let $f=a / d^{j}$ be in the form (6.8) with $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$. By Theorem 6.7 , there are two cases according to whether G_{d} is trivial or not. If $G_{d}=\{\mathbf{1}\}$, then a / d^{j} has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$ if and only if there exists a nonzero operator $L \in \mathbb{K}(t)\left\langle T_{0}\right\rangle$ such that $L(a)=0$. This problem is solved by Proposition 6.8. If G_{d} is nontrivial, we can apply the transformation in Proposition 6.11 to reduce the existence problem of telescopers to that of fewer variables. Moreover, the general existence of telescopers of type $\left(\tau_{0} ; \tau_{1}, \ldots, \tau_{n}\right)$ for rational functions has also been solved.

Algorithm 6.12 (Existence Testing of Telescopers). IsTelescoperable ($\left.f,\left[x_{1}, \ldots, x_{n}\right], t\right)$.
INPUT: a multivariate rational function $f \in \mathbb{K}(t, \mathbf{x})$, a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of variable names and a varaible name t for telescoping;
OUTPUT: a telescoper L and its certificates g_{1}, \ldots, g_{n} if f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$; false otherwise.
1 using shift equivalence testing and irreducible partial fraction decomposition, decompose f into $f=f_{0}+\sum_{j \in \mathbb{N}^{+}} \sum_{[d]_{G_{t}}} f_{[d]_{G_{t}}, j}$ as in Equation (6.1).
2 apply the reduction to f_{0} and each nonzero component $f_{[d]_{G_{t}}, j}$ such that

$$
f=\Delta_{x_{1}}\left(g_{1}\right)+\cdots+\Delta_{x_{n}}\left(g_{n}\right)+r \text { with } r=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \sum_{\ell=0}^{s_{i, j}} \frac{a_{i, j, \ell}}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}
$$

where $\sum_{\ell=0}^{s_{i, j}} \frac{a_{i, j, \ell}}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}$ is the remainder of $f_{\left[d_{i}\right]_{G_{t}}, j}$ described in Lemma 6.2.
if $r=0$, then return $L=\mathbf{1}$ and g_{1}, \ldots, g_{n}.
for $i=1, \ldots, I$ do
find elements $\tau_{i, 0}, \tau_{i, 1}, \ldots, \tau_{i, r_{i}} \in G_{t, d_{i}}$ such that $G_{t, d_{i}} / G_{d_{i}}=\left\langle\bar{\tau}_{i, 0}\right\rangle$ and $\tau_{i, 1}, \ldots, \tau_{i, r_{i}}$ form a basis for $G_{d_{i}}$.
for $j=1, \ldots, J_{i}, \ell=1, \ldots, s_{i, j}$ do
if $\operatorname{rank}\left(G_{t, d_{i}} / G_{d_{i}}\right)=0$ then
$\operatorname{IsSummable}\left(r_{i, j, \ell},\left[x_{1}, \ldots, x_{n}\right]\right)$, where $r_{i, j, \ell}:=\frac{a_{i, j, \ell}}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}$.
if $r_{i, j, \ell}$ is $\left(\sigma_{x_{1}}, \ldots, \sigma_{x_{n}}\right)$-summable in $\mathbb{F}(\mathbf{x})$, let

$$
r_{i, j, \ell}=\Delta_{x_{1}}\left(h_{i, j, \ell}^{(1)}\right)+\cdots+\Delta_{x_{n}}\left(h_{i, j, \ell}^{(n)}\right)
$$

and set $L_{i, j, \ell}=1$; return false otherwise.

$$
\text { if } \operatorname{rank}\left(G_{t, d_{i}} / G_{d_{i}}\right)=1 \text { then }
$$

$$
\text { choose } \tau_{i, 0}=\sigma_{t}^{k_{i, 0}} \sigma_{x_{1}}^{-k_{i, 1}} \cdots \sigma_{x_{n}}^{-k_{i, n}} \text { with } k_{i, 0}>0
$$

$$
\text { set } T_{i, 0}=S_{t}^{k_{i, 0}} S_{x_{1}}^{-k_{i, 1}} \cdots S_{x_{n}}^{k_{i, n}}
$$

if $G_{d_{i}}=\{\mathbf{1}\}$ then
using Proposition 6.8 to see whether there exists a nonzero operator $\bar{L}_{i, j, \ell}\left(t, T_{i, 0}\right) \in$ $\mathbb{K}(t)\left\langle T_{i, 0}\right\rangle$ such that $\bar{L}_{i, j, \ell}\left(t, T_{i, 0}\right)\left(a_{i, j, \ell}\right)=0$. If so, set $L_{i, j, \ell}\left(t, S_{t}\right)=\bar{L}_{i, j, \ell}\left(t, S_{t}^{k_{i, 0}}\right)$ and by Equation (6.9) we obtain

$$
L_{i, j, \ell}\left(\frac{a_{i, j, \ell}}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}\right)=\sum_{\lambda=1}^{n} \Delta_{x_{\lambda}}\left(h_{i, j, \ell}^{(\lambda)}\right)+\underbrace{\frac{\bar{L}_{i, j, \ell}\left(a_{i, j, \ell)}\right.}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}}_{=0} ;
$$

return false otherwise.
return false otherwise. apply φ_{i}^{-1} to both sides of the previous equation to get

$$
\bar{L}_{i, j, \ell}\left(t, T_{i, 0}\right)\left(a_{i, j, \ell}\right)=\sum_{\lambda=1}^{r_{i}} \Delta_{\tau_{i, \lambda}}\left(b_{i, j, \ell}^{(\lambda)}\right)
$$

where $\bar{L}_{i, j, \ell}\left(t, T_{i, 0}\right)=\tilde{L}_{i, j, \ell}\left(t / k_{i, 0}, T_{i, 0}\right)$ and $b_{i, j, \ell}^{(\lambda)}=\varphi_{i}^{-1}\left(\tilde{b}_{i, j, \ell}^{(\lambda)}\right)$ for all $\lambda=1, \ldots, r_{i}$. set $L_{i, j, \ell}\left(t, S_{t}\right)=\tilde{L}_{i, j, \ell}\left(t, S_{t}^{k_{i, 0}}\right)$ and by Equations (6.9) and (6.10) we obtain

$$
\begin{aligned}
L_{i, j, \ell}\left(\frac{a_{i, j, \ell}}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}}\right) & =\sum_{\lambda=1}^{n} \Delta_{x_{\lambda}}\left(u_{i, j, \ell}^{(\lambda)}\right)+\frac{\tilde{L}_{i, j, \ell}\left(a_{i, j, \ell}\right)}{\sigma_{t}^{\ell}\left(d_{i}\right)^{j}} \\
& =\sum_{\lambda=1}^{n} \Delta_{x_{\lambda}}\left(h_{i, j, \ell}^{(\lambda)}\right)
\end{aligned}
$$

for some $u_{i, j, \ell}^{(\lambda)}, h_{i, j, \ell}^{(\lambda)} \in \mathbb{K}(t, \mathbf{x})$.
22 let $L \in \mathbb{K}(t)\left\langle S_{t}\right\rangle$ be the $L C L M$ of $L_{i, j, \ell}$ for all i, j, ℓ and write

$$
L=R_{i, j, \ell} L_{i, j, \ell}
$$

23 update $g_{\lambda}=L\left(g_{\lambda}\right)+\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \sum_{\ell=1}^{s_{i, j}} R_{i, j, \ell}\left(h_{i, j, \ell}^{(\lambda)}\right)$ for all $\lambda=1, \ldots, n$.
24

Example 6.13. Let $\mathbb{K}=\mathbb{Q}$ and $f \in \mathbb{Q}(t, x, y, z)$. Consider the existence of telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ for f. Let $G_{t}=\left\langle\sigma_{t}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$ and $G=\left\langle\sigma_{x}, \sigma_{y}, \sigma_{z}\right\rangle$.
(1) For $f=\frac{1}{(t+1)(t+2 z) d}$ with $d=(t-3 y+x)^{2}(t+y)(t+z)+1$, we find a basis of the isotropy group $G_{t, d}$ is $\left\{\tau_{0}\right\}$, where $\tau_{0}=\sigma_{t} \sigma_{x}^{-4} \sigma_{y}^{-1} \sigma_{z}^{-1}$. Then $G_{t, d} / G_{d}=\left\langle\bar{\tau}_{0}\right\rangle$. Since $\operatorname{rank}\left(G_{t, d} / G_{d}\right)=1$ and $G_{d}=\{\mathbf{1}\}$ is a trivial group, we know from Theorem 6.7 that f has a telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ if and only if there exists a nonzero operator $L_{0} \in \mathbb{Q}(t)\left\langle T_{0}\right\rangle$ with $T_{0}=$ $S_{t} S_{x}^{-4} S_{y}^{-1} S_{z}^{-1}$ such that

$$
L_{0}(a)=0, \text { where } a=f d=\frac{1}{(t+1)(t+2 z)}
$$

Note that the prime part of the denominator $b=(t+1)(t+2 z)$ of a with respect to variables $\{x, y, z\}$ is $b_{2}=t+2 z$ and $\tau_{0}\left(b_{2}\right) \neq b_{2}$. By Proposition 6.8, there does not exist any operator $L_{0} \in \mathbb{Q}(t)\left\langle T_{0}\right\rangle$ such that $L_{0}(a)=0$. So f does not have any telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$.
(2) For $f=\frac{1}{(t+1) d}$ with d being the same as in Example 6.13 (1), it is easy to check that for $a=\frac{1}{t+1}$,

$$
L_{0}(a)=0 \text { with } L_{0}=T_{0}-\frac{t+1}{t+2}
$$

where $T_{0}=S_{t} S_{x}^{-4} S_{y}^{-1} S_{z}^{-1}$. So by Theorem 6.7, f has a telescoper L of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. In fact, we can take $L=S_{t}-\frac{t+1}{t+2}$. Then

$$
\begin{aligned}
L(f) & =\frac{\sigma_{t}(a)}{\sigma_{t}(d)}-\frac{t+1}{t+2} \cdot \frac{a}{d}=\frac{\sigma_{t}(a)}{\sigma_{x}^{4} \sigma_{y} \sigma_{z}(d)}-\frac{t+1}{t+2} \cdot \frac{a}{d} \\
& =\Delta_{x}(u)+\Delta_{y}(v)+\Delta_{z}(w)+\underbrace{\frac{\tau_{0}(a)-((t+1) /(t+2)) a}{d}}_{=L_{0}(a) / d=0} \\
& =\Delta_{x}(u)+\Delta_{y}(v)+\Delta_{z}(w),
\end{aligned}
$$

where $u=\sum_{\ell=0}^{3} \frac{\sigma_{t}(a)}{\sigma_{x}^{\ell} \sigma_{y} \sigma_{z}(d)}, v=\frac{\sigma_{t}(a)}{\sigma_{z}(d)}$, and $w=\frac{\sigma_{t}(a)}{d}$. Additionally, this is a non-trivial example in two senses. Firstly, since $G_{d}=\{\mathbf{1}\}$, this rational function f is not $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ summable in $\mathbb{Q}(t, x, y, z)$. Secondly, for any $\{\mu, \nu\} \subseteq\{x, y, z\}$, since the isotropy group of d in $\left\langle\sigma_{t}, \sigma_{\mu}, \sigma_{\nu}\right\rangle$ is trivial and f is not $\left(\sigma_{\mu}, \sigma_{\nu}\right)$-summable, by Lemma 6.4, f does not have any telescoper in $\mathbb{Q}(t)\left\langle S_{t}\right\rangle$ of type $\left(\sigma_{t} ; \sigma_{\mu}, \sigma_{\nu}\right)$.
(3) Continue the Example 6.3 (2) and write f in the form

$$
f=\Delta_{x}\left(u_{0}\right)+\Delta_{y}\left(v_{0}\right)+\Delta_{z}\left(w_{0}\right)+r_{1}+r_{2},
$$

where $u_{0}, v_{0}, w_{0} \in \mathbb{Q}(t, x, y, z)$ and $r_{1}=\frac{1}{t(t+y+2 z) d}, r_{2}=\frac{1}{(t+3 z) \sigma_{t}(d)}$ with $d=3 y+(x+z)^{2}+t$.
(a) For $r_{1}=a_{1} / d$ with $a_{1}=1 /(t(t+y+2 z))$, we find a basis of $G_{t, d}$ is $\left\{\tau_{0}, \tau_{1}\right\}$, where $\tau_{0}=\sigma_{t}^{3} \sigma_{y}^{-1}, \tau_{1}=\sigma_{x} \sigma_{z}^{-1}$. Then by Theorem 6.7, r_{1} has a telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ if and only if a_{1} has a telescoper of type $\left(\tau_{0} ; \tau_{1}\right)$. Choose one \mathbb{Q}-automorphism ϕ_{1} of $\mathbb{Q}(t, x, y, z)$ given in Proposition 6.11 as follows

$$
\phi_{1}(h(t, x, y, z))=h(3 t, x,-t+y,-x+z),
$$

for any $h \in \mathbb{Q}(x, y, z)$. Then $\phi_{1} \circ \tau_{0}=\sigma_{t} \circ \phi_{1}$ and $\phi_{1} \circ \tau_{1}=\sigma_{x} \circ \phi_{1}$. So a_{1} has a telescoper of type $\left(\tau_{0} ; \tau_{1}\right)$ if and only if $\phi_{1}\left(a_{1}\right)$ has a telescoper of type $\left(\sigma_{t} ; \sigma_{x}\right)$. A direct calculation yields that

$$
\phi_{1}\left(a_{1}\right)=\frac{1}{3 t(\underbrace{2 t+y-2 x+2 z}_{\tilde{d}}} .
$$

Again consider the isotropy group of \tilde{d} in $\left\langle\sigma_{t}, \sigma_{x}\right\rangle$, which is generated by $\tilde{\tau}_{0}=\sigma_{t} \sigma_{x}^{2}$. Since $\left(\tilde{\tau}_{0}-\frac{t}{t+1}\right)\left(\frac{1}{3 t}\right)=0$, by the similar argument as in Example 6.13 (2), we see $\phi_{1}\left(a_{1}\right)$ has a telescoper $\tilde{L}_{1} \in \mathbb{Q}(t)\left\langle S_{t}\right\rangle$ of type $\left(\sigma_{t} ; \sigma_{x}\right)$ and in particular we find

$$
\begin{equation*}
\tilde{L}_{1}\left(t, S_{t}\right)\left(\phi_{1}\left(a_{1}\right)\right)=\Delta_{x}\left(\tilde{b}_{1}\right) \tag{6.14}
\end{equation*}
$$

with $\tilde{L}_{1}=S_{t}-\frac{t}{t+1}, \tilde{b}_{1}=-\frac{1}{3(t+1)(2 t+y-2 x+2+2 z)}$. So by Theorem 6.7, r_{1} has a telescoper $L \in \mathbb{Q}(t)\left\langle S_{t}\right\rangle$ of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. In fact, we can find an explicit expression for L. Applying ϕ_{1}^{-1} to Equation (6.14) yields that

$$
\bar{L}_{1}\left(t, T_{0}\right)\left(a_{1}\right)=\Delta_{\tau_{1}}\left(b_{1}\right),
$$

where $T_{0}=S_{t}^{3} S_{y}^{-1}, \bar{L}_{1}\left(t, T_{0}\right)=\tilde{L}_{1}\left(\frac{t}{3}, T_{0}\right)=T_{0}-\frac{t}{t+3}, b_{1}=\phi_{1}^{-1}\left(\tilde{b}_{1}\right)=-\frac{1}{(t+3)(t+y+2 z+2)}$. Let $L_{1}\left(t, S_{t}\right)=\bar{L}_{1}\left(t, S_{t}^{3}\right)=S_{t}^{3}-\frac{t}{t+3}$. Then we have

$$
\begin{aligned}
L_{1}\left(r_{1}\right) & =\frac{\sigma_{t}^{3}\left(a_{1}\right)}{\sigma_{t}^{3}(d)}-\frac{t}{t+3} \cdot \frac{a_{1}}{d}=\frac{\sigma_{t}^{3}\left(a_{1}\right)}{\sigma_{y}(d)}-\frac{t}{t+3} \cdot \frac{a_{1}}{d} \\
& =\Delta_{x}(0)+\Delta_{y}\left(v_{1}\right)+\Delta_{z}(0)+\frac{\bar{L}_{1}\left(a_{1}\right)}{d} \text { with } v_{1}=\frac{\sigma_{t}^{3} \sigma_{y}^{-1}\left(a_{1}\right)}{d}
\end{aligned}
$$

and using Lemma 5.8 with $\tau=\tau_{1}$, we get

$$
\frac{\bar{L}_{1}\left(a_{1}\right)}{d}=\Delta_{\tau_{1}}\left(\frac{b_{1}}{d}\right)=\Delta_{x}\left(u_{1}\right)+\Delta_{y}(0)+\Delta_{z}\left(w_{1}\right)
$$

with $u_{1}=\sigma_{z}^{-1}\left(\frac{b_{1}}{d}\right)$ and $w_{1}=-\sigma_{z}^{-1}\left(\frac{b_{1}}{d}\right)$. Hence L_{1} is a telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ for r_{1} and

$$
L_{1}\left(r_{1}\right)=\Delta_{x}\left(u_{1}\right)+\Delta_{y}\left(v_{1}\right)+\Delta_{z}\left(w_{1}\right) .
$$

(b) Similarly, for $r_{2}=a_{2} / \sigma_{t}(d)$ with $a_{2}=1 /(t+3 z)$, applying the algorithm IsTelescoperable to r_{2}, the result is true and we obtain

$$
L_{2}\left(r_{2}\right)=\Delta_{x}\left(u_{2}\right)+\Delta_{y}\left(v_{2}\right)+\Delta_{z}\left(w_{2}\right),
$$

where $L_{2}=S_{t}^{3}-1, u_{2}=\sigma_{z}^{-1}\left(\frac{b_{2}}{\sigma_{t}(d)}\right), v_{2}=\frac{\sigma_{t}^{3} \sigma_{y}^{-1}\left(a_{2}\right)}{\sigma_{t}(d)}$ and $w_{2}=-\sigma_{z}^{-1}\left(\frac{b_{2}}{\sigma_{t}(d)}\right)$ with $b_{2}=-\frac{1}{t+3 z+3}$.
(c) For $r=r_{1}+r_{2}$, using LCLM algorithm to compute the least common multiple L of L_{1}, L_{2} in $\mathbb{Q}(t)\left\langle S_{t}\right\rangle$, we obtain

$$
L=R_{1} L_{1}=R_{2} L_{2}=S_{t}^{6}-\frac{2(t+3)}{t+6} S_{t}^{3}+\frac{t}{t+6}
$$

with $R_{1}=S_{t}^{3}-\frac{t+3}{t+6}$ and $R_{2}=S_{t}^{3}-\frac{t}{t+6}$. Then

$$
L(r)=\Delta_{x}(u)+\Delta_{y}(v)+\Delta_{z}(w),
$$

where $u=\sum_{i=1}^{2} R_{i}\left(u_{i}\right), v=\sum_{i=1}^{2} R_{i}\left(v_{i}\right)$ and $u=\sum_{i=1}^{2} R_{i}\left(w_{i}\right)$ are rational functions in $\mathbb{Q}(t, x, y, z)$. Updating $u=u+L\left(u_{0}\right), v=v+L\left(v_{0}\right)$ and $w=w+L\left(w_{0}\right)$, we get

$$
L(f)=\Delta_{x}(u)+\Delta_{y}(v)+\Delta_{z}(w) .
$$

So L is a telescoper of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ for f.

7 Appendix: implementations and timings

We implement Algorithms 3.6, 5.13 and 6.12 in the computer algebra system Maple 2020. In this section, we compare the efficiency of the algorithms for solving the SET problem and illustrate the usage of our package "RationalWZ" by several examples. Our maple code and more examples are available for download at

```
http://www.mmrc.iss.ac.cn/~schen/RationalWZ-2022.html
```

We have implemented the G algorithm, the KS algorithm, the DOS algorithm, the algorithm applying a-degree cover to Algorithm 3.6 (ADP) in Maple 2020 with $\mathbb{F}=\mathbb{Q}$.

Fixing one admissible cover, there are two methods to calculate it and then to implement Algorithm 3.6. A direct method is expanding $p(\mathbf{x}+\mathbf{a})-q(\mathbf{x})$ with $2 n$ variables to get the set of its coefficients in \mathbf{x} and then the admissible cover, while another is obtaining the members of the admissible cover successively by computing partial derivative dynamically. For a more efficient implementation, the DOS algorithm and the ADP algorithm is realized by partial derivative and expansion respectively.

The test suite was generated as follows.
Let $n, d, t, d^{\prime} \in \mathbb{N}$ and $d^{\prime}<d$. Let $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We first generated randomly a t term polynomial $p(\mathbf{x})$ of degree d, as well as a polynomial $\operatorname{dis}(\mathbf{x})$ of degree d^{\prime}. Then we generated randomly a vector $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ and let $q(\mathbf{x})=p(\mathbf{x}+\mathbf{a})+\operatorname{dis}(\mathbf{x})$. Therefore, the calculation is most likely to terminate after computing $\mathbb{V}_{\mathbb{F}}\left(\cup_{i=0}^{d-1-d^{\prime}} S_{i}^{H}\right)$. By setting $0 \leq a_{i} \leq 99$, we can avoid the case where the memory is not enough to complete the computation.

Note that, in all the tests, the algorithms take the expanded forms of examples given above as input. All timings are measured in seconds on a macOS Monterey (Version 12.0.1) MacBook Pro with 32GB Memory and Apple M1 Pro Chip.

For a selection of random polynomials and vectors for different choices of n, t, d, d^{\prime} as above, we first tabulate the timings of the G algorithm, the KS algorithm, the DOS algorithm and the ADP algorithm. Note that $d^{\prime}=-\infty$ means dis $=0$, implying that p is shift equivalent to q.

n	t	d	d^{\prime}	G	KS	DOS	ADP
3	10	15	13	5.476	2.090	0.014	0.008
3	10	15	10	0.243	1.124	0.023	0.020
3	10	15	5	21.719	1.809	0.050	0.032
3	10	15	0	573.178	2.576	0.068	0.039
3	10	15	$-\infty$	18.491	0.714	0.043	0.036
3	100	15	13	0.205	10.025	0.044	0.028
3	100	15	10	0.482	9.997	0.046	0.046
3	100	15	5	22.114	11.317	0.061	0.062
3	100	15	0	2152.378	19.470	0.083	0.069
3	100	15	$-\infty$	1200.473	13.640	0.085	0.068

The experimental results illustrate that the DOS algorithm and the ADP algorithm outperform the other two algorithms. Furthermore, we conducted experiments in more complicated cases.

n	t	d	d^{\prime}	DOS	ADP
5	100	40	35	199.177	59.889
5	100	40	30	24.684	90.159
5	100	40	20	379.835	95.761
5	100	40	10	681.189	665.885
5	100	40	0	182.671	67.261
5	100	40	$-\infty$	709.223	77.880
5	10000	20	18	2.724	122.744
5	10000	20	15	3.088	163.258
5	10000	20	10	5.290	139.685
5	10000	20	5	10.755	125.359
5	10000	20	0	23.949	151.010
5	10000	20	$-\infty$	24.562	136.187

The experimental results indicate that the ADP algorithm outperforms the other for most of non-dense testing examples, while the DOS algorithm has a clear advantage for dense ones. It may be because the timing of expansion grows fast with the number of terms in the input polynomial. In conclusion, we present an algorithm, the ADP algorithm, which is complementary to the DOS algorithm for solving the SET problem.

From the runtime comparison, we decided to use the ADP algorithm in the package RationalWZ. In our setting, the base field \mathbb{F} can be \mathbb{Q} or the field of rational functions $\mathbb{Q}\left(u_{1}, \ldots, u_{s}\right)$. The following instructions show how to load the modules.

```
> read "RationalWZ.mm";
> with(ShiftEquivalenceTesting):
> with(OrbitalDecomposition):
> with(RationalReduction):
> with(RationalSummation):
> with(RationalTelescoping):
```

Example 7.1. Compute the dispersion set (over \mathbb{Z}) of two polynomials.
(1) For $p, q \in \mathbb{Q}[x, y]$ in Example 3.4, we type

```
>ShiftEquivalent(x^2 + 2*x*y + y^2 + 2*x + 6*y, x^2 + 2*x*y + y^2 + 4*x +
    8*y + 11, [x, y])
```

$$
[-1,2]
$$

which implies $Z_{p, q}=\{(-1,2)\}$. So $p(x-1, y+2)=q(x, y)$.
(2) For $p, q \in \mathbb{Q}[x, y, z]$ in Example 3.20 (1), we type

```
> ShiftEquivalent \(\left(x^{\wedge} 4+x^{\wedge} 3 * y+x * y^{\wedge} 2+z \wedge 2, x^{\wedge} 4+x \wedge 3 *(y+1)+x *(y+1)^{\wedge} 2\right.\)
        \(\left.+(z+2)^{\wedge} 2+x * y,[x, y, z]\right)\)
```

which implies $Z_{p, q}=\emptyset$. So p, q are not shift equivalent.
Example 7.2. Decide the $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summability of a rational function $f \in \mathbb{Q}(x, y, z)$. Let f_{3}, r_{3} be the same as in Example 5.14 (3).
(1) Applying the function "IsSummable" to $f=f_{3}$, we see f is not ($\sigma_{x}, \sigma_{y}, \sigma_{z}$)-summable.
$>\operatorname{IsSummable}\left(\left(y+z /\left(y^{\wedge} 2+z-1\right)-1 /\left(y^{\wedge} 2+z\right)\right) /(x+2 * y+z)^{\wedge} 2,[x, y, z]\right)$ false
(2) Applying the function "IsSummable" to $f=f_{3}-r_{3}$, we see f is $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$-summable and its certificates are as follows:
$>$ IsSummable $\left(\left(y+z /\left(y^{\wedge} 2+z-1\right)-1 /\left(y^{\wedge} 2+z\right)\right) /(x+2 * y+z)^{\wedge} 2-z /\left(\left(y^{\wedge} 2+\right.\right.\right.$ $\left.\left.z) *(x+2 * y+z)^{\wedge} 2\right),[x, y, z]\right)$
true, $\left[-\frac{y(y-1)}{2(x-2+2 y+z)^{2}}-\frac{y(y-1)}{2(x-1+2 y+z)^{2}}+\frac{z}{\left(y^{2}+z-1\right)(x-1+2 y+z)^{2}}, \frac{y(y-1)}{2(x-2+2 y+z)^{2}},-\frac{z}{\left(y^{2}+z-1\right)(x-1+2 y+z)^{2}}\right]$
Example 7.3. Decide the existence of telescopers of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ for a rational function $f \in \mathbb{Q}(t, x, y, z)$.
(1) Applying the function "IsTelescoperable" to f in Example 6.13 (1), we see f does not have a telescoper in $\mathbb{Q}(t)\left\langle S_{t}\right\rangle$ of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$.
> IsTelescoperable $\left(1 /\left((t+1) *(t+2 * z) *\left((t-3 * y+x)^{\wedge} 2 *(t+y) *(t+z)+\right.\right.\right.$ 1)), $[x, y, z], t, ' S t$ ')

false

(2) Applying the function "IsTelescoperable" to $f=r_{1}$ in Example 6.13 (3), we see f has a telescoper $L=-\frac{t}{t+3}+S_{t}^{3}$ of type $\left(\sigma_{t} ; \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and its certificates are as follows:

$$
\begin{aligned}
& >\text { IsTelescoperable }(1 /(t *(t+y+2 * z) *(3 * y+(x+z) \wedge 2+t)),[x, y, z], t, \\
& \text { 'St') } \\
& \quad \text { true, }-\frac{t}{t+3}+S t^{3},\left[-\frac{t}{6\left(\frac{t}{2}+\frac{y}{2}+z\right)\left(\frac{t}{3}+1\right)\left(x^{2}+2 x(z-1)+(z-1)^{2}+t+3 y\right)},\right. \\
& \left.\quad \frac{1}{(t+3)(t+2+y+2 z)\left(x^{2}+2 x z+z^{2}+t+3 y\right)}, \frac{t}{6\left(\frac{t}{3}+1\right)\left(\frac{t}{2}+\frac{y}{2}+z\right)\left(x^{2}+2 x(z-1)+(z-1)^{2}+t+3 y\right)}\right]
\end{aligned}
$$

References

[1] Sergei A. Abramov. On the summation of rational functions. USSR Computational Mathematics and Mathematical Physics, 11(4):324-330, 1971.
[2] Sergei A. Abramov. The rational component of the solution of a first order linear recurrence relation with rational right hand side. Ž. Vyčisl. Mat. i Mat. Fiz., 15(4):1035-1039, 1090, 1975.
[3] Sergei A. Abramov. Indefinite sums of rational functions. In ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pages 303-308, New York, NY, USA, 1995. ACM.
[4] Sergei A. Abramov. Rational solutions of linear difference and q-difference equations with polynomial coefficients. In ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pages 285-289, New York, NY, USA, 1995. ACM.
[5] Sergei A. Abramov. When does Zeilberger's algorithm succeed? Adv. in Appl. Math., 30(3):424-441, 2003.
[6] Sergei A. Abramov and Ha Quang Le. A criterion for the applicability of Zeilberger's algorithm to rational functions. Discrete Math., 259(1-3):1-17, 2002.
[7] Sergei A. Abramov, Ha Quang Le, and Ziming Li. Univariate ore polynomial rings in computer algebra. J. of Mathematical Sci., 131(5):5885-5903, 2005.
[8] Sergei A. Abramov and Mark van Hoeij. A method for the integration of solutions of ore equations. In ISSAC '97: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 172-175, New York, NY, USA, 1997. ACM.
[9] George E. Andrews and Peter Paule. Some questions concerning computer-generated proofs of a binomial double-sum identity. J. Symbolic Comput., 16(2):147-151, August 1993.
[10] J. Marshall Ash and Stefan Catoiu. Telescoping, rational-valued series, and zeta functions. Transactions of the American Mathematical Society, 357(8):3339-3358, 2005.
[11] Joseph Bernšten̆n. Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients. Funkcional. Anal. i Priložen., 5(2):116, 1971.
[12] Jérémy Berthomieu, Jean-Charles Faugère, and Ludovic Perret. Polynomial-time algorithms for quadratic isomorphism of polynomials: the regular case. J. Complexity, 31(4):590-616, 2015.
[13] Johannes Blümlein, Sebastian Klein, Carsten Schneider, and Flavia Stan. A symbolic summation approach to Feynman integral calculus. J. Symbolic Comput., 47(10):1267-1289, 2012.
[14] Charles Bouillaguet, Pierre-Alain Fouque, and Amandine Véber. Graph-theoretic algorithms for the "isomorphism of polynomials" problem. In Advances in cryptology-EUROCRYPT 2013, volume 7881 of Lecture Notes in Comput. Sci., pages 211-227. Springer, Heidelberg, 2013.
[15] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig.
[16] Shaoshi Chen, Frédéric Chyzak, Ruyong Feng, Guofeng Fu, and Ziming Li. On the existence of telescopers for mixed hypergeometric terms. J. Symbolic Comput., 68:1-26, 2015.
[17] Shaoshi Chen, Lixin Du, Rong-Hua Wang, and Chaochao Zhu. On the existence of telescopers for rational functions in three variables. Journal of Symbolic Computation, 104:494-522, 2021.
[18] Shaoshi Chen, Lixin Du, and Chaochao Zhu. Existence problem of telescopers for rational functions in three variables: The mixed cases. In Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, ISSAC '19, pages 82-89, New York, NY, USA, 2019. ACM.
[19] Shaoshi Chen, Qing-Hu Hou, George Labahn, and Rong-Hua Wang. Existence problem of telescopers: beyond the bivariate case. In ISSAC '16: Proceedings of the 2016 on International Symposium on Symbolic and Algebraic Computation, pages 167-174, New York, NY, USA, 2016. ACM.
[20] Shaoshi Chen and Michael F. Singer. Residues and telescopers for bivariate rational functions. Adv. Appl. Math., 49(2):111-133, August 2012.
[21] Shaoshi Chen and Michael F. Singer. On the summability of bivariate rational functions. J. of Algebra, 409:320-343, 2014.
[22] William Y. C. Chen, Qing-Hu Hou, and Yan-Ping Mu. Applicability of the q-analogue of Zeilberger's algorithm. J. Symbolic Comput., 39(2):155-170, 2005.
[23] William Y. C. Chen, Qing-Hu Hou, and Yan-Ping Mu. A telescoping method for double summations. J. Comput. Appl. Math., 196(2):553-566, 2006.
[24] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity and beyond. Found. Trends Theor. Comput. Sci., 6(1-2):front matter, 1-138 (2011), 2010.
[25] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing equivalence of polynomials under shifts. In Automata, languages, and programming. Part I, volume 8572 of Lecture Notes in Comput. Sci., pages 417-428. Springer, 2014.
[26] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing equivalence of polynomials under shifts. Electron. Colloquium Comput. Complex, 21:3, 2014.
[27] Jean-Charles Faugère and Ludovic Perret. Polynomial equivalence problems: algorithmic and theoretical aspects. In Advances in cryptology-EUROCRYPT 2006, volume 4004 of Lecture Notes in Comput. Sci., pages 30-47. Springer, Berlin, 2006.
[28] Keith O. Geddes, Stephanie R. Czapor, and George Labahn. Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, MA, 1992.
[29] Ralph William Gosper, Jr. Decision procedure for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A., 75(1):40-42, 1978.
[30] Dima Grigoriev and Marek Karpinski. A zero-test and an interpolation algorithm for the shifted sparse polynominals. In Gérard D. Cohen, Teo Mora, and Oscar Moreno, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 10th International Symposium, AAECC-10, San Juan de Puerto Rico, Puerto Rico, May 10-14, 1993, Proceedings, volume 673 of Lecture Notes in Computer Science, pages 162-169. Springer, 1993.
[31] Dima Yu. Grigoriev and Lakshman Y. N. Algorithms for computing sparse shifts for multivariate polynomials. In A. H. M. Levelt, editor, ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation: July 10-12, 1995, Montréal, Canada, ISSAC -PROCEEDINGS- 1995, pages 96-103, pub-ACM:adr, 1995. ACM Press.
[32] Dmitry Grigoriev. Testing shift-equivalence of polynomials using quantum machines. In ISSAC '96: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, pages 49-54, New York, NY, USA, 1996. ACM.
[33] Dmitry Grigoriev. Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theoret. Comput. Sci., 180(1-2):217-228, 1997.
[34] Joshua A. Grochow, Youming Qiao, and Gang Tang. Average-case algorithms for testing isomorphism of polynomials, algebras, and multilinear forms. In 38th International Symposium on Theoretical Aspects of Computer Science, volume 187 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 38, 17. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.
[35] Charlotte Hardouin and Michael F. Singer. Differential Galois theory of linear difference equations. Math. Ann., 342(2):333-377, 2008.
[36] Qing-Hu Hou and Rong-Hua Wang. An algorithm for deciding the summability of bivariate rational functions. Adv. in Appl. Math., 64:31-49, 2015.
[37] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499-507, 1979.
[38] Michael Karr. Summation in finite terms. J. Assoc. Comput. Mach., 28(2):305-350, 1981.
[39] Michael Karr. Theory of summation in finite terms. J. Symbolic Comput., 1(3):303-315, 1985.
[40] Manuel Kauers and Carsten Schneider. Partial denominator bounds for partial linear difference equations. page 211-218, 2010.
[41] Neeraj Kayal. Algorithms for arithmetic circuits. Electron. Colloquium Comput. Complex, 17:73, 2010.
[42] Neeraj Kayal. Affine projections of polynomials [extended abstract]. In STOC'12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 643-661. ACM, New York, 2012.
[43] Donald E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading, MA, 1998. Seminumerical algorithms, Third edition [of MR0286318].
[44] Y. N. Lakshman and B. David Saunders. On computing sparse shifts for univariate polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC '94, page 108-113, New York, NY, USA, 1994. Association for Computing Machinery.
[45] Y. N. Lakshman and B. David Saunders. Sparse shifts for univariate polynomials. Appl. Algebra Engrg. Comm. Comput., 7(5):351-364, 1996.
[46] Laura Felicia Matusevich. Rational summation of rational functions. Beiträge zur Algebra und Geometrie, 41:531-536, 2000.
[47] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two new families of asymmetric algorithms. In Ueli Maurer, editor, Advances in Cryptology EUROCRYPT' '96, pages 33-48, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.
[48] Peter Paule. Greatest factorial factorization and symbolic summation. J. Symbolic Comput., 20(3):235-268, 1995.
[49] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. $A=B$. A. K. Peters Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth.
[50] Roberto Pirastu and Volker Strehl. Rational summation and Gosper-Petkovšek representation. J. Symbolic Comput., 20(5-6):617-635, 1995. Symbolic computation in combinatorics (Ithaca, NY, 1993).
[51] Mikio Sato. Theory of prehomogeneous vector spaces (algebraic part) - the English translation of Sato's lecture from Shintani's note. Nagoya Math. J., 120:1-34, 1990. Notes by Takuro Shintani, Translated from the Japanese by Masakazu Muro.
[52] Nitin Saxena. Progress on polynomial identity testing. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (99):49-79, 2009.
[53] Nitin Saxena. Progress on polynomial identity testing-II. In Perspectives in computational complexity, volume 26 of Progr. Comput. Sci. Appl. Logic, pages 131-146. Birkhäuser/Springer, Cham, 2014.
[54] Carsten Schneider. Symbolic Summation in Difference Fields. PhD thesis, J. Kepler University Linz, 2001.
[55] Carsten Schneider. Symbolic summation assists combinatorics. Sém. Lothar. Combin., 56:Art. B56b, 36, 2006/07.
[56] Carsten Schneider. Parameterized telescoping proves algebraic independence of sums. Ann. Comb., 14(4):533-552, 2010.
[57] Carsten Schneider and Johannes Blümlein, editors. Computer algebra in quantum field theory. Texts and Monographs in Symbolic Computation. Springer, Vienna, 2013. Integration, summation and special functions.
[58] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, 1980, October.
[59] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends $(\Omega$ in Theoretical Computer Science, 5(3-4):207-388, 2010.
[60] Volker Strassen. Algebraic complexity theory. In Handbook of theoretical computer science, Vol. A, pages 633-672. Elsevier, Amsterdam, 1990.
[61] Joachim von zur Gathen. Algebraic complexity theory. In Annual review of computer science, Vol. 3, pages 317-347. Annual Reviews, Palo Alto, CA, 1988.
[62] Joachim von zur Gathen and Gerhard Jürgen. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.
[63] Herbert S. Wilf and Doron Zeilberger. Rational functions certify combinatorial identities. J. Amer. Math. Soc., 3(1):147-158, 1990.
[64] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities. Invent. Math., 108(3):575-633, 1992.
[65] Doron Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32:321-368, 1990.
[66] Doron Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195-204, 1991.
[67] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC '79: Proc. Int'l. Symp. on Symbolic and Algebraic Computation, Lecture Notes in Computer Science, Vol. 72. SpringerVerlag, 1979. Zippel discusses probabilistic methods for testing polynomial identities and properties of systems of polynomials.
[68] Richard Zippel. Effective polynomial computation. Kluwer Academic Publishers, Boston-Dordrecht-London, 1993.

[^0]: ${ }^{*}$ S. Chen and H. Fang were partially supported by the NSFC grants (No. 12271511 and No. 11688101), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-034), the Fund of the Youth Innovation Promotion Association (Grant No. Y2022001), CAS, and the National Key Research and Development Project 2020YFA0712300. L. Du was supported by the NSFC grant 11871067 and the Austrian FWF grant P31571-N32.

