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Abstract

We prove in this paper that a multivariate D-finite power series with coefficients
from a finite set is rational. This generalizes a rationality theorem of van der
Poorten and Shparlinski in 1996.
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1. Introduction

In his thesis [16], Hadamard began the study of the relationship between the
coefficients of a power series and the properties of the function it represents,
especially its singularities and natural boundaries. Two special cases of the
problem have been extensively studied: one is on power series with integer
coefficients and the other is on power series with finitely many distinct
coefficients.

In the first case, Fatou [13] in 1906 proved a lemma on rational power series
with integer coefficients, which is now known as Fatou’s lemma [33, p. 275]. The
next celebrated result is the Pólya-Carlson theorem, which asserts that a power
series with integer coefficients and of radius of convergence 1 is either rational or
has the unit circle as its natural boundary. This theorem was first conjectured
in 1915 by Pólya [25] and later proved in 1921 by Carlson [7]. Several extensions
of the Pólya-Carlson theorem have been presented in [26, 24, 15, 31, 22, 35, 2].

In the second case, Fatou [13] was also the first to investigate power series
with coefficients from a finite set by showing that such power series are either
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rational or transcendental. The study was continued by Pólya [25] in 1916,
Jentzsch [17] in 1917, Carlson [6] in 1918 and finally Szegő [36, 37] in 1922
settled the question by proving the following beautiful theorem (see [27, Chap.
11] and [10, Chap. 10] for its proof and related results).

Theorem 1 (Szegő, 1922). Let F =
∑
f(n)xn be a power series with

coefficients from a finite values of C. If F is continuable beyond the unit circle
then it is a rational function of the form F = P (x)/(1 − xm), where P is a
polynomial and m a positive integer.

Szegő’s theorem was generalized in 1945 by Duffin and Schaeffer [11] by
assuming a weaker condition that f is bounded in a sector of the unit circle.
In 2008, P. Borwein et al. in [5] gave a shorter proof of Duffin and Schaeffer’s
theorem. By using Szegő’s theorem, van der Poorten and Shparlinski proved
the following result [38].

Theorem 2 (van der Poorten and Shparlinski, 1996). Let F =
∑
f(n)xn be a

power series with coefficients from a finite values of Q. If f(n) satisfies a linear
recurrence equation with polynomial coefficients, then F is rational.

A univariate sequence f : N → K is P-recursive if it satisfies a linear
recurrence equation with polynomial coefficients in K[n]. A power series F =∑
f(n)xn is D-finite if it satisfies a linear differential equation with polynomial

coefficients in K[x]. By [32, Theorem 1.5], a sequence f(n) is P-recursive if and
only if the power series F :=

∑
f(n)xn is D-finite. The notion of D-finite power

series can be generalized to the multivariate case (see Definition 4). Our main
result is the following multivariate generalization of Theorem 2.

Theorem 3. Let K be a field of characteristic zero, and let ∆ be a finite subset
of K. Suppose that f : Nd → ∆ with d ≥ 1 is such that

F (x1, . . . , xd) :=
∑

(n1,...,nd)∈Nd

f(n1, . . . , nd)xn1
1 · · ·x

nd

d ∈ K[[x1, . . . , xd]]

is D-finite. Then F is rational.

We note that a multivariate rational power series

F (x1, · · · , xd) =
∑

(n1,...,nd)∈Nd

f(n1, . . . , nd)xn1
1 · · ·x

nd

d

with all coefficients in {0, 1} has a very restricted form. In particular, the set
E of (n1, . . . , nd) ∈ Nd for which f(n1, . . . , nd) 6= 0 is semilinear ; that is there
exist n ∈ N and finite subsets V0, . . . Vn of Nd, and b1, . . . , bn ∈ Nd such that

E = V0
⋃{

n⋃
i=1

(
bi +

∑
v∈Vi

v · N

)}
. (1)

Although this result is known, we are unaware of a reference and give a proof
of this fact in Proposition 11.
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The remainder of this paper is organized as follows. The basic properties of
D-finite power series are recalled in Section 2. The proof of Theorem 3 is given
in Section 3. In Section 4, we present several applications of our main theorem
on generating functions over nonnegative points on algebraic varieties.

2. D-finite power series

Throughout this paper, we let N denote the set of all nonnegative integers.
Let K be a field of characteristic zero and let K(x) be the field of rational
functions in several variables x = x1, . . . , xd over K. By K[[x]] we denote the
ring of formal power series in x over K and by K((x)) we denote the field
of fractions of K[[x]]. For two power series F =

∑
f(i1, . . . , id)xi11 · · ·x

id
d and

G =
∑
g(i1, . . . , id)xi11 · · ·x

id
d , the Hadamard product of F and G is defined by

F�G =
∑

f(i1, . . . , id)g(i1, . . . , id)xi11 · · ·x
id
d .

Let Dx1 , . . . , Dxd
denote the derivations on K((x)) with respect to x1, . . . , xd,

respectively.

Definition 4 ([19]). A formal power series F (x1, . . . , xd) ∈ K[[x]] is said to
be D-finite over K(x) if the set of all derivatives Di1

x1
· · ·Did

xd
(F ) with ij ∈ N

span a finite-dimensional K(x)-vector subspace of K((x)). Equivalently, for
each i ∈ {1, . . . , d}, F satisfies a nontrivial linear partial differential equation
of the form{

pi,miD
mi
xi

+ pi,m1−1D
mi−1
xi

+ · · ·+ pi,0
}
F = 0 with pi,j ∈ K[x].

The notion of D-finite power series was first introduced in 1980 by Stanley
[32], and has since become ubiquitous in algebraic combinatorics as an important
part of the study of generating functions (see [34, Chap. 6]). We recall some
closure properties of this class of power series.

Proposition 5 ([20]). Let D denote the set of all D-finite power series in K[[x]].
Then

(i) D forms a subalgebra of K[[x]], i.e., if F,G ∈ D and α, β ∈ K, then
αF + βG ∈ D and FG ∈ D.

(ii) D is closed under the Hadamard product, i.e., if F,G ∈ D, then F�G ∈ D.

(iii) If F (x1, . . . , xd) is D-finite, and

α1(y1, . . . , yd), . . . , αd(y1, . . . , yd) ∈ K[[y1, . . . , yd]]

are algebraic over K(y1, . . . , yd) and the substitution makes sense, then
F (α1, . . . , αd) is also D-finite over K(y1, . . . , yd).
In particular, if F (x1, . . . , xd) is D-finite and the evaluation of F at xd = 1
makes sense, then F (x1, . . . , xd−1, 1) is D-finite.
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The coefficients of a D-finite power series are highly structured. In the
univariate case, a power series f =

∑
a(n)xn is D-finite if and only if the

sequence a(n) is P-recursive, i.e., it satisfies a linear recurrence equation with
polynomial coefficients in n [32]. The structure in the multivariate case is
much more profound, which was explored by Lipshitz in [20]. We continue
this exploration to study the position of nonzero coefficients. To this end, we
recall a notion of size in the semigroup (N,+). A subset S ⊆ N is syndetic if
there is some positive integer C such that if n ∈ S then n + i ∈ S for some
i ∈ {1, . . . , C}. Note that a syndetic subset of N has nonzero density. The term
“syndetic” comes from the study of topological dynamics [14, Chapter 2] and
further used by Bergelson et al. [3] for studying general semigroups. Syndetic
sets are also closely related to the Cobham’s theorem on automatic sequences [1,
Chapter 11].

Example 6. The subset of all even numbers in N is syndetic, but the subset
S := {pm1

1 · · · pmn
n | m1, . . . ,mn ∈ N} with p1, . . . , pn being prime numbers is not

syndetic since the difference between two successive integers ai, ai+1 ∈ S tends
to infinity as i tends to infinity.

Lemma 7. Let K be a field of characteristic zero and let

G(x1, . . . , xd) =
∑

(n1,...,nd)∈Nd

g(n1, . . . , nd)xn1
1 · · ·x

nd

d ∈ K[[x]]

be a D-finite power series over K(x). Then the set

{n ∈ N | ∃(n1, . . . , nd−1) ∈ Nd−1 such that g(n1, . . . , nd−1, n) 6= 0}

is either finite or syndetic.

Proof. We let L denote the field of fractions of K[[x1, . . . , xd−1]]. Then we may
regard G as a power series in L[[xd]] and it is D-finite in xd over L(xd) and it
is straightforward to see that the lemma reduces to the univariate case. Thus
we now assume that G(x) =

∑
g(n)xn ∈ L[[x]] is D-finite. Then there exist

m ≥ 1, distinct nonnegative integers a1 = 0, . . . , am, and nonzero polynomials
P1, . . . , Pm ∈ L[z] such that

m∑
j=1

Pj(n)g(n+ aj) = 0

for all sufficiently large n. Then there is some M such that P1(n) · · ·Pm(n) 6= 0
for n > M . If m = 1 then we then see that g(n) = 0 for n > M . Thus we
assume that m > 1. Then if n > M and g(n) is nonzero then g(n + aj) is
nonzero for some 1 < j ≤ m and so we see that the set of n for which g(n) is
nonzero is syndetic.
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3. Proof of the main theorem

The proof of Theorem 2 by van der Poorten and Shparlinski is based on the
fact that any univariate D-finite power series represents an analytic function
with only finitely many poles [32], so it is impossible to have the unit circle
as its natural boundary. Then their result follows from Szegő’s theorem. The
singularities of analytic functions represented by multivariate D-finite power
series are much more involved. It is not known how to extend Szegő’s theorem
to the multivariate case. Thus new ideas are needed in order to generalize
Theorem 2 to the multivariate case.

Before the proof of our main theorem, we first prove a lemma about finitely
generated Z-algebras.

Lemma 8. Let R be a finitely generated Z-algebra that is an integral domain of
characteristic zero. Then there is only a finite set of prime numbers that divide
a given nonzero element of R; i.e., for any x ∈ R \ {0}, there exists finitely
many prime numbers p1, . . . , pm such that n ∈ {pi11 · · · pimm | i1, . . . , im ∈ N} if
x ∈ nR.

Proof. Let U denote the group of units of R. By a result of Roquette [28] (or
see [18, page 39, Corollary]) we have that U is a finitely generated abelian group
and so U0, the subgroup of U generated by the rational numbers in U is a finitely
generated subgroup of Q∗. In particular, there exist prime numbers q1, . . . , qt
such that every positive rational number in U is in the multiplicative subgroup
of Q∗ generated by ±1, q1, . . . , qt. Thus if x is a unit and x ∈ nR then n is an
integer unit of R and hence in the semigroup generated by ±1, q1, . . . , qt.

For the general case, we let S = R[1/x], which is still a finitely generated
Z-algebra that is an integral domain of characteristic zero. We observe that if
x ∈ nS then n is necessarily a unit in S and by the above remarks we have that
n lies in a semigroup generated by ±1 along with a finite set of prime numbers.
We note that if x ∈ nR then x ∈ nS and so we obtain the desired result.

Proof of Theorem 3. We prove this by induction on d. When d = 0, F is
constant and there is nothing to prove. We now suppose that the result holds
whenever d < k and we consider the case when d = k. Since F is D-finite, we
have that F (x1, . . . , xk) satisfies a nontrivial linear differential equation of the
form ∑̀

j=0

Pj(x1, . . . , xk)∂jxk
F = 0,

where P0, . . . , P` are polynomials in K[x1, . . . , xk]. Translating this into a
relation for the coefficients of F , we see that there exists some positive integer
N and polynomials Qa1,...,ak

(t) ∈ K[t] for (a1, . . . , ak) ∈ {−N, . . . , N}k, not all
zero, such that ∑

−N≤a1,...,ak≤N

Qa1,...,ak
(nk)f(n1 − a1, . . . , nk − ak) = 0 (2)
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for all (n1, . . . , nk) ∈ Nk, where we take f(i1, . . . , ik) = 0 if some ij is negative.
By dividing our polynomials Qa1,...,ak

(t) by ta for some nonnegative integer a if
necessary, we may assume that q(a1, . . . , ak) := Qa1,...,ak

(0) is nonzero for some
(a1, . . . , ak) ∈ {−N, . . . , N}k. We now let R denote the Z-subalgebra of K
generated by ∆ and by the coefficients of Qa1,...,ak

(t) ∈ K[t] with (a1, . . . , ak) ∈
{−N, . . . , N}k. Then R is finitely generated. By construction, we have∑

−N≤a1,...,ak≤N

q(a1, . . . , ak)f(n1 − a1, . . . , nk − ak) ∈ nkR

for all (n1, . . . , nk) ∈ Nk. Now let Γ denote the set of all numbers of the form∑
−N≤a1,...,ak≤N

q(a1, . . . , ak)s(a1, . . . , ak)

with s(a1, . . . , ak) ∈ ∆ ∪ {0}. Then Γ is a finite set. By Lemma 8, there is a
finite set of prime numbers p1, . . . , pm such that for each nonzero x ∈ Γ we have
that if n is a positive integer with x ∈ nR then n is in the semigroup generated
by p1, . . . , pm. In particular,∑

−N≤a1,...,ak≤N

q(a1, . . . , ak)f(n1 − a1, . . . , nk − ak) = 0

whenever nk is not in the multiplicative semigroup generated by p1, . . . , pm.
Equivalently,

G(x1, . . . , xk) := F (x1, . . ., xk)

 ∑
0≤a1,...,ak≤N

q(a1, . . . , ak)xa1
1 · · ·x

ak

k

xN1 · · ·xNk

has the property that g(n1, . . . , nk) = 0 whenever nk ≥ N and nk − N is
not in the semigroup generated by p1, . . . , pm, where g(n1, . . . , nk) denotes
the coefficient of xn1

1 · · ·x
nk

k in G(x1, . . . , xk). Since G is just F multiplied
by a polynomial, G(x1, . . . , xk) is D-finite by Proposition 5 (i); moreover,
all coefficients of G lie in the finite set Γ. Note that any translate of the
multiplicative semigroup generated by p1, . . . , pm cannot be syndetic by the
same argument as in Example 6. Therefore, Lemma 7 implies that there is
some positive integer M such that g(n1, . . . , nk) = 0 whenever nk > M . Thus
we have

G =

M∑
i=0

Gi(x1, . . . , xk−1)xik

for some power series G0, . . . , GM ∈ K[[x1, . . . , xk−1]]. Then for i ∈ {0, . . . ,M},
we have that Gix

i
k is the Hadamard product of G with xik

∏k−1
j=1 (1− xj)−1 and

so each Gix
i
k is D-finite by Proposition 5 (ii). Then specializing xk = 1 gives

each Gi is D-finite by Proposition 5 (iii). Since each Gi has coefficients in a
finite set, we see by the induction hypothesis that each Gi is rational and so
G is rational. But this now gives that F is rational by our definition of G,
completing the proof.
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4. Generating functions over nonnegative integer points on algebraic
varieties

Let V ⊆ Ad
K be an affine algebraic variety over an algebraically closed field K

of characteristic zero. We define the generating function over nonnegative
integer points on V by

FV (x1, . . . , xd) :=
∑

(n1,...,nd)∈V ∩Nd

xn1
1 · · ·x

nd

d .

Then one can ask the following questions about the properties of FV that often
reflect the global geometric structure of V :

1. When FV is zero? This is Hilbert Tenth Problem when K is the field of
rational numbers. In 1970, Matiyasevich [23, 9] proved that this problem
is undecidable.

2. When FV is a polynomial? If so, V has only finitely many nonnegative
integer points. Siegel’s theorem on integral points answers this question
for a smooth algebraic curve C of genus g ≥ 1 defined over a number field
K [4, Chap. 7].

3. When FV is a rational function? This is always true when the variety V
is defined by linear polynomials with integer coefficients [33, Chap. 4].

4. When FV is D-finite? By our main theorem, we see that this question
is the same as question (3), by taking f(n1, . . . , nd) = 1 if (n1, . . . , nd) ∈
V ∩ Nd and f(n1, . . . , nd) = 0 otherwise (see Corollary 9).

5. When FV satisfies an algebraic differential equation?More precisely, we
say that a power series F (x1, . . . , xd) ∈ K[[x1, . . . , xd]] is differentially
algebraic if the transcendence degree of the field generated by all of the
derivatives Di1

x1
· · ·Did

xd
(F ) with ij ∈ N over K(x1, . . . , xd) is finite. If a

power series is not differentially algebraic, then it is called transcendentally
transcendental. For a nice survey on transcendentally transcendental
functions, see Rubel [29].

Corollary 9. Let V ⊆ Ad
K be an affine variety over an algebraically closed field

K of characteristic zero. Then the power series

FV (x1, . . . , xd) :=
∑

(n1,...,nd)∈V ∩Nd

xn1
1 · · ·x

nd

d

is D-finite if and only if it is rational.

To show an application of this corollary, let us consider the linear system
Ax = 0, where A is a d ×m matrix with integer entries. Let E be the set of
all vectors (n1, . . . , nd) ∈ Nd such that Ax = 0. We now give a proof of the
following classical theorem in enumerative combinatorics.
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Theorem 10 (Theorem 4.6.11 in [33]). The generating function

FE(x1, . . . , xd) :=
∑

(n1,...,nd)∈E

xn1
1 · · ·x

nd

d

represents a rational function of x1, . . . , xd.

Proof. By Corollary 9, it suffices to show that FE is D-finite. We first recall
a fact proved by Lipshitz in [19, p. 377] that if the power series G(x) =∑
g(n1, . . . , nd)xn1

1 · · ·x
nd

d is D-finite and C ⊆ Nd is the set of elements of
Nd satisfying a finite set of inequalities of the form

∑
aini + b ≥ 0, where the

ai, b ∈ Z, then the power series

H(x) :=
∑

(n1,...nk)∈C

g(n1, . . . , nd)xn1
1 · · ·x

nd

d

is D-finite. Note that R(x1, . . . , xd) :=
∑
xn1
1 · · ·x

nd

d = 1/
∏d

i=1(1 − xi) is D-
finite and any equality

∑
aini = 0 is equivalent to two inequalities

∑
aini ≥ 0

and
∑

(−ai)ni ≥ 0. Then the D-finiteness of FE follows from the fact.

We now derive some properties of an algebraic variety E from the generating
function FE when d = 2. We first prove a basic result that is probably well-
known, but for which we are unaware of a reference.

Proposition 11. Let

F (x1, · · · , xd) =
∑

(n1,...,nd)∈Nd

f(n1, . . . , nd)xn1
1 · · ·x

nd

d ∈ Q[[x1, . . . , xd]]

with f(n1, . . . , nd) ∈ {0, 1} for all (n1, . . . , nd) ∈ Nd. Then F is rational if and
only if the support set E := {(n1, . . . , nd) ∈ Nd | f(n1, . . . , nd) 6= 0} of F is
semilinear (see Equation (1) for the definition of semilinearity).

Proof. The sufficiency follows from Theorem 10. For the other direction
assume that F (x1, . . . , xd) is rational. Since f(n1, . . . , nd) ∈ {0, 1} for all
(n1, . . . , nd) ∈ Nd, we have that F can be written in the form F = P/Q
with P,Q ∈ Z[x1, . . . , xd] and the gcd of the collection of coefficients of P
and Q equal to 1. For any prime number p ∈ N, the modulo p mapping
φp : Z[[x1, . . . , xd]] → Fp[[x1, . . . , xd]] is a homomorphism. Then φp(Q · F ) =
φp(Q) · φp(F ) = φp(P ), which then implies that the sequence f : Nd → {0, 1}
has a rational generating function over any finite field Fp, where p is a prime
number. By Salon’s theorem [30], which is a multi-dimensional extension of
the theorem by Christol, Kamae, Mendès France, and Rauzy [8], the sequence
f : Nd → {0, 1} is p-automatic for every prime number p. Then the Cobham-
Semenov theorem [12] implies that the support set E of f is semilinear.

We now use this result in the special case when d = 2.
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Theorem 12. Let p(x, y) ∈ K[x, y] be a nonzero polynomial satisfying that the
generating function

Fp(x, y) :=
∑

(n,m)∈N2

p(n,m)=0

xnym

is rational. Then p = c · f · g, where c ∈ K is a constant, f is a product of
linear polynomials in x and y with integer coefficients and g has only finite roots
in N2.

Proof. Let p = p1 · · · pr with pi irreducible over K. Assume that p1, . . . , pm
have only finitely many zeros in N2 and that pi with i > m has infinitely many
roots in N2. Then let g = p1 · · · pm. We show that pm+1, . . . , pr are, up to
scalar multiplication, polynomials of the form ax + by + c with a, b, c ∈ Z. By
Proposition 11, the set E of all nonnegative points (n,m) on the curve p(x, y) =
0 is semilinear. Now suppose that E is infinite. Then if the subset Vi in (1) is
not contained in a line in Z2 through the origin, then the set

bi +
∑
v∈Vi

v · N

is Zariski dense in the plane, which is impossible since E is contained in the zero
set of a nonzero polynomial. Thus we see that after refining our decomposition
of E if necessary, we may assume that each |Vi| = 1 for i > 0. Let q be any
irreducible factor of p having infinitely many zeros in N2. Then there is some
Vi = {v} ⊆ N2 with i > 0, such that q(bi + vn) = 0 for infinitely many n ∈ N.
Write bi = (c, d) and v = (a, b). Then q(c + an, d + bn) = 0 for infinitely
many n ∈ N and so q(c + at, d + bt) = 0 for all t ∈ K. Hence the linear
polynomial ay − bx − (da − cb) divides q. Since q is irreducible over K, then
q = λ(ay − bx − (da − cb)) for some constant λ ∈ K. This completes the
proof.

The theorem as above cannot be extended to the case when d > 2 as shown
in the following example.

Example 13. Let p = x−y+2z2 +zy2. We claim that E := {(n, n, 0) | n ∈ N}
is the set of all zeros of p in N3. Suppose that (a, b, c) is another N3-point with c
nonzero. Then a + 2c2 + cb2 = b and so c(2c + b2) = 2c2 + cb2 ≤ b since a is
nonnegative. But if c is strictly positive then we must have 2c+b2 ≤ c(2c+b2) ≤
b, which gives c ≤ 0, a contradiction.

Now the corresponding generating function is equal to 1/((1 − x)(1 − y))
which is rational, but the polynomial p is not of the integer-linear form up to
scalar multiplication.

As in the first question, we can show that it is undecidable to test whether
the generating function FV for an arbitrary algebraic variety V is D-finite or
not. Let P ∈ Q[x1, . . . , xd] be any polynomials over Q in x1, . . . , xd and let V
be the algebraic variety defined by

V := {(a1, . . . , ad, b, c) ∈ Q | P (a1, . . . , ad)2 + (b− c2)2 = 0}.
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The undecidability follows from the equivalence that the generating function
FV is D-finite if and only if P has no root in Nd. Clearly, FV = 0 if P has no
root in Nd and then it is D-finite. Now suppose that P has at least one root
in Nd. Then the generating function FV is of the form

FV =
∑

(n1,...,nd,m)∈Nd+1

P (n1,...,nd)=0

xn1
1 · · ·x

nd

d ym
2

zm.

It is sufficient to show that GV (x1, . . . , xd, y) := FV (x1, . . . , xd, y, 1) is not D-
finite. Clearly, the set

{m | ∃(n1, . . . , nd) ∈ Nd such that g(n1, . . . , nd,m) 6= 0}

is the set of square numbers, which is neither finite nor syndetic. Thus GV is
not D-finite by Lemma 7.

Example 14. Let p = x2−y ∈ K[x, y]. Then the associated generating function

is F (x, y) =
∑

m≥0 x
mym

2

. Since p is not of the integer-linear form, F (x, y) is
not D-finite by Theorem 12. Actually, we can show that F (x, y) is transcenden-
tally transcendental. Suppose that F (x, y) is differentially algebraic. Then it sat-
isfies a nontrivial algebraic differential equation Q(x, y, F,Dx(F ), . . . , Dr

x(F )) =
0, where r ∈ N and Q ∈ K[z1, z2, . . . , zr+3]. Note that the evaluation of a power
series at y = 2 gives a ring homomorphism e2 : K[[x, y]]→ K[[x]] and we have
a commuting square

K[[x, y]]
e2−→ K[[x]]y y

K[[x, y]]
e2−→ K[[x]],

where both vertical maps are differentiation with respect to x. It follows
that F (x, 2) =

∑
m≥0 2m

2

xm is also differentially algebraic. This leads to a
contradiction with the fact proved by Mahler in [21, p. 200, Theorem 16] on
the rate of coefficient growth of a differentially algebraic power series, since
2m

2 � (m!)c for any positive constant c.

This example motivates us to formulate the following conjecture, which
can be viewed as an analogue of the Pólya-Carlson theorem in the context
of algebraic geometry and differential algebra.

Conjecture 15. Let V ⊆ Ad
K be an affine variety over an algebraically closed

field K of characteristic zero. Then the power series

FV (x1, . . . , xd) :=
∑

(n1,...,nd)∈V ∩Nd

xn1
1 · · ·x

nd

d

is either rational or transcendentally transcendental.
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