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ABSTRACT
A local generic position method is proposed to isolate the
real roots of a bivariate polynomial system

Σ = {f(x, y), g(x, y)}.
In this method, the roots of the system are represented as
linear combinations of the roots of two univariate polynomial
equations t(x) = 0 and T (X) = 0:

{x = α, y =
β − α

s
|α ∈ V (t(x)), β ∈ V (T (X)), |β − α| < S},

where s, S are constants satisfying certain conditions. The
multiplicities of the roots of Σ = 0 are the same as that of
the corresponding roots of T (X) = 0. This representation
leads to an efficient and stable algorithm to isolate the real
roots of Σ.

Categories and Subject Descriptors
I.1.2 [SYMBOLIC AND ALGEBRAIC MANIPULA-
TION]: Algorithms—Algebraic algorithms

General Terms
Algorithm

Keywords
Bivariate polynomial system, generic position, root isola-
tion, root bound.

1. INTRODUCTION
Solving polynomial equation systems is a fundamental

problem in symbolic computation. In this paper, we con-
sider the problem of real root isolation for bivariate polyno-
mial equation systems. Let f(x, y), g(x, y) ∈ Q[x, y], where
Q is the field of rational numbers. We call

Σ = {f(x, y), g(x, y)}. (1)
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zero-dimensional if gcd(f(x, y), g(x, y)) = 1. Even this
simple case has applications in nonlinear computational ge-
ometry such as topology determination of curves [2, 7, 8, 11,
13].

In this paper, a local generic position method is pro-
posed to isolate the real roots of an equation system like (1).
The concept of generic position was used in equation solving
and topology determination for a long time [1, 4, 5, 7, 10,
12, 13, 15, 17, 21]. Simply speaking, a system of equations
is said to be in a generic position if we can find a direction,
say the x-axis, such that different zeros of (1) are projected
to different points on the x-axis. If Σ is in a generic posi-
tion, the roots of an equation system Σ = 0 have a rational
univariate representation (RUR) [17]:

t(u) = 0, x = R1(u), y = R2(u) (2)

where u is a new parameter, t(u) ∈ Q[u] and R1(u), R2(u)
are rational functions. As a consequence, solving multi-
variate equations is reduced to solving a univariate equa-
tion t(u) = 0 and to substituting the roots of t(u) = 0
into rational functions. This approach still has the following
problem: for an isolation interval [a, b] of a real root α of
t(u) = 0, to determine the isolation interval of R1(α) and
R2(α) under a given precision is not a trivial task. The local
generic position method proposed in this paper will remedy
this drawback.

In the local generic position method, the roots of the sys-
tem Σ are represented as linear combinations of the roots of
two univariate polynomial equations t(x) = 0 and T (X) = 0:

{x = α, y =
β − α

s
|α ∈ V (t(x)), β ∈ V (T (X)), |β − α| < S},

where s, S are constants satisfying certain given conditions.
The multiplicities of the roots of Σ = 0 are also preserved in
the corresponding roots of T (X) = 0. The major advantage
of this representation is that we can obtain isolation boxes
with any given precision for the roots of Σ = 0 from the
isolation intervals of the roots of t(x) = 0 and T (X) = 0
easily. The methods are implemented in Maple and exten-
sive experiments are done, which show that our approach
is very efficient and stable, especially when the system has
multiple roots.

Geometrically, the local generic method transforms Σ to a
new system Σ′ which is in a generic position. Furthermore,
the roots of Σ with the same x-coordinate α are transformed
to the region [α−S, α+S]×[−∞,−∞]. This property allows
us to recover these roots from the projections of the roots of
Σ and Σ′ to the x-axis.

Besides the generic position method, there exist quite a
few methods for solving polynomial equation systems such as



the Gröbner basis method, the resultant method, the char-
acteristic set method, and the subdivision based method.
Here we compare our method with those that are devoted
to bivariate equation systems.

In [7], Diochnos, Emiris, and Tsigaridas gave three al-
gorithms to solve bivariate equation systems and analyzed
their complexities. Algorithm GRID projects the roots of Σ
to the x and y axes and checks whether a combination of
the x- and y-coordinates is a solution of Σ. Assuming the
equation system in generic position, the algorithm MRUR
uses signed subresultant sequences to compute an RUR like
(2) and finds the solution of the system by estimating the
value of the rational functions R(x) at the x-coordinates of
the roots of Σ. This method is quite similar to the method
given in [13]. The GRUR method projects the roots of the
system to the x and y axes, for each x-coordinate α com-
putes the GCD H(α, y) of the square-free parts of f(α, y)
and g(α, y), and isolates the roots of H(α, y) = 0 based on
computations of algebraic numbers and the RUR techniques.
Among the three algorithms, GRUR has the lowest complex-
ity and performs best in experiments. Our algorithm only
uses resultant computation and root isolation for univari-
ate polynomial equations with rational coefficients. Our al-
gorithm totally avoids computation over algebraic numbers
and is more efficient than GRUR as shown by experimental
results in Section 5.

The method by Hong, Shan, and Zeng [14] projects the
roots of Σ to the x-axis and y-axis respectively and uses
a numerical iteration method to decide whether the boxes
formed by the projection intervals contain a root of Σ. The
numerical method works for simple roots of Σ only. When
the system has multiple roots, the RUR technique is used
to isolate them. Comparing to this method, our method
also computes two resultants of the same total degrees. Our
method is a complete one, while the method given in [14]
needs to use the RUR technique to find multiple roots.

The rest of this paper is organized as follows. In Section
2, the theory behind the local generic position method is
presented. In Section 3, we estimate the bounds needed
in the algorithm. In Section 4, we give the local generic
position algorithm. Experimental results are presented in
Section 5 and conclusions are given in Section 6.

2. LOCAL GENERIC POSITION
In this section, we present the theory behind the local

generic position algorithm. The idea is to do a shear trans-
formation (x, y) → (x + sy, y) so that the new equation
system is in a “local generic position” with respect to the
original equation system.

Let π be the projection map from the real plane to the
x-axis:

π : R
2 −→ R, such that π(x, y) = x. (3)

For a zero-dimensional system Σ = {f(x, y), g(x, y)} de-
fined in (1), let t(x) ∈ Q[x] be the resultant of f(x, y) and
g(x, y) w.r.t y:

t(x) = Resy(f(x, y), g(x, y)). (4)

Since Σ is zero-dimensional, we have t(x) �≡ 0. Then π(V (Σ))

⊆ V (t(x)), where V (f1, . . . , fr) is the set of common real
zeros of f1 = 0, . . . , fr = 0. Let the real roots of t(x) = 0 be

α1 < α2 < · · · < αm. (5)

Using the notations in (1) and (5), let S, R, and s be
rational numbers satisfying

S <
1

2
min{αi+1 − αi, i = 1, . . . ,m− 1},

R > max{|β|, ∀(α, β) ∈ V (Σ)}, (6)

0 < s <
S

R
.

For s satisfying (6), define an inversive linear map (a shear)
from R2 to R2:

ψs : (x, y) �−→ (X,Y ) = (x+ s y, y). (7)

We also define ψs(f(x, y)) = f(X − s Y, Y ) for convenience.
Geometrically, ψs maps a point (x0, y0) to the intersection
point of the lines y = y0 and (x− x0) = s y. See Fig. 1 for
an illustration.
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Figure 1: Map ψs: the red squares are the roots of
Σ = 0; the blue triangles are the roots of ψs(Σ); the
black dots are the roots of univariate polynomial
T (X) = 0.

An equation system Σ is said to be in a generic position
if different roots of Σ = 0 have different x-coordinates. We
have:

Lemma 2.1. For S and R defined in (6) and ψs defined
in (7), ψs(Σ) is in a generic position. Furthermore, a root
(α, β) of Σ = 0 is mapped to (η, β) where η ∈ (α−S,α+S).
See Fig. 1 for an illustration.

Proof. For each αi in (5), let Pi,j = (αi, βi,j) be the cor-
responding roots of Σ = 0. We have ψs(Pi,j) = (αi +
sβi,j , βi,j). Then, for the same i, different ψs(Pi,j) have
different x-coordinates. Due to the conditions in (6), we
have |αi + sβi,j − αi| = |sβi,j | < (S/R) · R = S. That
is, ψs(Pi,j) ∈ Ri = (αi − S, αi + S) × [−R,R]. Since
S < 1

2
(αi+1 − αi), Ri are disjoint for different i. Then

different ψs(Pi,j) have different x-coordinates. This proves
the lemma.

We project the roots of ψs(Σ) to the x-axis by computing
the resultant T (X):

T (X) = Resy(ψs(f(x, y)), ψs(g(x, y)))

= ResY (f(X − s Y, Y ), g(X − s Y, Y )). (8)

We hope that the zeros of Σ = 0 and the roots of T (X) are
in a one-to-one correspondence. This may fail when

h(X) = gcd(LCY (ψs(f(x, y))),LCY (ψs(g(x, y)))) (9)

has real roots, where LCY (f(X,Y )) is the leading coeffi-
cient of f(X, Y ) w.r.t Y .



So if we ensure that h(X) = 0 has no real roots, then the
real roots of Σ = 0 and the real roots of T (X) = 0 are in a
one-to-one correspondence. We can select the parameter s
properly so that LCY (ψs(f(x, y))) or LCY (ψs(g(x, y))) is a
constant and h(X) = 0 has no real roots.

Write f(x, y) and g(x, y) as the sum of their homogeneous
parts:

f(x, y) = fp(x, y) + · · · + f0

g(x, y) = gq(x, y) + · · · + g0

where fi and gi are homogeneous polynomials with total
degree i. It is clear that when

fp(−s, 1) �= 0 or gq(−s, 1) �= 0, (10)

h(X) is a constant. It is always possible to chose an s such
that (6) is satisfied. Then we further have

Lemma 2.2. Let s be a rational number satisfying (6) and
(10). Then π is a one-to-one and multiplicity preserving
map between the roots of ψs(Σ) and the roots of T (X) = 0,
where T (X) is defined in (8).

Furthermore, let the roots of T (X) = 0 in (αi − S,αi + S)

be

βi,1 < βi,2 < · · · < βi,mi , i = 1, . . . ,m (11)

where αi is defined in (5). Then the inversion of the π is:

π−1(βi,j) = (βi,j , (βi,j − αi)/s). (12)

Proof. By the property of the resultant, π(V (ψs(Σ)) ⊂
V (T (X)). By Lemma 2.1, we can derive that different roots
of ψs(Σ) are mapped to different roots of T (X) = 0. Further-
more, by (10), the leading coefficient of ψs(f) or ψs(g) does not
vanish. Then by the property of the resultant, π(V (ψsΣ)) =
V (T (X)). Hence π is one-to-one. Based on the theory in Section
1.6 of [9], we can conclude that π is also multiplicity preserving.
π−1(βi,j) can be obtained as follows. By the proof of Lemma

2.1, a root Qi,j = (βi,j , γi,j) of ψs(Σ) = 0 is projected one-to-
one to a root of T (X) = 0 in (αi − S, αi + S). Then, from the
definition of ψs, Qi,j is on the line defined by (x−αi) = s y (the
skewed lines in Fig. 1). Then, we have γi,j = (βi,j − αi)/s.

The following result shows how to recover the roots of Σ = 0
from the roots of two univariate polynomial equations t(x) =
T (X) = 0.

Theorem 2.3. Use the notations introduced in this section.
If (6) and (10) are satisfied, then θ = π ◦ ψs is a one-to-one
and multiplicity preserving map from V (Σ) to V (T (X)). Fur-
thermore, the roots of Σ = 0 can be obtained by the inversion of
θ:

θ−1(βi,j) = (αi, (βi,j − αi)/s), |βi,j − αi| < S,

i = 1, . . . ,m, j = 1, . . . , mi (13)

where αi ∈ V (t(x)), βi,j ∈ V (T (X)) are defined in (5) and (11)
respectively, t(x), T (X) are defined by (4) and (8), respectively.

Proof. Since ψs is an inverse linear map, it is one-to-one and
multiplicity preserving. Then by Lemma 2.2, θ is also one-to-one
and multiplicity preserving. The inversion map θ−1 = ψ−1

s ◦π−1

can be obtained directly from (12) and (7).
As corollaries of Theorem 2.3, we have

Corollary 2.4. Under the same condition of Theorem 2.3,
we have

V (Σ) = {(α, (β − α)/s) |α ∈ V (t(x)), β ∈ V (T (X)

and |α− β| < S}. (14)

Due to (14), if |α− β| < S, we say that β is associated with α.

Corollary 2.5. If we separate the real roots of t(x) = 0 and
T (X) = 0 with precisions ρ1 and ρ2 respectively, then the roots

computed with (14) have precision max{ρ1, ρ1+ρ2
s

}.

From Theorem 2.3, the four-tuple

{t(x), T (X), s, S} (15)

provides a representation for the roots of Σ = 0, and from this
representation, we can compute the roots of Σ by solving two
univariate equations. This method is called a local generic po-
sition method because the roots of Σ = 0 with the same x-
coordinate α are mapped to (α− S,α+ S) and can be recovered
with a linear map (14). This makes the precision control much
easier than the usual generic position method where the roots of
Σ = 0 are represented as a univariate rational function of the
roots of T (X) = 0.

3. ESTIMATION OF PARAMETERS S, R
From Section 2, we need to know the values of the parameters

S, R, and s defined in (6) in order to transform the equation
system into a local generic position. In this section, we will show
how to compute such parameters efficiently.

We can use the general root bounds for zero dimensional equa-
tion systems in [20, p. 341] to estimate S and R. But the results
obtained in this way is far from optimal. In this section, we will
show how to obtain better estimations for S, R, and s.

We will use intervals to isolate the roots of a univariate equa-
tion. Let Q denote the set of intervals of the form [a, b] where
a ≤ b ∈ Q. The length of an interval I = [a, b] ∈ Q is defined to
be |I| = b − a. A set BS of disjoint intervals is called isolation
intervals for the roots of t(x) = 0 if each root of t(x) = 0 is in
an interval in BS and each interval in BS contains one root of
t(x) = 0.

Let t(x) be defined in (4) and the isolating intervals for the
roots of t(x) = 0 be

BS = {[a1, b1], . . . , [am, bm]}. (16)

We can directly estimate S from the isolating intervals for the
roots of t(x) = 0:

S =
1

2
min{ai+1 − bi, i = 1, . . . , m− 1}. (17)

Then we have

Lemma 3.1. Let αi be the roots of t(x) = 0 and [ai, bi] the
isolation interval for αi. If S is taken as (17), then the roots of
T (X) = 0 associated with αi are in the intervals (ai − S, bi +
S), i = 1, . . . , m.

Proof. It is clear that the S defined in (17) satisfies (6). By
Lemma 2.1, roots of T (X) = 0 are in (αi − S,αi + S) for some
i. Since αi ∈ [ai, bi], the roots of T (X) = 0 associated with αi

must be in (ai − S, bi + S).
A simple way to estimate R is as follows:

R = RB(h(y)), where h(y) = Resx(f(x, y), g(x, y)) (18)

and RB(h(x)) is the root bound of h(x). If h(x) = c0yd + · · ·+cd,
then RB(h(y)) can be taken as 1 + max{|c1|, . . ., |cd|}/|c0| (page
322, [3]). In this method, we need to compute a resultant. When
the degrees of f and g in x are low, we can use this approach.
Otherwise, we can avoid the resultant computation by using the
concept of sleeve functions (see [6, 16] for details). We will explain
this approach below.

Given f ∈ Q[x, y], we decompose it uniquely as f = f+ − f−,
where each f+, f− ∈ Q[x, y] has positive coefficients and with
minimal number of monomials. Given an isolating interval I =
[a, b] for a root α of a univariate equation t(x) = 0, we define

fu
I (y) = f+(b, y) − f−(a, y) ∈ Q[y],

fd
I (y) = f+(a, y) − f−(b, y) ∈ Q[y]. (19)



Then f(I, y) = [fd
I , f

u
I ] is called a sleeve of f(α, y) due to the

following reasons. We assume that a, b ≥ 0 in the rest of our
paper, since we can consider F (x, y) = f(−x, y) for −α in [−b,−a]
when a, b < 0. When considering y ≥ 0, the following result is
clearly true (Fig. 2).

Lemma 3.2. We havefd
I (y) ≤ f(α, y) ≤ fu

I (y), or equiva-

lently, f(α, y) ∈ f(I, y). Furthermore, when |I| approaches to
zero, the interval f(I, y) converts to f(α, y) for each y.

We can use the sleeve to estimate the root bound R.

Lemma 3.3. For Σ = {f(x, y), g(x, y)}, let Ii = [ai, bi], i =
1, . . . ,m be the intervals defined in (16). If ai ≥ 0, bi ≥ 0, fd

Ii
(y),

fu
Ii

(y) have the same degree in y, and their leading coefficients

in y have the same sign, then we can take

R = max{RB(fd
Ii

),RB(fu
Ii

),RB(f̄d
Ii

),RB(f̄u
Ii

), i = 1, . . . , m}
(20)

where f̄ = f(x,−y).
Proof. Consider the case that di = deg(fd

Ii
(y), y) = deg(fu

Ii
(y)

, y) is odd and the leading coefficients of fu
Ii

and fd
Ii

are positive.

Other cases can be treated similarly. Then, there exists a positive
number r1 such that fd

Ii
(y) > 0 for y > r1. By Lemma 3.2, we

have f(αi, y) > fd
Ii

(y) > 0 for y > r1. Then, the largest positive

root of f(αi, y) = 0 is bounded by RB(fd
Ii

(y)). See Fig. 2 for an

illustration.
Note that if cu and cd are the leading coefficients of fu

Ii
and fd

Ii
,

then the leading coefficients of f̄u
Ii

and f̄d
Ii

are cu(−1)d = −cu < 0

and cd(−1)d = −cd < 0 respectively, since d is odd. Then there
exists a positive number r2 such that f̄d

Ii
(y) > 0 for y > r2. By

Lemma 3.2, we have f̄(αi, y) > f̄u
Ii

(y) > 0 for y > r2. Then, the

largest positive root of f̄(αi, y) = 0, or equivalently, the absolute
value of the smallest negative root of f(αi, y) = 0, is bounded by
RB(f̄u

Ii
(y)).

Figure 2: An illustration for sleeve: the dot
curves are the sleeve for the solid curve.

In the above lemma, instead of f(x, y), we can also use g(x, y)
to compute R. If fd

Ii
(y) or fu

Ii
(y) does not have the same degree,

we can subdivide the interval Ii. When Ii is sufficiently small,
they will have the same degree.

Based on the above result, we give the following algorithm to
estimate R.

Algorithm 3.4. RootB(f(x, y), t(x),BS) The inputs are
f(x, y) ∈ Q[x, y], t(x) defined in (4), BS isolation intervals of
t(x) = 0 defined in (16). Output is an R satisfying (6).

1. Without loss of generality, we assume that t(x) is an irre-
ducible polynomial. Otherwise, we will execute the follow-
ing steps for the irreducible factors of t(x) and output the
maximal R obtained from these factors.

2. If a1 < 0, do a translation x := x + a1 and still use t(x),
f(x, y), and Ii = [ai, bi] to denote the translated polynomi-
als and intervals.

3. Write f = F (x)yd +Fd−1(x)y
d−1 + · · ·+F0(x). We assume

that t(x) is not a factor of F (x); otherwise, we may remove
F (x)yd from f since we have t(x) = 0.

4. For each root I ∈ BS, let α ∈ I be the root of t(x) = 0 in I.
Then F (α) �= 0. We assume that p = Fu

I F
d
I > 0, where Fu

I

and F d
I are computed with (19); otherwise we repeatedly

subdivide I and still denote I as the new interval containing
α1 until p > 0.

5. As a consequence, fu
I (y) and fd

I (y) have same degree and
their leading coefficients have the same sign. Then, by
Lemma 3.3, we compute R according to (20).

Proof of the correctness. The correctness is obvious. We just
need to show that Step 4 will terminate when we subdivide I. By
Lemma 3.2, the coefficients of fu

I (y) and fd
I (y) can approximate

the coefficients of f(α, y) as close as we want. Since F (α) �= 0,
when I is sufficiently subdivided, Fu

I ∗F d
I > 0. And the program

will terminate.
Now, we show how to compute s which satisfies (6) and (10).

One way to do this is as follows.

Lemma 3.5. Let d = deg(f(x, y)) and S,R rational numbers

satisfying (6). Then one of si =
(3d+i)S
(4d+2)R

, i = 1, . . . , d + 1 must

satisfy (10) and thus can be used as s.

Proof. Each si satisfies (6). Since fd(x, y) is homogenous and is
of total degree d, fd(x, 1) = 0 can have at most d roots. Then,
one of the si must satisfy fd(−si, 1) �= 0.

Ideally, we want the bitsize of s to be as small as possible to
make the computation of T (X) easier. For instance, 1

3
is much

better than 1000004
3000001

. As a heuristic, we may take s ∈ Q satisfying

(10) and with the smallest bitsize.

4. ROOT ISOLATION OF BIVARIATE
POLYNOMIAL SYSTEMS

In this section, we will present the local generic position method
for real root isolation. We first find the parameters R,S, and s,
then obtain T (x) with (8), and finally isolate the real roots of the
equation system with (14) by isolating the real roots of t(x) = 0
and T (X) = 0.

Let Q2 be the set of interval boxes of the form [a, b] × [c, d]
where [a, b], [c, d] ∈ Q. The length of an interval box B =
[a, b] × [c, d] ∈ Q2 is defined to be |B| = max{b − a, d− c}.

Let Σ = {f(x, y), g(x, y)} and ξ = (ξ1, ξ2) be a root of Σ = 0.
Then an interval box B = [a1, b1] × [a2, b2] ∈ Q2 is called an
isolation box of ξ if ξi ∈ (ai, bi) and ξ is the only root of Σ = 0 in
B. A set BS of disjoint interval boxes is called isolation boxes
for Σ = 0 if each real root of Σ = 0 is in a box in BS and each
box in BS contains one root of Σ = 0. A set of root isolation
boxes of Σ = 0 is called ε-isolation boxes if each box has size
smaller than a given positive number ε.

In this section, we will present an algorithm to compute a set
of ε-isolation boxes for Σ = {f(x, y), g(x, y)}.

In Theorem 2.3, roots of Σ = 0 are represented by algebraic
numbers. In the following, we will give an interval version of this
result, which leads to an algorithm directly.

Let the isolation boxes for αi in (5) and βi,j in (11) be

B = {[a1, b1], . . . , [am, bm]} (21)

Bi = {[ci,1, di,1], . . . , [ci,mi
, di,mi

]}, i = 1, . . . ,m,

respectively. Theorem 4.1 shows how to compute isolation boxes
for Σ = 0.

1This can be easily done since t(x) is irreducible.



Figure 3: Recover an
isolation box

Figure 4: Separation of
two boxes

Theorem 4.1. Let ε be a positive number and s a number sat-
isfying (6) and (10). If the intervals in (21) satisfy

bi − ai < ε and bi − ai + di,j − ci,j < sε,

i = 1, . . . ,m, j = 1, . . . ,mi (22)

bi − ai < min{ ci,j+1 − di,j , j = 1, . . . ,mi − 1},
i = 1, . . . ,m (23)

then a set of ε-isolation boxes for the roots Pi,j = (αi, βi,j) of
Σ = 0 are

Bi,j = [ai, bi] × [(ci,j − bi)/s, (di,j − ai)/s]. (24)

Proof. Since [ai, bi] is an isolation interval of αi and [ci,j , di,j ]
is an isolation interval of βi,j , from the basic rules of interval
computation, we have Pi,j = (αi, βi,j) ∈ Bi,j . See Fig. 3 for an
illustration. We need only to show that |Bi,j | < ε and Bi,j are
disjoint.

From (22), we have |Bi,j | = max{bi −ai, (di,j −ai)/s− (ci,j −
bi)/s} < max{ε, (bi − ai + di,j − ci,j)/s} < max{ε, ε} = ε.

Finally, we will show that different Bi,j are disjoint. If i �= k,
then it is obvious that Bi,j and Bk,s are disjoint. Consider Bi,j

and Bi,k for j �= k. From the construction procedure for Bi,j ,
we need only to show that for i = 1, . . . ,mi − 1, Bi,j and Bi,j+1

are disjoint which is equivalent to the condition (di,j − ai)/s <
(ci,j+1 − bi)/s. See Fig. 4 for an illustration. Since s > 0, this is
equivalent to bi − ai < ci,j+1 − di,j which is valid by (23).

It is well-known on how to isolate the real roots for a univariate
polynomial equation, which is given as the following algorithm.

Algorithm 4.2. RootIsolU(t(x), ε). Input t(x) ∈ Q[x]. Out-
put the set of isolation intervals [ai, bi], i = 1, . . . ,m for the real
roots of t(x) = 0 such that |bi − ai| < ε and a1 < a2 < · · · < am.

Now we can give the algorithm to compute the isolation boxes
for Σ = 0.

Algorithm 4.3. LGP(Σ, ε). Σ = {f(x, y), g(x, y)} is a zero-
dimensional bivariate system and ε is a positive number. Output
a set of ε-isolation boxes BS for the roots of Σ = 0.

1. Let t(x) = Resy(f(x, y), g(x, y)).

2. Set ρ1 = ε and compute B, where B =RootIsolU(t(x), ρ1)
= {[a1, b1], . . . , [am, bm]}.

3. Compute R with Algorithm RootBN with input f, t,B.

4. Let D = 1
2

min{|ai+1 − bi|, i = 1, . . . , m− 1}.
(a) If D > 2ε, let ε1 = ε, S = D − ε1 and compute s

according to Lemma 3.5.

(b) If D ≤ 2ε, let ε1 = D/2, S = D − ε1 and compute s
according to Lemma 3.5.

5. Compute T (X) = Resy(f(X − sY, y), g(X − sY, Y )).

6. Set ρ2 = min{sε/2, ε1} and compute T =RootIsolU
(T (X), ρ2) = {[p1, q1], . . . , [pt, qt]} and the multiplicities of
the corresponding roots, if needed.

7. Compute ρ = min{|pi+1 − qi|, i = 1, . . . , t − 1}. Let θ =
min( ρ

2
, ε1, sε/2). If ρ1 > θ, set ρ1 = θ and compute B =

RootIsolU(t(x), ρ1).

8. For each element [pj , qj ] ∈ T, there exists a unique [ai, bi]
in B such that [pj , qj ] ⊂ [ai − D, bi + D]. Then [ai, bi] ×
[
pj−bi

s
,

qj−ai

s
] is an isolation box of one root of Σ = 0. And

the multiplicity of the root of Σ = 0 in the isolation box is
the multiplicity of the root of T (X) in [pj , qj ]. Let BS be
the set of these boxes and return BS.

Proof of Correctness of Algorithm 4.3. From Step 2, we know
bi − ai < ε. From Steps 6 and 7, we know bi − ai < sε/2,
qj − pj < sε/2 and hence bi − ai + qj − pj < sε. Then, condition
(22) is valid. From Step 7, we know that condition (23) is also
valid. From Steps 3 and 4, it is clear that conditions (6) and
(10) are satisfied. Then, Theorem 4.1 can be used to compute
the isolation boxes. What we need to do is to chose those [pj , qj ]
which are associated with a given [ai, bi], which is the purpose of
Step 8.

We will show that Step 8 is correct. By Lemma 3.1, a root βj of
T (X) = 0 associated with a root αi of r(x) = 0 is in (ai−S, bi+S).
By Step 6, the isolation interval [pj , qj ] of βj satisfies qj−pj < ε1.
By Step 4, D = S + ε1. Then qj < βj + qj − pj < βj + ε1 <
bi + S + ε1 = bi + D. Similarly, pj > ai − D. Therefore, each
[pj , qj ] is in a unique [ai −D, bi +D]. The isolating box for a root
(αi, βj) of Σ = 0 is formed based on (24).

Remark 4.4. 1. In the algorithm, we may need to isolate
the roots of t(x) = 0 twice. When isolating their roots in
the second time, we need only subdivide the existing inter-
vals. It is not necessary to start the isolation procedure
from scratch.

2. An advantage of this method is that we need only to isolate
the roots of T (X) = 0 once and isolate the roots of t(x) =
0 at most twice for a given specific precision. In other
words, we do not need to repeatedly subdivide the isolation
intervals as in most existing methods.

3. The most time consuming step of the algorithm is Step 5
and Step 6. There are two reasons for this. First, the shear
transformation changes a spare polynomial into a dense
one. Second, if the bitsize of s is large, the coefficients of
T (X) could be very large.

Example 4.5. We use a simple example to illustrate the al-
gorithm. Let Σ = {x2 − y2 − 1, 2x2 + 3y2 − 6}, and ε = 10−3.

1. t(x) = (−5 ∗ x2 + 9)2.

2. ρ1 = 10−3 and B = {[− 687
512

,− 1373
1024

], [ 1373
1024

, 687
512

]}.
3. Compute R, we get R = 1.

4. S = 1373
1024

. Since S > 2 ε, we choose 1 to replace S in the
computation of s. We obtain s = 1.

5. T (X) = 5 ∗X4 − 26 ∗X2 + 5.

6. ρ2 = sε/2 = 10−3/2 and T = {[− 1145
512

,− 4579
2048

], [− 229
512

,

− 915
2048

], [ 915
2048

, 229
512

], [ 4579
2048

, 1145
512

]}. The multiplicities of all
the roots are one.

7. ρ = 3663
2048

. θ = min{ 3663
4096

, 10−3, 1 ∗ 10−3/2} = 10−3/2.
Since ρ1 > θ, refine B with ρ1 = θ and derive B =
{[− 687

512
,− 2747

2048
], [ 2747

2048
, 687
512

]}.
8. For each element of T, recover the isolation box of the cor-

responding root of Σ = 0. Consider the first element T1 =
[− 1145

512
,− 4579

2048
]. It is easy to check that T1 is associated

with B1 = [− 687
512

,− 1373
1024

]. Then, the corresponding isola-

tion box can be computed with (24), which is [− 687
512

,− 2747
2048

]

×[− 1833
2048

,− 1831
2048

]. The multiplicity of the root of the system
is one. In a similar way, we can find other isolation boxes.



5. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have implemented Algorithm 4.3 as a software package LGP
in Maple, which is available at http://www.mmrc.iss.ac.
cn/˜ xgao/software.html. Extensive experiments with this pack-
age show that this approach is efficient and stable, especially for
bivariate equation systems with multiple roots.

We compare our method with Discoverer [19], GRUR[7], Hy-
brid [14], and Isolate[17]. Discoverer is a tool for solving prob-
lems about polynomial equations and inequalities. GRUR is a
tool to solve bivariate equation systems. Hybrid is a numeric and
symbolic hybrid algorithm for solving bivariate equation systems.
Isolate is a tool to solve general equation systems based on the
Realsolving C library by Rouillier.

We did three sets of experiments. All the results are collected
on a PC with a 3.2GHz CPU, 2.00G memory, and running Mi-
crosoft Windows XP. We use Maple 12 in the experiments. The
precision in the experiments is set to be 10−3. In these experi-
ments, f and g are generated as follows.

• Both f and g are randomly generated dense polynomials
with the same degree and with integer coefficients between
−99 and 99. The results are given in Fig. 5. In order to
give more details about the results, we show the timings
of Isolate, Hybrid, and LGP in Fig. 6 with a smaller time
scaling.

• Both f and g are randomly generated sparse polynomials
in the same degree, with sparsity 10%, and with integer
coefficients between −99 and 99. The results are given in
Fig. 7 and Fig. 8.

• The third set of experiments is done with polynomial sys-
tems with multiple roots. We randomly generate a poly-
nomial h(x, y, z) and take f(x, y) = Resz(h, hz), g(x, y) =
fy(x, y). Since f(x, y) is the projection of a space curve
to the xy-plane, it most probably has singular points and
f = g = 0 is an equation system with multiple roots. The
results are given in Fig. 9 and Fig. 10.

Figure 5: Σ consists of
dense polynomials and
has no multiple roots.

Figure 6: Same as Fig.
5, with a smaller time
scaling.

For each possible degree, we generate ten examples and the
results are the average values for the ten examples. According to
Figures 5, 7, and 9, we have the following observations.

• In all cases, GRUR and Discoverer generally work for equa-
tion systems with degrees not higher than ten within rea-
sonable time.

• In the first two cases, the equations are randomly generated
and hence have no multiple roots. For systems without mul-
tiple roots, Hybrid is the fastest method, which is signifi-
cantly faster than LGP and Isolate. Both Hybrid and LGP
compute two resultants and isolate their real roots. LGP is
slow, because the polynomials obtained by the shear map
are usually dense and with large coefficients.

We also observe that all methods spend more time with
sparse polynomials than with dense polynomials in the same
high degree. This phenomenon needs further exploration.

• For systems with multiple roots, LGP is the fastest method,
which is significantly faster than Hybrid and Isolate. Note
that our method is quite stable for equation systems with
and without multiple roots. Isolate is also quite stable, but
slower than LGP for bivariate equation systems.

Of course, we should mention that Discoverer and Isolate can be
used to solve general polynomial equations and even inequalities.
Our comparison is limited to the bivariate case.

Figure 7: Σ consists of
sparse polynomials and
has no multiple roots.

Figure 8: Same as Fig.
7, with a smaller time
scaling.

Figure 9: Σ is a system
with multiple roots.

Figure 10: A smaller
time scaling of Fig. 9.

Example 5.1. A critical step to compute the topology for a
plane curve is to determine its x-critical points. In this example,
we compute all x-critical points of an algebraic curve f = 0 (the
solid curve in Figure 11), which is defined below. The polynomial
f(x, y) is actually one of the examples used in the third set of
experiments shown in Fig. 9. We need to solve the equation

system Σ = {f, ∂f
∂y

}. The method LGP uses 9.6 seconds, Isolate

uses 80.1 seconds, Hybrid uses 326.4 seconds, and GRUR and
Discover both give no results in 1200 seconds with the same PC
as mentioned before.

f = 16 + 40 x − 72 y − 119 x12y2 − 4755 x6y4 − 1803 x8y5 −
983 x6y7+4582 x4y9+153 x7y6+402 x10y3+201xy12+39x11y2+
6221 x5y3 − 1692 xy11 − 3216 x4y8 + 4922 x6y3 + 585 x11y3 −
2301 x3y10+5749 x3y9+6066 x2y4−19x13y+1414 xy6+1516 x5y9

− 2349 xy5 − 3315 x2y3 + 1153 x8y4 + 2757 y10x + 784x6y8 +
5439 x3y6−818 x4y4−131 x12y−625x8y3−1174 x9y−1244x9y5−
16x7y5−3435 x4y5+337 x2y12+1165 x8y6−2276 x4y10−420x7y7

− 348 x10y4 + 309xy13 + 3246 x6y5 + 1597 x7y3 + 1055 x8y2 +
98x5y8−234x3y11−401x11y+659 x10y2−847 x10y+559 x2y10−
1542 x5y7−1075 x6y6−486x9y3−665x7y4+1821 x2y9+294x5y6

− 616x4y7 − 5413 x3y8 + 1441 x9y2 − 2176 xy9 − 2641 x2y8 +
2670 x5y5 +3845 x4y6 +628x3y7 +902xy8−880 x8y−983x7y2 +
190 x2y7 − 5890 x5y4 + 75x7y+ 826x6y− 617 xy7 − 8154 x3y5 +
3832 x2y6+3728 x4y3+918x5y−2759 x4y2−3400 x5y2−984x3y2

+2641 xy4+879 x4y−1269 x2y11+450 x9y4+640x3y+829x2y2+
44x2y + 992 xy2 − 284xy − 919x3y3 − 6516 x2y5 + 5401 x3y4 −
24x14y2 −2896 x6y2 −256 y3 −116x3 −56x2 −113 x4 +172 y2 +
238 y4 − 134 y5 + 305 x9 − 107x5 + 222x8 − 94x6 + 105 y6 +



55 x7 +993 y8 − 1564 y9 +81 x12 +157 x11 + 1497 y10 +250 x10 +
179 y13−96 y14+50 y12+34x13+9x14−766 y11−380 y7+3x15+
19 y15−2014 y3x−324x11y4+281x12y3−76x13y2 +201x10y6−
41 x11y5 − 111x9y7 + 3x14y + 6x15y − 64x12y4 + 49x13y3 +
60 x4y12 +66x5y11 +26x3y13 +8x8y8 −136x6y10 +175x2y13 +
17 x7y9−138xy14 −53x2y14 −290x8y7 −882x5y10 +183x6y9 +
144 x4y11 +832 x9y6−355 x10y5+236 x7y8 +245 x3y12 +16xy15.

Figure 11: The intersections of f = 0 and ∂f
∂y

= 0.

6. CONCLUSION
In this paper, we propose a local generic position method to

solve bivariate polynomial equation systems. The method can be
used to represent the roots of a bivariate equation system as the
linear combination of the roots of two univariate equations. As
a result, root isolation for bivariate systems is reduced easily to
root isolation of univariate equations. The multiplicities of the
roots are also derived.

The results of this paper can be extended to isolate the real
roots of bivariate equation systems with more than two polyno-
mials by using the resultant systems for several polynomials given
in [18]. It is also possible to extend the method to multivariate
equation systems. But, the procedure is very complicated. It is
an interesting problem to give a simple and effective algorithm for
multivariate equation solving based on the idea of local generic
position.
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[4] E. Becker and T. Wörmann. Radical computations of
zero-dimensional ideals and real root counting.
Mathematics and Computers in Simulation,
42(4-6):561–569, November 1996.

[5] J. F. Canny. Some algebraic and geometric computation in
pspace. In ACM Symp. on Theory of Computing, pages
460–469. SIGACT, 1988.

[6] J. S. Cheng, X. S. Gao, and C. K. Yap. Complete numerical
isolation of real roots in zero-dimensional triangular

systems. Journal of Symbolic Computation, 44(7):768–785,
July 2009.

[7] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the
complexity of real solving bivaraite systems. In ISSAC
2007, pages 127–134. ACM, 2007.

[8] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact
geometric analysis of real algebraic plane curves. In ISSAC
2007, pages 151–158. ACM, 2007.

[9] W. Fulton. Introduction to Intersection Theory in Algebraic
Geometry. Providence, R.I, Washington, DC, 1984.

[10] X. S. Gao and S. C. Chou. On the theory of resolvents and
its applications. Sys. Sci. and Math. Sci., 12:17–30, 1999.

[11] X. S. Gao and M. Li. Rational quadratic approximation to
real algebraic curves. Computer Aided Geometric Design,
21(8):805–828, 2004.

[12] M. Giusti and J. Heintz. Algorithmes - disons rapides -pour
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