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Abstract This paper studies the equivalence theory between bivariate polynomial matrices and their

Smith forms. For a class of bivariate polynomial matrices, by leveraging the special form of the greatest

common divisor of the maximal minors of the matrix, the authors construct a homomorphism from the

bivariate polynomial ring to a Euclidean domain. Subsequently, by applying Gaussian elimination, the

matrix can be reduced to its Smith form. Consequently, the authors establish that the necessary and

sufficient condition for such a type of matrix to be equivalent to its Smith form is that the reduced

minors of each order generate the unit ideal.

Keywords Bivariate polynomial matrices, matrix equivalence, reduced minors, Smith forms.

1 Introduction

Multivariate polynomial matrices serve as a fundamental representational framework for

characterizing diverse multidimensional systems encountered in circuits, control, signal pro-

cessing, such as dynamical control systems and delay-differential systems (see [1–4] and the
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references therein). The algebraic properties of multidimensional systems can be systemati-

cally established through rigorous investigation of their corresponding multivariate polynomial

matrices. Owing to the structural simplicity and information-preserving characteristics inher-

ent in the Smith form, mathematicians and engineers are particularly concerned about the

equivalence problem between multivariate polynomial matrices and their Smith forms.

Since univariate polynomial rings are Euclidean domains, univariate polynomial matrices are

always equivalent to their Smith forms[5]. However, this fact may not hold in the multivariate

case. For instance, Frost and Storey[6] provided a counter-example to illustrate that a bivariate

polynomial matrix is not equivalent to its Smith form. Therefore, researchers began to explore

the conditions under which a multivariate polynomial matrix is equivalent to its Smith form.

Since the 1970s, there have been some results on the equivalence between bivariate polyno-

mial matrices and their Smith forms (see, e.g., [7–9]). Meanwhile, for cases involving more than

two variables, researchers have primarily focused on investigating matrices with special forms.

For example, Lin, et al.[10] proved that a square matrix F ∈ K[x1, · · · , xn]
l×l with det(F )

= x1 − f(x2, · · · , xn) is equivalent to its Smith form S = diag{1, · · · , 1, det(F )}. Building on

the main result presented in [10], Boudellioua[11] implemented the corresponding equivalence

algorithm in the computer algebra system Maple, and constructed two unimodular matrices to

reduce F to S. Subsequently, Li, et al. generalized the conclusion in [10] to the case of det(F ) =

(x1 − f(x2, · · · , xn))
t through a series of works (see, e.g., [12–14]). In addition, Liu, et al.[15]

studied the equivalence problem concerning an upper triangular matrix F ∈ K[x1, · · · , xn]
l×l

with diagonal entries being x1 − f(x2, · · · , xn)− c1, · · · , x1 − f(x2, · · · , xn)− cl and its Smith

form S = diag{1, · · · , 1, det(F )}, and proved that F is necessarily equivalent to S, where

c1, · · · , cl ∈ K are pairwise different. In 2019, Li, et al.[16] investigated the equivalence problem

of another type of bivariate polynomial matrices. Let F ∈ K[x, y]l×l with det(F ) = p, where

p ∈ K[x] is an irreducible polynomial. Then F is equivalent to its Smith form diag{1, · · · , 1, p}.
Zheng, et al.[17] extended the main result in [16] to the case of det(F ) = pt, and proposed that

the necessary and sufficient condition for F to be equivalent to its Smith form diag{pt1 , · · · , ptl}
is that the reduced minors of each order of F generate the unit ideal, where 0 ≤ t1 ≤ · · · ≤ tl

and t = t1 + · · ·+ tl. Subsequently, Guan, et al.[18] considered the case of F ∈ K[x1, · · · , xn]
l×l

with det(F ) = pt, and established that F is equivalent to its Smith form diag{1, · · · , 1, det(F )}
if all the (l − 1)× (l − 1) minors of F generate the unit ideal, where l ≥ 3 and p ∈ K[x1] is an

irreducible polynomial. Recently, Lu, et al.[19] investigated the equivalence problem between

a specific class of n-variables polynomial matrices and their Smith forms, where each matrix

is characterized by the property that the greatest common divisor of the maximal minors is a

univariate polynomial. By employing localization techniques, they fully resolved this issue.

Although significant progress has been made in addressing the equivalence between multi-

variate polynomial matrices and their Smith forms, the problem remains far from being fully

resolved. Therefore, it is still essential to continue investigating the equivalence theory of cer-

tain special types of polynomial matrices with respect to their Smith forms. This paper will

focus on the following type of bivariate polynomial matrices. Let F ∈ K[x, y]l×m with rank

r, and dr(F ) = f(x)(y − g(x))t, where dr(F ) is the greatest common divisor of all the r × r
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minors of F , and f, g ∈ K[x]. We will investigate the necessary and sufficient condition for the

equivalence between F and its Smith form.

The rest of the paper is organized as follows. In Section 2, we first present fundamental

concepts related to bivariate polynomial matrices and formulate an equivalence problem that

will be addressed in this paper, and then introduce several auxiliary lemmas that will be in-

strumental in resolving this problem. In Section 3, we first illustrate the main idea of this

paper with an example, then address three challenges encountered in the development of the

idea, and finally present the necessary and sufficient condition for the equivalence between a

bivariate polynomial matrix and its Smith form. In Section 4, we summarize this paper and

propose directions for future work.

2 Preliminaries

Let K be a field, K be the algebraic closed field containing K, K[x, y] be the polynomial

ring in the variables x, y over K, and K[x, y]l×m be the set of l ×m matrices with entries in

K[x, y]. Throughout this paper, we assume without loss of generality that l ≤ m.

Let F ∈ K[x, y]l×m. We use rank(F ) to denote the rank of F . For any integer i, let Ii(F )

be the ideal generated by all the i × i minors of F , and di(F ) be the greatest common divisor

of all the i × i minors of F . Here, we make the convention that d0(F ) ≡ 1 and di(F ) ≡ 0 for

i > rank(F ). Given any two strictly increasing sequences of indices {i1, · · · , is} and {j1, · · · , jt}
with 1 ≤ i1 < · · · < is ≤ l and 1 ≤ j1 < · · · < jt ≤ m, denote by F

(
i1 ··· is
j1 ··· jt

)
the s×t submatrix

of F formed by its i1-th to is-th rows and j1-th to jt-th columns.

2.1 Basic Notions and Equivalence Problem

In this subsection, we first introduce some essential concepts, and then propose the equiv-

alence problem that we will consider. We now present a concept similar to invertible matrices

over number fields.

Definition 2.1 Let U ∈ K[x, y]l×l. Then U is said to be unimodular if det(U) is a

nonzero constant in K.

With the help of Definition 2.1, we propose the concept of matrix equivalence over K[x, y].

Definition 2.2 Let F,Q ∈ K[x, y]l×m. Then F is said to be equivalent to Q if there

are two unimodular matrices U ∈ K[x, y]l×l and V ∈ K[x, y]m×m such that F = UQV . For

convenience, F being equivalent to Q is denoted by F ∼ Q.

The Smith form, a well-established concept for matrices over univariate polynomial rings,

admits a natural extension to the bivariate case in K[x, y] via an analogous methodology.

Definition 2.3 Let F ∈ K[x, y]l×m with rank r, and Φi be a polynomial inK[x, y] defined

as follows:

Φi =

⎧
⎪⎨
⎪⎩

di(F )

di−1(F )
, 1 ≤ i ≤ r;

0, r < i ≤ l.
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Moreover, Φi satisfies the divisibility property Φ1 | Φ2 | · · · | Φr . Then the Smith form of F is

given by

S =

⎛
⎝diag{Φ1, · · · , Φr} 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

⎞
⎠ .

To investigate the problem of equivalence between matrices over K[x, y] and their Smith

forms, we further require the following three concepts.

Definition 2.4 (see [20]) Let F ∈ K[x, y]l×m. Given an integer i, let ai1, · · · , aiβ be all

the i × i minors of F , where 1 ≤ i ≤ l and β =
(
l
i

)(
m
i

)
. Extracting di(F ) from ai1, · · · , aiβ

yields

aij = di(F ) · bij , j = 1, · · · , β.
Then, bi1, · · · , biβ are called the i× i reduced minors of F . For convenience, we use Ji(F ) to

denote the ideal in K[x, y] generated by bi1, · · · , biβ .
The concept of reduced minors plays an important role in this paper, and it is closely related

to determining whether a bivariate polynomial matrix is equivalent to its Smith form.

Definition 2.5 (see [21]) Let I be an ideal in K[x, y]. Then we call

V(I) = {(x0, y0) ∈ K2 | h(x0, y0) = 0 for all h ∈ I}

the affine variety defined by I.
Li, et al. in [13] proved that V(I) = ∅ if and only if I = K[x, y].

Definition 2.6 (see [22]) Let A ∈ K[x, y]l×m be of full row rank. Then A is said to be

zero left prime (ZLP) if Il(A) = K[x, y]. Similarly, A ∈ K[x, y]m×l can be defined as a zero

right prime (ZRP) matrix.

We consider a subset of bivariate polynomial matrices as follows:

M := {F ∈ K[x, y]l×m | dr(F ) = f(x)(y − g(x))t, where r = rank(F ) and f, g ∈ K[x], t ∈ N}.

In the above set, N represents the set of natural numbers inclusive of 0. When r = l and f is

a power of an irreducible polynomial in K[x], Zheng, et al.[23] proved that

F ∼ Q =
(
diag{1, · · · , 1︸ ︷︷ ︸

l−1

, dl(F )}, 0l×(m−l)

)
if and only if Il−1(F ) = K[x, y].

It is evident that Q represents the most particular case among all possible Smith forms of F .

In the subsequent analysis, this paper relaxes the constraints imposed in [23], and explores the

necessary and sufficient condition for F ∈ M to be equivalent to its general Smith form.

Problem 2.7 Let F ∈ M. What is the necessary and sufficient condition for the equiv-

alence of F and its Smith form?



SMITH FORMS OF BIVARIATE MATRICES 5

2.2 Auxiliary Lemmas

In this subsection, we present several lemmas required to address Problem 2.7. We begin

by presenting two well-known formulas from linear algebra, both of which are applicable to the

polynomial matrix case.

Proposition 2.8 (Laplace expansion formula[24]) Let A ∈ K[x, y]l×l. Given any strictly

increasing sequence of indices {i1, · · · , ik} with 1 ≤ i1 < · · · < ik ≤ l, we have

det(A) =
∑

1≤j1<···<jk≤l

det
(
A
(

i1 ··· ik
j1 ··· jk

))
· (−1)i1+···+ik+j1+···+jk det

(
Aac

(
i1 ··· ik
j1 ··· jk

))
,

where Aac
(

i1 ··· ik
j1 ··· jk

)
is the (l − k)× (l − k) submatrix obtained from A by deleting its i1-th to

ik-th rows and j1-th to jk-th columns.

Proposition 2.9 (Binet-Cauchy formula[24]) Let A = BC, where B ∈ K[x, y]l×k and

C ∈ K[x, y]k×m. Then an r × r minor of A is

det
(
A
(

i1 ··· ir
j1 ··· jr

))
=

∑
1≤s1<···<sr≤k

det
(
B
(

i1 ··· ir
s1 ··· sr

))
· det

(
C
(

s1 ··· sr
j1 ··· jr

))
,

where 1 ≤ r ≤ min{k, l}.
Lemma 2.10 Let F1, F2 ∈ K[x, y]l×m. If F1 ∼ F2, then di(F1) = di(F2), Ii(F1) = Ii(F2)

and Ji(F1) = Ji(F2), where i = 1, · · · , l.
The proof of Lemma 2.10 follows directly from an application of the Binet-Cauchy formula

and is therefore omitted here.

Lemma 2.11 (see [14]) Let F, F1, F2 ∈ K[x, y]l×l satisfy F ∼ F1F2. If there exists

some positive integer k with k ≤ l such that Jk(F ) = K[x, y] and dk(F ) = dk(F1), then

Jk(F1) = Jk(F2) = K[x, y] and dk(F2) = 1.

Lemma 2.12 (see [19]) Let F, F1, F2 ∈ K[x, y]l×l satisfy F = F1F2 and gcd(det(F1),

det(F2)) = 1. Then

1) di(F ) = di(F1) · di(F2), where i = 1, · · · , l;

2) If Ji(F ) = K[x, y], then Ji(F1) = Ji(F2) = K[x, y], where i = 1, · · · , l.

In 1976, Quillen[25] and Suslin[26] independently resolved the renowned Serre Conjecture,

and thereby established a connection between ZLP matrices and unimodular matrices, a result

now known as the Quillen-Suslin theorem. Specifically, a ZLP matrix can be embedded into

a unimodular matrix. Based on the Quillen-Suslin theorem, the following conclusion can be

easily derived.

Corollary 2.13 Let A ∈ K[x, y]l×m be a ZLP matrix. Then there exists a unimodular

matrix U ∈ K[x, y]m×m such that AU = (Il, 0l×(m−l)), where Il is the l × l identity matrix.

By leveraging the Quillen-Suslin theorem, Wang and Feng[27] resolved the Lin-Bose Conjec-

ture proposed in [28], and further extended the result to the case of rank-deficient matrices.
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Lemma 2.14 Let F ∈ K[x, y]l×m with rank(F ) = r, and Jr(F ) = K[x, y], where 1 ≤ r ≤
l. Then there exist G1 ∈ K[x, y]l×r and F1 ∈ K[x, y]r×m such that F = G1F1 with F1 being a

ZLP matrix.

Theorem 2.15 (Primitive factorization theorem[29]) Let F ∈ K[x, y]l×m be of full row

rank, and h ∈ K[x] be a divisor of dl(F ). Then there exist G1 ∈ K[x, y]l×l and F1 ∈ K[x, y]l×m

such that F = G1F1 with det(G1) = h.

The key idea of the primitive factorization theorem is to establish a homomorphism from

K[x, y] to a Euclidean integral domain, and then use Gaussian elimination method to factorize

F . This conclusion will help us in constructing the process of matrix equivalence in this paper.

Lemma 2.16 (see [19]) Let F ∈ K[x, y]l×m with rank r, and dr(F ) = f(x) be a univariate

polynomial. Then F is equivalent to its Smith form if and only if Ji(F ) = K[x, y] with i =

1, · · · , r.
As observed from Problem 2.7, the polynomial matrices investigated in this paper are dif-

ferent from those in Lemma 2.16. Although it is only a change from dr(F ) being f(x) to

f(x)(y − g(x))t, it has brought many difficulties to solving Problem 2.7. These challenges will

be elaborated in the next section.

3 Equivalence Theory

This section is devoted to presenting the detailed solution procedure for Problem 2.7, and

thus contains a number of technical proof processes. To enhance readability, Table 1 summa-

rizing recurrent notations along with their corresponding interpretations is provided.

Table 1 Notations

No. Notation Description

1 p the bivariate polynomial y − g(x)

2 di(F ) the greatest common divisor of all the i× i minors of F

3 Ii(F ) the ideal generated by all the i× i minors of F

4 Ji(F ) the ideal generated by all the i× i reduced minors of F

5 F ∼ Q F is equivalent to Q

6 〈h1, · · · , hl〉 the ideal generated by h1, · · · , hl

7 �a ∈ A \ A1 �a belongs to the set formed by the rows of A after removing A1

3.1 Main Idea and Challenges

To address Problem 2.7, we will use an example to illustrate the main idea of the solution

procedure and the challenges encountered therein.

Example 3.1 Let F ∈ K[x, y]4×4 with det(F ) = fp6, where f ∈ K[x]. Assume that the

Smith form of F is S = diag{f1, f2p, f3p2, f4p3}, where f1 | f2 | f3 | f4 and f = f1f2f3f4. In

addition, Ji(F ) = K[x, y] for i = 1, · · · , 4.
According to the primitive factorization theorem, there are two matrices G1, F1 ∈ K[x, y]4×4

such that F = G1F1 with det(G1) = f . It follows from the Binet-Cauchy formula that det(F1) =
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p6. This implies that gcd(det(G1), det(F1)) = 1. Based on the first result of Lemma 2.12, we

have di(F ) = di(G1)di(F1), where i = 1, · · · , 4. It follows that di(G1) = f1 · · · fi for i = 1, · · · , 4,
and d1(F1) = 1, d2(F1) = p, d3(F1) = p3, d4(F1) = p6.

Under the assumption that Ji(F ) = K[x, y] for i = 1, · · · , 4, we can utilize the second result

of Lemmas 2.12 and 2.16 to obtain the conclusion that

G1 ∼ SG1 = diag{f1, f2, f3, f4}.

There exist two unimodular matrices U1, V1 ∈ K[x, y]4×4 such that G1 = U1SG1V1. Then, we

get F = U1SG1V1F1. Let F2 = V1F1. By the fact that V1 is unimodular, di(F2) = di(F1) and

Ji(F2) = Ji(F1), where i = 1, · · · , 4.
The first thing we want to do is to prove that there exist a unimodular matrix U2 ∈ K[x]4×4

and a polynomial matrix F3 ∈ K[x, y]4×4 such that F2 = U2 · diag{1, p, p, p} · F3. This is the

first challenge. By overcoming this challenge, we can obtain

F ∼ diag{f1, f2, f3, f4} · U2 · diag{1, p, p, p} · F3.

The second challenge is to prove that

diag{f1, f2, f3, f4} · U2 · diag{1, p, p, p} ∼ diag{f1, f2p, f3p, f4p}.
After solving this challenge, we can get

F ∼ diag{f1, f2p, f3p, f4p} · F4,

where F4 ∈ K[x, y]4×4.

Finally, the third challenge is to prove that there exist a unimodular matrix U3 ∈ K[x]4×4

and a polynomial matrix F5 ∈ K[x, y]4×4 such that F4 = U3 · diag{1, 1, p, p} · F5. If we can

prove, then we have

F ∼ diag{f1, f2p, f3p, f4p} · U3 · diag{1, 1, p, p} · F5.

By repeatedly applying the above calculation process, we can deduce the result:

F ∼ S = diag{f1, f2p, f3p2, f4p3}.

In Example 3.1, the first and the third challenges are closely related. In the subsequent

subsection, we will address these two challenges first. The second challenge is the most crucial

part in solving Problem 2.7, and we will tackle it at the end.

3.2 Solving the Challenges

Leveraging the particular structure of p, we construct the following homomorphism

φp : K[x, y] −→ K[x],

h(x, y) −→ h(x, g(x)).

This homomorphism can extend canonically to the homomorphism φp : K[x, y]l×m → K[x]l×m

by applying φp entry-wise.
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Lemma 3.2 Let A ∈ K[x, y]l×m. If rank(φp(A)) = k, then there exist A1 ∈ K[x, y]l×m

and a unimodular matrix U ∈ K[x]l×l such that

A = U · diag{1, · · · , 1, p, · · · , p︸ ︷︷ ︸
l−k

} ·A1.

Proof Note that K[x] is a Euclidean domain and φp(A) ∈ K[x]l×m. There is a unimodular

matrix V ∈ K[x]l×l such that V φp(A) = A0, where A0 ∈ K[x]l×m is a upper triangular matrix

and the last l − k rows of A0 are zero vectors. Let A′ = V A. It follows from φp being a

homomorphism that

φp(A
′) = φp(V )φp(A) = V φp(A) = A0.

This implies that all elements of the last l − k rows of A′ are divisible by p, i.e.,

A′ = diag{1, · · · , 1, p, · · · , p︸ ︷︷ ︸
l−k

} ·A1,

where A1 ∈ K[x, y]l×m. Let U = V −1, we have A = U · diag{1, · · · , 1, p, · · · , p} ·A1. The proof

is completed.

Lemma 3.3 Let A ∈ K[x, y]l×m, and A1 ∈ K[x, y]k×m be a submatrix of A such that

p � dk(A1). If for any row vector �a ∈ A \A1, the matrix A2 =
(

A1

�a

)
satisfies p | dk+1(A2), then

rank(φp(A)) = k.

Proof Without loss of generality, assume that A1 = (�aT1 , · · · ,�aTk )T, where �ai ∈ K[x, y]1×m

is the i-th row of A, i = 1, · · · , k. Since p � dk(A1), there exists at least a k×k minor b ∈ K[x, y]

of A1 such that p � b. Then φp(b) 
= 0, and it follows that rank(φp(A1)) = k. Since A1 is a

submatrix of A, rank(φp(A)) ≥ k. Similarly, it follows from p | dk+1(A2) that rank(φp(A2)) ≤ k.

Since A2 =
(

A1

�a

)
, φp(�a1), · · · , φp(�ak), φp(�a) are K[x]-linearly dependent. Then ∀�a ∈ A \ A1,

there are h1, · · · , hk ∈ K(x) such that

φp(�a) = h1φp(�a1) + · · ·+ hkφp(�ak), (1)

where K(x) is the rational fraction field of K[x]. For any given k+1 row vectors �at1 , · · · ,�atk+1

of A, by Equation (1) we have

⎛
⎜⎜⎝

φp(�at1)

...

φp(�atk
)

φp(�atk+1
)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ht11 ··· ht1k

...
. . .

...
htk1 ··· htkk

htk+11 ··· htk+1k

⎞
⎟⎟⎠

⎛
⎝

φp(�a1)

...

φp(�ak)

⎞
⎠ , (2)

where ht11, · · · , htk+1k ∈ K(x). We write Equation (2) as B = H · φp(A1). It follows from

rank(B) ≤ min{rank(H), rank(φp(A1))} that rank(B) ≤ k over K(x). Then there is a nonzero

vector �w ∈ K(x)1×(k+1) such that �wB = �0. Multiplying both sides of the above equation by

the least common multiple of all the denominators of entries in �w, we get

w1φp(�at1) + · · ·+ wkφp(�atk) + wk+1φp(�atk+1
) = �0, (3)
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where w1, · · · , wk, wk+1 ∈ K[x] with at least one wj 
= 0. It follows from Equation (3) that any

k + 1 row vectors of φp(A) are K[x]-linearly dependent. Therefore, rank(φp(A)) = k.

Lemma 3.4 Let A ∈ K[x, y]l×l, and the Smith form of A be SA = diag{f1ps1 , · · · , flpsl},
where f1, · · · , fl ∈ K[x] satisfy that f1 | f2 | · · · | fl, and 0 ≤ s1 ≤ · · · ≤ sl. Assume that there

exists a matrix B ∈ K[x, y]l×l such that

A ∼ diag{f1ps1 , · · · , fkpsk , fk+1p
s, · · · , flps} · B,

where sk ≤ s < sk+1. If Jk(A) = K[x, y], then rank(φp(B)) = k.

Proof Let Λ = diag{f1ps1 , · · · , fkpsk , fk+1p
s, · · · , flps}. It is easy to check that dk(A) =

dk(Λ) = f1 · · · fkps1+···+sk . According to Lemma 2.11, it follows from A ∼ ΛB and Jk(A) =

K[x, y] that Jk(B) = K[x, y] and dk(B) = 1. This implies that Ik(B) = Jk(B) = K[x, y]. It

follows that there exists at least one submatrix B1 ∈ K[x, y]k×l of B such that p � dk(B1).

Next, we prove that p | dk+1

((
B1

�b

))
for each vector �b ∈ B \ B1. Next, we divide the proof

into three parts.

First: s1 = · · · = sk = s.

Let C = ΛB and B1 be formed by the i1-th, i2-th, · · · , ik-th rows of B, where 1 ≤ i1 < i2 <

· · · < ik ≤ l. Since A ∼ ΛB, dk+1(C) = dk+1(A) = f1 · · · fkfk+1p
ks+sk+1 . Let�bj be the j-th row

of B and Dj =
(

B1

�bj

)
, where �bj ∈ B \B1. It follows from dk+1(C) | fi1 · · · fikfjp(k+1)sdk+1(Dj)

and s < sk+1 that p | dk+1(Dj). According to Lemma 3.3, we get rank(φp(B)) = k.

Second: s1 < s2 < · · · < sk < s.

In this case, let C = ΛB and B′
1 ∈ K[x, y]k×l be the submatrix of B formed by its first k

rows. We assert that p � dk(B
′
1). Otherwise, all the k × k minors of C have a common divisor

ps1+···+sk+1. This contradicts the fact that dk(C) = f1 · · · fkps1+···+sk . Let B1 = B′
1,
�bj be the

j-th row of B and Dj =
(

B1

�bj

)
, where j = k + 1, · · · , l. Then for each j, we have dk+1(C) |

f1 · · · fkfjps1+···+sk+sdk+1(Dj). By the fact that dk+1(C) = f1 · · · fkfk+1p
s1+···+sk+sk+1 and

s < sk+1, we have p | dk+1(Dj), where j = k + 1, · · · , l. According to Lemma 3.3, we obtain

rank(φp(B)) = k.

Third: The remaining cases except the first and second. The same conclusion can be

derived through the above method.

Therefore, the proof is completed.

Remark 3.5 It follows from di(F2) = di(F1) in Example 3.1 that d1(F2) = 1 and d2(F2) =

p. It is easy to check that rank(φp(F2)) = 1. Then Lemma 3.2 can be used to resolve the first

challenge. When F ∼ diag{f1, f2p, f3p, f4p} · F4, by Lemma 3.4 we have rank(φp(F4)) = 2.

Using Lemma 3.2 again, we can solve the third challenge.

Lemma 3.6 Let

A = diag{h1, · · · , hk, h, · · · , h︸ ︷︷ ︸
l−k

} ·
⎛
⎝Ik

B

⎞
⎠ ,

where h1, · · · , hk, h ∈ K[x, y] satisfy h1 | h2 | · · · | hk | h, and B ∈ K[x, y](l−k)×(l−k). Then for

j = k + 1, · · · , l, we have
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1) dj(A) = h1 · · ·hkh
j−k · dj−k(B);

2) If dj(A) = h1 · · ·hkh
j−k, then Jj(A) = Ij−k(B).

Proof For any two given strictly increasing index sets {s1, · · · , sj−k} and {t1, · · · , tj−k}
that satisfy 1 ≤ s1 < · · · < sj−k ≤ l − k and 1 ≤ t1 < · · · < tj−k ≤ l − k, the following

determinant

det

⎛
⎝A

⎛
⎝1 · · · k (k + s1) · · · (k + sj−k)

1 · · · k (k + t1) · · · (k + tj−k)

⎞
⎠
⎞
⎠

=h1 · · ·hkh
j−k det

⎛
⎝B

⎛
⎝s1 · · · sj−k

t1 · · · tj−k

⎞
⎠
⎞
⎠ (4)

is a j × j minor of A. Let α1, · · · , αN ∈ K[x, y] be all the (j − k)× (j − k) minors of B, where

N =
(
l−k
j−k

)2
. It follows from Equation (4) that

h1 · · ·hkh
j−kα1, · · · , h1 · · ·hkh

j−kαN (5)

are some of all the j × j minors of A. Obviously,

gcd(h1 · · ·hkh
j−kα1, · · · , h1 · · ·hkh

j−kαN ) = h1 · · ·hkh
j−k · dj−k(B).

Let β1, · · · , βη ∈ K[x, y] be all the j × j minors of A excluding the elements in Equation (5),

where η =
(
l
j

)2 −N . Without loss of generality, assume that

β1 = det

⎛
⎝A

⎛
⎝1 · · · k − 1 k + 1 · · · j + 1

1 · · · k − 1 k + 1 · · · j + 1

⎞
⎠
⎞
⎠ .

Then we have

β1 = h1 · · ·hk−1h
j−k+1 det

⎛
⎝B

⎛
⎝1 · · · j − k + 1

1 · · · j − k + 1

⎞
⎠
⎞
⎠ . (6)

Since det
(
B
(

1 ··· j−k+1
1 ··· j−k+1

))
is a (j−k+1)× (j−k+1) minor of B, it follows from the Laplace

expansion formula that

dj−k(B) | det
⎛
⎝B

⎛
⎝1 · · · j − k + 1

1 · · · j − k + 1

⎞
⎠
⎞
⎠ .

This implies that

h1 · · ·hkh
j−k · dj−k(B) | β1.

By the same method, we can deduce that

h1 · · ·hkh
j−k · dj−k(B) | βi, where i = 1, · · · , η.
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Hence, it follows that

dj(A) = gcd
(
h1 · · ·hkh

j−kα1, · · · , h1 · · ·hkh
j−kαN , β1, · · · , βη

)

= gcd
(
gcd(h1 · · ·hkh

j−kα1, · · · , h1 · · ·hkh
j−kαN ), β1, · · · , βη

)

= gcd
(
h1 · · ·hkh

j−k · dj−k(B), β1, · · · , βη

)

= h1 · · ·hkh
j−k · dj−k(B).

If dj(A) = h1 · · ·hkh
j−k, then

Jj(A) =

〈
α1, · · · , αN ,

β1

h1 · · ·hkhj−k
, · · · , βη

h1 · · ·hkhj−k

〉
. (7)

It follows from Equation (6) that

β1

h1 · · ·hkhj−k
=

h

hk
det

⎛
⎝B

⎛
⎝1 · · · j − k + 1

1 · · · j − k + 1

⎞
⎠
⎞
⎠ .

According to the Laplace expansion formula, det
(
B
(

1 ··· j−k+1
1 ··· j−k+1

))
can be expressed as a linear

combination of α1, · · · , αN over K[x, y]. This implies that

β1

h1 · · ·hkhj−k
∈ 〈α1, · · · , αN 〉.

Adopting the same reasoning, it follows that

βi

h1 · · ·hkhj−k
∈ 〈α1, · · · , αN 〉, where i = 1, · · · , η. (8)

Combining Equations (7) and (8), we get

Jj(A) = 〈α1, · · · , αN 〉 = Ij−k(B).

The proof is completed.

Lemma 3.7 Let W = Λ1UΛ2, where Λ1 = diag{h1, · · · , hl} with h1, · · · , hl ∈ K[x, y]

satisfying h1 | h2 | · · · | hl, U ∈ K[x]l×l is a unimodular matrix, and Λ2 = diag{pt1 , · · · , ptl}
with the exponents satisfying 0 ≤ t1 ≤ · · · ≤ tl. Then dk(W ) = dk(Λ1) · dk(Λ2), where k =

1, · · · , l.
Proof Let U = (uij)l×l, where uij ∈ K[x] for 1 ≤ i, j ≤ l. Since W = Λ1UΛ2, we get

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1p
t1u11 h1p

t2u12 · · · h1p
tlu1l

h2p
t1u21 h2p

t2u22 · · · h2p
tlu2l

...
...

. . .
...

hlp
t1ul1 hlp

t2ul2 · · · hlp
tlull

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For any given integer k with 1 ≤ k ≤ l, let Wk be the matrix formed by the first k rows of W .

Then all the k × k minors of Wk are h1 · · ·hkp
t1+···+tkα1, h1 · · ·hkp

θ2α2, · · · , h1 · · ·hkp
θNαN ,
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where N =
(
l
k

)
, and θi = ti1 + · · ·+ tik , the indices {i1, · · · , ik} is a strictly increasing sequence

with 1 ≤ i1 < · · · < ik ≤ l, i = 2, · · · , N . Obviously, θi ≥ t1 + · · · + tk for i = 2, · · · , N ,

α1, · · · , αN ∈ K[x] are all the k × k minors of the matrix Uk formed by the fist k rows of U .

Since U is unimodular, it follows from the Laplace expansion formula that α1, · · · , αN generate

the unit ideal K[x]. Let θ′i = θi − (
∑k

j=1 tj), where i = 2, · · · , N . Assume that

a = gcd(α1, p
θ′
2α2, · · · , pθ′

NαN ),

where a ∈ K[x, y]. It follows from a | α1 that a ∈ K[x]. As p = y− g(x) is irreducible, we have

a | αi for i = 2, · · · , N . Since 〈α1, · · · , αN 〉 = 1, we get a = 1. It follows that

dk(Wk) = h1 · · ·hkp
t1+···+tk .

On the one hand, it follows from h1 | h2 | · · · | hl and t1 ≤ t2 ≤ · · · ≤ tl that h1 · · ·hkp
t1+···+tk

divides every k × k minor of W . This implies that dk(Wk) | dk(W ). On the other hand,

since all the k × k minors of Wk are part of those of W , we have dk(W ) | dk(Wk). Therefore,

dk(W ) = dk(Wk). It follows from dk(Λ1) = h1 · · ·hk and dk(Λ2) = pt1+···+tk that dk(W ) =

dk(Λ1) · dk(Λ2). The proof is completed.

Remark 3.8 Lemma 3.7 is different from the first result of Lemma 2.12. This is because

gcd(det(Λ1), det(Λ2)) may be a nontrivial polynomial in K[x, y].

Lemma 3.9 Let

A = diag{f1ps1 , · · · , fkpsk , fk+1p
s, · · · , flps} · U · diag{1, · · · , 1︸ ︷︷ ︸

k

, p, · · · , p},

where f1, · · · , fl ∈ K[x] satisfy f1 | f2 | · · · | fl, 0 ≤ s1 ≤ · · · ≤ sk ≤ s, and U ∈ K[x]l×l is a

unimodular matrix. If Ji(A) = K[x, y] for i = 1, · · · , k, then

A ∼ diag{f1ps1 , · · · , fkpsk , fk+1p
s+1, · · · , flps+1}.

Proof Under the premise that s1 ≤ · · · ≤ sk ≤ s, we partition the proof into three parts

based on their ordering.

First: s1 = · · · = sk = s.

The above problem is equivalent to proving that

diag{f1, · · · , fk, fk+1, · · · , fl} · U · diag{1, · · · , 1, p, · · · , p} ∼ diag{f1, · · · , fk, fk+1p, · · · , flp}.

Let A1 = diag{f1, · · · , fk, fk+1, · · · , fl} · U · diag{1, · · · , 1, p, · · · , p}. Then A = psA1. Since

Ji(A) = K[x, y] with i = 1, · · · , k, we have Ji(A1) = K[x, y], where i = 1, · · · , k. Based on

Lemma 3.7, we have

di(A1) = f1 · · · fi for 1 ≤ i ≤ k, and dj(A1) = f1 · · · fjpj−k for k + 1 ≤ j ≤ l.
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Let U = (uij)l×l, where uij ∈ K[x]. Then

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1u11 · · · f1u1k f1pu1(k+1) · · · f1pu1l

f2u21 · · · f2u2k f2pu2(k+1) · · · f2pu2l

...
. . .

...
...

. . .
...

flul1 · · · flulk flpul(k+1) · · · flpull

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let B1 ∈ K[x]l×k be the matrix formed by the first k columns of A1. Without loss of generality,

assume that the Smith form of B1 is

SB1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2
. . .

bk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where bi ∈ K[x] for i = 1, · · · , k and b1 | b2 | · · · | bk. Since B1 is a univariate polynomial

matrix in K[x], there exist two unimodular matrices UB1 ∈ K[x]l×l and VB1 ∈ K[x]k×k such

that UB1B1VB1 = SB1 . Let

A2 = UB1 · A1 ·
⎛
⎝VB1

Il−k

⎞
⎠ ,

where Il−k is the (l − k) × (l − k) identity matrix. Then A1 ∼ A2 by the fact that UB1 and(
VB1

Il−k

)
are two unimodular matrices. By Lemma 2.10, we have

Ji(A2) = K[x, y] and di(A2) = f1 · · · fi for 1 ≤ i ≤ k, dj(A2) = f1 · · · fjpj−k for k + 1 ≤ j ≤ l.

In addition,

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 pv1(k+1) · · · pv1l

b2 pv2(k+1) · · · pv2l
. . .

...
. . .

...

bk pvk(k+1) · · · pvkl
...

. . .
...

pvl(k+1) · · · pvll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where vij ∈ K[x] for 1 ≤ i ≤ l and k + 1 ≤ j ≤ l. It follows from d1(A2) = f1 that
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A2 = f1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′1 pv′1(k+1) · · · pv′1l
b′2 pv′2(k+1) · · · pv′2l

. . .
...

. . .
...

b′k pv′k(k+1) · · · pv′kl
...

. . .
...

pv′l(k+1) · · · pv′ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= f1 · A3,

where A3 ∈ K[x, y]l×l. Moreover, J1(A2) = I1(A3) = K[x, y]. Since bi | bj for 1 ≤ i < j ≤ k,

we have b′i | b′j for 1 ≤ i < j ≤ k. We assert that b′1 is a nonzero constant in K. Otherwise, if

b′1 = 0, then dl(A2) = f l
1dl(A3) = 0. This contradicts the fact that dl(A2) = f1 · · · flpl−k. If

b′1 is a nontrivial polynomial in K[x], then there exists a point x0 ∈ K such that b′1(x0) = 0.

It follows from b′1 | b′j that b′j(x0) = 0, where j = 2, · · · , k. Letting y0 = g(x0), we get

p(x0, y0) = y0 − g(x0) = 0. This implies that (x0, y0) ∈ V(I1(A3)). This contradicts the fact

that I1(A3) = K[x, y]. Without loss of generality, let b′1 = 1. Then it is easy to check that

A3 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

b′2 pv′2(k+1) · · · pv′2l
. . .

...
. . .

...

b′k pv′k(k+1) · · · pv′kl
...

. . .
...

pv′l(k+1) · · · pv′ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝1

A4

⎞
⎠ ,

where A4 ∈ K[x, y](l−1)×(l−1). Based on Lemma 3.6, we obtain

d2

⎛
⎝
⎛
⎝1

A4

⎞
⎠
⎞
⎠ = d1(A4).

Since A2 = f1A3 and d2(A2) = f1f2, we get d2(A3) =
f2
f1
. It follows from A3 ∼

(
1
A4

)
that

d1(A4) = d2(A3) =
f2
f1

.

Then,

A4 =
f2
f1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′′2 pv′′2(k+1) · · · pv′′2l
. . .

...
. . .

...

b′′k pv′′k(k+1) · · · pv′′kl
...

. . .
...

pv′′l(k+1) · · · pv′′ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
f2
f1

· A5,
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where A5 ∈ K[x, y](l−1)×(l−1). Moreover, b′′i | b′′j for 2 ≤ i < j ≤ k. Then we assert that b′′2 is

a nonzero constant in K. Otherwise, if b′′2 = 0, then dl(A3) = dl

((
1
A4

))
= 0, which leads to

a contradiction. If b′′2 is a nontrivial polynomial in K[x], then there exists a point x1 ∈ K such

that b′′2(x1) = 0. It follows from b′′2 | b′′j that b′′j (x1) = 0, where j = 3, · · · , k. This implies that

(x1, g(x1)) ∈ V(I1(A5)). Let

A6 = f1 ·
⎛
⎝1

f2
f1

· A5

⎞
⎠ = diag{f1, f2, · · · , f2} ·

⎛
⎝1

A5

⎞
⎠ .

Then A2 ∼ A6. It follows that d2(A6) = f1f2 and J2(A6) = K[x, y]. Furthermore, by

Lemma 3.6 we get J2(A6) = I1(A5). This implies that (x1, g(x1)) ∈ V(J2(A6)), which leads to

a contradiction. Without loss of generality, assume that b′′2 = 1. Then we have

A5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

b′′3 pv′′3(k+1) · · · pv′′3l
. . .

...
. . .

...

b′′k pv′′k(k+1) · · · pv′′kl
...

. . .
...

pv′′l(k+1) · · · pv′′ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝1

A7

⎞
⎠ ,

where A7 ∈ K[x, y](l−2)×(l−2). It follows that

A2 ∼ f1 ·
⎛
⎝1

A4

⎞
⎠ ∼

⎛
⎝f1

f2Il−1

⎞
⎠ ·

⎛
⎝1

A5

⎞
⎠ ∼

⎛
⎝f1

f2Il−1

⎞
⎠ ·

⎛
⎜⎜⎝
1

1

A7

⎞
⎟⎟⎠ .

Repeating the above calculation process, we derive the following equivalence relation:

A2 ∼ diag{f1, · · · , fk, fk, · · · , fk︸ ︷︷ ︸
l−k

} ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

. . .

1

pc(k+1)(k+1) · · · pc(k+1)l

...
. . .

...

pcl(k+1) · · · pcll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where cij ∈ K[x] for k + 1 ≤ i, j ≤ l. Let C = (cij) ∈ K[x](l−k)×(l−k). Then

A2 ∼ diag{f1, · · · , fk, fkp, · · · , fkp} ·
⎛
⎝Ik

C

⎞
⎠ .
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According to Lemmas 2.10 and 3.6, we have dj(A2) = f1 · · · fk(fkp)j−kdj−k(C) for k+1 ≤ j ≤ l.

Then

dj−k(C) =
fk+1 · · · fj

f j−k
k

, where j = k + 1, · · · , l.

It follows that the Smith form of C is

SC =

⎛
⎜⎜⎜⎜⎜⎜⎝

fk+1

fk
fk+2

fk

. . .

fl
fk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This implies that there are two unimodular matrices UC , VC ∈ K[x](l−k)×(l−k) such that

UCCVC = SC . Since

⎛
⎝diag{f1, · · · , fk}

fkpIl−k

⎞
⎠ ·

⎛
⎝Ik

C

⎞
⎠

=

⎛
⎝Ik

U−1
C

⎞
⎠ ·

⎛
⎝diag{f1, · · · , fk}

fkpSC

⎞
⎠ ·

⎛
⎝Ik

V −1
C

⎞
⎠ ,

we have

diag{f1, · · · , fk, fkp, · · · , fkp} ·
⎛
⎝Ik

C

⎞
⎠ ∼ diag{f1, · · · , fk, fk+1p, · · · , flp}.

It follows that

A1 ∼ A2 ∼ diag{f1, · · · , fk, fk+1p, · · · , flp}.
Second: s1 < s2 < · · · < sk < s.

According to Lemma 3.7, we have di(A) = f1 · · · fips1+···+si for 1 ≤ i ≤ k, and dj(A) =

f1 · · · fjps1+···+sk+(j−k)(s+1) for k + 1 ≤ j ≤ l. Let s′ = s − s1, and s′i = si − s1, where

i = 2, · · · , k. Assume that U = (uij)l×l, then

A = f1p
s1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11 ··· u1k pu1(k+1) ··· pu1l

f2
f1

ps′2u21 ··· f2
f1

ps′2u2k
f2
f1

ps′2+1u2(k+1) ··· f2
f1

ps′2+1u2l

...
. . .

...
...

. . .
...

fk
f1

ps′
kuk1 ··· fk

f1
ps′

kukk
fk
f1

ps′
k
+1uk(k+1) ··· fk

f1
ps′

k
+1ukl

fk+1
f1

ps′u(k+1)1 ··· fk+1
f1

ps′u(k+1)k
fk+1
f1

ps′+1u(k+1)(k+1) ··· fk+1
f1

ps′+1u(k+1)l

...
. . .

...
...

. . .
...

fl
f1

ps′ul1 ··· fl
f1

ps′ulk
fl
f1

ps′+1ul(k+1) ··· fl
f1

ps′+1ull

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Letting A = f1p
s1 ·A1, we have J1(A) = I1(A1). We assert that 〈u11, · · · , u1k〉 = 1. Otherwise,

there exists a point x2 ∈ K such that u1i(x2) = 0, where i = 1, · · · , k. This implies that

(x2, g(x2)) ∈ V(I1(A1)). This contradicts the fact that I1(A1) = J1(A) = K[x, y]. Then
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there is a unimodular matrix U1 ∈ K[x]k×k such that (u11, · · · , u1k) · U1 = (1, 0, · · · , 0). Let

U2 =
(

U1

Il−k

)
and A2 = A1 · U2. Then U2 ∈ K[x]l×l is unimodular and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ··· 0 pu1(k+1) ··· pu1l

f2
f1

ps′2u′
21

f2
f1

ps′2u′
22 ··· f2

f1
ps′2u′

2k
f2
f1

ps′2+1u2(k+1) ··· f2
f1

ps′2+1u2l

...
...

. . .
...

...
. . .

...
fk
f1

ps′
ku′

k1
fk
f1

ps′
ku′

k2 ··· fk
f1

ps′
ku′

kk
fk
f1

ps′
k
+1uk(k+1) ··· fk

f1
ps′

k
+1ukl

fk+1
f1

ps′u′
(k+1)1

fk+1
f1

ps′u′
(k+1)2 ··· fk+1

f1
ps′u′

(k+1)k

fk+1
f1

ps′+1u(k+1)(k+1) ··· fk+1
f1

ps′+1u(k+1)l

...
...

. . .
...

...
. . .

...
fl
f1

ps′u′
l1

fl
f1

ps′u′
l2 ··· fl

f1
ps′u′

lk
fl
f1

ps′+1ul(k+1) ··· fl
f1

ps′+1ull

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let

U3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

− f2
f1
ps

′
2u′

21 1
...

. . .

− fl
f1
ps

′
u′
l1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and U4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −pu1(k+1) · · · −pu1l

. . .

1

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where U3, U4 ∈ K[x, y]l×l are unimodular matrices. Letting A3 = U3A2U4, we get

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 · · · 0

0 f2
f1
ps

′
2u′

22 · · · f2
f1
ps

′
2u′

2k
f2
f1
ps

′
2+1u′

2(k+1) · · · f2
f1
ps

′
2+1u′

2l

...
...

. . .
...

...
. . .

...

0 fk
f1
ps

′
ku′

k2 · · · fk
f1
ps

′
ku′

kk
fk
f1
ps

′
k+1u′

k(k+1) · · · fk
f1
ps

′
k+1u′

kl

0 fk+1

f1
ps

′
u′
(k+1)2 · · · fk+1

f1
ps

′
u′
(k+1)k

fk+1

f1
ps

′+1u′
(k+1)(k+1) · · · fk+1

f1
ps

′+1u′
(k+1)l

...
...

. . .
...

...
. . .

...

0 fl
f1
ps

′
u′
l2 · · · fl

f1
ps

′
u′
lk

fl
f1
ps

′+1u′
l(k+1) · · · fl

f1
ps

′+1u′
ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows from the form of A3 that A3 =
(

1
f2
f1

ps′2Il−1

)
·A4, where

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ··· 0 0 ··· 0
0 u′

22 ··· u′
2k pu′

2(k+1) ··· pu′
2l

0
f3
f2

ps′′3 u′
32 ··· f3

f2
ps′′3 u′

3k
f3
f2

ps′′3 +1u′
3(k+1) ··· f3

f2
ps′′3 +1u′

3l

...
...

. . .
...

...
. . .

...
0

fk
f2

ps′′k u′
k2 ··· fk

f2
ps′′k u′

kk
fk
f2

ps′′k+1u′
k(k+1) ··· fk

f2
ps′′k+1u′

kl

0
fk+1
f2

ps′′u′
(k+1)2 ··· fk+1

f2
ps′′u′

(k+1)k

fk+1
f2

ps′′+1u′
(k+1)(k+1) ··· fk+1

f2
ps′′+1u′

(k+1)l

...
...

. . .
...

...
. . .

...
0

fl
f2

ps′′u′
l2 ··· fl

f2
ps′′u′

lk
fl
f2

ps′′+1u′
l(k+1) ··· fl

f2
ps′′+1u′

ll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s′′i = s′i − s′2 for i = 3, · · · , k, and s′′ = s′ − s′2. Through the above calculations and reductions,

we obtain

A = U−1
3 · f1ps1 ·

⎛
⎝1

f2
f1
ps

′
2Il−1

⎞
⎠ ·A4 · U−1

4 · U−1
2 .
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It follows that

A ∼
⎛
⎝f1p

s1

f2p
s2Il−1

⎞
⎠ ·A4.

Repeating the above calculation process, we derive the following equivalence relation:

A ∼
⎛
⎝

f1p
s1

. . .
fkp

sk

fkp
skIl−k

⎞
⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

1

. . .
1

fk+1
fk

ps−sk+1v(k+1)(k+1) ··· fk+1
fk

ps−sk+1v(k+1)l

...
. . .

...
fl
fk

ps−sk+1vl(k+1) ··· fl
fk

ps−sk+1vll

⎞
⎟⎟⎟⎟⎟⎠

,

where vij ∈ K[x] for k + 1 ≤ i, j ≤ l. Letting V =

( v(k+1)(k+1) ··· v(k+1)l

...
. . .

...
vl(k+1) ··· vll

)
, we have

A ∼ diag{f1ps1 , · · · , fkpsk , fk+1p
s+1, · · · , flps+1} ·

⎛
⎝Ik

V

⎞
⎠ .

By the fact that dl(A) = f1 · · · flps1+···+sk+(l−k)(s+1), we get that
(

Ik
V

)
is a unimodular

matrix. Therefore,

A ∼ diag{f1ps1 , · · · , fkpsk , fk+1p
s+1, · · · , flps+1}.

Third: The remaining cases except the first and second. The same conclusion can be

derived through the above method.

Therefore, the proof is completed.

Lemma 3.9 solves the second challenge raised in Example 3.1.

3.3 The Solution for Problem 2.7

Building upon the resolution of the above three challenges, we now first consider the case

where all the square matrices in M are of full rank, and then extend it to the general case, so

as to achieve the goal of completely solving Problem 2.7.

Theorem 3.10 Let F ∈ K[x, y]l×l with dl(F ) = fpt, where f ∈ K[x] and t ∈ N. Then

F is equivalent to its Smith form if and only if Ji(F ) = K[x, y] for i = 1, · · · , l.
Proof Without loss of generality, assume that the Smith form of F is

S = diag{f1ps1 , f2ps2 , · · · , flpsl},

where f1, · · · , fl ∈ K[x] satisfy f1 · · · fl = f and f1 | f2 | · · · | fl, and s1, · · · , sl ∈ N satisfy

0 ≤ s1 ≤ · · · ≤ sl and s1 + · · ·+ sl = t.

Necessity It is easy to verify that Ji(S) = K[x, y] for i = 1, · · · , l. Since F ∼ S, It follows

from Lemma 2.10 that Ji(F ) = Ji(S) and Ji(F ) = K[x, y], where i = 1, · · · , l.
Sufficiency According to the primitive factorization theorem, there exist two polynomial

matrices F1, F2 ∈ K[x, y]l×l such that F = F1F2 with det(F1) = f . It follows from det(F ) =
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det(F1) · det(F2) that det(F2) = pt and gcd(det(F1), det(F2)) = 1. Based on Lemma 2.12,

we have di(F ) = di(F1) · di(F2) and Ji(F1) = Ji(F2) = K[x, y], where i = 1, · · · , l. Since

di(F ) = f1 · · · fips1+···+si for i = 1, · · · , l, we obtain

di(F1) = f1 · · · fi and di(F2) = ps1+···+si ,

where i = 1, · · · , l. This implies that the Smith form of F1 is

SF1 = diag{f1, f2, · · · , fl}.

It follows from Lemma 2.16 that F1 ∼ SF1 . Then, there are two unimodular matrices U1, U2 ∈
K[x, y] such that

F1 = U1SF1U2. (9)

Let F3 = U2F2, we get di(F3) = di(F2) by the fact that U2 is unimodular, where i = 1, · · · , l.
Since d1(F3) = ps1 , there exists a polynomial matrix F4 ∈ K[x, y]l×l such that F3 = ps1F4. It

follows from Equation (9) that

F ∼ diag{f1ps1 , f2ps1 , · · · , flps1} · F4. (10)

If s2 = s1, then F ∼ diag{f1ps1 , f2ps2 , · · · , flps2} · F4. If s2 > s1, then by Lemma 3.4 we

have rank(φp(F4)) = 1. According to Lemma 3.2, there exist F5 ∈ K[x, y]l×l and a unimodular

matrix U3 ∈ K[x]l×l such that

F4 = U3 · diag{1, p, · · · , p︸ ︷︷ ︸
l−1

} · F5. (11)

Combining Equations (10) and (11), we have

F ∼ diag{f1ps1 , f2ps1 , · · · , flps1} · U3 · diag{1, p, · · · , p} · F5. (12)

Let F6 = diag{f1ps1 , f2ps1 , · · · , flps1} ·U3 · diag{1, p, · · · , p}. By Lemma 3.7 we have d1(F6) =

f1p
s1 . It follows from Lemma 2.11 that J1(F6) = K[x, y]. Based on Lemma 3.9, we obtain

F6 ∼ diag{f1ps1 , f2ps1+1, · · · , flps1+1}.

Then there are two unimodular matrices U4, U5 ∈ K[x, y]l×l such that

F6 = U4 · diag{f1ps1 , f2ps1+1, · · · , flps1+1} · U5.

Let F7 = U5F5, and it follows from Equation (12) that

F ∼ diag{f1ps1 , f2ps1+1, · · · , flps1+1} · F7.

Repeating the above calculation process, we will obtain the following equivalence relation within

a finite number of steps:

F ∼ diag{f1ps1 , f2ps2 , · · · , flpsl} · FN ,
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where FN ∈ K[x, y]l×l. It is easy to check that FN is a unimodular matrix. Therefore, we have

F ∼ diag{f1ps1 , f2ps2 , · · · , flpsl}.

The proof is completed.

Corollary 3.11 Let F ∈ K[x, y]l×m with dr(F ) = fpt, where r = rank(F ), f ∈ K[x] and

t ∈ N. Then F is equivalent to its Smith form if and only if Ji(F ) = K[x, y] for i = 1, · · · , r.
Proof Without loss of generality, assume that the Smith form of F is

S =

⎛
⎝diag{f1ps1 , · · · , frpsr} 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

⎞
⎠ ,

where f1, · · · , fr ∈ K[x] satisfy f1 · · · fr = f and f1 | f2 | · · · | fr, and s1, · · · , sr ∈ N satisfy

0 ≤ s1 ≤ · · · ≤ sr and s1 + · · ·+ sr = t.

Necessity It is easy to verify that Ji(S) = K[x, y] for i = 1, · · · , r. Since F ∼ S, it follows

from Lemma 2.10 that Ji(F ) = Ji(S) and Ji(F ) = K[x, y], where i = 1, · · · , r.
Sufficiency Since Jr(F ) = K[x, y], it follows from Lemma 2.14 that there exist a poly-

nomial matrix G1 ∈ K[x, y]l×r and F1 ∈ K[x, y]r×m such that F = G1F1 with F1 being

a ZLP matrix. According to Corollary 2.13, there is a unimodular matrix U ∈ K[x, y]m×m

such that F1U = (Ir, 0r×(m−r)). It follows that F ∼ (G1, 0l×(m−r)). By Lemma 2.10, we

have Jr(G1) = Jr(F ) = K[x, y]. Using Lemma 2.14 again, there exist G2 ∈ K[x, y]l×r and

G3 ∈ K[x, y]r×r such that G1 = G2G3 with G2 being a ZRP matrix. Based on Corollary 2.13,

there is a unimodular matrix V ∈ K[x, y]l×l such that V G2 =
(

Ir
0(l−r)×r

)
. Then we obtain

F ∼
⎛
⎝ G3 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

⎞
⎠ .

It follows from Lemma 2.10 that

di(G3) = di(F ) = f1 · · · fips1+···+si and Ji(G3) = Ji(F ) = K[x, y],

where i = 1, · · · , r. According to Theorem 3.10, there are two unimodular matrices V1, U1 ∈
K[x, y]r×r such that

G3 = V1 · diag{f1ps1 , · · · , frpsr} · U1.

Let V2 =
(

V1

Il−r

)
and U2 =

(
U1

Im−r

)
, where V2 ∈ K[x, y]l×l and U2 ∈ K[x, y]m×m.

Obviously, V2, U2 are two unimodular matrices. This implies that

F ∼
⎛
⎝diag{f1ps1 , · · · , frpsr} 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

⎞
⎠ .

The proof is completed.
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4 Conclusions

This paper focuses on the equivalence problem between a class of bivariate polynomial

matrices and their Smith forms. Let F ∈ K[x, y]l×l be of full rank, and dl(F ) = f(x)(y−g(x))t,

where f, g ∈ K[x]. The main idea is as follows. First, we use the primitive factorization theorem

to factorize F into the product of two matrices whose determinants are coprime. Then, by taking

advantage of the special form of y− g(x), we construct a homomorphism from K[x, y] to K[x].

Consequently, we can use the properties of the Euclidean domain K[x] to reduce F to its Smith

form. For the cases of non-square matrices or matrices that are not of full rank, we resort to

the Quillen-Suslin theorem to transform them into the cases of square matrices with full rank,

thereby completely resolving Problem 2.7.

Based on the research presented in this paper, we naturally pose the following problem. Let

F ∈ K[x, y] with rank r, what is the necessary and sufficient condition for F to be equivalent

to its Smith form? At this point, dr(F ) no longer has a special form. Can new techniques be

developed to address this problem? This problem warrants further investigation.
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