
Science in China Series A: Mathematics
Oct., 2008, Vol. 51, No. 10, 1763–1774
www.scichina.com math.scichina.com
www.springerlink.com

Mechanical theorem proving in the surfaces us-
ing the characteristic set method and Wronskian
determinant

FENG RuYong1† & YU JianPing2

1 Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, Beijing 100190, China
2 Department of Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083,

China

(email: ryfeng@amss.ac.cn, jpyu@amss.ac.cn)

Abstract In this paper, we generalize the method of mechanical theorem proving in curves to

prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the

classical result on Wronskian determinant, which can be used to decide whether the elements in a partial

differential field are linearly dependent over its constant field. Based on Wronskian determinant, we

can describe the geometry statements in the surfaces by an algebraic language and then prove them by

the characteristic set method.
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1 Introduction

Mechanical theorem proving in geometry on computers began in the 1950s with the work of
Gelernter[1] and his collaborators. At that time, their method was limited to the traditional
proofs and therefore was not able to prove nontrivial geometry theorems effectively. Since late
1970s, the appearance of several successful methods, such as Wu’s method[2−4] and Gröbner
Bases method[5], has turned mechanical theorem proving in geometry into a new era. Based
on the Wu-Ritt’s characteristic set method, Chou[6] has mechanically proved and discovered
hundreds of nontrivial theorems in Euclidean geometry and non-Euclidean geometry. In 1993,
Chou and Gao presented an improved version of Wu-Ritt’s decomposition algorithm on differen-
tial polynomials and proved many nontrivial theorems in differential geometry and elementary
mechanics such as Bertrand’s Theorem and Newton’s gravitational laws (cf. [7–10]). Cao and
Li[11] proposed a mechanical theorem proving algorithm on local properties of curves on space
surfaces through the exterior differential calculation and vector formulation. With the help of
the characteristic set method in algebraic differential polynomials, Li[12] discovered a new rela-
tion between the first and second fundamental forms of a surface without umbilici and proved
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some nontrivial theorems. Li[13] proved a famous theorem of Chern in differential geometry
using the characteristic set method and the calculus of differential forms. Ferro[14] proposed a
method to prove theorems in differential geometry based on the Gröbner basis method.

In this paper, we generalize the results given by Chou and Gao[8] to surface theory. The
method is based on Wu-Ritt’s characteristic set method and a simplified version of Wronskian
determinants. An important step of mechanical theorem proving in differential geometry is
to convert the geometry statements into the algebraic statements. The classical Wronskian
determinant provides an algebraic language to describe the geometry statements such as “The
tangent lines pass through a fixed point” in the case of curves. In the case of surfaces, Wronskian
determinant needs to be generalized to describe similar statements as above. This has been
done by Kolchin (cf. [15, p. 86, Theorem 1]). In Kolchin’s result, in order to decide whether n

elements in a differential field with two derivation operators are linearly dependent, the number
of the determinants to be calculated in the worst case is almost n!(n + 1)!/2n. In this paper,
we improve this result. We only need to compute n2 − 2n + 2 determinants in the worst case.
This greatly simplifies the computation.

We implemented our method in Maple and used the program to prove many theorems of
surfaces. In the process of computing characteristic sets, the main difference between ordinary
differential polynomials and partial differential polynomials is that the integrability conditions
are introduced in the case of partial differential polynomials. The integrability conditions make
the computation costly. In order to prove more difficult theorems about surfaces, we need more
efficient methods to compute the characteristic sets for partial differential polynomials.

The rest of this paper is organized as follows. First, we introduce Wu-Ritt’s characteristic
set method which we will use and the formulation of mechanical theorem proving in differential
geometry. In the third part of this paper we improve the results in [15, p. 86, Theorem 1]
and give some basic languages to describe the geometry statements. Finally some examples are
given.

2 Wu-Ritt’s characteristic set method

In this section, we will introduce some basic concepts and results on differential algebra and
characteristic set method. More details can be found in [15, Chapter 1]; [4, Chapter 1]; [16].
A differential field is an algebraic field F with a finite set Δ = {δi, i = 1, . . . , m} of derivation
operators such that for every a, b ∈ F ,

(1) δi(a + b) = δia + δib;
(2) δi(ab) = bδia + aδib;
(3) δj(δia) = δi(δja), for every i and j.
Let Θ be the free commutative monoid generated by the elements of Δ. Every element θ in Θ

has the form
∏

δki

i . We call the integer
∑

ki the order of θ, denoted by ord(θ). Let E , F be two
differential fields. If F ⊆ E and when the derivation operators in E are restricted in F , they are
compatible with those in F , then F is called a subfield of E and E is called an extension field
of F . In this paper, we always let F be the rational function field R(u, v) in variables u and v

with derivation operators ∂/∂u and ∂/∂v where R is the real number field. For convenience, we
use ∂i,j to denote ∂i+j

∂ui∂vj for any non-negative integers i and j. Let x1, . . . , xn be indeterminates.
An ordinary polynomial P in variables ∂i+jxk

∂ui∂vj , where k = 1, 2, . . . , n and i, j are nonnegative
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integers with coefficients in F is called a differential polynomial in x1, x2, . . . , xn. We denote
the set of all differential polynomials in x1, x2, . . . , xn by F{x1, x2, . . . , xn} = F{X}. A non-
empty subset I of F{X} is called an ideal of F{X} if for any f, g ∈ I, h ∈ F{X}, we have
f +g ∈ I, fg ∈ I, hf ∈ I, ∂g/∂u and ∂g/∂v ∈ I. An ideal I is called a radical ideal of F{X} if
for any f ∈ F{X} and a positive integer n, fn ∈ I implies f ∈ I. Let S be a non-empty set in
F{X}, the minimal ideal I containing the set S is called the ideal generated by S and denoted
by Ideal(S). In fact, Ideal(S) is the set of all linear combinations of the partial differential
polynomials in S and their partial derivatives. We will use {S} to denote the radical ideal
generated by S.

Definition 2.1. A ranking of (x1, x2, . . . , xn) is a total order on ΘX = {θxi, i = 1, 2, . . . , n,

θ ∈ Θ} such that for any derivative u ∈ ΘX and ∂ ∈ Δ, we have ∂u � u, and for any pair of
derivatives u, v ∈ ΘX, and ∂ ∈ Δ with u � v we have that ∂u � ∂v.

By Dickson’s lemma, we have that any decreasing sequence of derivatives is finite. For a
given ranking of (x1, x2, . . . , xn), we use u < v to denote the fact that the rank of u is lower
than that of v or the rank of v is higher than that of u where u, v ∈ ΘX .

Remark 2.2. In this paper, we will always use the following ranking on ΘX = {∂i,jxk, k =
1, 2, . . . , n; i, j are nonnegative integers}, where ∂i,j = ∂i+j

∂ui∂vj . Then ∂i1,j1xk1 > ∂i2,j2xk2 if it
satisfies one of the following conditions:

(a) xk1 > xk2 ;

(b) xk1 = xk2 and i1 + j1 > i2 + j2;

(c) xk1 = xk2 , i1 + j1 = i2 + j2 and i1 > i2.

Definition 2.3. Let P be a differential polynomial in F{X}. The leader of P is the highest
ranking derivative appearing in P , denoted by LP . View P as a univariate polynomial in its
leader, then the leading coefficient of P is called the initial of P and denoted by IP . The separant
of P is ∂P/∂LP denoted by SP .

By the above definition, for a differential polynomial P ∈ F{X} with initial Ip, P can be
written as P = IP Ld

P + I1L
d−1
P + · · · + Id and the separant of P is ∂P/∂LP = dIP Ld−1

P + (d −
1)I1L

d−2
P + · · · + Id−1.

Definition 2.4. For differential polynomials P and Q in F{X}, P is said to have higher
rank than Q, denoted by P � Q, if LP > LQ or LP = LQ but deg(P, LP ) > deg(Q, LP ). If
neither P � Q nor P ≺ Q holds, we will say that P and Q are incomparable in rank and write
P ∼ Q.

Remark 2.5. A differential polynomial which effectively involves indeterminates will have
higher rank than one which does not.

For differential polynomials P and Q in F{X}, P is partially reduced with respect to Q if
there is no θ ∈ Θ with ord(θ) > 0 such that θ(LQ) appears in P . P is reduced with respect
to Q if P is partially reduced with respect to Q and deg(P, LQ) < deg(Q, LQ). A differential
polynomial P is said to be (partially) reduced with respect to a set of differential polynomials
P if it is (partially) reduced with respect to each differential polynomial in P. A subset P of
F{X} is called an ascending set if either P = {f} where f ∈ F or no elements of P belong to
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F and the elements in P can be arranged as a finite sequence in increasing rank such that each
differential polynomial is reduced with respect to the preceding ones.

Definition 2.6. Let A = {A1, A2, . . . , Ar} and B = {B1, B2, . . . , Bs} be two ascending sets
in F{X}.

A1 ≺ A2 ≺ · · · ≺ Ar; B1 ≺ B2 ≺ · · · ≺ Bs.

A is said to be of lower rank than B if one of the following conditions is satisfied:

(1) There exists k � min{r, s} such that Ai ∼ Bi for 1 � i � k − 1 and Ak ≺ Bk;

(2) r > s and Ai ∼ Bi for all i � s.

An element in F is considered to be of the lowest rank. It is easy to see that the above
definition really introduces a partial ordering among the ascending sets.

Proposition 2.7 (See [15, p. 77], [16, p. 3]). Any sequence of ascending sets decreasing in
order is finite.

Proposition 2.7 guarantees that for a differential polynomial set P ⊂ F{X}, we can always
find an ascending set A in P which is not higher than any other ascending set in P in finite
steps. Such an ascending set is called a characteristic set of P. The algorithms on how to find
a characteristic set of partial differential polynomials can be found in [2, 12]. We will not give
the details here. In the following, we will give the remainder formula which is very important
in characteristic set method (cf. [2, 7, 12], [16, p. 165]).

Theorem 2.8. Let A : A1 ≺ A2 ≺ · · · ≺ Ar be an ascending set. For any differential
polynomial P in F{X} which is not in F , there are the integers sk, tk (k = 1, . . . , r) and
partial derivatives ∂τi,j ∈ Θ and differential polynomials Cτi,j such that

R = Ss1
1 · · ·Ssr

r It1
1 · · · Itr

r P −
∑

i,j

Cτi,j ∂τi,j Ai (1)

is reduced with respect to A, where Si and Ii are respectively separant and initial of Ai.

The above formula is called the Remainder Formula of P with respect to A. We denote R in
(1) by Prem(P, A).

Example 2.9. Let P = x∂1,1y−y be a differential polynomial in F{x, y}, where F = R(u, v).
Let y > x and the ranking of the derivatives be in Remark 2.2. The set A = {y∂0,1y −
x, x∂1,0y + y} is an ascending set in F{x, y}. We write A1 = x∂1,0y + y, A2 = y∂0,1y − x.

Since

∂0,1A1 = ∂0,1x∂1,0y + x∂1,1y + ∂0,1y,

P = x∂1,1y − y = ∂0,1A1 − ∂0,1x∂1,0y − ∂0,1y − y.

Then we have

xP = x∂0,1A1 − x∂0,1x∂1,0y − x∂0,1y − xy

= x∂0,1A1 − (A1 − y)∂0,1x − x∂0,1y − xy

= x∂0,1A1 − A1∂0,1x + y∂0,1x − x∂0,1y − xy.
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Because A2 = y∂0,1y − x, we have

xyP = xy∂0,1A1 − yA1∂0,1x + y2∂0,1x − xy∂0,1y − xy2

= xy∂0,1A1 − yA1∂0,1x + y2∂0,1x − x(A2 + x) − xy2

= xy∂0,1A1 − yA1∂0,1x + y2∂0,1x − xA2 − x2 − xy2

= xy∂0,1A1 − yA1∂0,1x − xA2 + y2∂0,1x − x2 − xy2.

Hence
y2∂0,1x − x2 − xy2 = xyP − xy∂0,1A1 + yA1∂0,1x + xA2

is the remainder of P with respect to A, i.e., Prem(P, A) = y2∂0,1x − x2 − xy2.
For any differential polynomial sets P, Q ⊂ F{X} = F{x1, . . . , xn}, let Zero(P) = {z ∈

E n|∀P ∈ P, P (z) = 0} be the set of all zeros of the differential polynomials of P in E n,
where E is an extension field of F . Note that Zero(P) = Zero(Ideal(P)) = Zero({P}). Let
Zero(P/Q) = Zero(P)\⋃

Q∈Q Zero(Q).

We will need the following Wu-Ritt’s decomposition theorem in this paper (cf. [4]).

Theorem 2.10. For any finite differential polynomial sets A ∈ F{X}, there is an algo-
rithm which will give a finite set of ascending sets Ci in a finite steps such that Zero(A) =
⋃s

i=0 Zero(Ci/ISi), where ISi are the products of the initials and separants of Ci.

There are some implementations of characteristic set method in case of partial differential
polynomials such as Wsolve, diffalg package in Maple, Aldor, etc. In this paper, we will use
diffalg to compute the characteristic set of partial differential polynomials. The command
“Rosenfeld Groebner” in diffalg decomposes a radical differential ideal into an intersection of
characterizable differential ideals which are represented by characteristic sets (cf. [17]). The
command “reduced form(P, {P})” computes the reduced form of P module radical ideal {P}.
We will use reduced form to compute the remainder.

The following algorithm will show us the principle of mechanical theorem proving in differ-
ential geometry.

Definition 2.11. A formula like

∀ x1, . . . , xn, [(H1 = 0 ∧ · · · ∧ Hr = 0 ∧ D1 
= 0 ∧ · · · ∧ Dt 
= 0) ⇒ S = 0]

is said to be a statement of equality type, where Hi (i = 1, . . . , r), Di (i = 1, . . . , t) are differential
polynomials in F{X} and S is a finite subset of F{X}. We denote H = {H1, . . . , Hr}, which is
the hypothesis differential polynomial set, and denote D = {D1, . . . , Dt} which is used to describe
degenerate conditions. Here S = 0 means that all polynomials in S vanish on x1, . . . , xn which
satisfy Hi(x1, . . . , xn) = 0 and Dj(x1, . . . , xn) 
= 0 for i = 1, . . . , r; j = 1, . . . , t.

Definition 2.12. A statement of equality type is said to be true in any extension field E of
F , if

∀ (x1, x2, . . . , xn) ∈ E n, [(H1 = 0 ∧ Hr = 0 ∧ D1 
= 0 ∧ · · · ∧ Dt 
= 0) ⇒ S = 0].

A statement is called universally true if it is true in any extension field of F . Here S = 0
means that all polynomials in S vanish on Zero(H/D), that is, Zero(H/D) ⊆ Zero(S).
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Note that for a characteristic set C and a differential polynomial P , if Prem(P, C) = 0, then
Zero(C/ISi) ⊆ Zero(P ). Hence we have the following algorithm.

Algorithm 2.13. Decide whether a statement of equality type is universally true.

1. By Theorem 2.10, we can compute

Zero(H/D) =
s⋃

i=0

Zero(Ci/{ISi, D}),

where ISi are the products of the initials and sperants of Ci and D is a set of differential
polynomials in F{X}.

2. If s = 0 or Prem(S, Ci) = 0 for i = 1, . . . , s, then the statement of equality type is
universally true.

3 A modified Wronskian determinant to test linear dependence

In this section, we will improve the result given by Kolchin in [15, p. 86, Theorem 1]. Let
Θ(s) = {θ ∈ Θ, ord(θ) � s}. Denote the field of constants of F by C . Kolchin proved the
following theorem, which generalized the well-known classical result on Wronskian determinants
(cf. [15, p. 86, Theorem 1]).

Theorem 3.1. Let ηj = (ηj,1, . . . , ηj,r), 1 � j � n be the elements of F r. If they are linearly
dependent over C , then

det(θiηj,k(i))1�i�n,1�j�n = 0, (2)

for all choices of θ1, . . . , θn ∈ Θ and all choices of the indices k(1), . . . , k(n) ∈ {1, 2, . . . , n}.
Conversely, if (2) holds for all choices of θ1, . . . , θn with θi ∈ Θ(i − 1) (1 � i � n) and all
choices of k(1), . . . , k(n), then η1, . . . , ηn are linearly dependent over C .

In the case r = 1 and two derivation operations, |Θ(s − 1)| = s(s+1)
2 . Then the number

of determinants in (2) is n!(n + 1)!/2n. In fact, in (2), there are many determinants which
automatically vanish and we do not need to calculate these determinants. The corollary below
improves Theorem 3.1.

Corollary 3.2. Let F be a differential field with two derivative operators δ1, δ2, and C be
its constant field. Θ is the commutative semigroup generated by δ1 and δ2, x1, . . . , xn ∈ F . If
there exist τi ∈ Θ(i − 1) for i = 1, . . . , n − 1 such that γi = (τix1, . . . , τixn), 1 � i � n − 1 are
linearly independent over F , then x1, . . . , xn are linearly dependent over C if and only if the
following 2(n − 1) determinants

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

τ1x1 τ1x2 · · · τ1xn

...
...

. . .
...

τn−2x1 τn−2x2 · · · τn−2xn

τn−1x1 τn−1x2 · · · τn−1xn

δ1τix1 δ1τix2 · · · δ1τixn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

τ1x1 τ1x2 · · · τ1xn

...
...

. . .
...

τn−2x1 τn−2x2 · · · τn−2xn

τn−1x1 τn−1x2 · · · τn−1xn

δ2τix1 δ2τix2 · · · δ2τixn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, 1 � i � n − 1

are all zero. Note that τ1 = 1.

Proof. (⇒) It is obvious by Theorem 3.1.
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(⇐) In Theorem 3.1, let r = 1 and ηi = τ1xi = xi. Then by Theorem 3.1, we only need to
prove that det(θixj)1�i�n,1�j�n = 0 for all choices of θ1, . . . , θn with θi ∈ Θ(i − 1). Suppose
that γ1, . . . , γn−1 are linearly independent over F . Since the 2(n−1) determinants are all equal
to zero, then δ1γi = (δ1τix1, . . . , δ1τixn), δ2γi = (δ2τix1, . . . , δ2τixn) are linear combinations of
γ1, . . . , γn−1 for each i ∈ {1, 2, . . . , n}. Because there are only two derivative operators δ1 and
δ2 which are commutative, any θ ∈ Θ can be written as δk

1δl
2. By the induction on k and l,

we can easily prove that δk
1δl

2γ1 are the linear combination of γ1, . . . , γn−1 for any non-negative
integers k, l. Since γ1 = (x1, x2, . . . , xn), det(θixj)1�i�n,1�j�n = 0 for all choices of θ1, . . . , θn

with θi ∈ Θ(i − 1).
From the above corollary, we can decide whether x1, . . . , xn are linearly dependent as follows:

First, let

A =

⎛

⎝
x1 x2

δ1x1 δ1x2

⎞

⎠ , B =

⎛

⎝
x1 x2

δ2x1 δ2x2

⎞

⎠ .

If det(A) = det(B) = 0, then x1, x2 are linearly dependent by Corollary 3.2 and we have that
x1, . . . , xn are linearly dependent. Otherwise, without loss of generality, assume that det(A) 
= 0
then (x1, x2) and (δ1x1, δ1x2) are linearly independent. Let matrixes M1, M2, M3, M4 respec-
tively be

⎛

⎜
⎜
⎝

x1 x2 x3

δ1x1 δ1x2 δ1x3

δ1x1 δ1x2 δ1x3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

x1 x2 x3

δ1x1 δ1x2 δ1x3

δ1δ1x1 δ1δ1x2 δ1δ1x3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

x1 x2 x3

δ1x1 δ1x2 δ1x3

δ2x1 δ2x2 δ2x3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

x1 x2 x3

δ1x1 δ1x2 δ1x3

δ2δ1x1 δ2δ1x2 δ2δ1x3

⎞

⎟
⎟
⎠ .

If det(M1) = det(M2) = det(M3) = det(M4) = 0 then x1, x2, x3 are linearly dependent by
Corollary 3.2, and then x1, . . . , xn are linearly dependent. Otherwise, x1, x2, x3 are linearly
independent. Repeat the process for x1, x2, x3, x4 as above. Then we need to compute n(n− 1)
determinants matrixes at most. In fact, because τ2 in Corollary 3.2 must be δ1 or δ2, we have
det(C) = 0 or det(D) = 0 where

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ1x1 τ1x2 · · · τ1xn

τ2x1 τ2x2 · · · τ2xn

...
...

...
...

τn−1x1 τn−1x2 · · · τn−1xn

δ1x1 δ1x2 · · · δ1xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ1x1 τ1x2 · · · τ1xn

τ2x1 τ2x2 · · · τ2xn

...
...

...
...

τn−1x1 τn−1x2 · · · τn−1xn

δ2x1 δ2x2 · · · δ2xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence we only need to compute n2 − 2n + 2(= n(n− 1)− n + 2) determinants to test whether
x1, x2, . . . , xn are linearly dependent.

Remark 3.3. In the sections below, for the convenience, we will use WR(x1, . . . , xn) to
denote the set of determinants in Theorem 3.1 and WR(x1, . . . , xn) = 0 means that all of the
determinants in WR(x1, . . . , xn) vanish. Then if WR(x1, . . . , xn) = 0, x1, x2, . . . , xn are linearly
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dependent over the constant field of F ; otherwise x1, x2, . . . , xn are linearly independent over
the constant field of F .

4 Mechanical theorem proving for local theory of surfaces

4.1 Local theory of surfaces

Next we will recall the basic fact of the local theory of surfaces. Let (u, v), (x, y, z) respectively
be the coordinates of the points of Euclidean space of dimensions 2 and 3. The parametric
representation of a surface can be r = r(u, v) = (x(u, v), y(u, v), z(u, v)), in which x(u, v),
y(u, v), and z(u, v) are functions in u and v. For the simplicity, we use xi,j to denote ∂i+jx

∂iu∂jv

and yi,j , zi,j , nki,j are the same sense.
Let p = (x, y, z), n = (n1, n2, n3), where x = x(u, v), y = y(u, v), z = z(u, v). View x, y, z, ni

as the differential indeterminates. Then some basic concept in the local theory of surfaces
can be described as the following differential equations. These equations are necessary for
characterizing the surfaces in algebraic language.

(1) The curvature of the surface r at point p(x, y, z) is k:

k2 − (x1,0y0,1 − y1,0x0,1)2 − (y1,0z0,1 − z1,0y0,1)2 − (z1,0x0,1 − x1,0z0,1)2 = 0.

(2) The unit normal vector of the surface r at point p(x, y, z) is n = (n1, n2, n3):

kn1 − y1,0z0,1 + y0,1z1,0 = 0∧
kn2 − z1,0x0,1 + z0,1x1,0 = 0∧
kn3 − x1,0y0,1 + x0,1y1,0 = 0.

(3) The first fundamental form of the surface r is I = Edu2 + 2Fdudv + Gdv2 :
E − x2

1,0 − y2
1,0 − z2

1,0 = 0∧
F − x1,0x0,1 − y1,0y0,1 − z1,0z0,1 = 0∧
G − x2

0,1 − y2
0,1 − z2

0,1 = 0.

(3)

(4) The second fundamental form of the surface r is II = Ldu2 + 2Mdudv + Ndv2 :

L + n11,0x1,0 + n21,0y1,0 + n31,0z1,0 = 0∧
M + n10,1x1,0 + n20,1y1,0 + n30,1z1,0 = 0∧
N + n10,1x0,1 + n20,1y0,1 + n30,1z0,1 = 0.

(4)

4.2 Some basic languages

Use the same notation as in Subsection 4.1, that is, the point p = (x, y, z) and the normal vector
n = (n1, n2, n3). By the modified Wronskian determinant, we can translate the following
predicates for surfaces into algebraic language. Note that the equations below are only the
sufficient conditions of these predicates but not necessary conditions.

1. The planes passing through p and with n as their normal vectors pass through a fixed
point. Its equations are

WR(n1, n2, n3, n1x + n2y + n3z) = 0 ∧ WR(n1, n2, n3) 
= 0.

We know that equations of the planes are n1(X − x) + n2(Y − y) + n3(Z − z) = 0. Under the
above conditions, there are the constants c1, c2, c3 and c4 
= 0 such that

c1n1 + c2n2 + c3n3 + c4(n1x + n2y + n3z) = 0.
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Then we have
c1

c4
n1 +

c2

c4
n2 +

c3

c4
n3 + n1X + n2Y + n3Z = 0.

Hence the planes pass through the fixed point (− c1
c4

,− c2
c4

,− c3
c4

).
2. The planes passing through p and with n as their normal vector pass through a fixed line.

Its equations are

(WR(n1, n2, n3) = WR(n1, n2, n1x + n2y + n3z) = 0 ∧ WR(n1, n2) 
= 0)∨
(WR(n1, n2, n3) = WR(n1, n3, n1x + n2y + n3z) = 0 ∧ WR(n1, n3) 
= 0)∨
(WR(n1, n2, n3) = WR(n2, n3, n1x + n2y + n3z) = 0 ∧ WR(n2, n3) 
= 0).

In the first case, since WR(n1, n2, n1x + n2y + n3z) = 0 ∧ WR(n1, n2) 
= 0, the planes pass
through a fixed point (a1, a2, 0) where a1n1 + a2n2 = n1x+ n2y +n3z. By WR(n1, n2, n3) = 0,
the planes are perpendicular to a fixed surface c1X +c2Y +c3Z = 0, where c1n1 +c2n2+c3n3 =
0. Therefore, all planes include the fixed line which passes through the point (a1, a2, 0) and
perpendicular to the plane c1X + c2Y + c3Z = 0 or a fixed line perpendicular to the plane
c1X + c2Y + c3Z = 0 at (0, 0, 0) when a1 = a2 = 0. In the other cases, we can get the
conclusion by the same way.

3. The lines passing through p and parallel to n pass through a fixed point. Its equations are

WR(n1n3, n1n2, n2n3) 
= 0∧
WR(n1, n2, n1y − n2x) = 0∧
WR(n1, n3, n1z − n3x) = 0∧
WR(n2, n3, n2z − n3y) = 0.

From WR(n1n3, n1n2, n2n3) 
= 0, we have that WR(ni, nj) 
= 0, where i, j = 1, 2, 3 and i 
= j.
Hence there are the constants ai, bi such that

n1y − n2x = a1n1 + b1n2; (5)

n1z − n3x = a2n1 + b2n3; (6)

n2z − n3y = a3n2 + b3n3. (7)

From (5) ∗ n3 − (6) ∗ n2 + (7) ∗ n1, we get

(a1 + b3)n1n3 + (a3 − a2)n1n2 + (b1 − b2)n2n3 = 0.

By WR(n1n3, n1n2, n2n3) 
= 0 again, we have that a1 + b3 = 0; a3 − a1 = 0; b1 − b2 = 0. Hence
by (5)–(7),

n1(y − a1) = n2(x + b1); n3(x + b1) = n1(z − a2); n2(z − a2) = n3(y − a1).

Since WR(n1n3, n1n2, n2n3) 
= 0, there are at least two of n1, n2, n3 which are not always
equal to zero, without lost of generality, assume that n1n2 
= 0. Let u = x+b1

n1
. We have that

x − un1 = −b1, y − un2 = a1. If n3 ≡ 0, then z ≡ a2, otherwise z − un3 = a2. The equations
of the lines are X = x + tn1, Y = y + tn2, Z = z + tn3. Therefore all the lines pass through a
fixed point (−b1, a1, a2).
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5 Examples

In this section, we will present some examples. In these examples, we will use Algorithm 2.13
to prove that the statements in the examples are universally true.

Example 5.1. Show that all normal lines of a sphere pass through a fixed point.

Without lost of generality, we can assume that the equation of this sphere is x2+y2+z2−r2 =
0, where x, y, z are differential indeterminates over differential field R(u, v) and r is the constant.
Then the normal lines are the lines passing through (x, y, z) and parallel to (n1, n2, n3). Using
the definition equations of the normal vectors in Subsection 4.1, we have the hypothesis set H

which includes the following differential polynomials:

H1 = x2 + y2 + z2 − r2;

H2 = k2 − (x1,0y0,1 − y1,0x0,1)2 − (y1,0z0,1 − z1,0y0,1)2 − (z1,0x0,1 − x1,0z0,1)2;

H3 = kn1 − y1,0z0,1 + y0,1z1,0;

H4 = kn2 − z1,0x0,1 + z0,1x1,0;

H5 = kn3 − x1,0y0,1 + x0,1y1,0.

Then we need to prove that the third predicate in Subsection 4.2 is true under the hypothesis set
H. Hence the conclusion set S contains fifteen differential polynomials. Let n3 > n2 > n1 > z >

y > x > k and use the ranking in Remark 2.2. Here, we take r as the parameter. If k = 0, then
r = 0, i.e. the sphere degenerates to a point. Hence we will consider Zero({H1, . . . , H5}/k).
Using the package diffalg in Maple, we can get

Zero({H1, . . . , H5}/k) = Zero(C1/{I1, k})
⋃

Zero(C2/{I2, k}),
where

C1 = kn3 − x1,0y0,1 + y1,0x0,1,

kn2(x2 + y2 − r2) + zx1,0yy0,1 − zx0,1yy1,0,

kn1(x2 + y2 − r2) − zy1,0xx0,1 + zy0,1xx1,0,

z2 + x2 + y2 − r2,

y2
1,0x

2
0,1r

2 + x2
1,0r

2y2
0,1 − 2x1,0y1,0x0,1r

2y0,1 + k2y2 + k2x2 − k2r2;

C2 = kn3 − x1,0y0,1,

kn2(x2 + y2 − r2) + zx1,0yy0,1,

kn1(x2 + y2 − r2) + zy0,1xx1,0,

z2 + x2 + y2 − r2,

x2
1,0r

2y2
0,1 + k2x2 − k2r2 + k2y2,

x0,1;

and IS1, IS2 are the products of the initials and separants of C1, C2 respectively. Let

W =

∣
∣
∣
∣
∣
∣
∣
∣

n1n2 n1n3 n2n3

n11,0n2 + n1n21,0 n11,0n3 + n1n31,0 n21,0n3 + n2n31,0

n10,1n2 + n1n20,1 n10,1n3 + n1n30,1 n20,1n3 + n2n30,1

∣
∣
∣
∣
∣
∣
∣
∣

.
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We have that Prem(W, C1) 
= 0. Hence WR(n1n2, n1n3, n2n3) 
= 0. Consider the following four
determinants:

Di =

∣
∣
∣
∣
∣
∣
∣
∣

n1 n2 n1y − n2x

n10,1 n20,1 n10,1y − n20,1x + n1y0,1 − n2x0,1

θin1 θin2 θi(n1y − n2x)

∣
∣
∣
∣
∣
∣
∣
∣

, i = 1, 2, 3, 4,

where θ1 = ∂1,0, θ2 = ∂0,2, θ3 = ∂1,1, θ4 = ∂2,0. By the computation process, we have that
Prem(Di, C1) = Prem(Di, C2) = 0 for i = 1, 2, 3, 4. By Corollary 3.2, WR(n1, n2, n1y − n2x) =
0. By the same way, we have that WR(n1, n3, n1z − n3x) = 0 and WR(n2, n3, n2z − n3y) = 0.
Therefore the statement is universally true.

Example 5.2. Show that if a regular surface is a sphere, then there exists a nonzero constant
c such that (E, F, G) = c(L, M, N), where E, F, G are as in (3) and L, M, N are as in (4).

Using the notation and results in Example 5.1, we have had the characteristic sets C1 and
C2. Since Prem(E, C1) 
= 0 and

Prem(EL1,0 − E1,0L, C1) = Prem(EL1,0 − E1,0L, C2) = 0,

Prem(EL0,1 − E0,1L, C1) = Prem(EL0,1 − E0,1L, C2) = 0,

E and L are linearly dependent over the constant field R, that is, there exists a nonzero constant
c such that E = cL. Because

Prem(F, C1) 
= 0, Prem(EM − LF, C1) = Prem(EM − LF, C2) = 0,

Prem(G, C1) 
= 0, Prem(EN − GL, C1) = Prem(EN − GL, C2) = 0,

(E, F, G) and (L, M, N) are parallel. Hence (E, F, G) = c(L, M, N).

Example 5.3. Prove that the first fundamental form of the surface will not change when
the surface does rigid motions in R

3.

Let (ai,j)1�i�3,1�j�3 be the matrix of the rotation and (b1, b2, b3)t be the translation. Let
(ei, fi, gi) be the first fundamental forms corresponding to the surfaces (xi, yi, zi) respectively,
where i = 1, 2. Then by the definition equations in Subsection 4.1, we have the hypothesis set
H which includes:

H1 = x1 − b1 − a1,1x2 − a1,2y2 − a1,3z2;

H2 = y1 − b2 − a2,1x2 − a2,2y2 − a2,3z2;

H3 = z1 − b3 − a3,1x2 − a3,2y2 − a3,3z2;

H4 = a2
1,1 + a2

2,1 + a2
3,1 − 1;

H5 = a2
1,2 + a2

2,2 + a2
3,2 − 1;

H6 = a2
1,3 + a2

2,3 + a2
3,3 − 1;

H7 = a1,1a1,2 + a2,1a2,2 + a3,1a3,2;

H8 = a1,1a1,3 + a2,1a2,3 + a3,1a3,3;

H9 = a1,2a1,3 + a2,2a2,3 + a3,2a3,3;

H10 = e1 − x1
2
1,0 − y1

2
1,0 − z1

2
1,0;

H11 = e2 − x2
2
1,0 − y2

2
1,0 − z2

2
1,0;
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H12 = f1 − x11,0x10,1 − y11,0y10,1 − z11,0z10,1;

H13 = f2 − x21,0x20,1 − y21,0y20,1 − z21,0z20,1;

H14 = g1 − x1
2
0,1 − y1

2
0,1 − z1

2
0,1;

H15 = g2 − x2
2
0,1 − y2

2
0,1 − z2

2
0,1.

Since ai,j are constants where i, j = 1, 2, 3, the equations below need to be included in H:
Hi,j = ai,j1,0 and Gi,j = ai,j0,1. The conclusion set is S = {−e2 + e1, f2 − f1, g1 − g2}. Let
e1 > e2 > g1 > g2 > f1 > f2 > z1 > y1 > x1 > z2 > y2 > x2 > a1,1 > a1,2 > · · · > a3,3

and use the ranking in Remark 2.2. Take b1, b2, b3 as the parameters. We can get Zero(H) =
∏10

i=1 Zero(Ci/ISi) where Ci are the ascending sets and ISi are the products of the initials
and separants of Ci. Each ascending set includes about 20 differential polynomials. Since
Prem(S, Ci) = 0 for i = 1, 2, . . . , 10, the conclusion is true.

Acknowledgements The authors would like to thank the referees for their valuable sugges-
tions.
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