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ABSTRACT

In this paper, we present a new method for isolating real
roots of a bivariate polynomial system. Our method is a
subdivision method which is based on real root isolation of
univariate polynomials and analyzing the local geometrical
properties of the given system. We propose the concept of
the orthogonal monotone system in a box and use it to de-
termine the uniqueness and the existence of a simple real
zero of the system in the box. We implement our method to
isolate the real zeros of a given bivariate polynomial system.
The experiments show the effectivity and efficiency of our
method, especially for systems with high degrees and sparse
terms. Our method also works for non-polynomial systems.
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1 INTRODUCTION

Real root isolation of zero-dimensional polynomial system-
s is a fundamental problem in mathematics and engineer-
ing applications. One can compute the real roots of a zero-
dimensional polynomial system by symbolic methods (such
as the Gröbner basis method, the Ritt-Wu characteristic set
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method, the resultant method, the generic position method
and so on), numeric methods (such as the homotopy contin-
uation method) and subdivision methods and so on.

In this paper, we consider only the problem of real root
isolation of polynomial systems for bivariate case. The prob-
lem was considered by numerous authors [2, 3, 6, 7, 9, 11–
13, 16, 19, 30, 38]. Some methods project the systems to two
directions (x-axis, y-axis) by resultant and then determine
whether a root pair (one x-coordinate and one y-coordinate)
is a true root or not [2, 12, 16, 19, 30]. In [6, 11], they
project the roots of the bivariate system to x-axis, using
a matrix formulation, and lifted them up to recover the root-
s of the original system. The multiplicities of the roots are
also considered. A local generic position method is proposed
in [7]. They transform the system to a new system which
is in a generic position and then project the new system
to x-axis again. Finally, they recover these roots of original
system from the projections of the roots of the new system
to the x-axis. Moreover, the multiplicities of the roots are
preserved. The method is improved and extended to gener-
al zero-dimensional polynomial systems in [9]. In [3], The
authors presented new algorithms for computing linear sep-
arating forms, RUR (Rational Univariate Representations)
decompositions and isolating boxes of the solutions for re-
al root isolation of bivariate polynomial systems. All these
methods are symbolic methods and they works for systems
with integer or rational number coefficients. There are also
some numeric methods [10]. The authors use the level set
sweeping method to tackle this problem and it can handle
the large system. Also, there exists nice work to isolate real
roots of non-polynomial systems [35–37], besides that, the
commercial software Mathematica also has this capability.

The subdivision methods [4, 5, 15, 17, 23, 28, 33] are useful
to compute the real roots of polynomial systems. The sub-
division methods use an exclusion test to check if a system
has roots or not in the given domain. If the domain contains
no root then it is thrown away, otherwise the domain is sub-
divided. This process is repeated until the domain contains
no root or satisfies the given termination precision. However,
the boxes obtained by such subdivision methods may not be
isolating boxes of the given system. There are also methods
to check the existence and uniqueness of the root in the giv-
en domain and to get the isolate domain. Miranda theorem
[15, 24] is used for checking the existence of the real zeros.
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Jacobian test [1, 21, 23] is used for checking a system has at
most one real zeros. The interval Newton method [20, 26, 32]
and α-theory [34] can work for testing the uniqueness of the
complex zeros.

Our method is different from those methods for isolating
the real zeros of bivariate polynomial systems. The resul-
tant computation is avoided in our method and it can be
regarded as a subdivision method. We use the upper and
lower bounding polynomials related to an interval [8, 22] of
the given bivariate system to compute candidate boxes [9] of
the real zeros. This step can be regard as an exclusion test.
Compared to interval evaluation, the bounding polynomials
involves only the real root isolation of univariate polynomi-
al equations, and interval evaluation involves two variables
which makes the result interval much wider than the real e-
valuation. In [15, 28], they use the Bernstein basis to obtain
the range of a polynomial in a box. The Bernstein basis has
many nice properties. However, for a polynomial with high
degree and sparse terms, its Bernstein representation need
to compute many coefficients like a dense polynomial but
the terms of the bounding polynomials are still sparse.

We present a concept of the orthogonal monotone system
in a box at the first time. The differences with other sub-
division methods are that we present a new criterion based
on properties of the orthogonal monotone system to check
the uniqueness and existence of simple real zeros of the o-
riginal system in the given box and we prove that for any
simple root of the given system, we can obtain the isolat-
ing box containing only the simple root by our method. Our
uniqueness condition is different from the existing ones. It
is not easy to satisfy the uniqueness condition for Newton’s
method since it may not converge in some bad cases. Based
on our result, we design an algorithm to isolate the real ze-
ros of a zero-dimensional bivariate polynomial system. For
systems which may contain multiple real zeros, our method
can not determine the uniqueness of multiple real zeros, thus
we give a terminate precision in our algorithm. We also show
that our method works for non-polynomial bivariate system-
s. A nice property of subdivision method is that it can be
parallelized, so as our method. We implement our algorithm
in Maple. But we didn’t realize parallel computing in our
implementation. Nevertheless, our experiments show the ef-
fectivity and efficiency of our method, especially for systems
with high degrees and sparse terms.

The rest of this paper is organized as follows. We intro-
duce some notations and preliminaries in the next section. In
Section 3, we present and prove the uniqueness and existence
theorem and show how to satisfy the related conditions of the
theorems for a given system and a given box. The algorithm
of the method is given in Section 4 and some experiment
results are given in Section 5. We draw a conclusion in the
last section.

2 NOTATIONS AND PRELIMINARIES

2.1 Notations

In this section, we will give some definitions and notations.
Let F = (f1, f2) ∈ R[x, y]2 be a polynomial system, where R
is the field of real numbers. Let B = [a1, b1] × [a2, b2] ⊂ R2,

m(B) = (a1+b1
2

, a2+b2
2

) and w(B) = max{b1 − a1, b2 − a2}.
We let V(F ) denote all the real zeros of F = 0. We define
similarly for V(f) with f ∈ R[x]. Let JF be the Jacobian
matrix of F . For a polynomial f ∈ R[x, y], we let f(B) =
{f(p)|p ∈ B} and we say f(B) > 0(< 0) if ∀p ∈ B, f(p) > 0
(< 0). Similarly, for an interval I ⊂ R, we say I > 0 (< 0) if
∀p ∈ I, p > 0 (< 0).

2.2 Bounding polynomials

In this subsection, we introduce the bounding polynomial
(also called sleeve functions [8] or max-min polynomial [22],
similar idea was also used in [39]) of a univariate interval
polynomial. In the following of this subsection, we always
assume that x ≥ 0. (Note that we can consider the transfor-
mation x → −x when x < 0 [9].)

Given a univariate interval polynomial k(x) = Σn
i=1[ui, vi]x

i

with [ui, vi] ⊂ R, we call ku(x) = Σn
i=1vix

i(kd(x) = Σn
i=1uix

i)
the upper (lower) bounding polynomial of k(x).

We call an interval (s, t), (s < t) a sleeve interval of k(x),
if s, t ∈ V(kukd) ∪ {0,+∞}, and ku(x)kd(x) < 0, ∀x ∈ (s, t).
Let I be a sleeve interval of a univariate interval polynomial
k(x). An interval J ⊃ I is called a candidate interval of
k(x) if J ∩ I ′ = ∅ for any sleeve interval I ′ ̸= I of k(x). One
can find similar definitions in [9].

Given a univariate polynomial g(x) ∈ R[x, y] and an in-
terval I = [s, t], we may evaluate g(I) as an interval [u, v]
by means of standard interval arithmetic [25]. Hence, for
a bivariate polynomial g(x, y) ∈ R[x, y] and a box B =
I1 × I2, I1 ≥ 0, g(x, I2) may be evaluated as a univariate
interval polynomial. Indeed, where g(x, y) = Σn

i=1gi(y)x
i,

we have g(x, I2) =
∑n

i=1 gi(I2)x
i =

∑n
i=1[ui, vi]x

i. We de-
note the upper (lower) bounding polynomial of g(x, I2) by
gu(x)(gd(x)) and refer to gu(x)(gd(x)) as the upper (low-
er) bounding polynomial of g(x, y) related to I2. When
I2 ≥ 0, similar definitions apply to g(I1, y). For examples,
let g = (y + 5)x3 − 11x2 + (y2 + 7)x + y − 1 and B =
I1×I2 = [0, 1.5]×[−0.1, 0.1]. We have g(x, I2) = [4.9, 5.1]x3+
[−11,−11]x2+[7, 7.01]x+[−1.1,−0.9], thus gu(x) = 5.1x3−
11x2+7.01x−0.9, gd(x) = 4.9x3−11x2+7x−1.1. See Figure
1. We will introduce some properties of interval polynomials
below. One can find more related results in [8].

Let g(x) ∈ R[x] be a univariate polynomial. We say g(x)
is monotonically increasing (decreasing) in an interval I, if
∀x1, x2 ∈ I, x1 < x2, we have g(x1) ≤ g(x2) (g(x1) ≥ g(x2)).
A well-know fact is that g(x) is monotonically increasing

(decreasing) in an interval I if and only if ∂g
∂x

(I) ≥ 0 (≤ 0).

Lemma 2.1. Let g(x, y) ∈ R[x, y] and B = I1 × I2, I1 ≥ 0.
gu(x), gd(x) are the upper and lower bounding polynomials
of g(x, y) respectively. We have:

(a) If gu(I1) < 0, then g(B) < 0.

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

91



(b) If gd(I1) > 0, then g(B) > 0.
(c) If gu(x) is monotonically decreasing in I1, then for any

ỹ ∈ I2, g(x, ỹ) is monotonically decreasing in I1.
(d) If gd(x) is monotonically increasing in I1, then for any

ỹ ∈ I2, g(x, ỹ) is monotonically increasing in I1.

Proof. We only prove (a) and (c). (b) and (d) can be
proved in a similar way. Let g = Σn

i=1gi(y)x
i and gu(x) =

Σn
i=1vix

i. ∀ỹ ∈ I2, we have gi(ỹ) ≤ vi, thus ∀x̂ ∈ I1 ≥ 0,
g(x̂, ỹ) ≤ gu(x̂) < 0. Therefore, we get g(B) < 0. Similarly,

for any ỹ ∈ I2, we have ∂g(x,ỹ)
∂x

(x̂) = Σn−1
i=1 i · gi−1(ỹ)x̂

i−1 ≤
Σn−1

i=1 i · vi−1x̂
i−1 = ∂gu

∂x
(x̂) ≤ 0,∀x̂ ∈ I1. Therefore g(x, ỹ) is

monotonically decreasing in I1. �

Therefore, we can check g(B) is positive or negative by
checking whether two univariate polynomials gu, gd are pos-
itive or negative in B. By isolating the real roots of gu, gd,
we can easily know gu, gd are positive or negative in an
interval. By [8], for a box B = I1 × I2 and a polynomi-
al g(x, y) ∈ R[x, y], we have gu(I1) − gd(I1) → 0 when
w(B) → 0. i.e., gu(I1) → g(p), gd(I1) → g(p) when B → p,
p ∈ R2 is a point. This property guarantees that we can
successfully check g(B) is positive or negative by bounding
polynomials and subdivision.

Given a system F = (f1, f2) and a box B = I1 × I2, let
T1, T2 denote the set of the candidate intervals of f1(I1, y),
f2(I1, y) respectively, and let {t1∩ t2∩ I2|t1 ∈ T1, t2 ∈ T2} =
{J1, . . . , Jm}. We call {I1×J1, . . . , I1×Jm} the candidates
of F in B. It is obvious that all the real zeros of F in B are
in the candidates. One can find more details in [9]. If the
width of I1 is large, we can split it into n parts and compute
the candidates separately. We can write it as an algorithm
Candidates(F,B, n). Notice that F may not have a root in
these candidate boxes (we can’t even ensure that S1 = V(f1)
and S2 = V(f2) both pass through these boxes), so we may
need to subdivide them. The main purpose of computing
candidates is to delete these many boxes which S1 or S2 do
not pass through. Thus, only a few candidate boxes need to
be computed, this improves the speed of our algorithm. It is
different from other subdivision methods.

Here is an example to show how to compute the candidates
of a system in a box.

Example 2.2. Let F = (x2 + y2 − 2, x2 − y), B = [−2, 2]×
[−2, 2], n = 6. See Figure 2, we split B into six parts and
compute the upper and lower polynomials in every small
box, and finally select C1, C2 as the candidate boxes.

3 UNIQUENESS AND EXISTENCE

We will give the uniqueness and existence conditions of a
simple zero of a system in a box.

Let F = (f1, f2) ∈ R[x, y]2, p ∈ R2 a zero of F . We say
p ∈ V(F ) is a simple zero of F = 0 if det(JF (p)) ̸= 0,
otherwise we say p is a singular or multiple zero of F = 0.

Figure 1: An example
for the bounding poly-

nomials.

Figure 2: How to find

candidates boxes C1, C2.

3.1 An orthogonal monotone system in a
box

In this subsection, we will give a criterion to determine whether
F = (f1, f2) ∈ R[x, y]2 has at most one real zero in a box in
R2. Our method is based on the geometric properties of the
planar curves defined by f1, f2.

Let g ∈ R[x, y] be a bivariate polynomial and B ⊂ R2 a
box. We define a sign function first:

Sign(g(B)) =


1, if g(B) > 0

−1, if g(B) < 0

0, if 0 ∈ g(B).

Next we give the definition of monotonicity of the bivariate
polynomial and the properties of the monotone function.

Definition 3.1. Let g ∈ R[x, y] and B ⊂ R2 a box. We
say g is monotonically increasing (decreasing) in B if
Sign(gx(B))Sign(gy(B)) < 0 (Sign(gx(B))Sign(gy(B)) > 0).

Remark: A polynomial g ∈ R[x, y] is monotonically increas-
ing (decreasing) in B = I1 × I2, we may have V(g) ∩ B = ∅
or V(g)∩B ̸= ∅. If V(g)∩B ̸= ∅, it means that the function
y = ϕ(x) satisfying g(x, ϕ(x)) = 0 is monotonically increas-
ing (decreasing) in B.

Lemma 3.2. Let g ∈ R[x, y], S = V(g) and B ⊂ R2 a box.

Denote gx = ∂g
∂x

, gy = ∂g
∂y

. ∀p1(x1, y1), p2(x2, y2) ∈ S ∩ B,

p1 ̸= p2, we have:

(a) If Sign(gx(B))Sign(gy(B)) < 0, then (x1−x2)(y1−y2) > 0.
(b) If Sign(gx(B))Sign(gy(B)) > 0, then (x1−x2)(y1−y2) < 0.

Proof. We prove only (a) since (b) can be proved in a
similar way. Assume that there exist two different points
(x1, y1), (x2, y2) ∈ S ∩B s.t. (x1 −x2)(y1 − y2) ≤ 0. Then we
claim that:

gx(p)(x1 − x2) + gy(p)(y1 − y2) ̸= 0, ∀p ∈ B. (1)

Since Sign(gx(B)) · Sign(gy(B)) < 0, we have

gx(p) > 0, gy(p) < 0 or gx(p) < 0, gy(p) > 0,∀p ∈ B.

If one of x1 − x2 and y1 − y2 is 0, then the other one is
not equal 0, we can easily get equation (1). If x1 − x2 ̸= 0
and y1 − y2 ̸= 0, then we have x1 − x2 < 0, y1 − y2 > 0 or
x1 − x2 > 0, y1 − y2 < 0. Thus, we also have (1).

Using mean value theorem for multivariate function [31],
there is a point p′ ∈ B, s.t. gx(p

′)(x1 − x2) + gy(p
′)(y1 −
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y2) = 0. It is a contradiction with equation (1). Therefore,
(x1 − x2)(y1 − y2) > 0. �

Definition 3.3. Let F = (f1, f2) ∈ R[x, y]2 and B ⊂ R2 a
box. We say F is an orthogonal monotone system in B,
if one of f1 and f2 is monotonically increasing in B, and the
other one is monotonically decreasing in B.

Using Lemma 3.2, we can prove a nice property of the
orthogonal monotone system:

Theorem 3.4. If F is an orthogonal monotone system in
B, then F = 0 has at most one root in B.

Proof. Assume that F = 0 has two real roots in B:
(x1, y1), (x2, y2). Without loss of generality, we assume that
f1 is monotonically increasing and f2 is monotonically de-
creasing in B. By Lemma 3.2, for f1, (x1 − x2)(y1 − y2) > 0,
but for f2, (x1 − x2)(y1 − y2) < 0. It is a contradiction.
Therefore, F = 0 has at most one root in B. �

The following figure shows an illustration for Theorem 3.4.

Figure 3: An orthogonal monotone system in a box.

We give the following algorithm to determine if a system
F is an orthogonal monotone system in B.

Algorithm 1 A =IsOMSys(F,B) :

Input: A bivariate polynomial system F = (f1, f2) ∈
R[x, y]2, a box B.
Output: A boolean number to show whether F is an or-
thogonal monotone system in B.

1. Compute fix = ∂fi
∂x

, fiy = ∂fi
∂y

, i = 1, 2.

2. Compute t1 = Sign(f1x(B))Sign(f1y(B)), t2 =
Sign(f2x(B))Sign(f2y(B)).

3. If t1 · t2 = −1, return 1; Else return 0.

Remark: In the step (2),(3), the signs of ∂f1
∂x

(B), ∂f1
∂y

(B)

and ∂f2
∂x

(B), ∂f2
∂y

(B) can be determined by using upper and

lower bounding polynomials.

3.2 How to transform a system to an
orthogonal monotone system in a box

In order to make the system F to be an orthogonal monotone
system in a box B, we need to transform the system F into
an equivalent system MFT , where M is a 2 × 2 invertible
matrix. The following lemma is well-known:

Lemma 3.5. Let F = (f1, f2) ∈ R[x, y]2 and M ∈ R2×2 be
a 2× 2 invertible matrix. Then V(F ) = V(MFT ).

For a system F , we give the preconditioner which trans-
forms locally the system into a system UJ−1

F (p) · FT , where

U =

(
1 1
1 −1

)
is the rotation matrix (In the following, the

notation U always means this matrix) and p ∈ B. In general,
we choose p as m(B). The idea is from [14, 18, 27, 28], they

transform locally the system F into J−1
F (p) ·FT = (f̃1, f̃2)

T ,

s.t. V(f̃1) and V(f̃2) are almost orthogonal to each other in
the neighborhood of p. Next, we do a rotation by multiplying
the matrix U to make a new system UJ−1

F (p) · FT which is
likely to become an orthogonal monotone system in B. See
the example below for illustration.

Example 3.6. Let F = (y − x2, x− 2y), B = [−0.1, 0.1]×
[−0.1, 0.1]. We know that F = 0 has a unique root (0, 0) in
B. However, F is not an orthogonal monotone system in B

since ∂(y−x2)
∂x

(0, 0) = 0. Moreover, no matter how much we
shrink the box B, we can not get an orthogonal monotone
system. Then, let G′ = J−1

F (m(B)) ·FT = (x−2x2, y−x2)T

and G = UJ−1
F (m(B)) ·FT = (−3x2+x+y,−x2+x−y)T =

(g, g′)T . It is easy to check that gx(B) > 0, gy(B) > 0 and
g′x(B) > 0, g′y(B) < 0, thus G is an orthogonal monotone
system in B. See Figure 4.

Figure 4: The left figure is of F = 0, the middle figure
is of G′ = 0, the right figure is of G = 0.

For a point p ∈ R2 and a positive number δ > 0, we define
a set of box asB(p, δ) = {B|B is a box and p ∈ B,w(B) < δ}.
Then, we have the following lemma:

Theorem 3.7. Let F = (f1, f2) ∈ R[x, y]2 and p∗ a simple
zero of F . Then, ∃δ > 0 s.t. ∀B ∈ B(p∗, δ), UJ−1

F (m(B))·FT

is an orthogonal monotone system in B.

Proof. Note that a system F is an orthogonal monotone
system in a box B if and only if the product of all the ele-
ments of JF (B) has negative sign. LetG = UJ−1

F (m(B))·FT ,

when B → p∗, we have lim
B→p∗

JG(B) = lim
B→p∗

UJ−1
F (m(B)) ·

JF (B) = UJ−1
F (p∗) · JF (p

∗) = U =

(
1 1
1 −1

)
. Therefore we

prove the theorem. �

Remark: If p∗ is a singular root, then for any box B contain-
ing p∗, we can not transform the system F into an orthogonal
monotone system in B since 0 = det(JF (p

∗)) ∈ det(JF (B)).
Hence, our method is invalid for singular roots.

Theorem 3.7 tells us that, for each simple root p∗ of F , we
can always find a small box B containing p∗ s.t. UJ−1

F (p)·FT

is an orthogonal monotone system in B (p is chosen as m(B)
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and not required to be origin point). Here, the next question
is how to determine whether F does have a root in B.

3.3 Existence

In this subsection, we give a method to determine whether
an orthogonal monotone system F has a real root or not in
B. We introduce some lemmas and one can find more related
results in [29].

Lemma 3.8. Let g ∈ R[x, y] and S = V(g). B = I1 × I2 is
a box. If Sign(gx(B)) · Sign(gy(B)) ̸= 0, then

(a) ∀x̂ ∈ I1, ŷ ∈ I2 , the straight lines x = x̂ or y = ŷ
intersects S at most once in B. Moreover, the straight
lines and S are not tangent.

(b) S can not be a loop inside B.

Proof. By Definition 3.1, we know g is monotone in B.
Thus (a) (b) holds by Lemma 3.2. �

Lemma 3.9. Let g ∈ R[x, y] and S = V(g), B is a box. If
Sign(gx(B)) ·Sign(gy(B)) ̸= 0, then B contains at most one
component of S.

Proof. Assume that the box B contains two components
of S. By Lemma 3.8, the curve S intersects every sides of B
at most once. Then, consider the two parallel sides of B, g
decreases along one side and increases along the other. It
is a contradiction with Sign(gx(B)) ̸= 0 or Sign(gy(B)) ̸=
0. See Fig 5 (a) for illustration. g decreases along the left
side and increases along the right side. Notice that when
the component intersects B at one point only, we also have
the same conclusion, see Fig 5 (b) and (c) for illustration.
Therefore, we have that B can not contain two components
of S, i.e., B contains at most one component of S. �

(a) (b) (c)

Figure 5: B contains two components of S.

For a box B = [a1, b1] × [a2, b2], let V (B) = {(a1, b1),
(a1, b2), (a2, b1), (a2, b2)} be the set of the vertexes of B,
∂B = {(x, y) ∈ B|x = a1 or x = a2 or y = b1 or y = b2} be
the boundaries of B. By Lemma 3.8 and Lemma 3.9, we can
directly get that if g is a monotonically function in B, then
#(S∩∂B) ≤ 2, where #(A) denotes the number of elements
of a set A. Next, we determine whether F has a root or not
in B based on the three cases: #(S ∩ ∂B) = 0, 1, 2.

Let Sign(g, V (B)) = {Sign(g(p))|∀p ∈ V (B)}. For ex-
ample, Sign(g, V (B)) = {1, 1, 1, 1} means the evaluation
of g at the four vertexes are all positive. We can compute
Sign(g, V (B)) to determine #(S∩∂B) = 0, 1 or 2. The case

#(S ∩ ∂B) = 0, 1 are simple cases, the following lemmas are
easy to be proved by Lemma 3.8:

Lemma 3.10. Let g ∈ R[x, y] and S = V(g). B is a box. If
Sign(gx(B))Sign(gy(B)) ̸= 0, the following are equivalent:

(1) S ∩ ∂B = ∅.
(2) S ∩B = ∅.
(3) Sign(g, V (B)) = {1, 1, 1, 1} or {−1,−1,−1,−1}.

Lemma 3.11. Let g ∈ R[x, y] and S = V(g). B is a box, p
is a vertex of B. If Sign(gx(B)) · Sign(gy(B)) ̸= 0, then the
following are equivalent:

(1) #(S ∩ ∂B) = 1.
(2) S ∩ ∂B = {p}.
(3) S ∩B = {p}.
(4) Sign(g, V (B)) = {0, 1, 1, 1} or {0,−1,−1,−1}.

This case is very special since it needs to check whether a
function vanishes exactly or not at a point. It means the func-
tion should be exactly evaluated. Of course, we can change
the length of the sides to avoid this case when we meet this
special case. Next, we will analyze the last case: #(S1 ∩
∂B) = #(S2 ∩ ∂B) = 2.

Lemma 3.12. Let F = (f1, f2) be an orthogonal monotone
system, S1 = V(f1), S2 = V(f2) and #(S1 ∩ ∂B) = #(S2 ∩
∂B) = 2. Assume that S1 ∩ ∂B = {p, p′}, we have:

(1) If f2(p)f2(p
′) ≤ 0, F = 0 has a unique root in B.

(2) If f2(p)f2(p
′) > 0, F = 0 has no root in B.

Proof. Since B contains a unique component of S1, we
can parameterize f1 = 0 with an analytic function in B by
the implicit function theorem. Assume (x(t), y(t)), t0 ≤ t ≤
t1 is the parameterization of f1 = 0 in B from p to p′, i.e.,
we have (x(t0), y(t0)) = p, (x(t1), y(t1)) = p′. Consider the
univariate function g(t) = f2(x(t), y(t)). If f2(p)f2(p

′) ≤ 0,
i.e. g(t0)g(t1) ≤ 0, then ∃t′ ∈ [t0, t1] s.t. g(t

′) = 0 by the
intermediate value theorem. Thus (x(t′), y(t′)) is a root of
F = 0. Since F is an orthogonal monotone system in B, we
know that F = 0 has a unique root in B. If f2(p)f2(p

′) > 0,
i.e., g(t0)g(t1) > 0, then there are even number roots of
g(t) = 0 in [t0, t1]. Thus, F = 0 has even number roots in
B. Since F = 0 has most one root in B, we can know that
F = 0 has no root in B. �

3.4 How to check the existence

We give a method to check the existence of a root of a system
in a box in this subsection. Let F = (f1, f2) be an orthogonal
monotone system in B and the other notations be as above.
We assume that S1 ∩ ∂B = {k1, k′

1}, S2 ∩ ∂B = {k2, k′
2}.

If we can exactly compute the points k1, k
′
1, we can easily

know that F = 0 has a unique root or no root in B by Lem-
ma 3.12. However, it is unnecessary. Notice that one of f1
and f2 is monotonically increasing and the other is mono-
tonically decreasing in B, we need only to determine the
position of these points. By computing the Sign(f1, V (B))
and Sign(f2, V (B)), we immediately know which sides of B
these points k1, k

′
1, k2, k

′
2 lie on. Then we use the following

method to compute sign(f2(k1)):
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(1) If k1 and k2, k
′
2 are not on the same side, then we can

arbitrarily take a point p on the side which k1 are on,
we know that sign(f2(p)) = sign(f2(k1)). See the left
one in Figure 6.

(2) If k1 and k2 (k′
2) are on the same side and k1 ̸= k2 (k′

2).
Then we can use the bisection method to get a point p
on the side separating k1, k2 (k′

2), which means that p
divides the side into two parts, k1 in the one part and
k2 (k′

2) on the other part. Then we have sign(f2(p)) =

sign(f2(k1)). See the right one in Figure 6.

Figure 6: Examples for #(S1 ∩ ∂B) = #(S1 ∩ ∂B) = 2.

By this method, we can easily know f2(k1)f2(k
′
1) < 0 or

> 0. The bad case is that k1, k2 are on the same side and
we can not separate them. This case happens when k1 = k2
or ||k1−k2|| is less than the given bisection precision. Based
on above discussion, we give the algorithm Existence.

Algorithm 2 A =Existence(F,B, ϵb) :

Input: An orthogonal monotone system F = (f1, f2) in a
box B, a given bisection precision ϵb > 0.
Output: 1,0,or Unknown.

1. Compute Sign(f1, V (B)) and Sign(f2, V (B)).
2. If Sign(f1, V (B)) or Sign(f2, V (B)) is {1, 1, 1, 1} or

{−1,−1,−1,−1}, then return 0. (Lemma 3.10)
3. Else if Sign(f1, V (B)) or Sign(f2, V (B)) is {0, 1, 1, 1}

or {0,−1,−1,−1}, then (Lemma 3.11)
(1) Let S1 ∩B = {p∗} or S2 ∩B = {p∗}.
(2) If f1(p

∗) = 0 and f2(p
∗) = 0, then return 1.

(3) Else, return 0.
4. Else, let V(f1) ∩ ∂B = {k1, k′

1}, V(f2) ∩ ∂B = {k2, k′
2}.

Let L1, L
′
1 denote the two side k1, k

′
1 are on.

(1) For i = 1 to 2 do.
(a) If i = 1 let L = L1, k = k1, else, let L = L′

1,
k = k′

1.
(b) If k2 and k′

2 are not on L, arbitrarily take a point
pi ∈ L and compute ti = sign(f2(pi)).

(c) Else if k2 or k′
2 are on L, we use the bisection

method separating k, k2 or k, k′
2 on L.

(i) If we separate k, k2 at the point pi, then com-
pute ti = sign(f2(pi)).

(ii) Else we reach a given precision and can not
separate k, k2 or k, k′

2, then let ti = 0.
(2) If t1t2 = 0, then return Unknown.
(3) Else if t1t2 < 0, then return 1. (Lemma 3.12)
(4) Else, then return 0. (Lemma 3.12)

Remark: A = 1 means that the system F has unique root
in B, A = 0 means that the system F has no root in B. If
we can not separate k, k2 or k, k′

2, we will return Unknown.
We will handle the Unknown case in next section.

The correctness of the algorithm is guaranteed by the anal-
ysis in Section 3.3. The termination is obvious.

3.5 How to get all real zeros of a system

In this subsection, we will show how to get all the isolating
boxes of a given system in R2.

Considering the coordinate transformation: x → 1
x
, y →

1
y
, we map the interval (−b,−1) to (−1,−1/b) and map the

interval (1, b) to (1/b, 1), where b > 1. Hence, we need only
to consider finding real roots in [−1, 1] × [−1, 1]. Given a
system F = (f1, f2), let d1, d2 be the degrees of f1, f2 about
x and d′1, d

′
2 be the degrees of f1, f2 about y. Consider the

following system:

F(x) = (xd1f1(
1
x
, y), xd2f2(

1

x
, y)),

F(y) = (yd′1f1(x,
1
y
), yd

′
2f2(x,

1

y
)),

F(xy) = (xd1yd′1f1(
1
x
, 1
y
), xd2yd′2f2(

1

x
,
1

y
)).

We isolate the real roots of these systems F(x), F(y), F(xy) in
[−1, 1] × [−1, 1], then we can easily get the isolating boxes
of the original system. Notice that when we isolate the real
roots of these systems F(x), F(y), F(xy) in B ⊂ [−1, 1]×[−1, 1].
We need not to consider the zero (0, 0) since it is not related
to any zero of the original system. For examples, we can get
the isolating boxes of the original system in [−1, 1]× (1,∞)
by isolating the real roots of F(y) in [−1, 1] × (0, 1). Doing
this way, one advantage is to avoid coefficient expansion since
we only compute the univariate interval polynomial in some
boxes B ⊂ [−1, 1]× [−1, 1].

Example 3.13. Let F = (x2 + y2 − 8, x− y), then F(xy) =

(y2+x2−8x2y2, y−x). We can isolate the real roots of F(xy)

in (0, 1)× (0, 1) and get only real zero ( 1
2
, 1
2
). Then we know

that (2, 2) is the only one real zero of the original system F in
(1,∞)× (1,∞). By isolating real roots of F, F(x), F(y), F(xy)

in their corresponding intervals, we can obtain all the real
roots of the original system.

If F has singular zeros, we can not determine whether a
box contains only a singular zero or not. In that case, we
will repeat subdividing the candidate boxes until the width-
s of the obtained boxes are less than a given termination
precision ϵ > 0. Finally we get some suspected root boxes
s.t. each of them may contain several zeros (counting the
multiplicities of the zeros) or no zero.

We give the following example to show that the existence
and uniqueness conditions can be applied for the non-polynomial
case.

Example 3.14. Let F = (f1, f2) = (ex−y − 2y, 2sin(x +

y)+2x2 − 1), B = [0, 1
2
]× [0, 1

2
]. We have ∂f1

∂x
= ex−y, ∂f1

∂y
=

−ex−y − 2, and ∂f2
∂x

= 2cos(x + y) + 4x, ∂f2
∂y

= 2cos(x +
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y). Then we know ∂f1
∂x

(B) > 0, ∂f1
∂y

(B) < 0 and ∂f2
∂x

(B) >

0, ∂f2
∂y

(B) > 0. Hence, F is an orthogonal monotone system

in B. Next we check the existence condition. Since f1(0, 0) >
0, f1(

1
2
, 0) > 0, f1(0,

1
2
) < 0, f1(

1
2
, 1
2
) = 0, we have that the

curve S1 = V(f1) intersect ∂B twice, i.e., S1 ∩ ∂B = {p, q}
where p = ( 1

2
, 1
2
), q = (0, y∗) with y∗ ∈ (0, 1

2
). We can get

the evaluation of f2 at p, q: f2(p) > 0, f2(q) < 0. Thus F has
a unique root in B by Lemma 3.12.

4 ALGORITHM

Based on the discussion above, we have the main algorithm
Birealrootfinding below:

Algorithm 3 R,SR =Birealrootfinding(F,B, ϵ, n) :

Input: A bivariate polynomial system F = (f1, f2) ∈
R[x, y]2, a box B, termination precision ϵ > 0, an integer
n > 1.
Output: An isolating box set R and a suspected root box
set SR.

1. Let R = ∅,SR = ∅.
2. CS =Candidates(F,B, n).
3. While CS ̸= ∅:

(1) Take one element C = Cx × Cy out of CS.
(2) F ′ = UJ−1

F (m(C)) · FT .
(3) A =IsOMSys(F ′, C).

(a) If A = 1, then
(i) A′ =Existence(F ′, C, ϵ).
(ii) If A′ = 1 then, put C into R.
(iii) If A′ =Unknown then, put C into SR.

(b) Else if w(Cx) > ϵ, then
(i) CS′ =Candidates(F,C, 2).
(ii) Put CS′ into CS.

(c) Else, put C into SR.
4. Return R,SR.

Remark: For a system F with only simple root, we usually
obtain SR = ∅, it means we get all the simple root of F .
The bad case is that there are some roots on the boundary
of some candidates boxes, then we will return a Unknown
in Existence since we can not split k, k2 in Existence. We
can avoid this case by changing the length of the box or com-
bining two adjacent boxes with the same output ”Unknown”
to form a new box. Subdividing the new box and check the
conditions, one usually succeed in finding the results.

The correctness of the algorithm Birealrootfinding is
guaranteed by Theorem 3.4 and Lemmas 3.10, 3.11, 3.12.
The termination is guaranteed by Theorem 3.7, the conver-
gence of bounding polynomials [8] and the given termination
precision ϵ.

5 EXPERIMENTS

We implement our algorithm in Maple 2016, and we do some
experiments in Maple under Windows 7 with a computer of
8 Intel i7-4790 CPU and 8 GB RAM. The codes will be put
on the web later.

Let F = (f1, f2). Let d, t, |c| denote the maximal total
degree, the maximal number of terms, the maximal absolute
value of coefficients of f1, f2. We isolate the real roots of
these system in B = [−10, 10] × [−10, 10]. The termination
precision ϵ = 10−6, n = 11. The results are in Table 1.

example d t |c| ≤ Times

poly1 8 9 21 1.529s

poly2 3 4 2 0.437s

poly3 14 50 198 84.427s

poly4 14 50 198 62.884s

poly5 14 50 198 87.205s

poly6 200 50 5 1601.132s

poly7 200 500 100 8937.609s

poly8 500 50 5 13771.659s

poly9 500 500 100 263009.824s

poly10 1000 50 5 43444.313s

poly11 1000 500 100 736920.972s

Table 1: Comparison for systems with different sizes

The poly 1 is F = (x2 + y2 − 1, 2x8 + 8x6y2 + 12x4y4 +
8x2y6 + 2y8 − x6 − 21x4y2 + 9x2y4 − 3y6). The poly 2 is
F = (0.3x3−1.72xy2−1.04xy−0.46,−1.92x2y+1.7y3+0.96).
The poly3,4,5 are generated as below: randomly generate f
and g in the variables x, y, z and set f1 = discrim(f, z) and
f2 = resultant([f, g], z). Let the system poly3 be (f1, f2),
poly4 be (f1, f2 − 0.0001) and poly5 be (f1, f2 − 0.000001).
We have that the system poly3 has singular roots and the
systems poly4,5 which are derived from poly3 with a slight
perturbation of f2 are nearly singular systems. We can find
that the slighter the perturbation, the longer the comput-
ing time, besides that, the singular system poly3 and the
slighter perturbation system poly5 both get some suspected
root boxes. The poly 6,7,8,9,10,11 are randomly generated.

We compare the computing times of our method with
LUR method [9] and Isolate (the command in Maple in
RootFinding package). We consider different polynomial sys-
tems with different degrees, number of terms. For each poly-
nomial system of the same type, we randomly generate 3
polynomial systems and calculate average time. We isolate
all the real roots of these systems with our method and set
the termination precision ϵ = 10−4, n = 11. The results are
in Table 2.

In Table 2, “ \” means it is unable to allocate memory or
more than 10 hours. One can find that our method is slower
than LUR when we compute the polynomial system with low
degree, but LUR can not handle the polynomial systems with
high degrees. Our method has great superiority especially for
the systems with high degrees and sparse terms. Notice that
our method can be parallelized, it will greatly improve the
efficiency of our algorithm.

6 CONCLUSION

In this paper, we propose a new method to isolate the real
roots of a bivariate system (f1, f2) ∈ R[x, y]2. By isolating
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d t
Times

Isolate LUR our method

20 50 15.606s 0.322s 51.111s

20 dense 39.437s 0.639s 472.345s

50 50 6438.026s 10.873s 126.823s

50 500 \ 17.852s 5127.660s

100 10 \ 148.752s 33.571s

100 50 \ 292.127s 616.090s

100 500 \ 694.324 8437.350s

150 10 \ 701.906s 222.192s

150 50 \ \ 2486.276s

Table 2: Computing time comparison.

the upper and lower bounding polynomials of (f1, f2), we
obtain real root candidate boxes of the system. We check
the uniqueness and existence conditions for each candidate
box. If it succeeds, we get an isolate box of the given system.
If not, we split these candidate boxes until they satisfy the
conditions or their widths reach a given precision. We will
realize the parallel computing and isolate the real zeros of
non-polynomial bivariate systems in the implementation in
the full version of this work. In the future, we will extend
this method to multivariate systems.
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