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In this study, we describe the intersection of three conics based 
on the singularities of their corresponding Jacobian curve. In 
particular, we show that certain singular points and sub-lines of 
the Jacobian curve are the precise common points and common 
tangent lines of the conics, respectively. Based on our results, these 
points or the tangent line can be computed as the singularities 
of the Jacobian curve. These results facilitate investigations of the 
relationships between a net of conics and their Jacobian curve.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computing the intersection of given curves and surfaces is an important problem in geometric 
modeling, computer-aided geometric design, and computer-aided design (Hoschek and Lasser, 1993;
Patrikalakis and Maekawa, 2002). In general, the problem is transformed into the solution of a 
polynomial system using elimination methods. It is well known that nonlinear polynomial sys-
tems are difficult to solve efficiently. For some typical curves and surfaces, there are special meth-
ods for computing the intersection or collision conditions, such as conics (Liu and Chen, 2004;
Briand, 2007), quadrics (Wang et al., 2001; Wang, 2002; Lazard et al., 2006; Dupont et al., 2008;
Jia et al., 2011), and ruled surfaces (Chen et al., 2011; Shen et al., 2012). Previous studies (Liu and 
Chen, 2004; Etayo et al., 2006) gave the algebraic conditions for classifying the positional relation-
ships between two conics by checking the roots of the so-called Segre’s characteristic polynomial of 
two quadrics. For two ruled surfaces, Chen et al. (2011) provided a collision condition by introduc-
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ing the bracket method and the intersection formula was given using the brackets. Previous studies 
have focused on two aspects: determining the collision (e.g., Wang et al., 2001; Liu and Chen, 2004;
Briand, 2007) and finding the intersection (e.g., Wang, 2002). Some studies have also focused on both 
of these two aspects (e.g., Chen et al., 2011).

All previous studies have considered the intersections or collision conditions for a pair of geo-
metric objects, but more than two geometric elements often exist even in a simple scene. In the 
present study, we consider the intersection problem for three conics. We determine the conditions 
that allow us to characterize the intersections of three conics, which are easily computed. To achieve 
this, it is natural to generalize Segre’s characteristic polynomial, as presented in Liu and Chen (2004), 
Wang et al. (2001), to the case of three conics. In Liu and Chen (2004), Wang et al. (2001), Segre’s 
characteristic polynomial is a polynomial with one variable. By checking the roots of Segre’s charac-
teristic polynomial, we can determine the positional relations between two geometric objects such as 
conics and ellipsoids. In the case of three conics, Segre’s characteristic polynomial defines a planar al-
gebraic cubic curve and we may expect that the singularities of this curve will allow the classification 
of the intersection property of the given three conics. In addition, Segre’s characteristic polynomial is 
defined as the determinant of a matrix. Representing a planar algebraic curve as the determinant of 
a matrix is a classical problem in so-called determinantal representations. Determinantal representa-
tions of curves have been studied widely in Barth (1977), Wall (1977), Piontkowski (2006), Vinnikov
(1984, 1993), Shen (2012). In particular, Wall (1977), Piontkowski (2006) gave complete lists for all 
typical cubic curves, each of which was generated by a triple of conics.

In this study, we employ a different approach. Instead of using Segre’s characteristic polynomial, 
we apply the Jacobian curve of conics (see Definition 2.1), which is also a planar cubic curve. From the 
viewpoint of geometry, the Jacobian curve of three conics is formed by the points for which the polars 
with respect to these conics are concurrent. Let P be a point on the Jacobian curve and P ′ is the 
concurrence of the polars of P . Then, Theorem 8 on p. 171 of Semple and Kneebone (1952) implies 
that P ′ also lies on the Jacobian curve. We observe that if P = P ′ , then the polar of P is a tangent 
line of the corresponding conic. In this case, P is an intersect point of the conics. This observation 
suggests that all of the intersections of the conics are the singularities of the associated Jacobian 
curve. This fact is established in Proposition 3.4. In practical computer design, it is often desirable to 
know the existence of the intersections of conics but also to represent these intersections explicitly. 
The singularities of the curve defined by Segre’s characteristic polynomial may imply the existence 
of intersections of the corresponding conics, but they cannot give the intersections without further 
calculations. Compared with the determinantal curve, the triple of conics and their Jacobian curve are 
on the same space. Based on this fact, we construct an explicit structural connection between the 
intersections of three conics and the singularities of their associated Jacobian curve. This connection 
allows us to obtain the common points of three conics from the singularities of their Jacobian curve 
without further computations. The Jacobian curve was mentioned previously in Salmon (1895). Wall 
also discussed the Jacobian curve in Wall (1977), where he classified the correspondences of the net 
of conics and the associated Jacobian curve by certain parametric transformations.

It should be noted that other methods are available for finding the intersections of a triple of 
conics. The first method is using the resultant for three conics, as described in Gelfand et al. (1994)
(Chapter 3, Section 4). The second method is parameterizing one conic and then solving the two uni-
variate polynomials by substituting it into the other two conics. Our approach appears to be simpler 
when the intersections of the conics comprise more than one point (counting multiplicities). In this 
case, the Jacobian curve is reducible and its singularities are the intersection points of a line and a 
conic or lines. When the Jacobian curve is irreducible, methods can be used to find its singularities, 
such as (Paluszny et al., 2002; Eigenwillig et al., 2006). In particular, in Paluszny et al. (2002), a for-
mula of the singular point was given for a singular irreducible algebraic cubic curve. However, our 
approach can find more information than the common points, e.g., the tangent line can be obtained 
if the conics are tangent at a common point, where this can be shown if the conics share the same 
center or symmetry axis even without common points.

The remainder of this paper is organized as follows. In Section 2, we introduce the Jacobian curve 
of three conics, before providing the main results and examples. In Section 3, we give detailed dis-
cussions and the proofs. In Section 4, we present an algorithm and we give our conclusion.
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2. Main results

Let K be R or C. We use P2(K ) to denote the projective space of dimension two over the field K . 
x = (x0, x1, x2) and y = (y0, y1, y2) are used to denote the homogeneous coordinates of P2(K ). The 
letters u, v, w are used to denote the points in P2(K ). We also use Zero(P1, P2, · · · , Pn) to denote the 
set of common points of P1 = 0, P2 = 0, · · · , Pn = 0 in P2(C), where Pi ∈ K [x0, x1, x2].

Let M ∈ R
3×3 be a symmetric matrix. Then, xMxT = 0 defines an algebraic conic in P2(R) with 

respect to x. However, given a conic H = 0, up to a non-zero scalar multiple, a unique symmetric 
matrix MH exists such that H = xMH xT . For convenience, the corresponding matrix of a conic H = 0
is always denoted as MH . It is well known that a conic H = 0 is non-degenerate if and only if MH is 
invertible. Let

A � xM AxT = 0, B � xMB xT = 0, C � xMC xT = 0 (1)

be three conics defined over R. If all of A, B, C are reducible, then their intersections can be computed 
easily. Now, assume that one of them is irreducible, say A. Then, it is easy to see that α, β ∈ R \ {0}
exist such that A + αB and A + βC are irreducible. Obviously, the intersections of A, B, C coincide 
with those of A, A + αB, A + βC . Therefore, in the following, unless stated specifically, we always 
assume that A, B and C are irreducible, i.e., M A, MB , and MC are always assumed to be invertible.

Definition 2.1. The Jacobian determinant of A, B , and C is defined as

J (x0, x1, x2) �
∣∣∣∣ ∂(A, B, C)

∂(x0, x1, x2)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂ A
∂x0

∂ B
∂x0

∂C
∂x0

∂ A
∂x1

∂ B
∂x1

∂C
∂x1

∂ A
∂x2

∂ B
∂x2

∂C
∂x2

∣∣∣∣∣∣∣∣
. (2)

If J �= 0 over P2(R), then we refer to the curve defined by J = 0 as the Jacobian curve associated 
with A, B, C .

We can find that J (x) = 8 
∣∣M AxT , MB xT , MC xT

∣∣. Obviously, A, B , and C are linearly dependent over 
R if and only if J vanishes on P2(R). In the following, we assume that J does not vanish on P

2(R). 
We discuss the relationship between the intersections of the triple conics and the singularities of 
their Jacobian curve.

It is well known that the singular points of a projective curve defined by a homogeneous polyno-
mial f (x0, x1, x2) are given by the solutions of the following system

∂ f

∂x0
= ∂ f

∂x1
= ∂ f

∂x2
= 0.

Now, we can give the main theorem of the paper.

Theorem 2.2. Let A, B, and C be three conics defined over R and J = 0 is their Jacobian curve.

1. If J is irreducible, then A, B, and C have a common point if and only if J = 0 has a singular point.
2. If J = LQ, where L is linear and Q is quadric, then:

(a) A, B, and C have a common point if and only if J = 0 has a unique singular point;
(b) A, B, and C either have two common points, which are two singular points of J = 0, or no common 

point.
3. If J = L1L2L3 , where L1 = 0, L2 = 0, and L3 = 0 are three distinct lines, then:

(a) A, B, and C are tangent to one line from {L1 = 0, L2 = 0, L3 = 0} at u if Zero(L1, L2, L3) = u;
(b) A, B, and C have either of three common points at L1 ∩ L2, L1 ∩ L3 , and L2 ∩ L3 if J = 0 has no 

reduced point (see Definition 3.1) and Zero(L1, L2, L3) = ∅;
(c) A, B, and C have no common points but they share the same center or symmetry axis if J = 0 has 

reduced points and Zero(L1, L2, L3) = ∅.
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4. If J = L1L2
2 , where L1 = 0 and L2 = 0 are two distinct lines, let u = L1 ∩ L2 , and then:

(a) A, B, and C have two distinct common points (none of them equals u) on L2 = 0 if u is not a reduced 
point of J = 0;

(b) A, B, and C are tangent to L1 = 0 at u and have another common point on L2 = 0 if u is a reduced 
point of J = 0 and I(u) = Zero(L1);

(c) A, B, and C are tangent to L2 = 0 at u if u is a reduced point of J = 0 and I(u) = Zero(L2).
5. If J = λL3 , where L = 0 is a line and λ ∈R{0}, then A, B, and C are tangent to L = 0 at a point with order 

three.

Proof. This theorem is proved in later sections.
Statements 1 and 2.a can be proved by Proposition 3.4 and Proposition 3.6. Statement 2.b is 

followed by Proposition 3.14. Statements 3, 4, and 5 are summarized by Proposition 3.17, Proposi-
tion 3.18, and Proposition 3.19, respectively. �

The results are illustrated in Fig. 1, Fig. 2, and Fig. 3, which show that the common points of 
the conics are simply the singular points of their Jacobian curve, where the singular points, reduced 
points, and common points are abbreviated as SP, RP, and CP, respectively. Based on the singularities 
of the Jacobian curve, we can determine whether the three conics have intersections, while the in-
tersections can also be obtained directly from these singularities if they exist. We also give explicit 
examples in Tables 1 and 2. Note that the figures shown are not those for the explicit examples.

In addition, we can design cubic curves with expected singularities by setting certain intersections 
for a triple of conics, as shown by the following example.

Example 2.3. To obtain a projective cubic with a singular point (1, 1, 1), we start with the following

A = (x0 − x2)(x1 − x2),

B = (x0 − x1)x0,

C = x1(x0 + x1 − 2 x2).

Then, we can verify that (1, 1, 1) is the only common point of A, B, C and that A, B, C are not tangent 
at this point. Furthermore, we can also verify that A + B is irreducible. Then, we compute their 
Jacobian curve

J (x0, x1, x2) = x1
3 − x0x1

2 − x0
2x1 − x0

3

4
+ x0x1x2 − x2x1

2 + x1x2
2

2
+ x0

2x2 − x0x2
2,

which is an irreducible curve with only one singular point (1, 1, 1).

3. Proofs

In this section, we always assume that A, B, C are linearly independent over R. The coefficients of 
A, B, C are in R, so A, B, C are linearly independent over R if and only if they are linearly indepen-
dent over C. Consider the following system

xM AyT = 0, xMB yT = 0, xMC yT = 0. (3)

Since M A, MB , MC are symmetric, then the equations above can be rewritten in matrix form as

y
∂(A, B, C)

∂(x0, x1, x2)
= 0.

The equations (3) define a projective variety in P2(C) × P
2(C). We denote this variety by P . Given a 

point u ∈ P
2(C), a point v ∈ P

2(C) exists such that (u, v) ∈ P if and only if J (u) = 0. A similar state-
ment holds if u and v are exchanged. From the viewpoint of geometry, for each M ∈ {M A, MB , MC }, 



R. Feng, L.-Y. Shen / Journal of Symbolic Computation 73 (2016) 175–191 179
Fig. 1. Singularities of J = 0 v.s. Intersections of three conics.

uMyT = 0 is the polar line of the conic yMyT = 0 at u. The points v such that (u, v) ∈ P are the 
precise intersection points of the polar lines of the conics A = 0, B = 0, C = 0 at u. Please refer to 
Semple and Kneebone (1952) for more details.

Let V be a subvariety of J = 0. Denote

I(V ) =
{

v ∈ P
2(C)

∣∣∣∃u ∈ V , s.t. (u,v) ∈ P
}

.

If V is defined by the equation where L = 0, we can also use I(L) to denote I(V ).
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Fig. 2. Singularities of J = 0 v.s. Intersections of three conics (continued).

Definition 3.1. Let u ∈ P
2(C) such that J (u) = 0. Obviously, I(u) is either a projective line or a point. 

u is said to be a reduced point of J = 0 if I(u) is a projective line.
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Fig. 3. Singularities of J = 0 v.s. Intersections of three conics (continued).

From the symmetry of (3), if u ∈ I(v), then v ∈ I(u). The following lemmas are used frequently in 
the remainder of this study.

Lemma 3.2. Let u ∈ P
2(C) such that J (u) = 0. Then,

(a) u ∈ Zero(A, B, C) if and only if u ∈ I(u).

(b) u is a reduced point of J = 0 if and only if rank
(

∂(A,B,C)
∂(x0,x1,x2)

∣∣∣
x=u

)
= 1.

(c) Denote R as the set of reduced points of J = 0. Then, u ∈ R ∩ Zero(A, B, C) if and only if A = 0, B = 0, 
C = 0 are tangent at u. Furthermore, in the case where A = 0, B = 0, C = 0 are tangent at u, I(u) is their 
common tangent line.

Proof. (a) and (b) follow from the definition.
(c) (⇒) Note that I(u) is the set of intersection points of the polars of u with respect to A = 0, 

B = 0, C = 0. I(u) is a line, so these polars of u coincide. In addition, since u ∈ Zero(A, B, C), then 
these polars of u are the exact corresponding tangent lines of A = 0, B = 0, C = 0 at u. Hence, A = 0, 
B = 0, C = 0 are tangent at u and I(u) is their common tangent line.

(⇐) Since A = 0, B = 0, C = 0 are tangent at u, u ∈ Zero(A, B, C), then the assertion follows from 
the fact that the polars of u with respect to A = 0, B = 0, C = 0 are the corresponding tangent lines 
at u. �
Lemma 3.3. Assume that (u, v) ∈P . Then, for all i with 0 ≤ i ≤ 2,

uk0

∂ J

∂xi
(v) = (−1)ε

∣∣∣∣∣∣∣∣

∂ A
∂xi

(u) ∂ B
∂xi

(u) ∂C
∂xi

(u)

∂ A
∂xk1

(v) ∂ B
∂xk1

(v) ∂C
∂xk1

(v)

∂ A
∂xk2

(v) ∂ B
∂xk2

(v) ∂C
∂xk2

(v)

∣∣∣∣∣∣∣∣
,

where {k0, k1, k2} is a permutation of {0, 1, 2} and if the permutation 
( 0, 1, 2

k0,k1,k2

)
is even, then ε = 0, otherwise 

ε = 1.
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Table 1
Examples.

Singularities of J = 0 Intersection of three conics

J (x0, x1, x2) = −3/2 x0
2x1 − 1/2 x0

2x2

− x0x1
2 − 2 x0x1x2 − 1/2 x0

3 − 1/2 x0x2
2

− 3/4 x2x1
2 − x1x2

2 + 1/4 x1
3

Irreducible

A = x0
2 + 2 x0x2 + 1/2 x1

2

B = 2 x0
2 + x0x1 + 4 x0x2 + 2 x1

2

C = x0
2 + x0x1 + x1

2 − 2 x1x2 − x2
2

No CP

J (x0, x1, x2) = x3
0/2 − x2

0x1 + 12x0x2
1

− 5x2
0x2/2 + 2x3

1 + 5x2
1x2

Irreducible + One SP (0, 0, 1)

A = 5x2
0 + x2

1 + 2x0x1 + 5x0x2

B = x2
0 + 2x2

1 + x0x1 − x1x2

C = x2
0 + x2

1 + x0x2 + 2x1x2

One CP (0, 0, 1)

J (x0, x1, x2) = 1/4 x0(x0
2 + 2 x0x1 − 2 x0x2 + x1

2)

Quadric ∩ Tangent = {(0, 0, 1)}
A = x0

2 + 2 x0x2 + 1/2 x1
2

B = x0
2 + x0x2 + 1/4 x1

2

C = x0
2 + x0x1 + x1

2 − 2 x1x2

One CP (0, 0, 1)

J (x0, x1, x2) = −3/4 (−x2 + 2 x1 + 3 x0)(
x0

2 + 4 x0x1 − 5 x0x2 − 2 x1x2 + 6 x2
2
)

Quadric ∩ Secant = {(−1, 2, 1), (1, −1, 1)}

A = 4 x0
2 + 3 x0x2 + 2 x1

2 − 9 x2
2

B = x0
2 + 3 x0x2 + 2 x1

2 − 6 x2
2

C = x0
2 + x0x1 − 2 x0x2 + x1

2 − 2 x1x2 − x2
2

Two CPs (−1, 2, 1), (1, −1, 1)

J (x0, x1, x2) = 1/4 (x0 − x1)(
3 x0

2 + 5 x1x0 − 20 x1x2 + 8 x2
2
)

Quadric ∩ Secant = {(2, 2, 1), (1/2, 1/2, 1)}

A = x0
2 − x1x0 − x0x2 + 2 x1

2 + x1x2 − 2 x2
2

B = x0
2 − 2 x0x2 + 3 x1

2 + 2 x1x2 − 4 x2
2

C = x0
2 − x1x0 + 2 x0x2 + 1/2 x1

2 − 3 x2
2

No CP

J (x0, x1, x2) = −1/4 x0x1 (2 x0 + x1)

3 lines + one CP (0, 0, 1)

A = x0
2 + x0x1 + 2 x0x2 + x1

2

B = 2 x0x2 + x1
2

C = x0
2 + x0x1 + 3 x0x2 + 2 x1

2

Tangent to one line x0 = 0 at (0, 0, 1)

J (x0, x1, x2) = (63 x1−63 x2)(x0+x2)(x0−x1−x2)
2

3 lines + 3 SPs {(−1, −2, 1), (−1, 1, 1), (2, 1, 1)}, No RP

A = x0
2 − x0x2 + 5 x1

2 + 5 x1x2 − 12 x2
2

B = 4 x0
2 − 7 x0x1 + 3 x0x2 + 6 x1

2 − x1x2 − 13 x2
2

C = x0
2 + x0x1 − 2 x0x2 + x1

2 + 2 x1x2 − 5 x2
2

3 CPs {(−1, −2, 1), (−1, 1, 1), (2, 1, 1)}
J (x0, x1, x2) = 7 x1(x0+2 x2)(2 x0+x2)

8

3 lines + 3 SPs {(−2, 0, 1), (0, 1, 0), (−1/2, 0, 1)} and (0, 1, 0) is a RP

A = x0
2 + 1/2 x1

2 − 3/2 x2
2

B = 1/4 x0
2 + x1

2 − 5/4 x2
2

C = x0
2 + 4 x0x2 + x1

2 + 3 x2
2

No CP but with symmetry axis of x1 = 0

Proof. We only prove the case where (k0, k1, k2) = (0, 1, 2). The other cases can be proved in a similar 
manner. For all i with 0 ≤ i ≤ 2,

∂ J

∂xi
= 2

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣
ai,0

∂ B
∂x0

∂C
∂x0

ai,1
∂ B
∂x1

∂C
∂x1

ai,2
∂ B
∂x2

∂C
∂x2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∂ A
∂x0

bi,0
∂C
∂x0

∂ A
∂x1

bi,1
∂C
∂x1

∂ A
∂x2

bi,2
∂C
∂x2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∂ A
∂x0

∂ B
∂x0

ci,0

∂ A
∂x1

∂ B
∂x1

ci,1

∂ A
∂x2

∂ B
∂x2

ci,2

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ .
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Table 2
Examples (continued).

Singularities of J = 0 Intersection of three conics

J (x0, x1, x2) = 1/2 (x0 − x1)2 (2 x0 + 3 x1 + 3 x2)

Double line(L1) ∩ Line(L2) = {(−3, −3, 5)}, No RP

A = x0
2 − x1x0 − x0x2 + 2 x1

2 + x1x2 − 2 x2
2

B = x0
2 − 2 x0x2 + 3 x1

2 + 2 x1x2 − 4 x2
2

C = x0
2 + x1x0 + x0x2 + x1

2 − x1x2 − 3 x2
2

Two CPs {(−1, −1, 1), (1, 1, 1)} on (L1 = 0)

J (x0, x1, x2) = 3/4 (x0 − x1)2 (x0 + x1 + 2 x2)

Double line(L1) ∩ Line(L2) = {(−1, −1, 1)} and 
I((−1, −1, 1)) = Zero(L2)

A = x0
2 − x1x0 − x0x2 + 2 x1

2 + x1x2 − 2 x2
2

B = x0
2 − 2 x0x2 + 3 x1

2 + 2 x1x2 − 4 x2
2

C = x0
2 + x1x0 + x1

2 − 3 x2
2

Tangent to L2 = 0 at (−1, −1, 1), with one 
CP (1, 1, 1) on L1 = 0

J (x0, x1, x2) = 1/4 x0
2 (2 x1 + x0)

Double line(L1) ∩ Line(L2) = {(0, 0, 1)} and 
I((0, 0, 1)) = Zero(L1)

A = x0
2 + 2 x0x2 + 1/2 x1

2

B = x0
2 + x0x2 + 1/4 x1

2

C = 2 x0
2 + x0x1 + 4 x0x2 + 2 x1

2

Tangent to L1 = 0 at (0, 0, 1)i

J (x0, x1, x2) = x3
0/4

Triple line(L)

A = x2
0 + x2

1/2 + x0x2

B = x2
0 + x2

1/4 + x0x2

C = x2
0 + x2

1/2 + x0x1 + 2x0x2

Tangent to L = 0 at (0, 0, 1)

J (x0, x1, x2) ≡ 0

Identically zero

A = x0
2 + 2 x0x2 + 1/2 x1

2

B = x0
2 + x0x2 + 1/4 x1

2

C = αA + βB,α,β ∈R \ {0}
Linearly dependent

Note that 
∑2

j=0 u j
∂ H
∂x j

(v) = 0 for all H ∈ {A, B, C}. A direct calculation implies that

2u0

∣∣∣∣∣∣∣∣
ai,0

∂ B
∂x0

(v) ∂C
∂x0

(v)

ai,1
∂ B
∂x1

(v) ∂C
∂x1

(v)

ai,2
∂ B
∂x2

(v) ∂C
∂x2

(v)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂ A
∂xi

(u) 0 0

2ai,1
∂ B
∂x1

(v) ∂C
∂x1

(v)

2ai,2
∂ B
∂x2

(v) ∂C
∂x2

(v)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂ A
∂xi

(u) 0 0

∂ A
∂x1

(v) ∂ B
∂x1

(v) ∂C
∂x1

(v)

∂ A
∂x2

(v) ∂ B
∂x2

(v) ∂C
∂x2

(v)

∣∣∣∣∣∣∣∣
.

A similar result holds for the last two determinants in the above expression of ∂ J
∂xi

. Therefore, we have

u0
∂ J

∂xi
(v) =

∣∣∣∣∣∣∣∣

∂ A
∂xi

(u) ∂ B
∂xi

(u) ∂C
∂xi

(u)

∂ A
∂x1

(v) ∂ B
∂x1

(v) ∂C
∂x1

(v)

∂ A
∂x2

(v) ∂ B
∂x2

(v) ∂C
∂x2

(v)

∣∣∣∣∣∣∣∣
. �

3.1. Singularities of J = 0

In this subsection, we present some results based on the relation between the intersection points 
of A = 0, B = 0, C = 0 and the singular points of J = 0. The former comprises a subset of the latter 
and this subset may be proper. We also give some conditions under which the latter implies the 
former.
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Proposition 3.4.

(a) If u ∈ Zero(A, B, C), then u is a singular point of J = 0.
(b) If u is a reduced point of J = 0, then u is a singular point of J = 0.
(c) If we assume that u is a singular point but not a reduced point of J = 0, then I(u) is also a singular point 

of J = 0.

Proof. For convenience, we denote the matrix ∂(A,B,C)
∂(x0,x1,x2)

∣∣∣
x=u

by M and we assume that u =
(u0, u1, u2).

(a) Since u is a common point of the three conics, we have (u, u) ∈ P . Without loss of generality, 
we assume that u0 �= 0. Then, by Lemma 3.3, we can see that u0

∂ J
∂xi

(u) = 0 for all i = 0, 1, 2. Hence, u
is a singular point.

(b) By the hypothesis, rank(M) = 1. Then, the conclusion can be easily deduced from Lemma 3.3.
(c) By the hypothesis, rank(M) = 2. Without loss of generality, assume that the last two rows 

of M , say w1, w2, are linearly independent over C. Let v = I(u) = (v0, v1, v2). Since u is a singu-
lar point of J = 0, v0

∂ J
∂xi

(u) = 0 for all i = 0, 1, 2. By Lemma 3.3, for each i = 0, 1, 2, the vector 
( ∂ A

∂xi
(v), ∂ B

∂xi
(v), ∂C

∂xi
(v)) is a C-linear combination of w1 and w2. It is clear that all rows of M are 

also C-linear combinations of w1 and w2. Then, again by Lemma 3.3, for all i, j with 0 ≤ i, j ≤ 2, 
u j

∂ J
∂xi

(v) = 0. Consequently, v is a singular point of J = 0. �
The converse of Proposition 3.4 (a) may not be true, as shown by the following example.

Example 3.5. Let

A = 2x0x1 + x2
2, B = x2

2 + 2x0x1 + 2x1x2, C = x2
1 + 2x2x0 + x2

0.

Then, Zero(A, B, C) = ∅, but

J = 8(x0 + x1 + x2)(x2
1 + x2

2 − x0x1 − x1x2) = 0

has two singular points.

The following proposition indicates when the singular points of J = 0 are the common points of 
the conics.

Proposition 3.6. If u is the unique singular point of J = 0, then u ∈ Zero(A, B, C).

Proof. By Lemma 3.2 (a), it suffices to prove that u ∈ I(u). We divide the proof into two cases. 
(1) I(u) is a point. By Proposition 3.4, I(u) is also a singular point of J = 0, so I(u) = u. (2) I(u) is 
a projective line. Suppose that I(u) is defined by L = 0. Then, L| J by Lemma 3.2. Let T = J/L. Since 
Zero(L, T ) is a nonempty subset of singular points of J = 0, u ∈ I(u); thus, u ∈ Zero(A, B, C). �
Proposition 3.7. Assume that u ∈ Zero(A, B, C). Then, A = 0, B = 0, C = 0 are tangent at u if and only if u
is a threefold singular point of J = 0.

Proof. By a suitable projective transformation, we may assume that u = (1, 0, 0) and the line x1 = 0
is the tangent line of A = 0 at u. Then, we have

A = 2a01x0x1 + a11x2
1 + 2a12x1x2 + a22x2

2,

B = 2b01x0x1 + 2b02x0x2 + b11x2
1 + 2b12x1x2 + b22x2

2,

C = 2c01x0x1 + 2c02x0x2 + c11x2
1 + 2c12x1x2 + c22x2

2.
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A straightforward calculation yields

∂2 J

∂x0∂x0
(u) = ∂2 J

∂x0∂x1
(u) = ∂2 J

∂x0∂x2
(u) = 0,

∂2 J

∂x1∂x1
(u) = 16b02(a11c01 − a01c11) − 16c02(a11b01 − a01b11),

∂2 J

∂x1∂x2
(u) = 16b02(a12c01 − a01c12) − 16c02(a12b01 − a01b12),

∂2 J

∂x2∂x2
(u) = 16b02(a22c01 − a01c22) − 16c02(a22b01 − a01b22). (4)

(⇒) Assume that A = 0, B = 0, C = 0 are tangent at u. Then, it is easy to see that b02 = c02 = 0. 
We can find that u is a threefold singular point of J = 0 from (4).

(⇐) Assume that either b02 �= 0 or c02 �= 0. Then, (a01, b01, c01) and (0, b02, c02) are linearly inde-
pendent over C since a01 �= 0; otherwise, A is reducible. It follows from (4) that

rank

((a01 0 a11 a12 a22
b01 b02 b11 b12 b22
c01 c02 c11 c12 c22

))
= 2.

Hence, A, B, C are linearly dependent over C, which is a contradiction. Therefore, we have b02 =
c02 = 0, which implies that A = 0, B = 0, C = 0 are tangent at u. �
3.2. Reduced points of J = 0

In this subsection, we present some intersection properties of the conics A = 0, B = 0, C = 0 in 
the case where J = 0 has reduced points. We begin with two lemmas.

Lemma 3.8. Assume that u, v are two distinct reduced points of J = 0. Then, I(u) �= I(v).

Proof. Let L = 0 be the line passing through u and v. Assume that I(u) = I(v). For each point w on 
L = 0, w is also a reduced point of J = 0 and I(w) = I(u). By Proposition 3.4 and Lemma 3.2, the 
line L = 0 is a singular line of J = 0. However, for each point w′ ∈ I(u), it is easy to see that I(w′)
coincides with L = 0. This implies that w′ is also a reduced point, and thus I(u) is also a singular 
line of J = 0. Note that J = 0 has at most one singular line. Hence, I(u) and L = 0 coincide. Now, 
for each point w on L = 0, w ∈ I(u) = I(w), which means that w ∈ Zero(A, B, C) by Lemma 3.2. This 
contradicts the fact that Zero(A, B, C) is finite. Therefore, I(u) �= I(v). �
Corollary 3.9. There are at most three reduced points of J = 0.

Proof. From Lemmas 3.2 and 3.8, the distinct reduced points correspond to the distinct irreducible 
components of J = 0. Since J = 0 has at most three irreducible components, then there are at most 
three reduced points. �
Lemma 3.10. Assume that u is a reduced point of J = 0 and u ∈ I(u). If there is another singular point of 
J = 0 on I(u), then I(u) is a singular line of J = 0.

Proof. By Lemma 3.2, u ∈ Zero(A, B, C) and A = 0, B = 0, C = 0 are tangent to I(u) at u. By Proposi-
tion 3.7, u is a threefold singular point of J = 0. Then, J = 0 is degenerated into three lines. If these 
three lines are distinct, then since J = 0 has a threefold singular point, it has only one singular point, 
which is a contradiction. Thus, J = 0 contains a singular line. Since I(u) contains at least two singular 
points of J = 0, then I(u) is a singular line. �
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Proposition 3.11. Assume that u is a reduced point of J = 0 and u /∈ I(u), then A, B and C can be transformed 
into the form ax2

0 + bx2
1 + cx1x2 + dx2

2 under a suitable projective transformation over C, where a, b, c, d ∈C.

Proof. By a suitable transformation, we may assume that u = (1, 0, 0) and I(u) is defined by x0 = 0. 
Assume that A is of the following form under the transformation,

A = a00x2
0 + 2a01x0x1 + 2a02x0x2 + a11x2

1 + 2a12x1x2 + a22x2
2.

By an easy calculation, we have a01 = a02 = 0. Therefore, A has the required form. By a similar argu-
ment, B and C are of the required form, as well as A. �

Now, let us consider the case where J = 0 has more than one reduced point.

Proposition 3.12. Assume that u, v are two distinct reduced points of J = 0. If u, v /∈ Zero(A, B, C), then 
J = 0 has three reduced points.

Proof. According to Lemma 3.8, I(u) �= I(v). Let w be the intersection point of I(u) and I(v). 
We have w �= u and w �= v. Otherwise, either u ∈ I(u) or v ∈ I(v), which implies that either 
u ∈ Zero(A, B, C) or v ∈ Zero(A, B, C) by Lemma 3.2, which is a contradiction. We can see that I(w)

coincides with the line passing through u and v. Therefore, w is also a reduced point of J = 0. �
Proposition 3.13. Assume that J = 0 has three reduced points. Then,

(a) Zero(A, B, C) = ∅;
(b) A, B, C can be transformed into the form ax2

0 + bx2
1 + cx2

2 under a suitable projective transformation 
over C, where a, b, c ∈C.

Proof. Let u, v, w be three distinct reduced points of J = 0.
(a) It follows from Lemma 3.8 that I(u), I(v), I(w) are three distinct components of J = 0. 

Hence, J = 0 has at most three singular points, which are the precise points u, v, w. Assume that 
Zero(A, B, C) �= ∅. Then, at least one of u, v, w will be in Zero(A, B, C). Without loss of generality, 
assume that u ∈ Zero(A, B, C). By Lemma 3.2, u ∈ I(u). I(u) must contain either v or w because 
u, v, w are the intersection points of I(u), I(v), I(w) in pairs. By Lemma 3.10, I(u) is a singular line 
of J = 0, which is a contradiction. Hence, Zero(A, B, C) = ∅.

(b) By a suitable projective transformation over C, we may assume that u = (1, 0, 0), v = (0, 1, 0), 
and w = (0, 0, 1). Then, J = λx0x1x2, where λ ∈ C \ {0} and I(u), I(v), and I(w) coincide with the 
lines defined by x0 = 0, x1 = 0, and x2 = 0, respectively. Assume that A is of the following form under 
the transformation,

A = a00x2
0 + 2a01x0x1 + 2a02x0x2 + a11x2

1 + 2a12x1x2 + a22x2
2.

An easy calculation shows that a01 = a02 = a12 = 0. Therefore, A has the required form. By a similar 
argument, B and C are of the required form, as well as A. �
3.3. Algebraic properties of intersections

The results in Section 3.1 and Section 3.2 allow us to find the correspondence between the sin-
gularities of J = 0 and the intersections of the conics A = 0, B = 0, C = 0. If the cubic curve J = 0
is irreducible, then according to Propositions 3.4 (a) and 3.6, Zero(A, B, C) �= ∅ if and only if J = 0
has a singular point. In the following paragraph, we assume that J = 0 is reducible. Then, there are 
four cases to consider: (1) J = LQ , where L = 0 is a projective line and Q = 0 is an irreducible conic; 
(2) J = L1L2L3, where L1 = 0, L2 = 0, L3 = 0 are three different projective lines; (3) J = L1L2

2, where 
L1 = 0, L2 = 0 are two distinct projective lines; and (4) J = L3, where L = 0 is a projective line.
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Proposition 3.14. Assume that J = LQ, where L = 0 is a projective line and Q = 0 is an irreducible conic. 
Then, we have:

(a) If Zero(L, Q ) = {u}, then Zero(A, B, C) = {u}. In particular, A = 0, B = 0, C = 0 are not tangent at u.
(b) If Zero(L, Q ) = {u, v}, where u �= v, then either Zero(A, B, C) = {u, v} or Zero(A, B, C) = ∅.

Proof. (a) Since u is the unique singular point of J = 0, then by Proposition 3.6 and 3.4, 
Zero(A, B, C) = {u}. Suppose that A = 0, B = 0, and C = 0 are tangent at u. By Proposition 3.7, u
is a threefold singular point of J = 0. Obviously, u ∈ P

2(R). By a suitable projective transformation 
over R if necessary, we may assume that u = (1, 0, 0) and L = λx2 for some λ ∈ R \ {0}. Thus, we 
have J = λx2 Q , where

Q = a0x2
0 + a1x0x1 + a2x0x2 + a3x2

1 + a4x1x2 + a5x2
2, ai ∈R.

Since x2 = 0 and Q = 0 are tangent at u, then a0 = 0 and a1 = 0. We have a2 = 0 because ∂2 J
∂x2

2
(u) =

2λa2 = 0. Therefore Q is reducible, which is a contradiction.
(b) If I(u) is a projective line, then it will coincide with L = 0. By Lemma 3.10, I(u) is a singular 

line of J = 0, which is a contradiction. Hence, I(u) is a point and thus it is I(v). Since u and v are 
all singular points of J = 0, then by Proposition 3.4 (c), either I(u) = u or I(u) = v. If I(u) = u, then 
I(v) = v, which implies that {u, v} ⊆ Zero(A, B, C), and thus {u, v} = Zero(A, B, C). If I(u) = v, then 
Zero(A, B, C) = ∅. �
Lemma 3.15. Assume that P = 0 is an irreducible component of J = 0, which does not contain reduced points 
of J = 0. Then, I(P ) is an irreducible subvariety of J = 0.

Proof. Note that the equations given by P = 0 and (3) define an algebraic correspondence (see p. 100, 
Hodge and Pedoe, 1994). Since P = 0 does not contain reduced points of J = 0,

rank

((uM A

uMB

uMC

))
= 1, ∀ u ∈ Zero(P ).

By Theorem I in Hodge and Pedoe (1994), p. 108, this algebraic correspondence is irreducible. The 
lemma follows from the property of irreducible algebraic correspondence. �
Lemma 3.16. Assume that the line L = 0 is a component of J = 0. If Zero(L) ⊆ I(L), then A = 0, B = 0, C = 0
have two common points on L = 0 (by counting the multiplicities).

Proof. Let u be a point on L = 0, which is neither a reduced point of J = 0 nor in Zero(A, B, C). Since 
u ∈ Zero(L) ⊂ I(L), then v ∈ Zero(L) exists such that u ∈ I(v). In other words, v = I(u). Obviously, 
u �= v. Let β ∈ C \ {0}. Then, u + βv ∈ Zero(L) ⊆ I(L) and w ∈ Zero(L) exists such that u + βv ∈ I(w). 
In other words,

(u + βv)Mw = 0, ∀ M ∈ {M A, MB , MC }.
If w = v, then v is not only a reduced point of J = 0 but it is also a common point of A = 0, B = 0, 
C = 0. Lemma 3.2 implies that A = 0, B = 0, C = 0 are tangent at v. Now, assume that w �= v. Then, 
w = αu + v with α ∈ C \ {0}. An easy calculation shows that(√

αu ± √
βv

)
M

(√
αu ± √

βv
)

= (u + βv)Mw = 0, ∀ M ∈ {M A, MB , MC }.

This implies that 
√

αu ± √
βv ∈ Zero(A, B, C). �
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Proposition 3.17. Assume that J = L1L2L3 , where L1 = 0, L2 = 0, L3 = 0 are three distinct lines. Then,

(a) If Zero(L1, L2, L3) �= ∅, then Zero(A, B, C) �= ∅ and A = 0, B = 0, C = 0 are tangent at a point u in 
Zero(L1, L2, L3), while their common tangent line is one of L1 = 0, L2 = 0, L3 = 0.

(b) If Zero(L1, L2, L3) = ∅ and J = 0 has no reduced point, then A = 0, B = 0, C = 0 have three common 
points.

(c) If Zero(L1, L2, L3) = ∅ and J = 0 has reduced points, then Zero(A, B, C) = ∅ and A, B, C can be trans-
formed into the form ax2

0 + bx2
1 + cx1x2 + dx2

2 under a suitable transformation, where a, b, c, d ∈C.

Proof. (a) It follows from Propositions 3.6 and 3.7 that Zero(A, B, C) �= ∅ and A = 0, B = 0, C = 0 are 
tangent at a point u in Zero(L1, L2, L3). Since their common tangent line coincides with I(u), which 
is an irreducible component of J = 0, then the tangent line should be one of L1 = 0, L2 = 0, L3 = 0.

(b) According to the hypothesis, J = 0 has three distinct singular points, say v1, v2, v3. Since J = 0
has no reduced point, Proposition 3.4 implies that

{I(v1),I(v2),I(v3)} = {v1,v2,v3}.
Assume that I(v1) �= v1. Then, either I(v1) = v2 or I(v1) = v3. Hence, either I(v3) = v3 or 
I(v2) = v2. This implies that Zero(A, B, C) �= ∅. Without loss of generality, suppose that v1 ∈
Zero(A, B, C). Let L3 = 0 be the line passing through v2 and v3. Then, by Lemma 3.15, I(L3) is a 
line and since v1 /∈ Zero(L3), I(L3) = Zero(L3). Lemma 3.16 implies that A = 0, B = 0, C = 0 has two 
common points on L3 = 0. These common points must be v2 and v3. This proves (b).

(c) Let v1, v2, v3 be the singular points of J = 0. Without loss of generality, assume that v1 is a re-
duced point of J = 0. Lemma 3.10 implies that v1 /∈ I(v1); otherwise, I(v1) is a singular line of L = 0, 
which is impossible. Therefore, v1 /∈ Zero(A, B, C). Furthermore, we find that v2, v3 ∈ I(v1). Suppose 
that v2 ∈ Zero(A, B, C). Then, v2 ∈ I(v2) and v2 ∈ I(v1), so v2 is also a reduced point of J = 0. By 
Lemma 3.10, I(v2) is a singular line of J = 0, which is a contradiction. A similar argument implies 
that v3 /∈ Zero(A, B, C). Because Zero(A, B, C) ⊆ {v1, v2, v3}, then Zero(A, B, C) = ∅. This proves the 
first assertion. The second assertion follows from Proposition 3.11. �
Proposition 3.18. Assume that J = L1L2

2 , where L1 = 0, L2 = 0 are two distinct lines. Assume that {u} =
Zero(L1, L2). Then,

(a) If u is not a reduced point of J = 0, then A = 0, B = 0, C = 0 have two distinct common points on L2 = 0. 
Furthermore, neither of them is equal to u.

(b) If u is a reduced point of J = 0 and I(u) = Zero(L1), then A = 0, B = 0, C = 0 are tangent to L1 = 0 at 
u and they have another common point on L2 = 0.

(c) If u is a reduced point of J = 0 and I(u) = Zero(L2), then A = 0, B = 0, C = 0 are tangent to L2 = 0
at u.

Proof. First, we claim that Zero(L2) ⊆ I(L2). Since w ∈ I(v) implies that v ∈ I(w), it suffices to prove 
that I(v) ∩ Zero(L2) �= ∅ for all v ∈ Zero(L2). Let v ∈ Zero(L2). If v is a reduced point, then I(v) =
Zero(L1) or I(v) = Zero(L2). In either of these cases, u ∈ I(v) ∩ Zero(L2). If v is not a reduced point, 
then by Proposition 3.4, I(v) is a singular point, which means that I(v) ∈ Zero(L2). This proves the 
claim. Now, by Lemma 3.16, A = 0, B = 0, C = 0 have two common points on L2 = 0, say v1, v2
(v1 may be equal to v2).

(a) If u ∈ Zero(A, B, C), then by Proposition 3.7, A = 0, B = 0, C = 0 are tangent at u. Lemma 3.2
implies that u is a reduced point, which is a contradiction. Therefore, neither u = v1 nor u = v2. It 
remains to show that v1 �= v2. By contrast, suppose that v1 = v2. Then, A = 0, B = 0, C = 0 are tangent 
at v1. Due to Proposition 3.7, v1 is a threefold singular point of J = 0. However, u is the unique 
threefold singular point of J = 0. Hence v1 = u, which is a contradiction. In the sequel, v1 �= v2.
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(b) We have u ∈ I(u). Due to Lemma 3.2, A = 0, B = 0, C = 0 are tangent at u and I(u) is the 
common tangent line. It remains to prove that A = 0, B = 0, C = 0 have one more common point on 
L2 = 0. Let w be a point on L2 = 0, which is not a reduced point. Then, by Proposition 3.4, I(w) is a 
singular point, and thus it is on L2 = 0. In other words, β ∈C exists such that I(w) = βu + w, i.e.,

wM(βu + w) = 0, ∀ M ∈ {M A, MB , MC }.
This implies that(

β

2
u + w

)
M

(
β

2
u + w

)
= wM(βu + w) = 0, ∀ M ∈ {M A, MB , MC }.

Hence, w + βu/2 ∈ Zero(A, B, C).
(c) As in (b), we have u ∈ I(u). Due to Lemma 3.2, A = 0, B = 0, C = 0 are tangent at u and I(u)

is the common tangent line. �
Proposition 3.19. Assume that J = λL3 , where L = 0 is a projective line and λ ∈R \ {0}. Then, A = 0, B = 0, 
C = 0 intersect at a point on L = 0 with order three.

Proof. Obviously, Zero(L) = I(L). By Lemma 3.16, A = 0, B = 0, C = 0 have two common points v1, v2
on L = 0. By Proposition 3.7, A = 0, B = 0, C = 0 are tangent to L = 0 at vi for i = 1, 2. Hence, v1 = v2. 
Now, by a suitable projective transformation, we may assume that v1 = (1, 0, 0) and L = x1. Under this 
assumption, the terms x2

0, x0x2 do not appear in A, B, C but the term x0x1 does appear because all of 
A, B, C are irreducible. Hence, we can also assume that the coefficients of x0x1 in A, B, C equal two. 
Then, A, B, C will have the following forms:

A = 2x0x1 + a11x2
1 + 2a12x1x2 + a22x2

2,

B = 2x0x1 + b11x2
1 + 2b12x1x2 + b22x2

2,

C = 2x0x1 + c11x2
1 + 2c12x1x2 + c22x2

2.

Since J = λx3
1, we have

(b12 − a12)(c22 − a22) − (c12 − a12)(b22 − a22) = 0, (5)

(b11 − a11)(c22 − a22) − (c11 − a11)(b22 − a22) = 0, (6)

(b11 − a11)(c12 − a12) − (c11 − a11)(b12 − a12) �= 0. (7)

From the equalities (5), (6), and (7), c22 − a22 = b22 − a22 = 0. Let B1 = B − A and C1 = C − A. Now, 
let us consider the affine space by assigning x0 = 1 in A, B1, C1. Let

Ā = A(1, x1, x2), B̄1 = B1(1, x1, x2), C̄1 = C1(1, x1, x2).

We have 〈B̄1, C̄1〉 = 〈x2
1, x1x2〉 by (7), where 〈·〉 denotes the ideal generated by · in C[x1, x2]. Further-

more, we have

〈 Ā, B̄1, C̄1〉 = 〈2x1 + a22x2
2, x2

1, x1x2〉.
Note that a22 �= 0. Since (0, 0) is the unique common point of Ā = 0, B̄1 = 0, C̄1 = 0, the intersection 
number of Ā, B̄1, C̄1 at (0, 0) is equal to

dimC(C[x1, x2]/〈 Ā, B̄1, C̄1〉)
(see p. 81, Fulton, 1969). We can easily verify that dimC

(
C[x1, x2]/〈 Ā, B̄1, C̄1〉

) = 3. Therefore, 
A, B1, C1 intersect at v1 with order three and so do the conics A = 0, B = 0, C = 0. �
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Algorithm: Intersection of three conics.

Input: Three irreducible conics A, B, C .
Output: The intersections of A = 0, B = 0, C = 0.

1. Compute the Jacobian curve J (x0, x1, x2) = 0 associated with A, B, C .
2. If J (x0, x1, x2) is irreducible, using the formulae in Paluszny et al. (2002), check the 

singularity and compute the singular point u if it exists and Return u; otherwise,
Return ∅.

3. If J (x0, x1, x2) is reducible, then J = LQ or J = L1L2L3, where L, L1, L2, L3 are linear 
and Q is quadric. The singularities of J = 0 can be computed as the intersections 
of the line and conic (or lines).
(a) If J = LQ and L is tangent to Q at a point u, Return u.
(b) If J = LQ and Zero(L) ∩ Zero(Q ) = {u1, u2},

b1 if {u1, u2} belongs to Zero(A, B, C), then Return {u1, u2};
b2 otherwise, Return ∅.

(c) If J = L1L2L3 and Zero(L1) ∩ Zero(L2) ∩ Zero(L3) = u, find the common tangent 
line T for the conics from {L1, L2, L3} and Return “Tangent to T at u.”

(d) If J = L1L2L3 and Zero(L1) ∩ Zero(L2) = u1, Zero(L1) ∩ Zero(L2) = u2 and 
Zero(L3) ∩ Zero(L1) = u3,
d1 if J = 0 has no reduced point, then Return {u1, u2, u3};
d2 otherwise, Return ∅ and “Share same center or symmetry axis.”

(e) If J = L1L2
2 and Zero(L1) ∩ Zero(L2) = u,

e1 if u is not a reduced point, then compute {u1, u2} = Zero(A) ∩ Zero(L2) and
Return {u1, u2};

e2 if u is a reduced point and I(u) = Zero(L1), then compute another point 
v ∈ Zero(A) ∩ Zero(L2) and Return {u, v} and “Tangent to L1 at u;”

e3 if u is a reduced point and I(u) = Zero(L2), Return “Tangent to L2 at u.”
(f) If J = L3, then Return “Tangent to L at u with order three.”
(g) If J ≡ 0, then Return “Linearly dependent.”

4. Algorithm and conclusion

We provide an algorithm for computing the intersections based on our discussions.

Remark 4.1. In our algorithm, to check the tangent line in step (c), we can use the polar line formula 
of u with respect to A, B, C .

In this study, we considered the singularities of the Jacobian curve associated with the intersec-
tions of its determining conics. As shown in the classification table and examples, we can determine 
the intersection of three conics by computing the singularity cubic algebraic curve. In addition, this 
discussion yielded a method for designing cubic curves with expected singularities from a triple of 
conics by setting certain intersections.

Two interesting problems should be addressed in future research. First, it will be necessary to find 
the algebraic conditions for all the positional relationships of three conics as well as their intersection. 
Second, the algebraic conditions should be determined for the intersection of a bundle of more than 
three conics.
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