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Abstract This paper studies the equivalence theory between bivariate polynomial matrices and their
Smith forms. For a class of bivariate polynomial matrices, by leveraging the special form of the greatest
common divisor of the maximal minors of the matrix, the authors construct a homomorphism from the
bivariate polynomial ring to a Euclidean domain. Subsequently, by applying Gaussian elimination, the
matrix can be reduced to its Smith form. Consequently, the authors establish that the necessary and
sufficient condition for such a type of matrix to be equivalent to its Smith form is that the reduced

minors of each order generate the unit ideal.

Keywords Bivariate polynomial matrices, matrix equivalence, reduced minors, Smith forms.

1 Introduction

Multivariate polynomial matrices serve as a fundamental representational framework for
characterizing diverse multidimensional systems encountered in circuits, control, signal pro-

cessing, such as dynamical control systems and delay-differential systems (see [1-4] and the
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2 LU DONG, et al.

references therein). The algebraic properties of multidimensional systems can be systemati-
cally established through rigorous investigation of their corresponding multivariate polynomial
matrices. Owing to the structural simplicity and information-preserving characteristics inher-
ent in the Smith form, mathematicians and engineers are particularly concerned about the
equivalence problem between multivariate polynomial matrices and their Smith forms.

Since univariate polynomial rings are Euclidean domains, univariate polynomial matrices are
always equivalent to their Smith forms!®. However, this fact may not hold in the multivariate
case. For instance, Frost and Storey[® provided a counter-example to illustrate that a bivariate
polynomial matrix is not equivalent to its Smith form. Therefore, researchers began to explore
the conditions under which a multivariate polynomial matrix is equivalent to its Smith form.

Since the 1970s, there have been some results on the equivalence between bivariate polyno-
mial matrices and their Smith forms (see, e.g., [7-9]). Meanwhile, for cases involving more than

two variables, researchers have primarily focused on investigating matrices with special forms.

For example, Lin, et al.l'%) proved that a square matrix F € Klz1,---,2,)"*! with det(F)
= a1 — f(xa, -+ ,xp) is equivalent to its Smith form S = diag{1,---,1,det(F)}. Building on
11]

the main result presented in [10], Boudellioual''l implemented the corresponding equivalence
algorithm in the computer algebra system Maple, and constructed two unimodular matrices to
reduce F to S. Subsequently, Li, et al. generalized the conclusion in [10] to the case of det(F') =

(x1 — f(z2,--- ,2,)) through a series of works (see, e.g., [12-14]). In addition, Liu, et al.['®]

studied the equivalence problem concerning an upper triangular matrix F € K[zy,--- ,z,]"*!
with diagonal entries being x1 — f(xa, -+ ,x,) —c1,- - ,x1 — f(z2, -+ ,z,) — ¢ and its Smith
form S = diag{l,---,1,det(F)}, and proved that F is necessarily equivalent to S, where
c1,--- ¢ € K are pairwise different. In 2019, Li, et al.['] investigated the equivalence problem
of another type of bivariate polynomial matrices. Let F' € K|[x,y]"*! with det(F) = p, where
p € K|[z] is an irreducible polynomial. Then F is equivalent to its Smith form diag{1,--- , 1, p}.

[17] extended the main result in [16] to the case of det(F) = p*, and proposed that

Zheng, et al.
the necessary and sufficient condition for F' to be equivalent to its Smith form diag{p®,--- ,p'}
is that the reduced minors of each order of F' generate the unit ideal, where 0 < t; < --- < ¢,
and t = t; + - - - +t;. Subsequently, Guan, et al.['8) considered the case of F' € Klzy, - x>
with det(F) = p', and established that F' is equivalent to its Smith form diag{1,---,1,det(F)}
if all the (I — 1) x (I — 1) minors of F' generate the unit ideal, where [ > 3 and p € K[z1] is an
irreducible polynomial. Recently, Lu, et al.l'?] investigated the equivalence problem between
a specific class of n-variables polynomial matrices and their Smith forms, where each matrix
is characterized by the property that the greatest common divisor of the maximal minors is a
univariate polynomial. By employing localization techniques, they fully resolved this issue.
Although significant progress has been made in addressing the equivalence between multi-
variate polynomial matrices and their Smith forms, the problem remains far from being fully
resolved. Therefore, it is still essential to continue investigating the equivalence theory of cer-
tain special types of polynomial matrices with respect to their Smith forms. This paper will
focus on the following type of bivariate polynomial matrices. Let F € K[z, y]"*™ with rank

r, and d,.(F) = f(x)(y — g(z))!, where d,.(F) is the greatest common divisor of all the r x r
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SMITH FORMS OF BIVARIATE MATRICES 3

minors of F', and f, g € K[x]. We will investigate the necessary and sufficient condition for the
equivalence between F' and its Smith form.

The rest of the paper is organized as follows. In Section 2, we first present fundamental
concepts related to bivariate polynomial matrices and formulate an equivalence problem that
will be addressed in this paper, and then introduce several auxiliary lemmas that will be in-
strumental in resolving this problem. In Section 3, we first illustrate the main idea of this
paper with an example, then address three challenges encountered in the development of the
idea, and finally present the necessary and sufficient condition for the equivalence between a
bivariate polynomial matrix and its Smith form. In Section 4, we summarize this paper and

propose directions for future work.

2 Preliminaries

Let K be a field, & be the algebraic closed field containing K, K[z,y] be the polynomial
ring in the variables x,y over K, and K[z, y]"*™ be the set of [ x m matrices with entries in
K|[z,y]. Throughout this paper, we assume without loss of generality that [ < m.

Let F € K[z,y]'*™. We use rank(F) to denote the rank of F. For any integer 4, let I;(F)
be the ideal generated by all the ¢ x ¢ minors of F', and d;(F') be the greatest common divisor
of all the ¢ x ¢ minors of F. Here, we make the convention that do(F) = 1 and d;(F) = 0 for
1 > rank(F'). Given any two strictly increasing sequences of indices {i1,- -+ ,is} and {j1, -+, j¢}
withl <i; <---<ig<land1<j; <---<jy <m, denotebyF(ﬁ - ;t) the s x t submatrix
of F formed by its i1-th to is-th rows and ji-th to j;-th columns.

2.1 Basic Notions and Equivalence Problem

In this subsection, we first introduce some essential concepts, and then propose the equiv-
alence problem that we will consider. We now present a concept similar to invertible matrices
over number fields.

Definition 2.1 Let U € Klx,y]'*!. Then U is said to be unimodular if det(U) is a

nonzero constant in K.

With the help of Definition 2.1, we propose the concept of matrix equivalence over K|z, y].

Definition 2.2 Let F,Q € K[z, y]"*™. Then F is said to be equivalent to @ if there

are two unimodular matrices U € K[z,y]"*! and V € K[z, y]™*™ such that F = UQV. For
convenience, F' being equivalent to @) is denoted by F' ~ Q.

The Smith form, a well-established concept for matrices over univariate polynomial rings,

admits a natural extension to the bivariate case in K|z, y] via an analogous methodology.
Definition 2.3 Let F € K[z, y]"*™ with rank 7, and @; be a polynomial in K[z, y] defined

as follows:

1<i<rm

0, r<i<l.
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4 LU DONG, et al.

Moreover, @; satisfies the divisibility property @1 | @2 | - - | $,. Then the Smith form of F is
given by
diag{q)lv e aqv)?"} Orx(mfr)

0(l—r)><r O(Z—r)x(m—r)

To investigate the problem of equivalence between matrices over K|x,y] and their Smith

forms, we further require the following three concepts.

Definition 2.4 (see [20]) Let F € K[z,y]"*™. Given an integer i, let a;1,- -+ ,a;z be all
the i x 4 minors of F, where 1 < ¢ <[ and 8 = (i) (). Extracting d;(F) from a1, ,aig

K2

yields
Then, b;1,--- ,b;g are called the i x i reduced minors of F'. For convenience, we use J;(F) to
denote the ideal in K[z,y] generated by b1, -, big.

The concept of reduced minors plays an important role in this paper, and it is closely related
to determining whether a bivariate polynomial matrix is equivalent to its Smith form.

Definition 2.5 (see [21]) Let Z be an ideal in K[z, y]. Then we call
V(Z) = {(z0,y0) € & | h(zo,y0) =0 for all h € T}

the affine variety defined by Z.
Li, et al. in [13] proved that V(Z) = 0 if and only if Z = K|z, y].

Definition 2.6 (see [22]) Let A € K|[z,y]"*™ be of full row rank. Then A is said to be
zero left prime (ZLP) if I;(A) = K|z, y]. Similarly, A € K[z,y]™*! can be defined as a zero
right prime (ZRP) matrix.

We consider a subset of bivariate polynomial matrices as follows:
M :={F € K[z,y)""™ | d.(F) = f(x)(y — g(z))!, where r = rank(F) and f, g € K|[z],t € IN}.

In the above set, IN represents the set of natural numbers inclusive of 0. When r = [ and f is

a power of an irreducible polynomial in K[z], Zheng, et al.l*3] proved that

F~Q= (diag{l, e ,1,dl(F)},OlX(m_l)) if and only if I;,_1(F) = K[z, y].
-1
It is evident that @) represents the most particular case among all possible Smith forms of F.

In the subsequent analysis, this paper relaxes the constraints imposed in [23], and explores the
necessary and sufficient condition for I’ € M to be equivalent to its general Smith form.

Problem 2.7 Let F € M. What is the necessary and sufficient condition for the equiv-
alence of I’ and its Smith form?
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SMITH FORMS OF BIVARIATE MATRICES )

2.2 Auxiliary Lemmas

In this subsection, we present several lemmas required to address Problem 2.7. We begin
by presenting two well-known formulas from linear algebra, both of which are applicable to the
polynomial matrix case.

Proposition 2.8 (Laplace expansion formulal®!) Let A € K[z, y]"*!. Given any strictly
increasing sequence of indices {i1,- - ,ir} with 1 <iy < --- <1 <1, we have

det(A) = Z det(A (ﬁ - ;i)) (1)t det(A“ (ﬁ - ;'f;)),

1<j1 < <jrp <l
where A% (;1 - ;’Z) is the (I — k) x (I — k) submatriz obtained from A by deleting its i1-th to
ig-th rows and ji-th to ji-th columns.

Proposition 2.9 (Binet-Cauchy formulal?¥) Let A = BC, where B € K|x,y]"”** and
C € K|z,y]¥*™. Then an r x r minor of A is

(i) - S aa(o(en)) m(e(ion)
1<s1 < <sr<k
where 1 < r < min{k,[}.

Lemma 2.10 Let Fy, Fy € K[z,y]*™. If Fiy ~ Fy, then d;(Fy) = d;(Fy), L;(F}) = L;(Fy)
and J;(Fy) = J;i(Fy), where i =1,--- 1.

The proof of Lemma 2.10 follows directly from an application of the Binet-Cauchy formula
and is therefore omitted here.

Lemma 2.11 (see [14]) Let F,Fy,Fy € Klz,y|"*! satisfy F ~ F1Fy. If there ewists
some positive integer k with k < 1 such that J(F) = Klx,y] and dp(F) = di(F1), then
Ji(F1) = Jp(Fp) = Klz,y] and di(F2) = 1.

Lemma 2.12 (see [19]) Let F,Fy, F; € K|z, y|™*! satisfy F = F1Fy and ged(det(F),
det(F»)) = 1. Then

1) di(F) = d;(Fy) - di(F2), where i =1,--- 1;
2) If J,(F) = K[xz,y], then J;(F1) = J;(F») = K|z, y], where i = 1,--- L.

In 1976, Quillen[®”) and Suslin/?®! independently resolved the renowned Serre Conjecture,
and thereby established a connection between ZLP matrices and unimodular matrices, a result
now known as the Quillen-Suslin theorem. Specifically, a ZLP matrix can be embedded into
a unimodular matrix. Based on the Quillen-Suslin theorem, the following conclusion can be
easily derived.

Corollary 2.13 Let A € K[z,y]"*™ be a ZLP matriz. Then there exists a unimodular
matriz U € K[z,y]™*™ such that AU = (I}, 0;x (m-1)), where I, is the | x [ identity matriz.

By leveraging the Quillen-Suslin theorem, Wang and Feng?” resolved the Lin-Bose Conjec-
ture proposed in [28], and further extended the result to the case of rank-deficient matrices.
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6 LU DONG, et al.

Lemma 2.14 Let F € K[z, y]"”*™ with rank(F) = r, and J,.(F) = K[z, y], where 1 <r <
I. Then there exist Gy € K[z,y]"*" and Fy € K[x,y]"™*™ such that F = G| F, with Fy being a
ZLP matriz.

Theorem 2.15 (Primitive factorization theorem[®") Let F' € K[z, y]"*™ be of full row
rank, and h € K|x] be a divisor of d;(F). Then there erist G1 € K[z,y]"*! and Fy € K|z, y]"*™
such that F = G1Fy with det(Gy) = h.

The key idea of the primitive factorization theorem is to establish a homomorphism from
K|[z,y] to a Euclidean integral domain, and then use Gaussian elimination method to factorize
F. This conclusion will help us in constructing the process of matrix equivalence in this paper.

Lemma 2.16 (see [19]) Let F € K[z, y]™*™ with rankr, and d.(F) = f(z) be a univariate
polynomial. Then F is equivalent to its Smith form if and only if J;(F) = Klx,y] with i =
1,

As observed from Problem 2.7, the polynomial matrices investigated in this paper are dif-
ferent from those in Lemma 2.16. Although it is only a change from d,.(F') being f(x) to
f(@)(y — g(x))t, it has brought many difficulties to solving Problem 2.7. These challenges will
be elaborated in the next section.

3 Equivalence Theory

This section is devoted to presenting the detailed solution procedure for Problem 2.7, and
thus contains a number of technical proof processes. To enhance readability, Table 1 summa-
rizing recurrent notations along with their corresponding interpretations is provided.

Table 1 Notations

No. Notation Description
1 P the bivariate polynomial y — g(z)
2 di(F) the greatest common divisor of all the 4 x ¢ minors of F'
3 Li(F) the ideal generated by all the ¢ X ¢ minors of F
4 Ji(F) the ideal generated by all the ¢ x ¢ reduced minors of F
5 F~Q F' is equivalent to @
6 (h1,--+,hi) the ideal generated by h1,---,
7 a€ A\ A1 d belongs to the set formed by the rows of A after removing A;

3.1 Main Idea and Challenges

To address Problem 2.7, we will use an example to illustrate the main idea of the solution
procedure and the challenges encountered therein.

Example 3.1 Let F € K[z, y]*** with det(F) = fp°, where f € K|[x]. Assume that the
Smith form of F is S = diag{ f1, fop, fap?, fap®}, where fi | fo | f3 | fa and f = fifofsfs. In
addition, J;(F) = K[z,y] for i =1,--- 4.

According to the primitive factorization theorem, there are two matrices Gy, Fy € K[z, y
such that F' = G Fy with det(G1) = f. It follows from the Binet-Cauchy formula that det(F;) =

]4><4

@ Springer



SMITH FORMS OF BIVARIATE MATRICES 7

p%. This implies that ged(det(G1),det(F;)) = 1. Based on the first result of Lemma 2.12, we
have d;(F) = d;(G1)d;(F1), wherei = 1,--- 4. It follows that d;(G1) = f1--- fifori =1,--- 4,
and dl(Fl) = 1,d2(F1) =D, d3(F1) = pg,d4(F1) = p6.

Under the assumption that J;(F) = K[z,y] for i = 1,--- ,4, we can utilize the second result
of Lemmas 2.12 and 2.16 to obtain the conclusion that

Gl ~ SG1 = dlag{fla f27.f37 f4}

There exist two unimodular matrices Uy, Vi € K[z, y]*** such that G; = U1Sg, V1. Then, we
get F' = U1 Sg,ViF1. Let F» = V1 Fy. By the fact that V4 is unimodular, d;(Fs) = d;(F1) and
Ji(F2) = J;(Fy1), where i =1,--- ,4.

The first thing we want to do is to prove that there exist a unimodular matrix Uy € K [z]**4
and a polynomial matrix F3 € K[z, y]*** such that Fy = Uy - diag{1, p, p, p} - F3. This is the

first challenge. By overcoming this challenge, we can obtain

P~ diag{flaf27f37f4} : U2 dla'g{17p7p7p} 'F3'

The second challenge is to prove that

diag{fla f27f37f4} : U2 : dla'g{17p7p7p} ~ diag{f17f2p7 f3p7 f4p}

After solving this challenge, we can get

F~ diag{f17f2p7 f3pa f4p} : F47

where Fy € K[z, y]***.
Finally, the third challenge is to prove that there exist a unimodular matrix Us € K[z]***
and a polynomial matrix Fy € K[z,y]*** such that Fy, = Us - diag{1,1,p,p} - F5. If we can

prove, then we have

F~ diag{flv.pra f3pa f4p} ' U3 ' dlag{lv lapvp} ! F5-

By repeatedly applying the above calculation process, we can deduce the result:

F ~ S = diag{ f1, fop, fsp*, f2p"}.

In Example 3.1, the first and the third challenges are closely related. In the subsequent
subsection, we will address these two challenges first. The second challenge is the most crucial

part in solving Problem 2.7, and we will tackle it at the end.
3.2 Solving the Challenges
Leveraging the particular structure of p, we construct the following homomorphism
¢ Kla,y] — Kla],
hz,y) — h(z, g(z)).
This homomorphism can extend canonically to the homomorphism ¢, : K[z, y]'*™ — K[z]'>*™

by applying ¢, entry-wise.
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8 LU DONG, et al.

Lemma 3.2 Let A € K[z,y]"*™. If rank(¢,(A)) = k, then there exist Ay € K[z, y]*™

and a unimodular matriz U € K [x]'*! such that

A:Udlag{17717p77p}"41
———

-k

Proof Note that K[z] is a Euclidean domain and ¢,(A4) € K[x]"*™. There is a unimodular
matrix V € K[z]'%! such that V¢, (A) = Ao, where Ay € K[z]'*™ is a upper triangular matrix
and the last [ — k rows of Ay are zero vectors. Let A" = VA. It follows from ¢, being a

homomorphism that
op(A) = 6p(V)p(A) = Vi (A) = Ao.
This implies that all elements of the last [ — k rows of A’ are divisible by p, i.e.,

A/:dlag{la 717p7"' ,p}-Al’
-k

where A; € K[z, y]"*™. Let U =V ! we have A = U - diag{1,--- ,1,p,--- ,p} - A;. The proof

is completed. |

Lemma 3.3 Let A € K[z,y]'’*™, and A; € K[z, y]**™ be a submatriz of A such that
ptdi(Ar). If for any row vector @ € A\ A1, the matriz Ay = (*‘(‘il ) satisfies p | dgy1(Az), then
rank(¢p(A)) = k.

Proof  Without loss of generality, assume that A; = (af,---,a})T, where @; € K[z, y]'*™
is the i-throw of A, ¢ =1,--- , k. Since p{ di (A1), there exists at least a k x k minor b € K|z, y]
of Ay such that p { b. Then ¢,(b) # 0, and it follows that rank(¢,(A1)) = k. Since A; is a
submatrix of A, rank(¢,(A)) > k. Similarly, it follows from p | di4+1(As2) that rank(¢,(42)) < k.
Since Ay = (*‘l‘il ), Op(dr), -+ dp(ak), ¢p(@) are Kz]-linearly dependent. Then Vd@ € A\ Ay,
there are hy,--- ,h € K(x) such that

¢p(@) = hadp(@r) + - - + hidp(ar), (1)

where K (x) is the rational fraction field of K[z]. For any given k + 1 row vectors dy,,--- ,dy,,,

of A, by Equation (1) we have

Dp(dty) hegi o hegk -
G - h: ; h: : ’ (2)

bp (i, wr e B ]

¢P(a‘k+1) htk+11 htk+1k ép(ax)

where hy 1, by € K(2). We write Equation (2) as B = H - ¢,(A;). It follows from
rank(B) < min{rank(H ), rank(¢,(A1))} that rank(B) < k over K (x). Then there is a nonzero
vector @ € K (z)'**+1) such that WB = 0. Multiplying both sides of the above equation by
the least common multiple of all the denominators of entries in W, we get

w1¢10(5:t1) +oeee wk¢;0(5:tk) + wk+1¢17(dtk+1) = 67 (3)
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SMITH FORMS OF BIVARIATE MATRICES 9

where wy, -+, wg, wr1 € Kz] with at least one w; # 0. It follows from Equation (3) that any
k + 1 row vectors of ¢,(A) are K|[x]-linearly dependent. Therefore, rank(¢,(A)) = k. |

Lemma 3.4 Let A € K[z,y]"*!, and the Smith form of A be S = diag{ fip*,--- , fip®},
where f1,---, fi € K[z] satisfy that f1 | fa |- | fi, and 0 < 83 < --- < 5. Assume that there
exists a matriz B € K[z, y]™*! such that

A~ diag{fip™, -, fup™, fes10®,---, fir°} - B,
where s < s < spp1. If Jp(A) = K[z, y], then rank(¢,(B)) = k.

Proof Let A = diag{ fip®', -, fxp®, fe+1p®, -+, fip®}. It is easy to check that dy(A) =
di(A) = f1--- fyp¥ T T According to Lemma 2.11, it follows from A ~ AB and Ji(A) =
Klz,y] that J,(B) = K[z,y] and di(B) = 1. This implies that I (B) = Jx(B) = K|z, y]. It
follows that there exists at least one submatrix By € K|[z,y]**! of B such that p { di(B1).
Next, we prove that p | dg41 ((Bgl )) for each vector b € B \ B;. Next, we divide the proof
into three parts.

First: s; =--- = s, = s.

Let C = AB and Bj be formed by the i1-th, io-th, - - - ig-th rows of B, where 1 < i1 <is <
<o <ig < 1. Since A ~ AB, djy1(C) = dpy1(A) = f1-+ frfrp1p™T55+1. Let l;j be the j-th row
of Band D; = (]gjl), where l;j € B\ By. It follows from dy41(C) | fi, - - fir f[;ip*+V3%dgi1(Dy)
and s < 41 that p | dry1(Dj). According to Lemma 3.3, we get rank(¢,(B)) = k.

Second: s; < s9 < -+ < 5k < S.

In this case, let C = AB and B € K[z,y]**! be the submatrix of B formed by its first k
rows. We assert that p { di(B]). Otherwise, all the k X k minors of C have a common divisor
pstt s+l This contradicts the fact that d(C) = f1--- fup** T T, Let By = By, (_)'j be the
J-th row of B and D; = (];1 ), where j = k+1,---,l. Then for each j, we have di11(C) |
fi-- fkfjpsﬁ'”*sk*sdkﬂ(Djj). By the fact that dgy1(C) = f1 -+« fefrp1pst T FTsetsesr and
s < Sp41, we have p | dpy1(Dj), where j = k+1,---,1. According to Lemma 3.3, we obtain
rank(¢,(B)) = k.

Third: The remaining cases except the first and second. The same conclusion can be
derived through the above method.

Therefore, the proof is completed. |

Remark 3.5 It follows from d; (F>) = d;(F}) in Example 3.1 that dq (F2) = 1 and da(F3) =
p. It is easy to check that rank(¢,(F>)) = 1. Then Lemma 3.2 can be used to resolve the first
challenge. When F ~ diag{fi, fop, fap, fap} - Fu, by Lemma 3.4 we have rank(¢,(F1)) = 2.
Using Lemma 3.2 again, we can solve the third challenge.

Lemma 3.6 Let

I
A:diag{hla"'7hk7h’7"'7h‘}' ’ ’
I—k B
where hy, -+ hy,h € K[z,y] satisfy by | ha | -+ | hi | h, and B € K[z, y]=F*U=k) " Then for

j=k+1,---,1, we have
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10 LU DONG, et al.

1) dj(A) =hy--- hkhjik . dj_k(B);
2) IfdJ(A) =hy--- hkhj_k, then JJ(A) = j_k(B).

Proof  For any two given strictly increasing index sets {s1,---,sj_x} and {t1,--- ,t;_x}
that satisfy 1 < 51 < - < sjp <l—kand 1 <t < - <tj_p <1 —Fk, the following
determinant

1 -k (k oo (ks
e (1) oo (v sg0)
Lok (k+t) - (K+tjg)
—hy- bR det (BT T (4)
t1oe tjg

is a j x j minor of A. Let ay,---,an € K[z,y] be all the (j — k) x (j — k) minors of B, where
N = (lik)z. It follows from Equation (4) that

j—k
hy--heh? Faq, - by hph? Fay (5)
are some of all the j x j7 minors of A. Obviously,

ged(hy -+ hyh? ™ aq, -+ hy - hgh?Fan) = hy - bR - d; g (B).

Let B1,---, B, € K[z,y] be all the j x j minors of A excluding the elements in Equation (5),
where n = (;)2 — N. Without loss of generality, assume that

k=1 k+1 - j+1
By =det | A J
1 k=1 k+1 o j+1
Then we have
, 1 j—k+1
Bi=hy B F 1 det | B J . (6)
1 j—k+1

Since det (B (i - ;:Zﬂ )) isa(j—k+1)x(j—k+1) minor of B, it follows from the Laplace

expansion formula that

j—k+1

d;_r(B) | det | B
1 oo j—k+1

This implies that
hy--hh?™" - d;_i(B) | i

By the same method, we can deduce that

hy---hxh? ™% . d; 4 (B) | Bi, wherei=1,--- 1.
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Hence, it follows that
dj(A) = ged (hy -+ hih?™"ay, -+ by hph? ™ Fan, Br, -, By)
= ged (gcd(h1 v hih? R, e by hkhj_kazv),ﬁl, . ’377)
= ng (hl e hkhjik : djfk(B)aﬁla e 7ﬁ77)
=hy---hph? 7R o d; 4 (B).

If d;(A) = hy - hyh? =" then

ﬁl ﬁn
A — PR . PR . .
']J( ) <a17 , ON, hl "'hkhjik’ ,hl "'hkhjik (7)

It follows from Equation (6) that

h 1 - j—k+1
S Y L
hy - high? I, 1 - j—k+1
According to the Laplace expansion formula, det | B 1 - ;:Zii )) can be expressed as a linear
combination of v, -+ ,an over K[z,y]. This implies that
B
B N A .
B €\ an)

Adopting the same reasoning, it follows that

Bi

WE<Q1,"',O{N>, Wherei:L---,n. (8)

Combining Equations (7) and (8), we get

Ji(A) = (a1, - ,an) = I;_1(B).

The proof is completed. |

Lemma 3.7 Let W = AjUAs, where Ay = diag{hy,--- ,} with hy,--- b € K[z, y]
satisfying hy | ha | -+ | i, U € K[2]"™! is a unimodular matriz, and Ay = diag{p®*,--- ,p'}
with the exponents satisfying 0 < t1 < -+ < t;. Then di(W) = di(A1) - dp(A2), where k =

1ol

Proof Let U = (uij5),,,,, where u;; € K[z] for 1 <1i,5 <. Since W = A;U A, we get

<

hip"uir  hapuis o hapfug

hop™ugy  hop™usy -+ hopfluy
W P

hgp"upn hpPue oo haptug

For any given integer k with 1 < k <[, let W} be the matrix formed by the first £ rows of W.
Then all the k x k minors of Wy, are hy ---hppt T Fteay by - hpp®2ao, -+ by - - hip®Nan,

@ Springer



12 LU DONG, et al.

where N = (,i), and 0; = t;, +---+1;,, the indices {i1,--- ,i} is a strictly increasing sequence
with 1 < i < - < i, <Il,i=2,---,N. Obviously, 8; > t; +---+ 1ty for i = 2,--- /N,
ay, -+ ,ay € K[x] are all the k x k minors of the matrix Uy formed by the fist k rows of U.
Since U is unimodular, it follows from the Laplace expansion formula that oy, --- , an generate
the unit ideal K[z]. Let 6; = 6, — (2?21 tj), where i =2,--- , N. Assume that

0! 0’
a:ng(alvp 2, P NOéN),

where a € K[z,y]. It follows from a | aq that a € K[z]. As p =y — g(z) is irreducible, we have
a|a;fori=2--- N. Since (a1, - ,an) =1, we get a = 1. It follows that

di,(Wi) = hq - hyp'ttotts,

On the one hand, it follows from hy | ho | --+ | hy and t; <ty < -+ < t; that hy--- hyptt T Fik
divides every k x k minor of W. This implies that dy(Wj) | dp(W). On the other hand,
since all the k x k minors of W}, are part of those of W, we have di(W) | di(W)). Therefore,
dr (W) = di(Wy). Tt follows from di (A1) = hy---hy and dg(As) = ptrT Tt that dp(W) =
di (A1) - dg(Az). The proof is completed. |

Remark 3.8 Lemma 3.7 is different from the first result of Lemma 2.12. This is because
ged(det(Ay), det(Az)) may be a nontrivial polynomial in K[z, y].

Lemma 3.9 Let

A:diag{f1p517"' 7fkp5k7fk+1ps7"' 7flps} : Udlag{]-? 717p7"' 7p}7
k
where f1,---, fi € K[z] satisfy fi | f2 |- | f1,0<s1 < - <sp <s, and U € K[z]**! is a
unimodular matriz. If J;(A) = Klz,y] fori=1,--- ,k, then
A~ diag{ f1p®*, -+, fup®, frp® o fip®tT)

Proof Under the premise that s; < --- < s < s, we partition the proof into three parts
based on their ordering.
First: s; =--- =5, = s.

The above problem is equivalent to proving that

diag{fla"' 7fk7fk+17"' 7fl} Udla'g{:l? 717107"' 7p} Ndlag{f17 7fk7fk+1p7"' 7flp}'

Let Al = dlag{flv afkvfk-i—lv"' 7.fl} U - dla’g{lv 717p7"' 7p} Then A = pSAl- Since
Ji(A) = K[z,y] with i = 1,--- |k, we have J;(41) = K[z,y], where i = 1,--- ,k. Based on
Lemma 3.7, we have

dl(Al):flfl fOI‘lSiSk, anddj(Al):fwajpj*k fOrk—FlS]Sl
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Let U = (u4j),y,;» where u;; € Kz]. Then

frwir oo fiue fipuigetny o0 fipun

A fauar co+ fousk  fopuskiry o fapua
1= .

fown o fouk fipwgesy oo fipua

Let By € K[z]"** be the matrix formed by the first k& columns of A;. Without loss of generality,
assume that the Smith form of B is

by
bo

Sp, =
bi,

where b; € Klz] for i = 1,--- ,k and by | by | --- | bg. Since B; is a univariate polynomial
matrix in K[z], there exist two unimodular matrices Up, € K[z]'*! and Vp, € K[z]*¥** such
that UBlBIVBl = SB1~ Let

1%
Ay=Up, A - |7

)

Iy,

where Ij_j, is the (I — k) x (I — k) identity matrix. Then A; ~ Ag by the fact that Up, and
(VBl 1, ) are two unimodular matrices. By Lemma 2.10, we have

Ji(As) = K[z,y] and d;(Az) = f1--- fi for 1 <i <k, dj(Az) = f1--- f;p/ Ffork+1<j<L.

In addition,

b1 PUL(k+1) - DUu
ba PU2(k+1) Tt PU2
AZ = )
bk PUk(k+1) DUkl
PUI(k+1) 0 Pl

where v;; € K[z] for 1 <i<land k+1 < j <. It follows from d;(A2) = f; that
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by pU’l(k_H) e poY
by pUIZ(kJrl) e Py
A= fi- I = A4
b DPUhesry PV
p”f(kﬂ) epUy

where A3 € K|z, y]'*!. Moreover, Ji(A2) = I1(A3) = K[z,y]. Since b; | b; for 1 <i < j <k,
we have b} | b} for 1 <i < j < k. We assert that b} is a nonzero constant in K. Otherwise, if
| =0, then d;(A2) = f!di(A3) = 0. This contradicts the fact that d;(As) = f1--- fip' = *. If
| is a nontrivial polynomial in K[z], then there exists a point zy € K& such that b](z¢) = 0.
It follows from b} | b that b(z9) = 0, where j = 2,--- k. Letting yo = g(x0), we get
p(zo,Y0) = Yo — g(xo) = 0. This implies that (zo,y0) € V(I1(Asz)). This contradicts the fact
that I (As) = K[z,y]. Without loss of generality, let b} = 1. Then it is easy to check that

1

by pUIZ(kJrl) e Py

A3 ~ . . . . = )
/ !/ /
b PUhesry 0 PUki Ay

P“z/(k+1) epug
where A4 € K[x,y]!=Y*(=1 Based on Lemma 3.6, we obtain

1
d = dy(Ay).
2 A,

Since Ay = f1As and do(Ag) = fi1f2, we get da(As) = % It follows from Az ~ (1 A4) that

dy(As) = do(Ag) = 22
bil
Then,
by p”é’(k“) e poy
f2 . f2
Av=5 O Py o o | = A
PUl(kyr) T PUL
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where A5 € K|z, y]=D*=1 Moreover, b/ | b for 2 <4 < j < k. Then we assert that b is
a nonzero constant in K. Otherwise, if b5 = 0, then d;(A3) = d; (( 1 Ay )) = 0, which leads to
a contradiction. If b5 is a nontrivial polynomial in K[z], then there exists a point x; € £ such
that by (1) = 0. It follows from by | b7 that b7 (z1) = 0, where j = 3,--- , k. This implies that
(x1,9(x1)) € V(I1(As)). Let

1

A6:f1' :diag{f17f27"'7f2}'

L. A5 As
Then Ay ~ Ag. It follows that do(Ag) = fif2 and J2(Ag) = Klz,y]. Furthermore, by
Lemma 3.6 we get Ja(Ag) = I1(As). This implies that (z1,g(x1)) € V(J2(As)), which leads to
a contradiction. Without loss of generality, assume that b5 = 1. Then we have

1
by PUSks1y T PUY
: R 1
A5 ~ /! " 1 - ’
bk PUkGgr) 0 PUki Az
p”iékﬂ) puy
where A7 € K[z, y](=2*(=2) Tt follows that
1
A2 ~ fl : ! ~ fl . L ~ fl . 1
Ay foIi—a As foIiq

Az
Repeating the above calculation process, we derive the following equivalence relation:

1

AQNdiag{fla"'afkafka"')fk}. ’
o PCkt1)(k+1)  “*° PC(kt1)l

PCi(k+1) Tt pcy

where ¢;; € K[z] for k+ 1 <4,j <. Let C = (¢;;) € K[z]!=F*(=F) Then

A2 Ndlag{f1,"' 7fk7fkp7"' 7fkp} :
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16 LU DONG, et al.

According to Lemmas 2.10 and 3.6, we have d;(A2) = f1---

Then

fres1-- 15
k0
k

It follows that the Smith form of C is

dj—1(C) =

SC fk

fi

fr

where j =k+1,---,

Fr(fup) =" d; 4 (C) for k+1 < j <.

This implies that there are two unimodular matrices Uc, Ve € K[z](¢=F*U=F) guch that

UCCVC = Sc. Since

dia'g{fla"' 7fk} ) Ik
fepLi— C
(e [ diag{fr, -, fu} NEL
UG frpSc ve')
we have
. I, .
dlag{fla"'afkafkpv"'afkp}' Ndla’g{fla"'7fk7fk+1pa"'7flp}'

It follows that

Al NA? Ndlag{fla 7fk7fk+lp7"'

Second: s; < s9 < -+ < 5k < S.

According to Lemma 3.7, we have d;(A) = f1---

foo-- fporto st GG for k41 < j < L
1= , k. Assume that U = (u;j)ix;, then
U1l Uik PUI(k+1)
’
;21732“21 %P32U2k ;2 poatl U2(k+1)
A= fip* %"pgkukl %"pgku“ e P g g
Fr+1 Tt Tet1 s'+1
T p* u(k+1)1 f1 P u(k+1)k 71 p U(k+1)(k+1)
L
ﬁ PS w1 ﬁ PS ULk ;—i:ﬂs Tuyegy

Letting A = f1p®* - Ay, we have J1(A) = I (A1). We assert that (uq1,---
there exists a point xo € £ such that wuy;(22) = 0, where i = 1,---,

(r2,9(x2)) € V(I1(A1)). This contradicts the fact that I1(A4;) =

@ Springer

, fin}

Te+1 s/ +1
f

fips1+...+51‘ for 1 S i S k’, and dJ(A) _

Let s = s — s1, and s, = s; — s1, where

pun

f L+1
AP

fr 1
ﬁpsk+ Ukl

1 p U(k4+1)1

f
1
Sy,

<

fi
P

,ug) = 1. Otherwise,

k. This implies that
Then
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there is a unimodular matrix U; € K[a:]’”k such that (u11,--- ,u1g) - U = (1,0,---,0). Let
Us = (U1 Il—k) and Ay = Ay - Uy. Then U, € K[z]"™*! is unimodular and

1 0 0 PUL(k+1) puir
’
;?p%um ;fpg2u22 ;fpg2“2k %p52+1“2(’<+1> ﬁpgﬁ—l ual
;
A2 _ ;kp k“kl ;kp kqu ;kp kukk ?kp kJr Uk (k1) %p3k+1ukl
Fht Tt Fr+ T+ g1 s'+1
f1 P "<k+1>1 f1 - “<k+1>2 f1 tp* "<k+1>k f1 Lp+t U(k+1)(k+1) " ff p* ugey
./ ./ : ./ ’ : /:
%PS ugy %Ps Ujs %PS U %Ps +1ul(k+1) %PS tluy
Let
1 —PUL(ks1) °°  —DUL
1
_ﬁp52u2 1
Us = and Uy = 1 ,
_fi s’
P U 1 .

where Us, Uy € K]z, y]le are unimodular matrices. Letting A3 = U3AsUy, we get

1 0 . 0 0 .. 0
0 %p e %p32u12k %p82+1u/2(k+1) e ;2p52+1
Az= |0 %ps’“%z o %Psk%k %PS’“H%(HD o %psﬁl%l
fr ! i ’ i '+1 fr "+1
0 5P Uleinye 0 TP Uk TR P T Wy eey 0 TP Uy
/i 1 "+1
0 fptup e g, ey R

It follows from the form of A3 that A3 = (1 ;_21)5'21[71) - A4, where
1

1 (/) 9 , 0 0/
0 u22 U PU(k41) pugy;
s i3, s ! f 1
0 Fuly FoP"3 sy 7P g Uy (g1 = a
_ . -7 : m
A4 - 0 ?gp kqu ?kp kukk %p5k+1uﬁc(k+l) ?—kpsk+1u;cl bl
0 Tk+1 L ES! Th+1 s 41 L TS U
P “<k+1)2 P “<k+1)k~ 2 P U(k41) (k+1) TP Uiy
. f .// : f .// f 17 .1 : f /; 1
0 Ly 2Ly, Ly Ul iLp T,
s =sh—shfori=3,-- k,and s = s’ — s,. Through the above calculations and reductions,
we obtain
1
_ -1 s -1 y7—1
A—U3 ,f1p1, -A4-U4 cUg

Lpl
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It follows that
s1
A fip AL
fop®2 ;4

Repeating the above calculation process, we derive the following equivalence relation:

1

fip*1 .
! f f
A~ .. o . %P“S’“HU(JQH)(;@H) ’}:117375’“+1v(k+1)z ,
kD"F
frep®R Iy
;—ILCPS_S’“+1UL(1C+1) ;—,lcps_sk+1vzz

V(k+1)(k+1) U(k+1)1
where v;; € K[z] for k+1 <4,j <L LettingV:< : U ),wehave

Vi(k+1) v

: S S S S Ik
A~ diag{ fip**, -, 0", fe1p® T, fipt T .

By the fact that dj(A) = f--- fipsrttsetl=R(+D) | we get that (Ik V) is a unimodular

matrix. Therefore,

A~ diag{fip®', -, frp™, foap™ - fiptTH

Third: The remaining cases except the first and second. The same conclusion can be
derived through the above method.
Therefore, the proof is completed. |

Lemma 3.9 solves the second challenge raised in Example 3.1.

3.3 The Solution for Problem 2.7

Building upon the resolution of the above three challenges, we now first consider the case
where all the square matrices in M are of full rank, and then extend it to the general case, so
as to achieve the goal of completely solving Problem 2.7.

Theorem 3.10 Let F € K|x,y)"*! with d;(F) = fp', where f € K[x] and t € N. Then
F is equivalent to its Smith form if and only if J;(F) = Klx,y] fori=1,--- 1.

Proof Without loss of generality, assume that the Smith form of F' is

S = diag{f1p51af2p52a e aflpSl}?

where f1,---,f1 € Klx] satisfy fi---fi=fand f1 | fo| --- | fi, and s1,---, s, € IN satisfy
0<s3<---<sand sy +---+s =t.

Necessity It is easy to verify that J;(S) = K[z,y] for i = 1,--- ,l. Since F ~ S, It follows
from Lemma 2.10 that J;(F) = J;(S) and J;(F) = K|z, y], where i = 1,--- ,l.

Sufficiency According to the primitive factorization theorem, there exist two polynomial
matrices F1, Fy € K[z,y]"*! such that F = F} Fy with det(F}) = f. It follows from det(F) =
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det(F) - det(Fy) that det(Fy) = p' and ged(det(Fy),det(F,)) = 1. Based on Lemma 2.12,
we have d;(F) = d;(Fy) - d;(F2) and J;(F1) = J;(Fz2) = Klz,y], where ¢ = 1,---,1. Since
di(F)=f1-- fip¥*T T8 for i =1,--- |1, we obtain

di(Fl) = fl T fl and dZ(FQ) = p51+"'+51’
where i = 1,---, 1. This implies that the Smith form of F} is

SF1 = diag{flaf?a"' 7fl}~

It follows from Lemma 2.16 that F} ~ Sg,. Then, there are two unimodular matrices Uy, Uy €
K[z, y] such that
Fy, =U5p,Us. (9)

Let F3 = UsFs, we get d;(F3) = d;(F») by the fact that Us is unimodular, where ¢ = 1,--- ,l.
Since dy(F3) = p*', there exists a polynomial matrix Fy € K[x,y]"*! such that F3 = p*1 Fy. Tt
follows from Equation (9) that

F ~ diag{ fip°**, fop™, -+, fip**} - Fiy. (10)

If so = s1, then F ~ diag{fip®, fop®2,- -, fip®2} - Fy. If s > s1, then by Lemma 3.4 we
have rank(¢,(F;)) = 1. According to Lemma 3.2, there exist F5 € K[z,y]"*! and a unimodular
matrix Uz € K[z]"*! such that

F4:U3'dia’g{17pa"'ap}'F5' (11)
-1

Combining Equations (10) and (11), we have

F ~ diag{ fip®*, fop®,--- , fip™} - Us - diag{1,p,--- ,p} - Fs. (12)

Let Fg = diag{ fip®', fap®', -, fip*'} - Us - diag{1,p, - - ,p}. By Lemma 3.7 we have d;(Fs) =
fip®t. It follows from Lemma 2.11 that J;(Fs) = K|z, y]. Based on Lemma 3.9, we obtain

Fo ~ diag{ fp™!, fop™ ™, fir™ T}
Then there are two unimodular matrices Uy, Us € K[x,y]'>! such that
Fg = Uy - diag{ f1p"", fop™ ™, -+, fip* '} - Us.
Let F7 = UsF5, and it follows from Equation (12) that

F~ diag{flp817f2p81+1a T 7flp81+1} : F7'

Repeating the above calculation process, we will obtain the following equivalence relation within

a finite number of steps:
F~ diag{f1p517f2p527" : 7flp5l} : FN7
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where Fy € K[z,y]"!. Tt is easy to check that Fiy is a unimodular matrix. Therefore, we have

F ~ diag{f1psl,f2p527 e 7flp5l}'

The proof is completed. |

Corollary 3.11 Let F € K[z, y]"*™ with d,(F) = fp', where r = rank(F), f € K|[z] and
t € N. Then F is equivalent to its Smith form if and only if J;(F) = K|x,y] fori=1,---,r.

Proof Without loss of generality, assume that the Smith form of F' is

diag{f1p51a ) fT’pST} Orx(me)
O@—ryxr O—ryx (m—r)

3

where f1,--, fr € K[z] satisty fi---fr = fand fi | fo| -+ | fr, and s1,--- , s, € IN satisfy
0<s3<---<s,and sy + - +s, =t

Necessity It is easy to verify that J;(S) = Kz,y| for i = 1,--- ,r. Since F ~ S, it follows
from Lemma 2.10 that J;(F) = J;(S) and J;(F) = K[z, y], where i = 1,--- 7.

Sufficiency Since J,.(F) = K|z, y], it follows from Lemma 2.14 that there exist a poly-
nomial matrix G € K[z,y]'*" and F; € K|z,y]"*™ such that F = G1F, with F} being
a ZLP matrix. According to Corollary 2.13, there is a unimodular matrix U € Kz, y]™*™
such that FiU = (Ir,0.5(m—r)). It follows that F' ~ (G1,0;x(m—r)). By Lemma 2.10, we
have J,.(G1) = J.(F) = K[z,y]. Using Lemma 2.14 again, there exist G € K[z,y]'*" and
G3 € K|[z,y]"*" such that G; = G2G3 with G2 being a ZRP matrix. Based on Corollary 2.13,

there is a unimodular matrix V' € K[z, y]"*! such that VGy = (O(z_I:)XT ) Then we obtain

F Gs Orx(mfr)
0(l—r)><r O(I—T)X(m—r)

It follows from Lemma 2.10 that
di(Gs) = di(F) = f1--- fip™ 7" and J;i(G3) = Ji(F) = K[z, y],

where i = 1,--- 7. According to Theorem 3.10, there are two unimodular matrices V;,U; €
K[z, y]"*" such that

Gz = Vi -diag{ fip**,---, frp*} - Ur.
Let Vp = (V1 Il—r) and Uy = (Ul Im_r)’ where Vo € Kl[z,y]"*! and Uy € K|z, y]™*™.

Obviously, Va, Us are two unimodular matrices. This implies that

diag{f1p517 T frpsr} Orx(me)
O0(—ryxr O(—r)x (m—r)

~

The proof is completed. |
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4 Conclusions

This paper focuses on the equivalence problem between a class of bivariate polynomial
matrices and their Smith forms. Let F' € K[z, y]'*! be of full rank, and d;(F) = f(x)(y—g(x))?,
where f, g € K[z]. The main idea is as follows. First, we use the primitive factorization theorem
to factorize F into the product of two matrices whose determinants are coprime. Then, by taking
advantage of the special form of y — g(z), we construct a homomorphism from K[z, y] to K|x].
Consequently, we can use the properties of the Euclidean domain K[z] to reduce F to its Smith
form. For the cases of non-square matrices or matrices that are not of full rank, we resort to
the Quillen-Suslin theorem to transform them into the cases of square matrices with full rank,
thereby completely resolving Problem 2.7.

Based on the research presented in this paper, we naturally pose the following problem. Let
F € Klz,y] with rank r, what is the necessary and sufficient condition for F' to be equivalent
to its Smith form? At this point, d,(F) no longer has a special form. Can new techniques be
developed to address this problem? This problem warrants further investigation.
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