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ABSTRACT
We present a new reduction algorithm that simultaneously
extends Hermite’s reduction for rational functions and the
Hermite-like reduction for hyperexponential functions. It
yields a unique additive decomposition that allows to de-
cide hyperexponential integrability. Based on this reduction
algorithm, we design a new algorithm to compute minimal
telescopers for bivariate hyperexponential functions. One of
its main features is that it can avoid the costly computa-
tion of certificates. Its implementation outperforms Maple’s
function DEtools[Zeilberger]. We also derive an order bound
on minimal telescopers that is tighter than the known ones.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Hermite reduction, Hyperexponential function, Telescoper

1. INTRODUCTION
Given a univariate rational function r, Hermite reduc-

tion in [17, 14, 6] finds rational functions r1 and r2 s.t.
(i) r = r1 + r2, (ii) r1 is rational integrable, (iii) r2 is a
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proper fraction with a squarefree denominator. The addi-
tive decomposition is unique, and r is rational integrable if
and only if r2 = 0.

A univariate function is hyperexponential if its logarith-
mic derivative is rational. Exponential, radical and rational
functions are hyperexponential. Rational Hermite reduction
was extended to hyperexponential functions by Davenport
in [11] and by Geddes, Le and Li in [12]. The former aims
at solving Risch’s equation; the latter is a differential ana-
logue of the reduction algorithm for hypergeometric terms
in [2]. For a given hyperexponential function H, the reduc-
tion algorithms in [11, 12] compute two hyperexponential
functions H1 and H2 s.t. (i) H = H1 + H2, (ii) H1 is hy-
perexponential integrable, (iii) H2 is minimal in some sense.
However, H2 is not unique in general and it may be nonzero
even when H is hyperexponential integrable. To decide the
integrability of H, one additionally needs to compute poly-
nomial solutions of a first-order linear differential equation.

The method of creative telescoping, developed initially for
hyperexponential functions by Almkvist and Zeilberger [3],
then extended by Chyzak to general holonomic function-
s [10], is nowadays an important automatic tool for com-
puting definite integrals. Recently, it has also played an
important role in the resolution of intriguing problems in
enumerative combinatorics [15, 16]. For a bivariate hyperex-
ponential function H(x, y), the problem of creative telescop-
ing is to find a nonzero operator L(x,Dx) in F(x)〈Dx〉, the
ring of linear differential operators over the rational-function
field F(x), s.t.

L(x,Dx)(H) = Dy(G) (1)

for some hyperexponential function G, where Dx = ∂/∂x
and Dy = ∂/∂y. The operator L above is called a tele-
scoper for H, and G is the corresponding certificate. An
algorithm for solving (1) is given in [3], which is based on a
differential version of Gosper’s algorithm. An algorithm for
rational-function telescoping is given in [5], which is based
on Hermite reduction. The latter separates the computa-
tion of telescopers from that of certificates, and has a lower
complexity than the former for rational functions.

In the present paper, we develop a reduction algorithm
which, given a univariate hyperexponential function H, con-
structs two hyperexponential functions H1 and H2 s.t. (i)
H = H1 + H2, (ii) H1 is hyperexponential integrable, and
(iii) H2 is either zero or not hyperexponential integrable. We



show that H2 in the above additive decomposition is unique
in a certain technical sense and can be obtained without
computing polynomial solutions of any differential equation.
Our algorithm is based on the Hermite-like reduction in [12],
a differential variant of the polynomial reduction in [2] and
on the idea for reducing simple radicals in [18, Proposi-
tion 7]. The main new ingredient is property (iii), which
is crucial in many applications. Using the reduction algo-
rithm, we extend the rational telescoping algorithm in [5]
to the hyperexponential case, and derive an order bound on
the telescopers. The new telescoping algorithm avoids the
costly computation of certificates, and the order bound is
tighter than that obtained in [4] and [8].

The rest of the paper is organized as follows. We review
the notion of hyperexponential functions and Hermite-like
reduction in Sections 2 and 3, respectively. A new reduc-
tion algorithm is developed for hyperexponential function-
s in Section 4. After introducing kernel reduction in Sec-
tion 5, we present a reduction-based telescoping algorithm
for bivariate hyperexponential functions, and derive an up-
per bound on the order of minimal telescopers in Section 6.
We briefly describe an implementation of the new telescop-
ing algorithm, and present some experimental results in Sec-
tion 7, which validate its practical relevance.

As a matter of notation, we let F be a field of characteristic
zero and F(y) be the field of rational functions in y over F.
For a polynomial p ∈ F[y], we denote by deg(p) and lc(p)
the degree and leading coefficient of p, respectively. Let Dy
denote the usual derivation d/dy on F(y). Then (F(y), Dy)
is a differential field.

2. HYPEREXPONENTIAL FUNCTIONS
Hyperexponential functions share the common properties

of rational functions, simple radicals, and exponential func-
tions. Together with hypergeometric terms, they are fre-
quently viewed as a special and important class of “closed-
form” solutions of linear differential and difference equations
with polynomial coefficients.

Definition 1. Let Φ be a differential field extension of F(y).
A nonzero element H ∈ Φ is said to be hyperexponential
over F(y) if its logarithmic derivative Dy(H)/H is in F(y).

The product of hyperexponential functions is also hyper-
exponential. Two hyperexponential functions H1, H2 are
said to be similar if there exists r ∈ F(y) s.t. H1 = rH2.
The sum of similar hyperexponential functions is still hy-
perexponential, provided that it is nonzero.

For brevity, we use the notation exp(
∫
fdy) to indicate a

hyperexponential function whose logarithmic derivative is f .
For a rational function r ∈ F(y), we have

r exp

(∫
f dy

)
= exp

(∫
(f +Dy(r)/r) dy

)
.

A univariate hyperexponential function H is said to be hy-
perexponential integrable if it is the derivative of another hy-
perexponential function. For brevity, we say “integrable” in-
stead of “hyperexponential integrable” in the sequel.

A hyperexponential function H can be expressed as a
product r exp

(∫
fdy

)
for some r, f ∈ F(y). Assume that H

is integrable. Then it is equal to Dy(G) for some hyperex-
ponential function G. A straightforward calculation shows
that G is similar to H. In other words, G = s exp

(∫
fdy

)

for some s ∈ F(y). It follows that H = Dy(G) if and only if

r = Dy(s) + f s. (2)

Deciding the integrability of H amounts to finding a rational
solution s s.t. the above equation holds.

3. HERMITE-LIKE REDUCTION
Reduction algorithms have been developed for computing

additive decompositions of rational functions [17, 14], hyper-
geometric terms [1, 2], and hyperexponential functions [11,
12]. Those algorithms can be viewed as generalizations of
Gosper’s algorithm [13] and its differential analogue [3, §5].

For a hyperexponential function H, a reduction algorithm
computes two hyperexponential functions H1, H2 s.t.

H = Dy(H1) +H2. (3)

This implies that H,H1 and H2 are similar. So we may
write H = r exp

(∫
fdy

)
and Hi = ri exp

(∫
fdy

)
, where

r, ri, f belong to F(y) and i = 1, 2. Then (3) translates into

r = Dy(r1) + f r1 + r2. (4)

A reduction algorithm for computing (3) amounts to choos-
ing rational functions r, f and r1 so that r2 satisfies prop-
erties similar to those obtained in Hermite reduction for ra-
tional functions. There are at least two approaches to this
end. One is given in [11], and the other in [12]. We review
the latter, because the notion of differential-reduced rational
functions plays a key role in Lemma 6 in Section 4.

Recall [12, §2] that a rational function r = a/b ∈ F(y) is
said to be differential-reduced w.r.t. y if

gcd (b, a− iDy(b)) = 1 for all i ∈ Z.

By Lemma 2 in [12], r is differential-reduced if and only
if none of its residues is an integer. The differential ra-
tional canonical form of a rational function f in F(y) is a
pair (K,S) in F(y) × F(y) s.t. (i) K is differential-reduced;
(ii) the denominator of S is coprime with that of K; and
(iii) f is equal to K+Dy(S)/S. Every rational function has
a unique canonical form in the sense that K is unique and S
is unique up to a multiplicative constant in F [12, §3]. We
call K and S the kernel and shell of f , respectively. They
can be constructed by the method described in [12, §3].

LetH be a univariate hyperexponential function over F(y),
in the form exp(

∫
fdy). Assume that K and S are the ker-

nel and shell of f , respectively. Then H = S exp
(∫
K dy

)
.

Note that K = 0 if and only if H is a rational function,
which is then equal to cS for some c ∈ F.

Example 2. Let H =
√
y2 + 1/(y − 1)2. The logarithmic

derivative of H is

DyH

H
=
Dy(1/(y − 1)2)

1/(y − 1)2
+

y

y2 + 1
,

where y/(y2+1) is differential-reduced. The kernel and shell
of Dy(H)/H are y/(y2 + 1) and 1/(y − 1)2, respectively.
So H = exp

(∫
y/(y2 + 1) dy

)
/(y − 1)2.

For brevity, we make a notational convention.

Convention 3. Let H denote a hyperexponential function
whose logarithmic derivative has kernel K and shell S. As-
sume that K is nonzero, that is, H is not a rational func-
tion. Set T = exp

(∫
K dy

)
. Moreover, write K = k1/k2,

where k1, k2 are polynomials in F[y] with gcd(k1, k2) = 1.



The algorithm ReduceCert in [12] computes a rational
function S1 s.t.

S = Dy(S1) + S1K +
a

bk2
, (5)

where a ∈ F[y] and b is the squarefree part of the denomina-
tor of S. Thus, gcd(b, k2) = 1 by the definition of canonical
forms. Note that a is not necessarily coprime with bk2. As
the algorithm ReduceCert only reduces the shell S, it is
referred to as shell reduction. It follows from (5) that

H = Dy (S1T ) +
a

bk2
T. (6)

By Theorem 4 in [12], a/b belongs to F[y] if H is integrable.

Example 4. Let H be the same hyperexponential function
as in Example 2. Then Dy(H)/H has kernel K = y/(y2+1)
and shell S = 1/(y − 1)2. Shell reduction yields

S = Dy(S1) + S1K +
y

(y − 1)k2
,

where S1 = −1/(y − 1) and k2 = y2 + 1. Then

H = Dy(S1T ) +
yT

(y − 1)k2
, where T =

√
y2 + 1.

By Theorem 4 in [12], H is not integrable.

Remark that a in (6) can be nonzero for an integrable H:

Example 5. Let H=y exp(y) whose logarithmic derivative
has kernel 1 and shell y, i.e., H = y exp

(∫
1dy
)
, for S1=0.

But H is integrable as it is equal to Dy (y exp(y)− exp(y)).

Thus, shell reduction cannot be directly used to decide hy-
perexponential integrability, which is a difference to the ra-
tional case. To amend this, the solution proposed in [12,
Algorithm ReduceHyperexp] was to find the polynomial
solutions of an auxiliary first-order linear differential equa-
tion. In the following section, we show how this can be
avoided and improved.

4. HERMITE REDUCTION FOR
HYPEREXPONENTIAL FUNCTIONS

After the shell reduction described in (6), it remains to
decide the integrability of (a/bk2)T . In the rational case,
i.e., when the kernel K is equal to zero, a in (6) can be
chosen s.t. deg(a) < deg(b), because all polynomials are ra-
tional integrable. But a hyperexponential function with a
polynomial shell is not necessarily integrable. For exam-
ple, H = exp

(
y2
)
.

We present a differential variant of [2, Theorem 7] to
bound the degree of a in (5). The variant leads not only
to a canonical additive decomposition of hyperexponential
functions, but also a direct way to decide their integrability.

4.1 Polynomial reduction
With Convention 3, we define

MK = {k2Dy(p) + k1p | p ∈ F[y]}.

It is an F-linear subspace in F[y]. We callMK the subspace
for polynomial reduction w.r.t. K. Moreover, let φK be the
F-linear map from F[y] toMK that sends p to k2Dy(p)+k1p
for every p ∈ F[y]. We call φK the map for polynomial
reduction w.r.t. K.

Concerning the subspace MK and the map φK , we have:

Lemma 6. (i) If k2Dy(g) + k1g ∈ F[y] for some g ∈ F(y),
then g ∈ F[y]. (ii) The map φK is bijective.

Proof. Assume that g has a pole. Without loss of generality,
we assume that the pole is y = 0 and has order m, because
the following argument is also applicable over the algebraic
closure of F. Expanding g around the origin yields

g =
r

ym
+ terms of higher orders in y,

where r ∈ F \ {0}. It follows from k2Dy(g) +k1g ∈ F[y] that
y = 0 is a pole of(
− mr

ym+1
+ higher terms

)
+K

(
r

ym
+ higher terms

)
with order no more than that of K. This implies that y=0
is a simple pole of K with residue m, which is incompatible
with K being differential-reduced. The first assertion holds.

The map φK is surjective by definition. If φK(p) = 0 for
some nonzero polynomial p ∈ F[y], then K equals −Dy(p)/p,
which is nonzero since K 6= 0. So K is not differential-
reduced, a contradiction. The second assertion holds.

An F-basis of MK is called an echelon basis if distinct
elements in the basis have distinct degrees. Echelon bases
always exist and their degrees form a unique subset of N.
Let B be an echelon basis of MK . Define

NK = spanF

{
y` | ` ∈ N and ` 6= deg(f) for all f ∈ B

}
.

Then F[y] = MK ⊕ NK . We call NK the standard com-
plement of MK . Using an echelon basis of MK , one can
reduce a polynomial p to a unique polynomial p̃ ∈ NK
s.t. p− p̃ ∈MK .

In order to find an echelon basis ofMK , we set d1= deg k1,
d2= deg k2, τK= − lc(k1)/ lc(k2), and B= {φK (yn) |n ∈ N}.
By Lemma 6 (ii), B is an F-basis ofMK . Let p be a nonzero
polynomial in F[y]. We make the following case distinction.

Case 1. d1 ≥ d2. Then

φK(p) = lc(k1) lc(p)yd1+deg p + lower terms.

So B is an echelon basis, in which deg φK (yn) =d1+n for
all n ∈ N. Accordingly, NK is spanned by 1, y, . . . , yd1−1. It
follows that p ≡ q modMK for some q ∈ NK with deg q<d1.

Case 2. d1 = d2 − 1 and τK is not a positive integer. Then

φK(p)= (deg(p) lc(k2)+ lc(k1)) lc(p)yd1+deg p+lower terms.
(7)

Since τK is not a positive integer, deg φK (yn) = d1 + n.
Thus, MK and NK have the same bases as in Case 1. Fur-
thermore, p ≡ q modMK for some q ∈ NK with deg q<d1.

Case 3. d1 < d2 − 1. If deg(p) > 0, then

φK(p) = deg(p) lc(k2) lc(p)yd2+deg(p)−1 + lower terms.

Otherwise, deg(p) = 0 and φK(p) = k1p. Therefore, B is
again an echelon basis, in which

deg φK(1) = d1 and deg φK(yn) = d2 + n− 1 for all n ≥ 1.

Accordingly, NK has a basis 1, . . . , yd1−1, yd1+1, . . . , yd2−1.
It follows that there is q ∈ NK s.t. p ≡ q modMK , deg q<d2
and the coefficient of yd1 in q is equal to zero.

Case 4. d1 = d2 − 1 and τK is a positive integer. It follows
from (7) that deg φ (yn) = d1 + n if n 6= τK . Furthermore,



for every polynomial p of degree τK , φK(p) is of degree less
than d1 + τK . So any echelon basis ofMK does not contain
a polynomial of degree d1 + τK . Set

B′ = {φK (yn) |n ∈ N, n 6= τK} .

Reducing φK (yτK ) by the polynomials in B′, we obtain a
polynomial a of degree less than d1. Note that a is nonzero,
because B is an F-linearly independent set. Hence, B′∪{a}
is an echelon basis ofMK . As a consequence, NK has an F-

basis
{

1, y, . . . , ydeg(a)−1, ydeg(a)+1, . . . , yd1−1, yd1+τK
}
. It

follows that there exists r ∈ F[y] of degree less than d1 s.t.

p ≡ syd1+τK + r mod MK for some s ∈ F.

Moreover, syd1+τK +r ∈ NK , and r has at most d1−1 terms.

Example 7. Let K = −6y3/(y4 + 1), which is differential-
reduced. Then τK = 6. According to Case 4, MK has
an echelon basis

{
y} ∪ {(n− 6)yn+3+nyn−1|n ∈ N, n 6= 6

}
.

Moreover, NK has a basis {1, y2, y9}.

The next lemma enables us to derive an order bound on
telescopers for hyperexponential functions.

Lemma 8. With Convention 3, we further let d1 = deg(k1)
and d2 = deg(k2). Then there exists P ⊂ {yn|n ∈ N} with

|P| ≤ max(d1, d2 − 1)

s.t. every polynomial in F[y] can be reduced modulo MK to
an F-linear combination of the elements in P.

Proof. By the above case distinction, the dimension of NK
over F is at most max(d1, d2 − 1). The lemma follows.

4.2 Hyperexponential integrability
With Convention 3, we further assume that the polyno-

mials a and b are obtained by shell reduction in (6). So the
decomposition (6) holds for the present section. Moreover,
let MK be the subspace for polynomial reduction w.r.t. K,
and let NK be its standard complement.

We are going to determine necessary and sufficient condi-
tions on hyperexponential integrability. Since gcd(b, k2)=1,

a

bk2
=
q

b
+

r

k2
, (8)

where q, r ∈ F[y] and deg(q) < deg(b). Using an echelon ba-
sis ofMK , we compute two polynomials u∈MK and v∈NK
s.t. r = u+v. By the definition ofMK , there exists w in F[y]
s.t. u = k2Dy(w) + k1w. By (8), we get

a

bk2
=
q

b
+
k2Dy(w) + k1w + v

k2
= Dy(w) +Kw +

q

b
+

v

k2
.

It follows from the equivalence of (4) and (3) that

a

bk2
T = Dy (wT ) +

(
q

b
+

v

k2

)
T. (9)

The previous process for obtaining (9) is referred to as the
polynomial reduction for (a/(bk2))T w.r.t. K, as it makes
essential use of the subspacesMK and NK . By (9) and (6),

H = Dy((S1 + w)T ) +

(
q

b
+

v

k2

)
T, (10)

which motivates us to introduce a notion of residual forms.

Definition 9. With Convention 3, we further let f be a ra-
tional function in F(y). Another rational function r ∈ F(y)
is said to be a residual form of f w.r.t. K if there exist g
in F(y) and q, b, v in F[y] s.t.

f = Dy(g) +Kg + r and r =
q

b
+

v

k2
,

where b is squarefree, gcd(b, k2) = 1, deg(q) < deg(b), and v
is in the standard complement NK of the subspace of poly-
nomial reduction w.r.t. K. For brevity, we say that r is a
residual form w.r.t K if f is clear from the context.

Remark 10. The set of residual forms w.r.t. K is an F-
linear subspace of F(y) by the four conditions on b, k2, q
and v in the above definition.

Residual forms are closely related to the integrability of
hyperexponential functions.

Lemma 11. With Convention 3, we further assume that r
is a nonzero residual form w.r.t. K. Then the hyperexpo-
nential function rT is not integrable.

Proof. Suppose on the contrary that rT is integrable. We
let MK be the subspace for polynomial reduction, and NK
its standard complement w.r.t. K. By the definition of resid-
ual forms, there exist b, q ∈ F[y] with b being squarefree
and v ∈ NK s.t.

deg(q) < deg(b), gcd(b, k2) = 1, and r =
q

b
+

v

k2
. (11)

Thus, r can be rewritten as (k2q+ bv)/(bk2). It follows that

rT =
k2q + bv

b
exp

(∫
k1 −Dy(k2)

k2
dy

)
.

The pair ((k2q + bv) /b, (k1 −Dy(k2)) /k2) is an indecom-
posable pair according to Definition 2 in [12], since the ra-
tional function (k1 −Dy(k2)) /k2 is differential-reduced, k2
and b are coprime, and b is squarefree. By Theorem 4
in [12], (k2q + bv)/b is a polynomial in F[y]. So q = 0 be-
cause gcd(b, k2)=1. It follows from the last equality in (11)
that (v/k2)T is integrable. By (2), v = k2Dy (s) + k1s for
some s ∈ F(y). Since v ∈ F[y], s ∈ F[y] by Lemma 6 (i),
and, thus, v ∈ MK by the definition of MK at the begin-
ning of Section 4.1, which, together with v ∈ NK , implies
that v = 0. Consequently, r = 0, a contradiction to the
assumption that r 6= 0.

The existence and uniqueness of residual forms are de-
scribed below.

Lemma 12. With Convention 3, we have that the shell S
has a residual form w.r.t. the kernel K. If a rational function
has two residual forms w.r.t. K, then they are equal.

Proof. By (10), S = Dy(S1 +w) + (S1 +w)K + q/b+ v/k2.
So q/b+ v/k2 is a required form.

Let r and r′ be two residual forms of a rational function
w.r.t. K. Then Dy(f) + fK + r = Dy(f ′) + f ′K + r′ for
some f, f ′ ∈ F(y). So Dy (f − f ′) + (f − f ′)K + r− r′ = 0.
Consequently, (r − r′)T is integrable by (2). We conclude
that r = r′ by Remark 10 and Lemma 11.

Below is the main result of the present section.



Theorem 13. Let H be a hyperexponential function whose
logarithmic derivative has kernel K and shell S. Then there
is an algorithm for computing a rational function h in F(y)
and a unique residual form r w.r.t. K s.t.

H = Dy

(
h exp

(∫
K dy

))
+ r exp

(∫
K dy

)
. (12)

Moreover, H is integrable if and only if r = 0.

Proof. Let T = exp
(∫
K dy

)
. Applying shell reduction to H

w.r.t. K, we find a rational function S1, and two polynomi-
als a, b s.t. (5) holds. Then we apply polynomial reduction
to a/(bk2)T to obtain the residual form r = q/b + v/k2
s.t. (12) holds.

Suppose that there exists another decomposition

H = Dy
(
h′T

)
+ r′T (13)

for some h′ ∈ F(y) and some residual form r′ w.r.t. K. Then
both r and r′ are residual forms of S by (12), (13) and the
fact H = ST . So r = r′ by Lemma 12.

If r = 0, then H is obviously integrable. Conversely,
assume that H is integrable. Then rT is also integrable
by (12). So r = 0 by Lemma 11.

The reduction algorithm described in the proof of Theo-
rem 13 decomposes a hyperexponential function into a sum
of an integrable one and a non-integrable one in a canoni-
cal way. The given function is integrable if and only if the
non-integrable part is trivial. As a byproduct, it decides
hyperexponential integrability without computing a polyno-
mial solution of any first-order linear differential equation,
which enables us to construct telescopers for hyperexponen-
tial functions using merely linear algebra in Section 6. The
algorithm will be referred to as Hermite reduction for hy-
perexponential functions in the sequel, because it extends all
important features in Hermite reduction for rational func-
tions to hyperexponential ones.

Example 14. Let H be the same hyperexponential function
as in Example 2. Then K = y/(y2 + 1) and S = 1/(y− 1)2.

Set T =
√
y2 + 1. By the shell reduction in Example 4,

H = Dy

(
−1

y − 1
T

)
+

y

bk2
T,

where b = y − 1 and k2 = y2 + 1. The polynomial reduc-
tion yields (y/(bk2))T = Dy (−T/2) + (1/(2b) + 1/(2k2))T.
Combining the above equations, we decompose H as

H = Dy

(
−(y + 1)

2(y − 1)
T

)
+

(
1

2b
+

1

2k2

)
T.

Example 15. Consider H=y exp(y) as given in Example 5.
Since its logarithmic derivative has kernel K=1, the sub-
spaceMK for polynomial reduction is equal to F[y]. Thus, y
is in MK and H is integrable. More generally, MK=F[y]
corresponds to the well-known fact that p(y) exp(y) is inte-
grable for all p ∈ F[y] \ {0}.

5. KERNEL REDUCTION
Let K = k1/k2 be a nonzero differential-reduced rational

function in F(y) with gcd(k1, k2) = 1. We may want to
reduce a hyperexponential function in the form

p

km2
exp

(∫
K dy

)
for some p ∈ F[y] and m ∈ N.

One way would be to rewrite the above function as

p exp

(∫
k1 −mDy(k2)

k2
dy

)
,

and proceed by polynomial reduction w.r.t. the new ker-
nel (k1 −mDy(k2))/k2. However, it will prove to be more
convenient in Section 6 to reduce the given function w.r.t. the
initial kernel K. To this end, we introduce another type of
reduction, based on ideas in [11, 18].

Lemma 16. With Convention 3, we let p ∈ F[y] and m ≥ 1.
Then there exist p1, p2 ∈ F[y] s.t.

p

km2
= Dy

(
p1

km−1
2

)
+

p1

km−1
2

K +
p2
k2
. (14)

Proof. We proceed by induction on m. If m = 1, then tak-
ing p1 = 0 and p2 = p yields the claimed form. Assume
that m > 1. We first show that there exist p̃1, p̃2 ∈ F[y] s.t.

p

km2
= Dy

(
p̃1

km−1
2

)
+

p̃1

km−1
2

K +
p̃2

km−1
2

,

which is equivalent to

p = p̃1(k1 − (m− 1)Dy(k2)) + (Dy(p̃1) + p̃2)k2.

Since k1/k2 is differential-reduced, there exist u, v ∈ F[y]
s.t. p = u(k1 − (m − 1)Dy(k2)) + vk2 by the extended Eu-
clidean algorithm. So we can take p̃1=u and p̃2=v−Dy(u).
By the induction hypothesis, there exist p′1, p

′
2 ∈ F[y] s.t.

p̃2

km−1
2

= Dy

(
p′1

km−2
2

)
+

p′1
km−2
2

K +
p′2
k2
.

Setting p1 = p′1k2 + p̃1 and p2 = p′2 completes the proof.

With Convention 3, we have

p

km2
T = Dy

(
p1

km−1
2

T

)
+
p2
k2
T

by Lemma 16. This reduction will be referred to as the
kernel reduction for (p/km2 )T w.r.t. K.

6. TELESCOPING VIA REDUCTIONS
Hermite reduction has been used to construct telescopers

for bivariate rational functions in [5]. We extend the idea
in [5] and apply Theorem 13 to develop a reduction-based
telescoping method for bivariate hyperexponential functions.
The method also yields an order bound on minimal telescop-
ers, which is tighter than those given in [4, 8]

6.1 Creative telescoping for bivariate hyper-
exponential functions

A nonzero element H in some differential field extension
of F(x, y) is said to be hyperexponential over F(x, y) if its log-
arithmic derivatives Dx(H)/H and Dy(H)/H are in F(x, y).

Set f=Dx(H)/H and g=Dy(H)/H. Then Dy(f)=Dx(g)
because Dx and Dy commute. Therefore, it is legitimate to
denote H by exp(

∫
f dx+ g dy). For every nonzero rational

function r ∈ F(x, y),

rH = exp

(∫
(f +Dx(r)/r) dx+ (g +Dy(r)/r) dy

)
.

The following fact is immediate from [12, Lemma 8].



Fact 17. Let f and g be rational functions in F(x, y) sat-
isfying Dy(f) = Dx(g). Then the denominator of f divides
that of g in F(x)[y].

For a hyperexponential function H over F(x, y), the tele-
scoping problem is to construct a linear ordinary differential
operator L(x,Dx) in F(x)〈Dx〉 s.t.

L(x,Dx)(H) = Dy(G)

for some hyperexponential function G over F(x, y). As in
the rational case [5], we apply the Hermite reduction for
univariate hyperexponential functions w.r.t. y to the deriva-
tives Di

x(H) iteratively, and then find a linear dependency
among the residual forms over F(x).

Lemma 18. Let H = exp(
∫
f dx + g dy) be a hyperexpo-

nential function over F(x, y). Let K be the kernel and S the
shell of g w.r.t. y. Then, for every i ∈ N, the i-th deriva-
tive Di

x(H) can be decomposed into

Di
x(H) = Dy(uiT ) + riT, (15)

where ui ∈ F(x, y), T = exp(
∫

(f − Dx(S)/S) dx + K dy)
and ri ∈ F(x, y) is a residual form w.r.t. K. Moreover,
let k2 be the denominator of K, b the squarefree part of the
denominator of S, and NK the standard complement of the
subspace for polynomial reduction w.r.t. K. Then

ri =
qi
b

+
vi
k2

(16)

for some qi ∈ F(x)[y] with degy qi < degy b and vi ∈ NK .

Proof. We proceed by induction on i. If i = 0, then the
assertion holds by Theorem 13.

Assume that Di
x(H) can be decomposed into (15) and

assume that (16) holds. Moreover, let f̃ = f − Dx(S)/S.
Consider the (i + 1)-th derivative Di+1

x (H). There exists a

polynomial a in F(x)[y] s.t. f̃ = a/k2 by Dy
(
f̃
)

= Dx(K)

and Fact 17. A direct calculation leads to

Di+1
x (H) =Dy(Dx(uiT )) +

(
qia

bk2
+
Dx(qi)

b
+
Dx(vi)

k2

)
T

+

(
−qiDx(b)

b2
+

(a−Dx(k2))vi
k22

)
T.

Applying shell reduction to
(
−qiDx(b)/b2

)
T and kernel re-

duction to
(
(a−Dx(k2))vi/k

2
2

)
T w.r.t. y, we get

−qiDx(b)

b2
= Dy

(w1

b

)
+
w1

b
K +

w2

bk2
,

(a−Dx(k2))vi
k22

= Dy

(
p1
k2

)
+
p1
k2
K +

p2
k2
,

where w1, w2, p1 and p2 are in F(x)[y]. We then apply poly-

nomial reduction to S̃T w.r.t. K, where

S̃ =
w2

bk2
+
p2
k2

+
aqi
bk2

+
Dx(qi)

b
+
Dx(vi)

k2
,

which leads to S̃=Dy(w)+wK+(qi+1/b+ vi+1/k2) , where w

is in F(x, y) and qi+1/b + vi+1/k2 is the residual form of S̃
w.r.t. K. It follows from a direct calculation that

Di+1
x (H) = Dy(ui+1T ) +

(
qi+1

b
+
vi+1

k2

)
T,

where ui+1 = Dx(ui) + uif̃ + w1/b+ p1/k2 + w.

The main results in the present section are given below.

Theorem 19. With the notation introduced in Lemma 18,
we let L =

∑ρ
i=0 eiD

i
x with e0, . . . , eρ ∈ F(x), not all zero.

(i) L is a telescoper for H if and only if
∑ρ
i=0 eiri = 0.

(ii) The order of a minimal telescoper for H is no more
than degy(b) + max(degy(k1), degy(k2)− 1).

Proof. We regard hyperexponential functions involved in the
proof as univariate ones in y. Moreover, let u =

∑ρ
i=0 eiui

and r =
∑ρ
i=0 eiri. By (15), we have

L(H) = Dy(uT ) + rT. (17)

If r = 0, then L is a telescoper by (17). Conversely, assume
that L is a telescoper of H. Then rT is integrable w.r.t. y
by (17). Since r is a residual form by Remark 10, it is equal
to zero by Lemma 11. The first assertion holds.

Set λ = max(degy(k1), degy(k2) − 1). Let the residu-
al form ri = qi/b + vi/k2 be as defined in (15) and (16).
By Lemma 8, the vi’s have a common set P of support-
ing monomials with |P| ≤ λ. Moreover, degy(qi) < degy(b)
and gcd(b, k2) = 1. Therefore, the residual forms r0, . . . , rρ
are linearly dependent over F(x) if ρ ≥ degy(b) + λ. The
second assertion holds

Remark 20. By Theorem 19, a linear dependency among
the residual forms r0, ..., rσ, for minimal σ, gives rise to a
minimal telescoper of H.

With the notation introduced in Lemma 18, we outline
a reduction-based telescoping algorithm for bivariate hyper-
exponential functions.

Algorithm. HermiteTelescoping: Given a bivariate hyper-
exponential function H = exp(

∫
f dx + g dy) over F(x, y),

compute a minimal telescoper L and its certificate w.r.t. y.

1. Find the kernel K and shell S of Dy(H)/H w.r.t. y.
Set b to be the squarefree part of the denominator of S.

2. Decompose H into H = Dy(u0T )+r0T using the Her-
mite reduction for hyperexponential functions given in
Theorem 13. If r0 = 0, return (1, u0T ).

3. Set ρ := degy(b) + max(degy(k1), degy(k2)− 1).

4. For i from 1 to ρ do

4.1. Compute (ui, ri) incrementally s.t.

Di
x(H) = Dy(uiT ) + riT

by the shell, kernel and polynomial reductions de-
scribed in Lemma 18.

4.2. Find ηj ∈ F(x) s.t.
∑i
j=0 ηjrj = 0 by solving a

linear system over F(x). If there is a nontrivial

solution, return
(∑i

j=0 ηjD
j
x,
∑i
j=0 ηjujT

)
.

Example 21. Let H =
√
x− 2y exp(x2y). Then Dx(H)/H

and Dy(H)/H are, respectively,

f =
1 + 4x2y − 8xy2

2(x− 2y)
and g =

−1 + x3 − 2x2y

x− 2y
.



Since g is differential-reduced w.r.t. y, g is the kernel and 1
is the shell of Dy(H)/H w.r.t. y. By Hermite reduction,

H = Dy

(
1

x2
H

)
+

1

x2k2
H. (18)

Applying Dx to the above equation yields

Dx(H) = Dy

(
−3x+ 8y + 4x3y − 8x2y2

2x3(x− 2y)
H

)
+ rH,

where r = (−5x+ 8y + 4x3y − 8x2y2)/(2x3k22). The shell,
kernel and polynomial reduction given in Lemma 18 yields

Dx(H) = Dy

(
2x2y − 3

x3
·H
)

+
3x3 − 6

2x3k2
H (19)

Combining (18) and (19), we get L = (6 − 3x3) + 2xDx
is a minimal telescoper for H and G = (4y − 3x)H is the
corresponding certificate.

The algorithm above separates the computation of mini-
mal telescopers from that of certificates. One may neglect
the computation for certificates in the algorithm when they
are irrelevant in applications. Moreover, one may opt for
unnormalized certificates in the form wT , where w=

∑
j wj

with wj ∈ F(x, y) as described in step 4.2. Experiments car-
ried out in Section 7 reveal that it is time-consuming to nor-
malize w as a fraction p/q with p, q ∈ F[x, y] and gcd(p, q)=1.
In fact, unnormalized certificates are sufficient for many ap-
plications. For instance, we may want to compute w(x, s)
for s∈F with q(x, s) 6=0 when evaluating definite integrals.
This can be achieved by unnormmalized certificates, because
w(x, s) equals the sum of all residues of wj/(y− s) at y = s.

Remark 22. Another idea for computing a minimal tele-
scoper of H is the following: We first compute a nonzero
operator L1 ∈ F(x)〈Dx〉 of minimal order s.t.

L1(H) = Dy(G1) + (p/k2)T

for some hyperexponential function G1 and polynomial p.
Note that such operators always exist, because degy qi in (16)
is less than degy b. Then we apply the algorithm HermiteTe-
lescoping to get a minimal telescoper L2 for (p/k2)T . One
can show that L2L1 is a minimal telescoper of H.

Let `1 = degy b and `2 = max(degy(k1), degy(k2) − 1),
where b, k1 and k2 are given in Theorem 19. The algorithm
HermiteTelescoping solves linear systems of at most `1+`2 e-
quations over F(x) to obtain the minimal telescoper L, while
an algorithm based on the idea given above solves linear sys-
tems of at most `1 equations to obtain L1, and then solves
linear systems of at most `2 equations to obtain L2. How-
ever, the linear systems over F(x) corresponding to L2 have
coefficients of high degrees in x. In addition, it takes time to
expand the product of L2L1. Preliminary experiments reveal
that such an algorithm may outperform HermiteTelescoping
in practice only when `2 is no more than three.

6.2 Comparison with the Apagodu-Zeilberger
bound

Assume that H is a nonzero hyperexponential fundtion
over F(x, y) of the form

H = u exp

(
r1
r2

) m∏
i=1

pi(x, y)ci , (20)

where u, r1, r2, p1, . . . , pm are nonzero polynomials in F[x, y]
and c1, . . . , cm are distinct indeterminates.

Theorem cAZ in [4] asserts that the order of minimal tele-
scopers for H is bounded by

α := degy(r2) + max
(
degy(r1),degy(r2)

)
+

m∑
i=1

degy(pi)− 1.

Note that H can be viewed as a hyperexponential function
over F(c1, . . . , cm)(x, y). We now show that α given above
is at least the order bound on minimal telescopers for H
obtained from Theorem 19 (ii). The kernel and shell of the
logarithmic derivative Dy(H)/H are

K := Dy

(
r1
r2

)
+

m∑
i=1

ci
Dy(pi)

pi
and S := u,

respectively, because K has no integral residue at any simple
pole, S is a polynomial in F[x, y], and Dy(H)/H is equal
to K + Dy(S)/S. Let K = k1/k2 with gcd(k1, k2) = 1. A
direct calculation leads to

degy(k1)≤ degy(r1) + degy(r2) +

m∑
i=1

degy(pi)− 1,

and degy(k2) ≤ 2 degy(r2)+
∑m
i=1 degy(pi). By Theorem 19,

the order of minimal telescopers for H is no more than
max

(
degy(k1), degy(k2)− 1

)
, which is no more than α by

the above two inequalities.
Indeed, the order bound in Theorem 19 (ii) may be smaller

than that in Theorem cAZ.

Example 23. Let H=qc exp(a/q), where a, q are irreducible
polynomials in F[x, y] with degy(a) < degy(q), and c is a
transcendental constant over F. By Theorem cAZ, a min-
imal telescoper for H has order no more than 3 degy q−1.
On the other hand, the kernel and shell of Dy(H)/H are
equal to (Dy(a)q−aDy(q)+cqDy(q)) /q2 and 1, respectively.
A minimal telescoper has order no more than 2 degy q−1 by
Theorem 19 (ii).

Without assuming that the exponents c1, . . . , cm in (20)
are distinct indeterminates, Theorem 14 in [8] derives or-
der and degree bounds for minimal telescopers, in which the
order bound is the same as that in Theorem cAZ. Further-
more, Christopher’s Theorem in [9, 7] states that a general
hyperexponential function over F(x, y) can be written as:

u

v
exp

(
r1
r2

) m∏
i=1

pi(x, y)ci , (21)

where u, v, r1, r2 ∈ F[x, y], ci is algebraic over F, and pi is
in F(ci)[x, y], i = 1, . . . ,m. So H given in (20) is a special
instance of hyperexponential functions. In addition, it is eas-
ier to compute the kernel and shell w.r.t. y than to compute
the decompositions (20) and (21) when a hyperexponential
function is given by its logarithmic derivatives.

7. IMPLEMENTATION AND TIMINGS
We have implemented the algorithm HermiteTelescoping

in the computer algebra system Maple 16. Our Maple code
is available from

http://www.mmrc.iss.ac.cn/~zmli/HermiteCT.html

http://www.mmrc.iss.ac.cn/~zmli/HermiteCT.html


We now compare the performance of our algorithm with the
Maple implementation DEtools[Zeilberger] of the telescoping
algorithm in [3]. We take examples of the form

p

qm
·
√
a

b
· exp

(u
v

)
,

where m ∈ N, p, q, a, b, u, v ∈ Z[x, y] are irreducible and
their coefficients are randomly chosen. For simplicity, we
choose λ = degy(p) = degy(q), µ = degy(a) = degy(b),
and ν = degy(u) = degy(v). The runtime comparison (in
seconds) for different examples is shown in Table 1, in which

• ZT: the Maple function DEtools[Zeilberger].

• HT un: the algorithm HermiteTelescoping, which re-
turns telescopers and unnormalized certificates.

• HT n: the algorithm HermiteTelescoping, which return-
s telescopers and normalized certificates.

• order: the order of the computed minimal telescoper.

• OOM: Maple runs out of memory.

(λ, µ, ν,m) ZT HT un HT n order

(2, 0, 2, 1) 2.16 2.01 3.80 5
(2, 0, 2, 2) 2.06 1.98 2.59 5
(3, 0, 2, 1) 8.68 6.54 14.01 6
(3, 0, 2, 2) 9.23 6.06 13.72 6
(6, 0, 1, 1) 44.04 24.39 70.49 7
(6, 0, 1, 2) 41.85 22.74 59.50 7
(2, 2, 2, 1) 1399.2 155.54 570.40 9
(2, 2, 2, 2) 1397.7 142.34 510.11 9
(3, 0, 3, 1) 151.84 44.07 120.44 8
(3, 0, 3, 2) 150.14 43.46 122.36 8
(3, 3, 0, 1) 206.90 46.15 165.67 8
(3, 3, 0, 2) 217.81 44.95 161.25 8
(3, 2, 1, 1) 300.93 60.33 184.71 8
(3, 2, 1, 2) 333.75 55.86 176.78 8
(3, 1, 3, 1) OOM 361.79 1556.1 10
(3, 1, 3, 2) OOM 370.18 1535.7 10

Table 1: Timings (in seconds) measured on a Mac OS X

computer, 4Gb RAM, 3.06 GHz Core 2 Duo processor.

Our empirical results in the above table illustrate that
HermiteTelescoping is markedly superior to Maple’s function
DEtools[Zeilberger] if it computes minimal telescopers and
unnormalized certificates, and that it is either comparable
to or faster than DEtools[Zeilberger] when it computes tele-
scopers and normalized certificates.

Remark 24. The orders of the computed minimal telescop-
ers in our experiments equal the predicted order bounds given
in Theorem 19.
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right hand-side. Ž. Vyčisl. Mat. i Mat. Fiz.,
15(4):1035–1039, 1090, 1975.

[2] S.A. Abramov and M. Petkovšek. Minimal
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