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Abstract
This paper introduces a noncommutative version of the Nullstel-

lensatz, motivated by the study of quantum nonlocal games. It

has been proved that a two-answer nonlocal game with a perfect

quantum strategy also admits a perfect classical strategy. We gen-

eralize this result to the infinite-dimensional case, showing that a

two-answer game with a perfect commuting operator strategy also

admits a perfect classical strategy. This result induces a special case

of noncommutative Nullstellensatz.
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1 Introduction
Quantum nonlocal games have been a vibrant area of research

acrossmathematics, physics, and computer science in recent decades.

They help understand quantum nonlocality, which was famously

verified by the violation of Bell inequalities [2, 11, 21]. In 1969,

Clauser et al. first introduced quantum nonlocal games [10]. A

nonlocal game typically involves two or more players and a veri-

fier. The verifier sends questions to the players independently, and

each player responds without any communication between them.

A predefined scoring function determines whether the players win

based on the given questions and their answers. The distinction

between classical and quantum strategies lies in whether players

can share quantum entanglement. For instance, in the CHSH game,

the classical strategy limits the winning probability to at most
3

4
.

In contrast, quantum strategies using shared entangled states can

achieve a success probability of cos
2 ( 𝜋

8
) ≈ 0.85.

The mathematical models of quantum nonlocal games are often

described using algebraic structures [3, 4, 12, 17, 19]. Algebraic
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tools, such as ∗-algebras, (commutative or noncommutative) Gröb-

ner basis (see [5, 18]), semidefinite programming (see [23]), non-

commutative Nullstellensatz (see [7–9]) and Positivstellensatz (see

[14, 15]) can be used for characterizing the different types of strate-

gies for nonlocal games. Our previous work also gave an algebraic

characterization for perfect strategies of mirror games using the

universal game algebra, Nullstellensatz, and sums of squares [24].

Nonlocal games with two answers are games in which the set

of possible responses consists of only two options [4] (also called

binary games in [11]). This paper proposes a noncommutative Null-

stellensatz inspired by the perfect commuting operator strategies

for two-answer nonlocal games. Specifically, we proved that a two-

answer game that admits a perfect commuting operator strategy

also has a perfect classical strategy, a generalization of the work

[11, Theorem 3]. Combined with the algebraic characterization of

perfect commuting operator strategy [4], we get a new form of non-

commutative Nullstellensatz. Moreover, based on this result, one

can determine whether a two-answer game admits a perfect com-

muting operator strategy by computing a commutative Gröbner

basis [5]. Although our problem is motivated by nonlocal games,

our proofs are presented in a purely algebraic form, allowing read-

ers unfamiliar with quantum nonlocal games to engage with the

algebraic versions of the theorems directly.

2 Preliminaries
2.1 Motivations
If the readers are familiar with this field, they can skip the content

of this subsection.

A quantum nonlocal game G can be described as a scoring func-

tion 𝜆 from the finite set 𝑋 × 𝑌 ×𝐴 × 𝐵 to {0, 1}, where the player
Alice has a question set𝑋 and an answer set𝐴, while the player Bob

has a question set 𝑌 and an answer set 𝐵. In a round of the game,

Alice would receive the question 𝑥 ∈ 𝑋 and answer 𝑎 ∈ 𝐴 according

to 𝑥 and her strategy; similarly, Bob would receive the question

𝑦 ∈ 𝑌 and answer 𝑏 ∈ 𝐵. The players can make arrangements

before playing the game, that is to say, Alice knows in advance the

conditional probability that Bob will answer 𝑏 when he receives

question𝑦 (that is, Bob’s strategy). Similarly, Bob also knows Alice’s

strategy. However, during the game, Alice and Bob cannot commu-

nicate with each other. That is, Alice doesn’t know which question

Bob receives, and similarly for Bob. The players are considered to

have won the game when 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1, and they lose in all other

cases.
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_(G,~, 0, 1) =

{

1 win

0 lose

A (deterministic) classical strategy involves two mappings

D : - → � and E : . → �;

when Alice receives a question G ∈ - , she responds with D (G), and

similarly, Bob responds with E (~) when he receives ~ ∈ . .

If the question pair (G,~) ∈ - ×. is chosen randomly according

to a distribution ` (G,~), we can compute the maximal winning

expectation over all the deterministic strategies:

l2 (G) = max
D,E

∑

G,~

` (G,~)_(G,~,D (G), E (~)),

which is called the classical value of G.

Definition 2.1. We call a deterministic strategy perfect ifl2 (G) =

1.

A deterministic strategy (D (G), E (~)) is perfect, i.e., the players

can always win the game using this strategy, if and only if

_(G,~,D (G), E (~)) = 1

holds for all G ∈ -,~ ∈ . . That is, the answers that lead the players

to lose the game can not happen, i.e., for all (G,~, 0, 1) satisfying

_(G,~, 0, 1) = 0, we have 0 ≠ D (G), 1 ≠ E (~) .

If the players share a quantum state q on a (perhaps in�nite-

dimensional) Hilbert space H , and for every question pair (G,~) ∈

- × . , Alice and Bob perform commuting projection-valued mea-

surements (PVMs)
{

�G0 ∈ B(H) :
∑

0∈�

�G0 = 1

}

and

{

�
~

1
∈ B(H) :

∑

1∈�

�
~

1
= 1

}

respectively to determine their answers, then the game is said to

have a commuting operator strategy.

G −→ Alice
{�G

08
, 08 ∈�}

−−−−−−−−−−→ q ∈ H −→ 0

~ −→ Bob
{�

~

19
, 1 9 ∈�}

−−−−−−−−−−→ q ∈ H −→ 1

The PVMs satisfy the following relations:

�G0 �
~

1
− �

~

1
�G0 = 0, ∀(G,~, 0, 1) ∈ - × . ×� × �;

(�G0 )
2
= �G0 = (�G0 )

∗, ∀G ∈ -, 0 ∈ �;

(�
~

1
)2 = �

~

1
= (�

~

1
)∗, ∀~ ∈ .,1 ∈ �;

�G01�
G
02 = 0, ∀G ∈ -, 01 ≠ 02 ∈ �;

�
~

11
�
~

12
= 0, ∀~ ∈ .,11 ≠ 12 ∈ �;

∑

0∈�

�G0 = 1, ∀G ∈ - ;

∑

1∈�

�
~

1
= 1, ∀~ ∈ . .

These relations can be abstracted to obtain the universal game

algebra for the nonlocal game G [4, Section 3].

Suppose the distribution on the question set - × . is ` (G,~).

Given a commuting operator strategy of G, the conditional prob-

ability of the players answering (0, 1) when they received (G,~)

is

? (0, 1 | G,~) = k∗�G0 �
~

1
k,

wherek∗ is the conjugate transpose ofk . The winning expectation

is
∑

G,~,0,1

` (G,~) ·k∗�G0 �
~

1
k · _(G,~, 0, 1).

Then the supremum of winning expectation over all the commuting

operator strategies is

l2> (G) = sup
H,k,

�G0 , �
~
1

∑

G,~,0,1

` (G,~) ·k∗�G0 �
~

1
k · _(G,~, 0, 1)

which is called the quantum commuting operator value of G. This

supremum can be reached (see [13]).

Definition 2.2. We call a commuting operator strategy perfect if

l2> (G) = 1.

A commuting operator strategy is perfect if and only if the con-

ditional probability of the players giving answers (0, 1) when re-

ceiving questions (G,~) is equal to zero, i.e.,

k∗�G0 �
~

1
k = 0,

when _(G,~, 0, 1) = 0. That is, the players can certainly win the

game G with this strategy.

Furthermore, if we restrict the quantum state q to be a tensor

q1 ¹q2, where q1 and q2 are in �nite-dimensional Hilbert spaceH1

and H2 respectively, then we get a (�nite-dimensional) quantum

strategy.

By de�ning the three types of strategies, we know that the clas-

sical strategies are contained in the quantum strategies, which are

included in the commuting operator strategies. Therefore, a game

that admits a perfect classical strategy also has a perfect commut-

ing operator strategy. However, the converse does not hold. For

example, the famous Magic Square game admits a perfect quan-

tum strategy but has no perfect classical strategy [11]. However, in

certain exceptional cases, these strategies may be equivalent.

For a two-answer game, that is, one whose answer sets are both

{0, 1}, if it admits a perfect quantum strategy, then Cleve, Hoyer,

Toner, and Watrous showed that the two-answer game must have a

perfect classical strategy [11, Theorem 3]. We contribute to extend-

ing this theorem to the in�nite-dimensional case, proving that a

two-answer game with a perfect commuting operator strategy also

admits a perfect classical strategy. This result, combined with the

work of Watts, Helton, and Klep [4, Theorem 4.3], derives a version

of the noncommutative Nullstellensatz using a sum of squares (SOS)

expression.

2.2 Universal Game Algebra for Two-Answer

Games

Let -,.,�, � be �nite sets, where � = � = {0, 1}, and Cï{4G0 , 5
~

1
}ð

be the free algebra generated by {4G0 , 5
~

1
: (G,~, 0, 1) ∈ -×.×�×�}.

𝜆(𝑥,𝑦, 𝑎, 𝑏) =
{

1 win

0 lose

A (deterministic) classical strategy involves two mappings

𝑢 : 𝑋 → 𝐴 and 𝑣 : 𝑌 → 𝐵;

when Alice receives a question 𝑥 ∈ 𝑋 , she responds with 𝑢 (𝑥), and
similarly, Bob responds with 𝑣 (𝑦) when he receives 𝑦 ∈ 𝑌 .

If the question pair (𝑥,𝑦) ∈ 𝑋 ×𝑌 is chosen randomly according

to a distribution 𝜇 (𝑥,𝑦), we can compute the maximal winning

expectation over all the deterministic strategies:

𝜔𝑐 (G) = max

𝑢,𝑣

∑︁
𝑥,𝑦

𝜇 (𝑥,𝑦)𝜆(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)),

which is called the classical value of G.

Definition 2.1. We call a deterministic strategy perfect if𝜔𝑐 (G) =
1.

A deterministic strategy (𝑢 (𝑥), 𝑣 (𝑦)) is perfect, i.e., the players
can always win the game using this strategy, if and only if

𝜆(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) = 1

holds for all 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 . That is, the answers that lead the players
to lose the game can not happen, i.e., for all (𝑥,𝑦, 𝑎, 𝑏) satisfying
𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0, we have 𝑎 ≠ 𝑢 (𝑥), 𝑏 ≠ 𝑣 (𝑦) .

If the players share a quantum state 𝜙 on a (perhaps infinite-

dimensional) Hilbert space H , and for every question pair (𝑥,𝑦) ∈
𝑋 × 𝑌 , Alice and Bob perform commuting projection-valued mea-

surements (PVMs){
𝐸𝑥𝑎 ∈ B(H) :

∑︁
𝑎∈𝐴

𝐸𝑥𝑎 = 1

}
and

{
𝐹
𝑦

𝑏
∈ B(H) :

∑︁
𝑏∈𝐵

𝐹
𝑦

𝑏
= 1

}
respectively to determine their answers, then the game is said to

have a commuting operator strategy.

𝑥 −→ Alice

{𝐸𝑥
𝑎𝑖
, 𝑎𝑖 ∈𝐴}

−−−−−−−−−−→ 𝜙 ∈ H −→ 𝑎

𝑦 −→ Bob

{𝐹 𝑦

𝑏𝑗
, 𝑏 𝑗 ∈𝐵}

−−−−−−−−−−→ 𝜙 ∈ H −→ 𝑏

The PVMs satisfy the following relations:

𝐸𝑥𝑎 𝐹
𝑦

𝑏
− 𝐹 𝑦

𝑏
𝐸𝑥𝑎 = 0, ∀(𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋 × 𝑌 ×𝐴 × 𝐵;

(𝐸𝑥𝑎 )2 = 𝐸𝑥𝑎 = (𝐸𝑥𝑎 )∗, ∀𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴;
(𝐹 𝑦

𝑏
)2 = 𝐹 𝑦

𝑏
= (𝐹 𝑦

𝑏
)∗, ∀𝑦 ∈ 𝑌,𝑏 ∈ 𝐵;

𝐸𝑥𝑎1𝐸
𝑥
𝑎2

= 0, ∀𝑥 ∈ 𝑋, 𝑎1 ≠ 𝑎2 ∈ 𝐴;
𝐹
𝑦

𝑏1
𝐹
𝑦

𝑏2
= 0, ∀𝑦 ∈ 𝑌,𝑏1 ≠ 𝑏2 ∈ 𝐵;∑︁

𝑎∈𝐴
𝐸𝑥𝑎 = 1, ∀𝑥 ∈ 𝑋 ;∑︁

𝑏∈𝐵
𝐹
𝑦

𝑏
= 1, ∀𝑦 ∈ 𝑌 .

These relations can be abstracted to obtain the universal game

algebra for the nonlocal game G [4, Section 3].

Suppose the distribution on the question set 𝑋 × 𝑌 is 𝜇 (𝑥,𝑦).
Given a commuting operator strategy of G, the conditional prob-
ability of the players answering (𝑎, 𝑏) when they received (𝑥,𝑦)
is

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 𝜓∗𝐸𝑥𝑎 𝐹
𝑦

𝑏
𝜓,

where𝜓∗
is the conjugate transpose of𝜓 . The winning expectation

is ∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦) ·𝜓∗𝐸𝑥𝑎 𝐹
𝑦

𝑏
𝜓 · 𝜆(𝑥,𝑦, 𝑎, 𝑏).

Then the supremum of winning expectation over all the commuting

operator strategies is

𝜔𝑐𝑜 (G) = sup

H,𝜓,

𝐸𝑥𝑎 , 𝐹
𝑦

𝑏

∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦) ·𝜓∗𝐸𝑥𝑎 𝐹
𝑦

𝑏
𝜓 · 𝜆(𝑥,𝑦, 𝑎, 𝑏)

which is called the quantum commuting operator value of G. This

supremum can be reached (see [13]).

Definition 2.2. We call a commuting operator strategy perfect if
𝜔𝑐𝑜 (G) = 1.

A commuting operator strategy is perfect if and only if the con-

ditional probability of the players giving answers (𝑎, 𝑏) when re-

ceiving questions (𝑥,𝑦) is equal to zero, i.e.,

𝜓∗𝐸𝑥𝑎 𝐹
𝑦

𝑏
𝜓 = 0,

when 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0. That is, the players can certainly win the

game G with this strategy.

Furthermore, if we restrict the quantum state 𝜙 to be a tensor

𝜙1 ⊗𝜙2, where 𝜙1 and 𝜙2 are in finite-dimensional Hilbert spaceH1

and H2 respectively, then we get a (finite-dimensional) quantum
strategy.

By defining the three types of strategies, we know that the clas-

sical strategies are contained in the quantum strategies, which are

included in the commuting operator strategies. Therefore, a game

that admits a perfect classical strategy also has a perfect commut-

ing operator strategy. However, the converse does not hold. For

example, the famous Magic Square game admits a perfect quan-

tum strategy but has no perfect classical strategy [11]. However, in

certain exceptional cases, these strategies may be equivalent.

For a two-answer game, that is, one whose answer sets are both

{0, 1}, if it admits a perfect quantum strategy, then Cleve, Hoyer,

Toner, and Watrous showed that the two-answer game must have a
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perfect classical strategy [11, Theorem 3]. We contribute to extend-

ing this theorem to the infinite-dimensional case, proving that a

two-answer game with a perfect commuting operator strategy also

admits a perfect classical strategy. This result, combined with the

work of Watts, Helton, and Klep [4, Theorem 4.3], derives a version

of the noncommutative Nullstellensatz using a sum of squares (SOS)

expression.

2.2 Universal Game Algebra for Two-Answer
Games

Let 𝑋,𝑌,𝐴, 𝐵 be finite sets, where 𝐴 = 𝐵 = {0, 1}, and C⟨{𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
}⟩

be the free algebra generated by {𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
: (𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋×𝑌×𝐴×𝐵}.

Define the two-sided ideal

I = ⟨(𝑒𝑥𝑎 )2 − 𝑒𝑥𝑎 , (𝑓
𝑦

𝑏
)2 − 𝑓 𝑦

𝑏
;∑︁

𝑎∈𝐴
𝑒𝑥𝑎 − 1,

∑︁
𝑏∈𝐵

𝑓
𝑦

𝑏
− 1;

𝑒𝑥𝑎 𝑓
𝑦

𝑏
− 𝑓 𝑦

𝑏
𝑒𝑥𝑎 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵⟩

and let

A = C⟨{𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
}⟩/I . (2.1)

Since

𝑒𝑥
0
𝑒𝑥
1
=

1

2

( (
𝑒𝑥
0
+ 𝑒𝑥

1
− 1

)
2 −

(
(𝑒𝑥
0
)2 − 𝑒𝑥

0

)
−
(
(𝑒𝑥
1
)2 − 𝑒𝑥

1

)
+
(
𝑒𝑥
0
+ 𝑒𝑥

1
− 1

) )
,

we have

𝑒𝑥
0
𝑒𝑥
1
∈ I, ∀𝑥 ∈ 𝑋 .

Similarly, one can show that

𝑓
𝑦

0
𝑓
𝑦

1
∈ I, ∀𝑦 ∈ 𝑌 .

The elements in I are the relationships the generators satisfy.

We can also equip A with the natural involution ” ∗ ” induced by

(𝑒𝑥𝑎 )∗ = 𝑒𝑥𝑎 , (𝑓
𝑦

𝑏
)∗ = 𝑓 𝑦

𝑏
.

Then A is a complex ∗−algebra.
The relations in A are precisely those satisfied by the PVMs

of a two-answer game. Thus, this algebra can characterize the

commuting operator strategies of a two-answer game. A serves as

the universal game algebra for two-answer games, as discussed in

[4, Section 3]. Furthermore, A is a group algebra.

Let

𝐴𝑥 = 𝑒𝑥
0
− 𝑒𝑥

1
, 𝐵𝑦 = 𝑓

𝑦

0
− 𝑓 𝑦

1
(2.2)

for any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , we have

𝐴2

𝑥 = 𝐵2𝑦 = 1, 𝐴𝑥 = 𝐴∗
𝑥 , 𝐵𝑦 = 𝐵∗𝑦, (2.3)

𝑒𝑥𝑎 =
1 + (−1)𝑎𝐴𝑥

2

, 𝑓
𝑦

𝑏
=

1 + (−1)𝑏𝐵𝑦
2

. (2.4)

Let𝐺 be the group generated by elements𝐴𝑥 , 𝑥 ∈ 𝑋 and 𝐵𝑦, 𝑦 ∈ 𝑌 .
Equip the group algebra of 𝐺 with the natural involution ∗:

𝑔∗ = 𝑔−1, (𝑔1𝑔2)∗ = 𝑔∗2𝑔
∗
1
, ∀𝑔,𝑔1, 𝑔2 ∈ 𝐺,

Then, we observe that

A = C[𝐺] .

We denote the set of the sum of Hermitian squares:

SOSA :=

{
𝑛∑︁
𝑖=1

𝛼∗𝑖 𝛼𝑖 | 𝑛 ∈ N, 𝛼𝑖 ∈ A
}
.

It is well known that SOSA is Archimedean (see [6, example 3] or

[20, Remark 4.1]), that is, for every 𝛼 ∈ A, it can be shown that

∥𝑎∥2
1
− 𝛼∗𝛼 ∈ SOSA ,

where ∥𝑎∥1 =
∑
𝑔∈𝐺 |𝑎𝑔 |.

We also need to introduce the concept of ∗−representation.

Definition 2.3. A ∗-representation ofA is a unital ∗−homomorphism

𝜎 : A → B(H),

where B(H) denotes the set of bounded linear operators on a Hilbert
space H and 𝜎 satisfies 𝜎 (𝑢∗) = 𝜎 (𝑢)∗,∀𝑢 ∈ A.

3 Main Results
Let 𝑋,𝑌,𝐴, 𝐵 be finite sets, where 𝐴 = 𝐵 = {0, 1}, and C⟨{𝑒𝑥𝑎 , 𝑓

𝑦

𝑏
}⟩

be the free algebra generated by {𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
: (𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋×𝑌×𝐴×𝐵}.

LetA be the complex ∗−algebra defined in the previous Subsection

2.2.

Definition 3.1. [4, Definition 3.4] Let G be a two-answer nonlocal
game. Its invalid determining set N is defined by

N = {𝑒𝑥𝑎 𝑓
𝑦

𝑏
| 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0}. (3.1)

Our main result is stated below:

Theorem 3.1. Let A denote the universal game algebra for a two-
answer game G. Let N be the invalid determining set of G, and Λ be
its index set:

Λ = {(𝑥,𝑦, 𝑎, 𝑏) | 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0} ⊆ 𝑋 × 𝑌 ×𝐴 × 𝐵 (3.2)

Let L(N) be the left ideal generated by N . Then

− 1 ∉ SOSA +L(N) + L(N)∗

if and only if there exists a ∗−representation

𝜌 : A → C

such that
𝜌 (N) = {0}.

We prove this theorem by the following propositions.

Proposition 3.2. ([4, Theorem 4.3]) Let A denote the universal
game algebra for two-answer games. If

−1 ∉ SOSA +L(N) + L(N)∗,

there exists a ∗−representation

𝜎 : A → B(H)

and 0 ≠ 𝜓 ∈ H , where H is a separable Hilbert space, such that

𝜎 (𝛼)𝜓 = 0

for all 𝛼 ∈ L(N).
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We emphasize thatH is a separable Hilbert space, which will be

used in the proof of Proposition 3.3. For completeness, we briefly

outline the proof given by Watts, Helton, and Klep in [4, Theorem

4.3]. Furthermore, 𝜎 (𝛼)𝜓 = 0 holds for all 𝛼 ∈ L(N) if and only

if the nonlocal game G with its invalid determining set N has a

perfect commuting operator strategy.

Proof Sketch. By theHahn-Banach theorem [1, Theorem III.1.7]

and Archimedeanity of SOSA , there exists a functional 𝑓 : A → C
which strictly separate −1 and SOSA + L(N) + L(N)∗, i.e

𝑓 (−1) = −1, 𝑓 (SOSA + L(N) + L(N)∗) ⊆ R⩾0
.

We list the properties of 𝑓 as follows:

• 𝑓 (L(N)) = {0} and 𝑓 (SOSA ) ⊆ R⩾0
.

• 𝑓 (ℎ∗) = 𝑓 (ℎ)∗ for every ℎ ∈ A.

Now, the GNS construction yields the desired *-representation 𝜎

and a cyclic vector𝜓 . Define the sesquilinear form on A
⟨𝛼 | 𝛽⟩ = 𝑓 (𝛽∗𝛼),

and

𝑀 = {𝛼 ∈ A : 𝑓 (𝛼∗𝛼) = 0}. (3.3)

By Cauchy-Schwarz inequality, 𝑀 is a left ideal of A. Form the

quotient space H̃ := A/𝑀 , and equip it with the inner product

⟨· | ·⟩. We can complete H̃ to the Hilbert spaceH .

It is worth mentioning that we can assume H to be a separable

Hilbert space, as this assumption holds because A has only a finite

number of generators, allowing us to generate a countable dense

subset of A using these generators with rational coefficients. By

applying this to the quotient space, we establish the separability of

H .

Define the quotient map

𝜙 : A → H
𝛼 ↦→ 𝛼 +𝑀,

the cyclic vector

𝜓 := 𝜙 (1) = 1 +𝑀,
and the left regular representation

𝜎 : A → B(H)
𝛼 ↦→ (𝑝 +𝑀 ↦→ 𝛼𝑝 +𝑀) .

ByArchimedeanity of SOSA , it is easy to verify that𝜎 (𝛼) is bounded
for every 𝛼 ∈ A, and thus 𝜎 is a ∗−representation. Finally, the result

𝜎 (L(N))𝜓 = {0}
follows from

L(N)∗L(N) ⊆ L(N) ⊆ 𝑀.

□

Proposition 3.3. Let A denote the universal game algebra for
two-answer games. Suppose there exists a ∗−representation

𝜎 : A → B(H),
and 0 ≠ 𝜓 ∈ H , where H is a separable Hilbert space, such that

𝜎 (𝛼)𝜓 = 0

for all 𝛼 ∈ L(N) (N is defined in Equation (3.1)). Then there exists
a one-dimensional ∗−representation 𝜌 : A → C such that

𝜌 (N) = {0}.

Remark 1. The proof below extends the argument in [11, Theorem
3], which was originally stated for the tensor product of two finite-
dimensional Hilbert spaces, to the more general setting of infinite-
dimensional Hilbert spaces. In fact, the condition in Proposition 3.3
implies that the quadruple

(H , {𝜎 (𝑒𝑥𝑎 )}, {𝜎 (𝑓
𝑦

𝑏
)},𝜓 )

defines a perfect commuting operator strategy for the two-answer
game with an invalid determining setN . Furthermore, the conclusion
of Proposition 3.3 demonstrates that the two mappings induced by 𝜌 :

𝑢 : 𝑋 → 𝐴

𝑥 ↦→ 𝑎 (satisfying 𝜌 (𝑒𝑥𝑎 ) = 1)
and

𝑣 : 𝑌 → 𝐵

𝑦 ↦→ 𝑏 (satisfying 𝜌 (𝑓 𝑦
𝑏
) = 1)

are well-defined, and satisfy: for all (𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) ∈ 𝑋 ×𝑌 ×𝐴×𝐵,
𝜌 (𝑒𝑥

𝑢 (𝑥 ) 𝑓
𝑦

𝑣 (𝑦) ) = 1.

According to (3.1), it implies 𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) ∉ N . We have

𝜆(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) = 1,

which means that 𝑢 and 𝑣 give a perfect deterministic strategy for the
game G.

Proof. We construct the one-dimensional representation 𝜌 as

follows. Since ∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 = 1

for every fixed pair (𝑥,𝑦), we know that there exist (𝑥,𝑦, 𝑎, 𝑏) ∈
𝑋 × 𝑌 ×𝐴 × 𝐵 such that

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 ≠ 0.

Let

Π = {(𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋 × 𝑌 ×𝐴 × 𝐵 : 𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 ≠ 0}, (3.4)

we have

Π ⊆ 𝑋 × 𝑌 ×𝐴 × 𝐵 \ Λ
since

𝜎 (L(N))𝜓 = {0},
and thus

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 = 0

for any (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ, where Λ is the index of the invalid deter-

mining set N (3.1), see Remark 3.1.

Using the generators 𝐴𝑥 and 𝐵𝑦 defined in (2.2), we can rewrite:

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 =

1

4

+ 1

4

(−1)𝑎𝜓∗𝜎 (𝐴𝑥 )𝜓

+ 1

4

(−1)𝑏𝜓∗𝜎 (𝐵𝑦)𝜓

+ 1

4

(−1)𝑎+𝑏𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 .

(3.5)

SinceH is separable, we can choose an orthogonal basis ofH
named

{𝜓1,𝜓2, . . .},
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where𝜓1 = 𝜓 . Define

𝑘 : 𝑋 → N
𝑥 ↦→ min{ 𝑗 ∈ N : 𝜓∗

𝑗 𝜎 (𝐴𝑥 )𝜓 ≠ 0};
𝑙 : 𝑌 → N
𝑦 ↦→ min{ 𝑗 ∈ N : 𝜓∗

𝑗 𝜎 (𝐵𝑦)𝜓 ≠ 0}.

Unlike the finite-dimensional case considered in the proof of [11,

Theorem 3], here we need to show that for every 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ,
𝑘 (𝑥) and 𝑙 (𝑦) are well-defined.

As 𝜓 ≠ 0 and 𝜎 (𝐴𝑥 )2 = 1, there must exist a 𝑗 ∈ N such that

𝜓∗
𝑗
𝜎 (𝐴𝑥 )𝜓 ≠ 0 (otherwise, 𝜎 (𝐴𝑥 )𝜓 = 0, which contradicts the

assumption that 𝜓 ≠ 0 and 𝜎 (𝐴𝑥 )2 = 1). Similarly, we can also

prove that 𝑙 (𝑦) is well-defined.
Let

𝑢 : 𝑋 → 𝐴

𝑥 ↦→
{

0, 0 ⩽ arg𝜓∗
𝑘 (𝑥 )𝜎 (𝐴𝑥 )𝜓 < 𝜋 ;

1, 𝜋 ⩽ arg𝜓∗
𝑘 (𝑥 )𝜎 (𝐴𝑥 )𝜓 < 2𝜋.

(3.6)

𝑣 : 𝑌 → 𝐵

𝑦 ↦→
{

0, 0 ⩽ arg𝜓∗
𝑙 (𝑦)𝜎 (𝐵𝑦)𝜓 < 𝜋 ;

1, 𝜋 ⩽ arg𝜓∗
𝑙 (𝑦)𝜎 (𝐵𝑦)𝜓 < 2𝜋.

(3.7)

□

We have the following claim:

Claim 3.4. For every (𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) ∈ 𝑋 × 𝑌 ×𝐴 × 𝐵, we have

(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) ∈ Π,

where Π is defined in (3.4). In particular, this implies

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 ≠ 0.

Wewill provide the proof of Claim 3.4 after completing the proof

of Proposition 3.3.

We construct the one-dimensional ∗−representation 𝜌 as follows.
For every 𝑥 ∈ 𝑋 , define

𝜌 (𝑒𝑥
𝑢 (𝑥 ) ) = 1, 𝜌 (𝑒𝑥

1−𝑢 (𝑥 ) ) = 0;

and for every 𝑦 ∈ 𝑌 , define

𝜌 (𝑓 𝑦
𝑣 (𝑦) ) = 1, 𝜌 (𝑓 𝑦

1−𝑣 (𝑦) ) = 0.

Then, by linearity and homogeneity, we extend 𝜌 to the entire game

algebra A.

Since 𝜌 (𝑒𝑥𝑎 ) and 𝜌 (𝑓
𝑦

𝑏
) are either 0 or 1, they are naturally com-

mutative. It is straightforward to check that 𝜌 satisfies:

𝜌 (𝑒𝑥𝑎 )2 = 𝜌 (𝑒𝑥𝑎 ), 𝜌 (𝑓
𝑦

𝑏
)2 = 𝜌 (𝑓 𝑦

𝑏
),

and

𝜌 (𝑒𝑥
0
) + 𝜌 (𝑒𝑥

1
) = 1, 𝜌 (𝑓 𝑦

0
) + 𝜌 (𝑓 𝑦

1
) = 1,

for all 𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
∈ A, i.e., 𝜌 (𝑒𝑥𝑎 ) and 𝜌 (𝑓

𝑦

𝑏
) satisfy the same relations

as 𝑒𝑥𝑎 and 𝑓
𝑦

𝑏
in A. Therefore, 𝜌 is indeed a ∗−representation of A.

Since

𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) = 1 ⇐⇒ (𝑎 = 𝑢 (𝑥)) ∧ (𝑏 = 𝑣 (𝑦)) .

By Claim 3.4, we have

𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) = 1 =⇒ (𝑥,𝑦, 𝑎, 𝑏) ∈ Π. (3.8)

Since the value of 𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) can only be 1 or 0, as

Π ∩ Λ = ∅,

the condition (3.8) implies that for every (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ, i.e., for
every 𝑒𝑥𝑎 𝑓

𝑦

𝑏
∈ N ,

𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) = 0

holds, which completes the proof.

Remark 2. For quantum nonlocal games, the value𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓

is the probability that the players provide the answer pair (𝑎, 𝑏) for
the question pair (𝑥,𝑦). Since we start with a perfect commuting
operator strategy,𝜓∗𝜎 (𝑒𝑥𝑎 𝑓

𝑦

𝑏
)𝜓 ≠ 0 implies that the scoring function

𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1. In other words, Claim 3.4 indicates that

𝜆(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) = 1.

That is, the mappings 𝑢 : 𝑋 → 𝐴 and 𝑣 : 𝑌 → 𝐵 defined in equations
(3.6) and (3.7) actually define a perfect deterministic classic strategy
for the two-answer game.

Now, we provide the proof of Claim 3.4.

Proof of Claim 3.4. We set 𝑎 = 𝑢 (𝑥) and 𝑏 = 𝑣 (𝑦) in Equation

(3.5), and compute

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 =
1

4

+ 1

4

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓

+ 1

4

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 .

(3.9)

Notice that 𝜎 (𝐴𝑥 ) and 𝜎 (𝐵𝑦) are commutative self-adjoint opera-

tors, so 𝜓∗𝜎 (𝐴𝑥 )𝜓, 𝜓∗𝜎 (𝐵𝑦)𝜓 and 𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 are all real num-

bers.

If 𝜓∗𝜎 (𝐴𝑥 )𝜓 ≠ 0, and since 𝜓1 = 𝜓 , we conclude that 𝑘 (𝑥) = 1.

Moreover, according to (3.6), if𝜓∗𝜎 (𝐴𝑥 )𝜓 > 0, we have

𝑢 (𝑥) = 0, (−1)𝑢 (𝑥 ) = 1;

if𝜓∗𝜎 (𝐴𝑥 )𝜓 < 0, we have

𝑢 (𝑥) = 1, (−1)𝑢 (𝑥 ) = −1.

Therefore, the value below is always positive:

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓 > 0.

Similarly, if𝜓∗𝜎 (𝐵𝑦)𝜓 ≠ 0, we have

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓 > 0.

Therefore, if either𝜓∗𝜎 (𝐴𝑥 )𝜓 or𝜓∗𝜎 (𝐵𝑦)𝜓 is nonzero, we have

1

4

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓 + 1

4

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓 > 0.

Since

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 ⩾ 0, we have

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 > 0.
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Hence, we only need to consider the case

𝜓∗𝜎 (𝐴𝑥 )𝜓 = 𝜓∗𝜎 (𝐵𝑦)𝜓 = 0.

Since we are working with infinite-dimensional separable Hilbert

spaces, we modify the argument in [11, Theorem 3] by incorporat-

ing Cauchy-Schwarz inequality and Parseval’s identity for proving

that

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 > 0.

Conversely, suppose

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 = −1 (3.10)

holds. By Cauchy-Schwarz’s inequality, we know that���(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓
���

⩽ ∥(−1)𝑢 (𝑥 )𝜎 (𝐴𝑥 )𝜓 ∥ · ∥(−1)𝑣 (𝑦)𝜎 (𝐵𝑦)𝜓 ∥ .

Since 𝜓 is a unit vector and the eigenvalues of 𝜎 (𝐴𝑥 ), 𝜎 (𝐵𝑦) can
only be ±1, we know

∥(−1)𝑢 (𝑥 )𝜎 (𝐴𝑥 )𝜓 ∥ = 1 and ∥(−1)𝑣 (𝑦)𝜎 (𝐵𝑦)𝜓 ∥ = 1.

Applying the equality condition of the Cauchy-Schwarz inequality,

and the assumption (3.10), we obtain

(−1)𝑢 (𝑥 )𝜎 (𝐴𝑥 )𝜓 = −(−1)𝑣 (𝑦)𝜎 (𝐵𝑦)𝜓 . (3.11)

By Parseval’s identity, we have

(−1)𝑢 (𝑥 )𝜎 (𝐴𝑥 )𝜓 =

∞∑︁
𝑗=1

(−1)𝑢 (𝑥 ) ⟨𝜎 (𝐴𝑥 )𝜓,𝜓 𝑗 ⟩ ·𝜓 𝑗 ,

and

(−1)𝑣 (𝑦)𝜎 (𝐵𝑦)𝜓 =

∞∑︁
𝑗=1

(−1)𝑣 (𝑦) ⟨𝜎 (𝐵𝑦)𝜓,𝜓 𝑗 ⟩ ·𝜓 𝑗 ,

Then Equation (3.11) gives

(−1)𝑢 (𝑥 ) ⟨𝜎 (𝐴𝑥 )𝜓,𝜓 𝑗 ⟩ = −(−1)𝑣 (𝑦) ⟨𝜎 (𝐵𝑦)𝜓,𝜓 𝑗 ⟩,

which implies that

(−1)𝑢 (𝑥 )𝜓∗
𝑗 𝜎 (𝐴𝑥 )𝜓 = −(−1)𝑣 (𝑦)𝜓∗

𝑗 𝜎 (𝐵𝑦)𝜓 (3.12)

holds for every 𝑗 ∈ {1, 2, . . . . . .}. However, Equation (3.12) must fail

to hold for 𝑗 = min{𝑘 (𝑥), 𝑙 (𝑦)}. It is clear that Equation (3.12) fails

when 𝑘 (𝑥) ≠ 𝑙 (𝑦). Assume 𝑘 (𝑥) = 𝑙 (𝑦) = 𝑗 , we find that the argu-

ments of arg

(
(−1)𝑢 (𝑥 )𝜓∗

𝑗
𝜎 (𝐴𝑥 )𝜓

)
and arg

(
(−1)𝑣 (𝑦)𝜓∗

𝑗
𝜎 (𝐵𝑦)𝜓

)
both lie in the range [0, 𝜋), which contradicts Equation (3.12) once

again!

Therefore, when 𝜓∗𝜎 (𝐴𝑥 )𝜓 = 𝜓∗𝜎 (𝐵𝑦)𝜓 = 0, we have shown

that

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 > 0.

That is,

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 > 0,

which always holds, thereby proving the claim. □

Finally, we prove Theorem 3.1.

Proof of Theorem 3.1. (⇐=) This direction is straightforward.

Suppose, for the sake of contradiction, that this direction does not

hold, i.e.,

−1 ∈ SOSA +L(N) + L(N)∗

and there exists a ∗−representation 𝜌 such that

𝜌 (N) = {0},
then we have

−1 = 𝜌 (−1) ∈ 𝜌 (SOSA ) ⩾ 0,

which is a contradiction!

(=⇒) This follows from Proposition 3.2 and Proposition 3.3. □

We have the following result.

Corollary 3.5. For any two-answer game G, it admits a perfect
commuting operator strategy if and only if it admits a perfect classical
strategy, i.e.

𝜔𝑐𝑜 (G) = 1 ⇐⇒ 𝜔𝑐 (G) = 1.

Proof. Any nonlocal game G with a perfect deterministic strat-

egy also has a perfect commuting operator strategy. On the other

hand, according to Proposition 3.2, the condition

−1 ∉ SOSA +L(N) + L(N)∗

implies that G has a perfect commuting operator strategy. By Theo-

rem 3.1, in the case of two-answer games, this is further equivalent

to N having a one-dimensional zero point.

Moreover, every deterministic strategy for the game G can be

induced by a one-dimensional complex ∗-representation
𝜋 : A → C,

i.e.,

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 𝜋 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) .

Therefore, by Remark 1, the existence of a one-dimensional zero

point for N is equivalent to G having a perfect deterministic strat-

egy. □

Let A, Λ and N be the same as in Theorem 3.1. Suppose there

exists a ∗−representation
𝜌 : A → C

such that

𝜌 (N) = {0}.
Since 𝜌 is a one-dimensional representation, all of 𝜌 (𝑒𝑥𝑎 ) and 𝜌 (𝑓

𝑦

𝑏
)

commute. Thus 𝜌 (N) = {0} if and only if the polynomial system

N = {𝑒𝑥𝑎 𝑓
𝑦

𝑏
| (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ} has one-dimensional zeros in the

quotient algebra

C[{𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
,∀𝑥,𝑦, 𝑎, 𝑏}]/𝔎,

where 𝔎 is the two-sided ideal generated by the set

𝐾 = {(𝑒𝑥𝑎 )2 − 𝑒𝑥𝑎 , (𝑓
𝑦

𝑏
)2 − 𝑓 𝑦

𝑏
| 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}

∪ {𝑒𝑥
0
+ 𝑒𝑥

1
− 1, 𝑓

𝑦

0
+ 𝑓 𝑦

1
− 1 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }.

By Hilbert’s Nullstellensatz, this is also equivalent to 1 ∉ ℑ, where

ℑ is a two-sided ideal generated by 𝐾 ∪ N in the commutative

polynomial ring C[{𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
,∀𝑥,𝑦, 𝑎, 𝑏}].

Combined with Theorem 3.1, we have

−1 ∉ SOSA + L(N) + L(N)∗ ⇐⇒ 1 ∉ ℑ (3.13)



A Noncommutative Nullstellensatz for Perfect Two-AnswerQuantum Nonlocal Games ISSAC ’25, July 28–August 01, 2025, Guanajuato, Mexico

Determining whether

−1 ∉ SOSA + L(N) + L(N)∗

is not easy, because L(N) + L(N)∗ is not an ideal. However, the

membership problem 1 ∉ ℑ can be determined by computing the

Gröbner basis of ℑ. Hence, we have an algorithm based on Gröbner

basis computation to determine whether a two-answer game has a

perfect commuting operator strategy.

4 Example and Discussion
Let us look at a graph coloring game in [11, 16]. It is well-known that

when 𝑛 is even, the game has a perfect classical strategy, whereas

when 𝑛 is odd, the color of the last vertex 𝑣𝑛 will lead to a con-

tradiction regardless of whether it is chosen as 0 or 1. Thus, there

is no perfect classical strategy. An upper bound on the winning

probability for commuting operator strategies has been given in

[19] to determine that the game has no perfect commuting operator

strategy. Below, we show how to use Gröbner basis computation to

determine whether there is a perfect commuting operator strategy.

Example 1 (Graph coloring game). [11, 16] Consider a cycle
with vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛} and edge set

𝐸 = {(𝑣𝑖 , 𝑣𝑖+1), (𝑣𝑖+1, 𝑣𝑖 ) | 𝑖 = 1, . . . , 𝑛},

where 𝑣𝑛+1 = 𝑣1. We define the coloring game G as follows. Let the
question set be

𝐸 ∪ {(𝑣𝑖 , 𝑣𝑖 ) | 𝑖 = 1, . . . , 𝑛},
and the answer sets of the players are both {0, 1}. The scoring function
is defined by

𝜆(𝑣𝑖 , 𝑣 𝑗 , 𝑎, 𝑏) =
{
0, if (𝑣𝑖 = 𝑣 𝑗 and 𝑎 ≠ 𝑏) or ((𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and 𝑎 = 𝑏);
1, 𝑒𝑙𝑠𝑒.

This nonlocal game can be viewed as Alice and Bob attempting to
color a cycle graph with two colors so that the vertices of each edge in
the graph have different colors.

As a simple example, we compute Gröbner bases of the ideal ℑ
corresponding to 𝑛 = 3 and 𝑛 = 4 below.

(1) 𝑛 = 3:

ℑ = ⟨{(𝑒1
0
)2 − 𝑒1

0
, (𝑒1

1
)2 − 𝑒1

1
, (𝑒2

0
)2 − 𝑒2

0
, (𝑒2

1
)2 − 𝑒2

1
,

(𝑒3
0
)2 − 𝑒3

0
, (𝑒3

1
)2 − 𝑒3

1
, (𝑓 1

0
)2 − 𝑓 1

0
, (𝑓 1

1
)2 − 𝑓 1

1
,

(𝑓 2
0
)2 − 𝑓 2

0
, (𝑓 2

1
)2 − 𝑓 2

1
, (𝑓 3

0
)2 − 𝑓 3

0
, (𝑓 3

1
)2 − 𝑓 3

1
,

𝑒1
0
+ 𝑒1

1
− 1, 𝑓 1

0
+ 𝑓 1

1
− 1, 𝑒2

0
+ 𝑒2

1
− 1, 𝑓 2

0
+ 𝑓 2

1
− 1,

𝑒3
0
+ 𝑒3

1
− 1, 𝑓 3

0
+ 𝑓 3

1
− 1,

𝑒1
0
𝑓 1
1
, 𝑒1

1
𝑓 1
0
, 𝑒2

0
𝑓 2
1
, 𝑒2

1
𝑓 2
0
, 𝑒3

0
𝑓 3
1
, 𝑒3

1
𝑓 3
0
,

𝑒1
0
𝑓 2
0
, 𝑒1

1
𝑓 2
1
, 𝑒2

0
𝑓 1
0
, 𝑒2

1
𝑓 1
1
,

𝑒1
0
𝑓 3
0
, 𝑒1

1
𝑓 3
1
, 𝑒3

0
𝑓 1
0
, 𝑒3

1
𝑓 1
1
,

𝑒2
0
𝑓 3
0
, 𝑒2

1
𝑓 3
1
, 𝑒3

0
𝑓 2
0
, 𝑒3

1
𝑓 2
1
}⟩

Under the graded lexicographic ordering with

𝑒1
0
> 𝑒1

1
> 𝑒2

0
> 𝑒2

1
> · · · > 𝑒3

1
> 𝑓 1

0
> · · · > 𝑓 3

1
,

the Gröbner basis of ℑ is 1. Hence, according to Corollary 3.5
and (3.13), G has no perfect commuting operator strategy.

(2) 𝑛 = 4:

ℑ = ⟨{(𝑒1
0
)2 − 𝑒1

0
, (𝑒1

1
)2 − 𝑒1

1
, (𝑒2

0
)2 − 𝑒2

0
, (𝑒2

1
)2 − 𝑒2

1
,

(𝑒3
0
)2 − 𝑒3

0
, (𝑒3

1
)2 − 𝑒3

1
, (𝑒4

0
)2 − 𝑒4

0
, (𝑒4

1
)2 − 𝑒4

1
,

(𝑓 1
0
)2 − 𝑓 1

0
, (𝑓 1

1
)2 − 𝑓 1

1
, (𝑓 2

0
)2 − 𝑓 2

0
, (𝑓 2

1
)2 − 𝑓 2

1
,

(𝑓 3
0
)2 − 𝑓 3

0
, (𝑓 3

1
)2 − 𝑓 3

1
, (𝑓 4

0
)2 − 𝑓 4

0
, (𝑓 4

1
)2 − 𝑓 4

1

𝑒1
0
+ 𝑒1

1
− 1, 𝑓 1

0
+ 𝑓 1

1
− 1, 𝑒2

0
+ 𝑒2

1
− 1, 𝑓 2

0
+ 𝑓 2

1
− 1,

𝑒3
0
+ 𝑒3

1
− 1, 𝑓 3

0
+ 𝑓 3

1
− 1, 𝑒4

0
+ 𝑒4

1
− 1, 𝑓 4

0
+ 𝑓 4

1
− 1

𝑒1
0
𝑓 1
1
, 𝑒1

1
𝑓 1
0
, 𝑒2

0
𝑓 2
1
, 𝑒2

1
𝑓 2
0
, 𝑒3

0
𝑓 3
1
, 𝑒3

1
𝑓 3
0
, 𝑒4

0
𝑓 4
1
, 𝑒4

1
𝑓 4
0

𝑒1
0
𝑓 2
0
, 𝑒1

1
𝑓 2
1
, 𝑒2

0
𝑓 1
0
, 𝑒2

1
𝑓 1
1
, 𝑒2
0
𝑓 3
0
, 𝑒2

1
𝑓 3
1
, 𝑒3

0
𝑓 2
0
, 𝑒3

1
𝑓 2
1

𝑒3
0
𝑓 4
0
, 𝑒3

1
𝑓 4
1
, 𝑒4

0
𝑓 3
0
, 𝑒4

1
𝑓 3
1
, 𝑒1
0
𝑓 4
0
, 𝑒1

1
𝑓 4
1
, 𝑒4

0
𝑓 1
0
, 𝑒4

1
𝑓 1
1
, }⟩

A Gröbner basis of ℑ under the graded lexicographic ordering

𝑒1
0
> 𝑒1

1
> 𝑒2

0
> 𝑒2

1
> · · · > 𝑒4

1
> 𝑓 1

0
> · · · > 𝑓 4

1
,

is
{𝑓 4
0
+ 𝑓 4

1
− 1, 𝑓 3

1
+ 𝑓 4

1
− 1, 𝑓 3

0
− 𝑓 4

1
, 𝑓 2
1
− 𝑓 4

1
,

𝑓 2
0
+ 𝑓 4

1
− 1, 𝑓 1

1
+ 𝑓 4

1
− 1, 𝑓 1

0
− 𝑓 4

1
, 𝑒4
1
− 𝑓 4

1
,

𝑒4
0
+ 𝑓 4

1
− 1, 𝑒3

1
+ 𝑓 4

1
− 1, 𝑒3

0
− 𝑓 4

1
, 𝑒2
1
− 𝑓 4

1
,

𝑒2
0
+ 𝑓 4

1
− 1, 𝑒1

1
+ 𝑓 4

1
− 1, 𝑒1

0
− 𝑓 4

1
, (𝑓 4

1
)2 − (𝑓 4

1
)}.

By Corollary 3.5 and (3.13), G has a perfect commuting opera-
tor strategy.

Remark 3. In [4, Section 5], Watts, Helton, and Klep discussed a
special type of nonlocal games: torically determined games. A nonlocal
game is called a torically determined game if there exists a finite set
𝐹 with the following form:

𝐹 = {𝛽𝑖𝑔𝑖 − 1 | 𝛽𝑖 ∈ C, 𝑔𝑖 ∈ 𝐺},
where 𝐺 is a group and the group algebra C[𝐺] is isomorphic to the
universal game algebra, such that (𝜋 : A → B(H),𝜓 ∈ H) defines
a perfect commuting operator strategy if and only if 𝜋 (𝐹 )𝜓 = 0. They
demonstrated that for a torically determined game, the question of
whether the game has a perfect commuting operator strategy can
be translated into a subgroup membership problem [4, Section 5].
However, this result cannot be used to prove our theorem. The reason
is that if we regardN as the determining set of the game, the elements
inN may not necessarily be expressible in the form 𝛽𝑔− 1, 𝛽 ∈ C, 𝑔 ∈
𝐺 . In other words, a two-answer game is not necessarily a torically
determined game.

5 Conclusion
In this paper, we show that for a two-answer nonlocal game,

−1 ∉ SOSA + L(N) + L(N)∗

if and only ifN has one-dimensional zeros, which implies that a two-

answer nonlocal game has a perfect commuting operator strategy if

and only if the game has a perfect classical strategy. Moreover, the

problem of determining whether N has one-dimensional zeros is

equivalent to an ideal membership problem. Therefore, we can use

commutative Gröbner bases to determine whether a two-answer

nonlocal game has a perfect commuting operator strategy.

Suppose the answer set 𝐴 or 𝐵 contains three or more elements,

our main result (Theorem 3.1) fails to hold, as there exists a nonlocal
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game that has a perfect commuting operator strategy but no perfect

classical strategies [11, 22]. Investigating how to generalize our

results for more general games is an interesting research topic.
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