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1. Introduction

Hironaka (1964) proposed the concept of standard bases for solving the problem of singularity 
resolution of algebraic varieties. Buchberger (1965) presented Gröbner bases, which are bases with 
special properties of ideals in a polynomial ring, and gave the first algorithm to compute them. Gen-
erally, the definition of standard bases is more extensive. In particular, they can be called Gröbner 
bases in a polynomial ring but for a local ring, they are always called standard bases. Based on the 
groundbreaking work of Buchberger in Gröbner bases, many researchers have devoted themselves to 
studying Gröbner basis algorithms and obtained excellent works (see, e.g., Buchberger (1979, 1985); 
Lazard (1983); Gebauer and Möller (1986); Möller et al. (1992); Faugère (1999, 2002)).

One of the most important breakthroughs is the F5 algorithm proposed by Faugère (2002). The 
F5 algorithm follows the same underlying structure of Buchberger’s algorithm, which functions by 
performing polynomial reductions on a series of so-called S-polynomials. By the introduction of “sig-
nature”, Faugère has given rewriting rules to detect and discard many useless S-polynomials without 
performing any reduction, which greatly improves the efficiency of the algorithm. Along with that, 
several variants of the F5 algorithm have been presented (see, e.g., Ars and Hashemi (2010); Eder and 
Perry (2010, 2011); Arri and Perry (2011); Sun and Wang (2011a,b); Gerdt et al. (2013), and Eder 
and Faugère (2017) for a comprehensive survey). Among them, Gao et al. (2010, 2016) presented a 
new framework for computing Gröbner bases, i.e., the GVW algorithm, which is the foundation of the 
paper.

Due to the high efficiency of the signature-based algorithm, many researches began to generalize 
signature-based Gröbner basis algorithms to different rings. For example, Eder et al. (2017) general-
ized signature-based Gröbner basis algorithms to the polynomial ring with coefficients in a Euclidean 
ring. However, they have just used signature-based computation as a pre-reduction step for a classical 
Gröbner bases computation over the Euclidean ring. Caruso et al. (2020) introduced two signature-
based Gröbner basis algorithms for Tate algebras, which play a major role in the context of analytic 
geometry over the p-adics, in order to avoid many reductions. Francis and Verron (2021) extended 
signature-based Gröbner basis algorithms to the polynomial ring with coefficients in a principal ideal 
domain. They dealt with gcd-polynomials by taking into account the different combination coeffi-
cients, and then choose the appropriate combination coefficients to realize that the signature does 
not drop.

Based on the framework of the GVW algorithm, Lu et al. (2018) extended the signature-based 
Gröbner basis algorithm to local rings. As is well known, any global order implies that any non-
trivial monomial is greater than 1. This can guarantee that any nonempty subset of monomials has a 
minimal element by Dickson lemma. However, any local order corresponding to computations in local 
rings indicates that any non-trivial monomial is less than 1. This leads to the possibility that there 
are no minimal elements in nonempty infinite sets of monomials in local rings. Signatures inherit 
an order from the chosen monomial orders, and until 2018, all known proofs of the cover theorem 
rely on choosing a minimal signature from an infinite set of monomials. In order to get a minimal 
signature in local rings, Lu et al. (2018) restricted a local order to an antigraded order and constructed 
a special set, then generalized the cover theorem, the theoretical foundation of the GVW algorithm, 
to local rings in order to discard useless J-pairs which are analogous to S-polynomials in Buchberger’s 
algorithm.

In this paper, we extend the cover theorem to any semigroup order, which can be either global, 
local or even mixed. To ensure the termination of reductions for polynomials in local rings, Mora 
(1982) proposed a famous algorithm called the Mora normal form algorithm. Inspired by the idea 
of the Mora normal form algorithm, we give a more essential proof for the cover theorem, and re-
move the restriction for global orders and antigraded orders. More importantly, we generalize the 
Mora normal form algorithm for polynomials to the case of polynomials with signatures in order to 
perform a sequence of successive regular top-reductions. This crucial step serves two purposes. First, 
it guarantees the preservation of the polynomial’s signature throughout the entire reduction process. 
Second, it enables the reduction process to conclude within a finite number of steps. Based on these, 
we propose a signature-based algorithm to compute standard bases with respect to any semigroup 
order.
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The paper is organized as follows. Some basic concepts about semigroup orders, localization, stan-
dard bases and the Mora normal form algorithm are introduced in Section 2. Based on the idea of 
the Mora normal form algorithm, we prove the cover theorem with respect to any semigroup or-
der in Section 3 and propose a signature-based algorithm to compute standard bases in Section 4. 
In Section 5, an example is given to illustrate the effectiveness of the algorithm. We end with some 
concluding remarks in Section 6.

2. Preliminaries

Let k be a field, n a positive integer, X the n variables x1, . . . , xn , k[X] the polynomial ring in X

over k and 
{

Xα
∣∣ α ∈Zn≥0

}
the set of monomials in k[X]. For any given positive integer m, we write 

k[X]1×m as k[X]m which is a free module of rank m over k[X].

2.1. Semigroup orders

Definition 1 (Cox et al. (2005)). An order � on 
{

Xα
∣∣ α ∈Zn≥0

}
is said to be a semigroup order if it 

satisfies:

1. � is a total order, i.e., for any α, β ∈Zn≥0, exactly one of the following is true:

Xα � Xβ, Xα = Xβ, or Xα ≺ Xβ .

2. � is compatible with multiplication of monomials, i.e., for any γ ∈Zn≥0, we have

Xα � Xβ =⇒ Xγ Xα � Xγ Xβ .

Semigroup orders include global orders, which have the additional well-ordering property, as well 
as local orders and other orders which do not.

Definition 2 (Cox et al. (2005)). Let � be a semigroup order on 
{

Xα
∣∣ α ∈Zn≥0

}
, then

1. � is called a global order if Xα � 1 for all α �= (0, . . . , 0).
2. � is called a local order if 1 � Xα for all α �= (0, . . . , 0).
3. � is called a mixed order if it is neither global nor local.

For instance, the lexicographic order, graded lexicographic order and graded reverse lexicographic 
order are global orders; the antigraded lexicographic order and antigraded reverse lexicographic order 
are local orders. Please refer to Cox et al. (2005) for specific definitions.

Example 3. Let �1 be the lexicographic order on 
{

Xα
∣∣ α ∈Zn≥0

}
, and �2 be the antigraded lexico-

graphic order on 
{

Y β
∣∣ β ∈Zl≥0

}
, where Y is the l variables y1, . . . , yl . Then we define a semigroup 

order �3 by XαY β �3 Xα′
Y β ′

if either Xα �1 Xα′
, or Xα = Xα′

and Y β �2 Y β ′
. It is easy to verify that 

�3 is a mixed order.

We denote elements in k[X]m by the bold letters f, u, and so on. Let {e1, . . . , em} be the standard 
basis of k[X]m , where ei is the i-th unit vector of k[X]m , and i = 1, . . . , m. In this paper, we will always 
use the “downward” ordering on the entries in a vector, i.e., e1 > e2 > · · · > em , although any other 
ordering could be used as well. Given a semigroup order � on 

{
Xα

∣∣ α ∈Zn≥0

}
, it can be extended 

to k[X]m to obtain �m .
3
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Definition 4 (Cox et al. (2005)). Let � be a semigroup order on 
{

Xα
∣∣ α ∈Zn≥0

}
. A module order is a 

total order �m on the set of monomials 
{

Xαei
∣∣ α ∈Zn≥0, i = 1, . . . ,m

}
in k[X]m , which is compati-

ble with the k[X]-module structure and the order ≺ in the following senses:

1. Xα � Xβ =⇒ Xαei �m Xβei ,
2. Xαei �m Xβe j =⇒ Xα+γ ei �m Xβ+γ e j ,

for all α, β, γ ∈Zn≥0, i, j = 1, . . . , m.

Convention 5. The statements “≺ be a semigroup order” and “�m be a module order” in the following rep-
resent “≺ be a semigroup order on 

{
Xα

∣∣ α ∈ Zn≥0

}
” and “�m be a module order on 

{
Xαei

∣∣ α ∈ Zn≥0,

i = 1, . . . , m
}

”, respectively. In addition, we should point out that ≺m is always assumed to be compatible 
with ≺.

The most common module orders are position over term (POT) order and term over position (TOP) 
order. The definitions are as follows.

Definition 6 (Cox et al. (2005)). Let ≺ be a semigroup order, and �m be a module order. Then

1. (POT) we say that Xαei �m Xβe j if i < j, or if i = j and Xα � Xβ .
2. (TOP) we say that Xαei �m Xβe j if Xα � Xβ , or if Xα = Xβ and i < j.

2.2. Standard bases

Let � be a semigroup order, and f ∈ k[X] \ {0} be written in a unique way as a sum of nonzero 
terms

f = aα Xα + aβ Xβ + · · · + aγ Xγ ,

where Xα � Xβ � · · · � Xγ and aα, aβ, . . . , aγ ∈ k \ {0}. Then the leading monomial, leading coeffi-
cient and leading term of f w.r.t. � are Xα , aα and aα Xα , and denoted by lm( f ), lc( f ) and lt( f ), 
respectively.

Definition 7 (Greuel and Pfister (2002)). Let S� = {
h ∈ k[X] ∣∣ lt(h) = 1

}
, where � is a semigroup order. 

We define the localization of k[X] w.r.t. � as follows

k[X]� :=
{

f

h

∣∣∣∣ f ∈ k[X] and h ∈ S�
}

,

and call k[X]� the ring associated to k[X] and �.

Remark 8. Every ideal in k[X]� has a generating set consisting of polynomials in k[X], please refer 
to Greuel and Pfister (2002) for details. Based on this fact, limiting our study to ideals generated by 
polynomials for the remainder of the paper does not result in any loss of generality when studying 
ideals in k[X]� .

In the following, we use R to denote k[X]� . It is easy to prove that R = k[X] if and only if � is 
a global order, R = k[X]〈x1,...,xn〉 if and only if � is a local order, where k[X]〈x1,...,xn〉 is the collection 
of all rational functions p/q with p, q ∈ k[X] and q(0, . . . , 0) �= 0. Let g = f

h ∈ R , where f ∈ k[X] and 
h ∈ S� . Then the leading monomial, leading coefficient and leading term of g w.r.t. � are defined as 
lm(g) = lm( f ), lc(g) = lc( f ), and lt(g) = lt( f ), respectively.

If � is a local order or a mixed order, then the classical division algorithm in Cox et al. (2007) may 
not terminate. This is because a local order or a mixed order is not a well-ordering. In order to solve 
4



D. Lu, D. Wang, F. Xiao et al. Journal of Symbolic Computation 127 (2025) 102370
this problem, Mora (1982) proposed a new division algorithm in R to guarantee the termination of 
computation.

Proposition 9 (Mora (1982)). Let g, g1, . . . , gs ∈ k[X] \ {0}, and � be a semigroup order. Then there is an 
algorithm for producing polynomials h, a1, . . . , as, r ∈ k[X] such that

hg = a1 g1 + · · · + as gs + r,

where lt(h) = 1, lm(g) � lm(ai gi) for all ai �= 0, and either r = 0, or lm(g) � lm(r) and lm(r) is not divisible 
by any lm(gi).

The algorithm in Proposition 9 is called the Mora normal form algorithm. On the correctness and 
termination of the algorithm, please refer to Mora (1982) for details. Based on Proposition 9, we can 
now compute a standard basis of an ideal I in R using Buchberger’s algorithm, substituting the Mora 
normal form algorithm for the classical division algorithm.

Definition 10. Let I be an ideal in R , and � be a semigroup order. A finite set {g1, . . . , gs} ⊂ I is called 
a standard basis of I w.r.t. � if for every g in I , lm(g) is divisible by some lm(gi).

Let f ∈ Rm and �m be a module order. f can be written as f = u
h with h ∈ S� and u ∈ k[X]m . 

Then the leading monomial, leading coefficient and leading term of f are defined as lm(f) = lm(u), 
lc(f) = lc(u) and lt(f) = lt(u), respectively. We say that Xαei | Xβe j if and only if i = j and Xα | Xβ . If 

Xαei | Xβe j , then we define the quotient Xβ e j
Xαei

to be Xβ−α ∈ k[X]. That is, Xβ e j
Xαei

= Xβ−α . Greuel and 
Pfister (2002) extended the Mora normal form algorithm to the case of Rm .

Proposition 11 (Greuel and Pfister (2002)). Let u, u1 , . . . , us ∈ k[X]m \ {0}, and �m be a module order. Then 
there is an algorithm for producing polynomials h, a1, . . . , as ∈ k[X] and a vector r ∈ k[X]m such that

hu = a1u1 + · · · + asus + r,

where lt(h) = 1, lm(u) �m lm(aiui) for all ai �= 0, and either r = 0, or lm(u) �m lm(r) and lm(r) is not 
divisible by any lm(ui).

A standard basis for a submodule W of Rm can be defined similar to Definition 10, and we can 
use Proposition 11 to compute it.

Definition 12. Let W be a submodule in Rm , and �m be a module order. A finite set {u1, . . . , us} ⊂ W
is called a standard basis of W w.r.t. �m if for every u in W , lm(u) is divisible by some lm(ui).

2.3. Strong standard bases

Let f = ( f1, . . . , fm) ∈ k[X]m \ {0}, and I = 〈 f1, . . . , fm〉 ⊂ R . We define a subset M of Rm × R:

M := {
(u, v) ∈ Rm × R

∣∣ u · fT = v
}
.

It is easy to verify that M is a R-submodule of Rm × R generated by (e1, f1), . . . , (em, fm). If (u, 0) ∈
M , then u is called a syzygy of f. Let p = (u, v) ∈ M , then lm(u) is called the signature of p.

The definition of top-reduction in M is as follows.

Definition 13 (Gao et al. (2016)). Let p1 = (u1, v1) and p2 = (u2, v2) be two pairs in M . We say that 
p1 is top-reducible by p2, if it satisfies:

1. when v1 v2 �= 0, then lm(v2) | lm(v1) and tlm(u2) m lm(u1), where t = lm(v1)
lm(v )

; and

2
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2. when v1 = 0, then v2 = 0 and lm(u2) | lm(u1); and
3. when v2 = 0, then lm(u2) | lm(u1).

When v1 v2 �= 0, the one-step top-reduction of p1 and p2 is defined as

OneRed(p1, p2) := p1 − ctp2 = (u1 − ctu2, v1 − ctv2),

where c = lc(v1)
lc(v2)

. Such a one-step top-reduction is called regular if lm(u1 − ctu2) = lm(u1), and super
otherwise. When v2 is zero, the corresponding top-reduction is always called super.

Definition 14. Let G = {(u1, v1), . . ., (us, vs)} be a finite subset of M , where (ui, vi) ∈ k[X]m ×k[X] for 
all i. Then G is called a strong standard basis for M , if every nonzero pair (u, v) in M is top-reducible 
by some pair (ui, vi) in G .

Clearly, the above definition is similar to that of standard bases. Now, we establish a relationship 
between strong standard bases and standard bases. The proof of the following proposition is slightly 
different from Proposition 2.8 in Lu et al. (2018), and we relax the restriction of the local order ≺ to 
any semigroup order.

Proposition 15. Let ≺ be a semigroup order and ≺m be a module order. Suppose that G = {(u1, v1), . . . , (us,

vs)} is a strong standard basis for M, then

1. G0 = {
ui

∣∣ vi = 0,1 ≤ i ≤ s
}

is a standard basis for the syzygy module of { f1, . . . , fm}, and

2. G1 = {
vi

∣∣ vi �= 0,1 ≤ i ≤ s
}

is a standard basis for I = 〈 f1, . . . , fm〉 in R.

Proof. The proof of the first conclusion is the same as that of Proposition 2.2 in Gao et al. (2016), so 
we only prove the second assertion.

Without loss of generality, let G0 = {
ui

∣∣ vi = 0,1 ≤ i ≤ l
}

and G1 = {
vi

∣∣ vi �= 0, l + 1 ≤ i ≤ s
}

, 
where 1 ≤ l < s. We select a polynomial v ∈ I such that v �= 0, then there exists a vector u ∈ Rm

such that u · fT = v . Since leading monomials of u and v do not change by multiplying any unit 
in R , we assume that (u, v) ∈ k[X]m × k[X]. According to Proposition 11, there exist polynomials 
h, a1, . . . , al ∈ k[X] and a vector r ∈ k[X]m such that

hu = a1u1 + · · · + alul + r,

where lt(h) = 1, lm(u) �m lm(aiui) for all ai �= 0, and either r = 0 or lm(u) �m lm(r) and r /∈ 〈G0〉, 
where 〈G0〉 is a submodule of Rm generated by G0. It follows from v �= 0 that r �= 0. Hence, we get

(r,hv) = (hu,hv) −
l∑

i=1

ai(ui,0) ∈ M

and lm(hv) = lm(v). As (r, hv) ∈ M and r /∈ 〈G0〉, it can be top-reduced by some pair (ui, vi) ∈ G with 
vi ∈ G1. Then, vi �= 0 and lm(vi) | lm(v). Therefore, G1 is a standard basis for I . �

2.4. Regular Mora normal form algorithm

Let G be any finite subset of M , we say that p = (u, v) ∈ M is regular (resp. super) top-reducible 
by G if it is regular (resp. super) top-reducible by at least one pair in G . We call p eventually super 
top-reducible by G if there is a sequence of regular top-reductions of p by pairs in G that reduce p
to a pair (u′, v ′) ∈ M that is no longer regular top-reducible by G but is super top-reducible by G . 
However, Example 3.5 in Lu et al. (2018) shows that a sequence of regular top-reductions may not 
terminate. In order to guarantee that regular top-reductions w.r.t. any semigroup order terminate in a 
finite number of steps, we need to propose a new division algorithm to regularly top-reduce pairs in 
Rm × R . Based on the idea of the Mora normal form algorithm, we obtain the following result.
6
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Proposition 16. Let (u, v), (u1, v1), . . . , (us, vs) ∈ k[X]m × k[X] be nonzero, ≺ be a semigroup order and 
�m be a module order. Then there is an algorithm for producing polynomials h, a1, . . . , as ∈ k[X] and a pair 
(w, r) ∈ k[X]m × k[X] such that

h(u, v) = a1(u1, v1) + · · · + as(us, vs) + (w, r), (1)

where lt(h) = 1, lm(v) � lm(ai vi) for all ai �= 0, and lm(v) � lm(r). Moreover, lm(w) = lm(u), lm(u) �m

lm(aiui) for all ai �= 0, and (w, r) is not regular top-reducible by any pair (ui, vi).

Before presenting the algorithm in Proposition 16, we need to introduce the following important 
concept which first proposed by Mora (1982).

Definition 17 (Mora (1982)). Let v ∈ k[X] \ {0}, then the écart of v is defined as

écart(v) := deg(v) − deg(lm(v)),

where deg(v) is the total degree of v .

Proposition 18. Let v1, v2, v3 ∈ k[X] \ {0} such that lm(v1) | lm(v2) and v3 = v2 − lt(v2)
lt(v1)

v1 . If écart(v1) ≤
écart(v2), then deg(v3) ≤ deg(v2).

Proof. Since écart(v1) ≤ écart(v2), we have deg(v1) − deg(lm(v1)) ≤ deg(v2) − deg(lm(v2)). It is 
easy to see that deg

(
lt(v2)
lt(v1)

)
= deg(lm(v2)) − deg(lm(v1)). Then, deg

(
lt(v2)
lt(v1)

v1

)
= deg(lm(v2)) −

deg(lm(v1)) + deg(v1) ≤ deg(v2). Thus, deg(v3) ≤ max
{

deg(v2),deg
(

lt(v2)
lt(v1)

v1

)}
≤ deg(v2). �

The algorithm mentioned in Proposition 16 is as follows.

Algorithm 1: Regular Mora normal form algorithm.
Input : (u, v) ∈ k[X]m × k[X] and G = {(u1, v1), . . . , (us, vs)} ⊂ k[X]m × k[X], any semigroup order � and a module 

order �m .
Output: (w, r) as the statement in Proposition 16.

1 begin
2 (w0, r0) := (u, v);
3 T0 := G;
4 i := 1;
5 while (wi−1, ri−1) is regular top-reducible by Ti−1 do
6 T (i−1)

reg := {
(ū, v̄) ∈ Ti−1

∣∣ (wi−1, ri−1) is regular top-reducible by (ū, v̄)
}

;

7 choose (ūi−1, ̄vi−1) ∈ T (i−1)
reg with écart(v̄ i−1) minimal;

8 if (wi−1, ri−1) /∈ G and écart(v̄ i−1) > écart(ri−1) then
9 Ti := Ti−1 ∪ {(wi−1, ri−1)};

10 else
11 Ti := Ti−1;

12 (wi , ri) := OneRed((wi−1, ri−1), (ūi−1, ̄vi−1));
13 i := i + 1;

14 (w, r) := (wi−1, ri−1);
15 return (w, r).

Remark 19. For Theorem 3.6 in Lu et al. (2018), it contains the condition that “(u, v) is not covered 
by G” which is used for the termination proof of the algorithm based on Theorem 3.6. In contrast 
to Theorem 3.6 in Lu et al. (2018), Proposition 16 eliminates the constraint and we offer a new 
termination proof for Algorithm 1.
7



D. Lu, D. Wang, F. Xiao et al. Journal of Symbolic Computation 127 (2025) 102370
Lemma 20. Let Li =
〈
lm(v)xécart(v)

n+1

∣∣ (u, v) ∈ Ti \ G
〉
⊂ k[X, xn+1], where xn+1 is a new variable and Ti is the 

set in Algorithm 1. If the conditions in Step 8 hold, then Li−1 � Li .

Proof. If the conditions in Step 8 of Algorithm 1 hold, then Ti = Ti−1 ∪ {(wi−1, ri−1)}. We claim 
that lm(ri−1)x

écart(ri−1)

n+1 is not divisible by any element in Li−1. Otherwise, there exists a pair (ũ, ̃v) ∈
Ti−1 \ G such that lm(ṽ)xécart(ṽ)

n+1 | lm(ri−1)x
écart(ri−1)

n+1 . It is easy to see that

lm(ṽ) | lm(ri−1) (2)

and

écart(ṽ) ≤ écart(ri−1). (3)

Because we only perform regular top-reductions throughout the entire calculation process, we have

lm(ri−1) ≺ lm(ṽ) (4)

and

lm(ũ) = lm(wi−1) = lm(u). (5)

Combining Equations (2) and (4), we get

lm(ri−1)

lm(ṽ)
≺ 1. (6)

It follows from Equations (5) and (6) that

lm(ri−1)

lm(ṽ)
lm(ũ) ≺m lm(wi−1). (7)

According to Equations (2) and (7), (wi−1, ri−1) is regular reducible by (ũ, ̃v). Based on Steps 6 to 
8 of Algorithm 1, we have (ũ, ̃v) ∈ T (i−1)

reg and écart(ṽ) ≥ écart(v̄ i−1) > écart(ri−1). This contradicts 
Equation (3). Consequently, we can now derive that Li−1 � Li . �

Theorem 21. Algorithm 1 outputs as specified within a finite number of steps.

Proof. Termination. For each set Ti , we construct the following ideal in k[X, xn+1]:
Li =

〈
lm(v)xécart(v)

n+1

∣∣ (u, v) ∈ Ti \ G
〉
,

where xn+1 is a new variable. Based on Steps 9 and 11 of Algorithm 1, we can obtain a chain

L1 ⊆ L2 ⊆ · · · ⊆ Li−1 ⊆ Li ⊆ · · · (8)

Since k[X, xn+1] is Noetherian, there exists some positive integer N1 such that the chain (8) be-
comes stable for i ≥ N1, i.e., Li−1 = Li for all i ≥ N1. By Lemma 20, for each i with i ≥ N1 we have 
(wi−1, ri−1) ∈ G or écart(v̄ i−1) ≤ écart(ri−1). When i ≥ N1, Algorithm 1 generates the following inter-
mediate products

(wN1−1, rN1−1), (wN1 , rN1), (wN1+1, rN1+1), . . . (9)

Based on Step 12 of Algorithm 1, we have (wi, ri) = OneRed((wi−1, ri−1), (ūi−1, ̄vi−1)) for all i. It 
follows that lm(ri) ≺ lm(ri−1) for all i. This means that the pairs in the sequence (9) are all different 
from each other. Since G is a finite set, the first case (wi−1, ri−1) ∈ G for i ≥ N1 can only occur a 
limited number of times. That is, there is another positive integer N2 such that (wi−1, ri−1) /∈ G for 
all i ≥ N2, where N2 ≥ N1. Therefore, we have écart(v̄ i−1) ≤ écart(ri−1) for all i ≥ N2. It follows from 
8
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Proposition 18 that deg(ri) ≤ deg(ri−1) for all i ≥ N2. Thus, we obtain the following non-increasing 
sequence

deg(rN2−1) ≥ deg(rN2) ≥ deg(rN2+1) ≥ · · · (10)

In addition, the leading monomial of rN2−1 strictly decreases in each successive iteration. That is, we 
have the following strictly decreasing sequence

lm(rN2−1) � lm(rN2) � lm(rN2+1) � · · · (11)

By the fact that the set of monomials in k[X] whose total degrees are limited by deg(rN2−1) is fi-
nite, the strictly decreasing sequence (11) will be terminated within a finite number of steps. As a 
consequence, Algorithm 1 terminates within a finite number of steps.

Correctness. We will prove by induction on i ≥ 0 that we have the form

hk(w0, r0) =
s∑

j=1

a(k)
j (u j, v j) + (wk, rk) (12)

for all k with 0 ≤ k ≤ i, where lt(hk) = 1, lm(r0) � lm(a(k)
j v j) for all a(k)

j �= 0, and lm(r0) � lm(rk). 

Moreover, lm(wk) = lm(w0), and lm(w0) �m lm(a(k)
j u j) for all a(k)

j �= 0.

Setting h0 = 1 and a(0)
j = 0 for all j, everything works for i = 0. Suppose the form (12) holds true 

for 0 ≤ k ≤ i. Now we need to prove that the pair (wi+1, ri+1) produced by the (i +1)-th pass through 
the while loop satisfies the form (12) for k = i + 1.

Since (wi+1, ri+1) = OneRed((wi, ri), (ūi, ̄vi)), where (ūi, ̄vi) ∈ T (i)
reg with écart(v̄ i ) minimal. Then 

there exists some term mi ∈ k[X] such that

(wi+1, ri+1) = (wi, ri) − mi(ūi, v̄ i), (13)

where mi = lt(ri)
lt(v̄ i)

, lm(ri+1) ≺ lm(ri), lm(wi) �m lm(mi ūi) and lm(wi+1) = lm(wi). There are two pos-
sibilities to consider:

(a) (ūi, ̄vi) = (ul, vl) ∈ G for some integer l, or
(b) (ūi, ̄vi) ∈ Ti \ G ⊂ {(w0, r0), (w1, r1), . . . , (wi−1, ri−1)}.

In case (a), combining the form (12) for k = i and Equation (13), we obtain

hi(w0, r0) =
∑

1≤ j �=l≤s

a(i)
j (u j, v j) + (a(i)

l + mi)(ul, vl) + (wi+1, ri+1). (14)

Setting hi+1 = hi , a
(i+1)
j = a(i)

j for all j with j �= l, and a(i+1)

l = a(i)
l + mi . By the fact that lm(a(i+1)

l ) 
max{lm(a(i)

l ), lm(mi)} and lm(mi vl) = lm(ri), we have

lm(a(i+1)

l vl)  lm(r0) and lm(a(i+1)

l ul) m lm(w0).

Therefore, we get an expression of the form (12) for k = i + 1.
In case (b), we assume that (ūi, ̄vi) = (wd, rd) for some integer d, where 0 ≤ d ≤ i − 1. Since 

(wd, rd) = hd(w0, r0) − ∑s
j=1 a(d)

j (u j, v j) and (wi, ri) = hi(w0, r0) − ∑s
j=1 a(i)

j (u j, v j), we substitute 
them into Equation (13) to get

(hi − mihd)(w0, r0) =
s∑

j=1

(a(i)
j − mia

(d)
j )(u j, v j) + (wi+1, ri+1). (15)

Setting hi+1 = hi − mihd , and a(i+1)
j = a(i)

j − mia
(d)
j for all j. Since lm(mird) = lm(ri) ≺ lm(rd), we 

have lm(mi) ≺ 1. Therefore, lt(hi+1) = lt(hi − mihd) = 1. It follows from lm(a(i+1)
j )  max{lm(a(i)

j ),
9
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lm(mia
(d)
j )} that lm(a(i+1)

j v j)  lm(r0) for all a(i+1)
j �= 0 and lm(ri+1) ≺ lm(r0). In addition, we obtain 

lm(wi+1) = lm(w0), and lm(a(i+1)
j u j) m lm(w0) for all a(i+1)

j �= 0. Thus, the form (12) holds true for 
k = i + 1. This concludes the induction.

Suppose the algorithm terminates after the N-th pass through the while loop. This means that 
(wN , rN) is not regular top-reducible by T N , and we do not need to execute the (N + 1)-th while
loop. Therefore, it follows from G ⊆ T N that (wN , rN) is not regular top-reducible by any pairs in 
G . �

Suppose p ∈ M can be eventually super top-reducible by G . According to Theorem 21, we can infer 
the following fact: when we perform regular top-reductions to p by Algorithm 1, we can obtain the 
pair (w, r) proposed in Proposition 16 within a finite number of steps, which is not regular but super 
top-reducible by G .

3. Cover theorem

To compute a strong standard basis of M , we first recall the concept of J-pair proposed by Gao 
et al. (2016). Let p1 = (u1, v1), p2 = (u2, v2) ∈ M with v1 v2 �= 0, t = lcm(lm(v1), lm(v2)), t1 = t

lm(v1)
, 

t2 = t
lm(v2)

, c = lc(v1)
lc(v2)

, and t̃ = max{t1lm(u1), t2lm(u2)}. Without loss of generality, we assume that 
t̃ = t1lm(u1). If

t̃ = lm(t1u1 − ct2u2),

then t1 p1 is called the J-pair of p1 and p2, and t̃ is called the J-signature of the J-pair. It is obvious 
that t1 p1 is regular top-reducible by p2.

We say that a pair (u, v) ∈ M is covered by G ⊂ M , if there is a pair (u0, v0) ∈ G such that 
lm(u0) | lm(u) and tlm(v0) ≺ lm(v), where t = lm(u)

lm(u0)
. With this definition, Gao et al. (2016) com-

puted a strong standard basis by repeatedly regular top-reductions of J-pairs, which is analogous to 
Buchberger’s algorithm. Moreover, the cover theorem proposed by Gao et al. (2016) is used in this 
computation to eliminate a large number of J-pairs that need to be reduced. Before generalizing their 
result to cases with any semigroup order, we first establish some necessary results.

Let u = (u1, . . . , um) ∈ k[X]m , then the écart of u is defined as

écart(u) := deg(u) − deg(lm(u)),

where deg(u) = max1≤i≤m{deg(ui)}.

Proposition 22. Let u1, u2, u3 ∈ k[X]m \{0} such that lm(u1) | lm(u2) and u3 = u2 − lt(u2)
lt(u1)

u1 . If écart(u1) ≤
écart(u2), then deg(u3) ≤ deg(u2).

Proof. The proof is similar to that of Proposition 18, and is omitted here. �

It follows from Proposition 22 that deg(u3) is bounded by deg(u2) after reducing u2 by u1. This 
property will play a significant role in the proof of our main theorem.

For the convenience of description, in the following we always assume that G ⊂ k[X]m × k[X] and 
(ũ, ̃v) ∈ k[X]m × k[X]. In addition, ≺ is a semigroup order and ≺m is a module order.

Lemma 23 (Gao et al. (2016)). Let p1 = (u1, v1), p2 = (u2, v2) ∈ k[X]m ×k[X], and t be a monomial in k[X]. 
If tp1 is regular top-reducible by p2 , then t1 p1 is a J-pair of p1 and p2 , where t1 = lcm(lm(v1),lm(v2))

lm(v1)
is a divisor 

of t. Furthermore, t1 p1 is regular top-reducible by p2.

According to the proof of Lemma 23 proposed by Gao et al. (2016), this conclusion holds true 
for any semigroup order. By Lemma 23, we can obtain the following result that reveals an important 
property if every J-pair of G is covered by G , where G is a finite subset of M .
10
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Lemma 24. Let G ⊂ M be a finite set such that {(ei, f i)}m
i=1 ⊂ G, and (ũ, ̃v) ∈ M with ũ �= 0. If every J-pair of 

G is covered by G, then there is a pair (u1, v1) ∈ G such that lm(u1) | lm(ũ) and lm(ũ)
lm(u1)

(u1, v1) is not regular 
top-reducible by G.

Proof. Since {(ei, f i)}m
i=1 ⊂ G , there is at least a pair (u, v) ∈ G such that lm(u) | lm(ũ). Let

T ũ = {
(u, v) ∈ G

∣∣ lm(u) | lm(ũ)
}
,

then T ũ is nonempty. As G is a finite set, we can select a pair p1 = (u1, v1) from T ũ such that tlm(v1)

is minimal, where t = lm(ũ)
lm(u1)

. We assert that tp1 is not regular top-reducible by G .
If otherwise, tp1 is regular top-reducible by some pair p2 = (u2, v2) ∈ G , then by Lemma 23 t1 p1

is the J-pair of p1 and p2, and is regular top-reducible by p2, where t1 = lcm(lm(v1),lm(v2))
lm(v1)

and t = t2t1

for some monomial t2. Since every J-pair of G is covered by G , there is a pair p3 = (u3, v3) ∈ G
such that t1 p1 is covered by p3, i.e., lm(u3) | t1lm(u1) and t3lm(v3) ≺ t1lm(v1), where t3 = t1lm(u1)

lm(u3)
. 

Thus, lm(ũ) = t2t1lm(u1) = t2t3lm(u3). This implies that p3 ∈ T ũ . However, t2t3lm(v3) ≺ t2t1lm(v1) =
tlm(v1), which contradicts the choice of p1 ∈ T ũ . Therefore, tp1 is not regular top-reducible by G . �

Let (ũ, ̃v) ∈ M , then we can reduce the leading term of ũ by some special pair (u1, v1) ∈ G , and 
obtain the following important results.

Lemma 25. Let G ⊂ M be a finite set, and suppose (ũ, ̃v) ∈ M is not top-reducible by any pair (u, v) ∈ G with 
v �= 0. Assume that there is a pair (u1, v1) ∈ G such that lm(u1) | lm(ũ) and lm(ũ)

lm(u1)
(u1, v1) is not regular 

top-reducible by G. Let (ũ′
, ̃v ′) = (ũ, ̃v) − lt(ũ)

lt(u1)
(u1, v1), then

1. lm(ũ′
) ≺m lm(ũ) and lm(ṽ ′) � lm(ṽ), and

2. (ũ′
, ̃v ′) cannot be top-reducible by any pair (u, v) ∈ G with v �= 0.

Proof. Obviously, lm(ũ′
) ≺m lm(ũ). Since (ũ, ̃v) is not top-reducible by any pair (u, v) ∈ G with 

v �= 0, we have lm(ṽ) �= tlm(v1), where t = lm(ũ)
lm(u1)

. It follows from ṽ ′ = ṽ − lt(ũ)
lt(u1)

v1 that lm(ṽ ′) =
max{lm(ṽ), tlm(v1)}. Thus, lm(ṽ ′) � lm(ṽ).

If (ũ′
, ̃v ′) is top-reducible by some pair (u0, v0) ∈ G with v0 �= 0, then there is some monomial t0

such that lm(ṽ ′) = t0lm(v0) and t0lm(u0) m lm(ũ′
). We consider the following two cases:

(I) If lm(ṽ ′) = lm(ṽ), then t0lm(v0) = lm(ṽ). Moreover, t0lm(u0) m lm(ũ′
) ≺m lm(ũ). It follows that 

(ũ, ̃v) is top-reducible by (u0, v0) ∈ G with v0 �= 0, which leads to a contradiction.
(II) If lm(ṽ ′) = tlm(v1), then t0lm(v0) = tlm(v1). Moreover, t0lm(u0) m lm(ũ′

) ≺m lm(ũ) = tlm(u1). 
It follows that t(u1, v1) is regular top-reducible by (u0, v0) ∈ G , which leads to a contradiction.

Therefore, (ũ′
, ̃v ′) cannot be top-reducible by any pair (u, v) ∈ G with v �= 0. �

Lemma 26. Let G ⊂ M be a finite set, and suppose (ũ, ̃v) ∈ M is not top-reducible by any pair (u, v) ∈ G with 
v �= 0. Assume that the set

T(ũ,ṽ) = {
(u, v) ∈ M

∣∣ lm(u) �m lm(ũ) and lm(v)  lm(ṽ)
}

is nonempty and there is a pair (u1, v1) ∈ T(ũ,ṽ) such that lm(u1) | lm(ũ). Let (ũ′
, ̃v ′) = (ũ, ̃v) −

lt(ũ)
lt(u1)

(u1, v1), then

1. lm(ũ′
) ≺m lm(ũ) and lm(ṽ ′) = lm(ṽ), and

2. (ũ′
, ̃v ′) cannot be top-reduced by any pair (u, v) ∈ G with v �= 0.
11
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Proof. Obviously, lm(ũ′
) ≺m lm(ũ). Since (u1, v1) ∈ T(ũ,ṽ) , we obtain lm(u1) �m lm(ũ) and lm(v1) 

lm(ṽ). Let t = lm(ũ)
lm(u1)

, then 1 � t and tlm(v1) ≺ lm(ṽ). It follows from ṽ ′ = ṽ − lt(ũ)
lt(u1)

v1 that lm(ṽ ′) =
lm(ṽ).

If (ũ′
, ̃v ′) is top-reducible by some pair (u0, v0) ∈ G with v0 �= 0, then there is some monomial t0

such that lm(ṽ ′) = t0lm(v0) and t0lm(u0) m lm(ũ′
). Thus, lm(ṽ) = t0lm(v0) and t0lm(u0) ≺m lm(ũ). 

This implies that (ũ, ̃v) is top-reducible by (u0, v0) ∈ G with v0 �= 0, which leads to a contradic-
tion. �

We now present the main theorem, which serves as the theoretical foundation of the signature-
based standard basis algorithm w.r.t. any semigroup order under the framework of the GVW algo-
rithm. Clearly, the subsequent main theorem is more comprehensive than Theorem 3.1 in Lu et al. 
(2018) since � and �m are not restricted to the antigraded order and TOP order, respectively.

Theorem 27 (Cover Theorem). Let G ⊂ M be a finite set such that {(ei, f i)}m
i=1 ⊂ G, then the following are 

equivalent:

1. G is a strong standard basis for M;
2. every J-pair of G is eventually super top-reducible by G;
3. every J-pair of G is covered by G.

Before presenting the proof of Theorem 27, we provide further explanations. The proofs of 1 ⇒ 2
and 2 ⇒ 3 are essentially the same as these of Theorem 2.4 in Gao et al. (2016), except that we utilize 
Algorithm 1 to conduct regular top-reductions on every J-pair of G . Thus, they are omitted here. Now, 
we prove 3 ⇒ 1 by contradiction. The main idea is as follows.

If G is not a strong standard basis for M , then there exists a pair (ũ1, ̃v1) ∈ M such that it is not 
top-reducible by G . Based on Lemmas 24, 25 and 26, we reduce lt(ũ1) by repeatedly using pairs in 
M and obtain a sequence (ũ1, ̃v1), (ũ2, ̃v2), (ũ3, ̃v3), . . . with special properties. That is, (ũi, ̃vi) is not 
top-reducible by G , lm(ũi) is strictly decreasing and lm(ṽ i) �= 0 for i ≥ 2. In the above calculation 
process, we reduce lt(ũi) not only by pairs in G , but also by pairs in {(ũ1, ̃v1), . . . , (ũi−1, ̃vi−1)}. This 
guarantees that there exists some positive integer N such that deg(ũN ) ≥ deg(ũN+1) ≥ . . .. Since the 
set of monomials in k[X]m whose total degrees are limited by deg(ũN) is finite, the strictly decreasing 
sequence lm(ũN) �m lm(ũN+1) �m · · · will terminate within a finite number of steps, i.e., there is 
another positive integer N1 with N1 > N such that ũN1 = 0. However, lm(ṽ N1 ) �= 0. This implies that 
we obtain a pair (0, ̃v N1 ) ∈ M with ṽ N1 �= 0, which leads to a contradiction.

Proof. Let W = {
(u, v) ∈ M

∣∣ (u, v) is not top-reducible by G
}

. If W �= ∅, then we can choose a 
nonzero pair (ũ1, ̃v1) from W . Now, we consider the following two cases depending on whether 
ṽ1 is equal to zero.

First case: ṽ1 �= 0

Obviously, ũ1 �= 0 and (ũ1, ̃v1) is not top-reducible by any pair (u, v) ∈ G with v �= 0. Since every 
J-pair of G is covered by G , by Lemma 24 there is a pair p1 = (u1, v1) ∈ G such that lm(u1) | lm(ũ1)

and lm(ũ1)
lm(u1)

p1 is not regular top-reducible by G . Let

(ũ2, ṽ2) = (ũ1, ṽ1) − lt(ũ1)

lt(u1)
(u1, v1), (16)

then lm(ũ2) ≺m lm(ũ1) and lm(ṽ2) � lm(ṽ1) by Lemma 25. Moreover, (ũ2, ̃v2) is not top-reducible by 
any pair (u, v) ∈ G with v �= 0. Setting T1 = {(ũ1, ̃v1)}.

Since lm(ṽ2) � lm(ṽ1), we have ũ2 �= 0. Using Lemma 24 again, there is a pair p2 = (u2, v2) ∈ G
such that lm(u2) | lm(ũ2) and lm(ũ2)

lm(u2)
p2 is not regular top-reducible by G . Let

T ũ2
= {

(u, v) ∈ T1 ∪ {p2}
∣∣ lm(u) | lm(ũ2)

}
,

12
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then T ũ2
is nonempty and finite. We select a pair p′

2 = (u′
2, v

′
2) from T ũ2

such that écart(u′
2) is 

minimal. Let

(ũ3, ṽ3) = (ũ2, ṽ2) − lt(ũ2)

lt(u′
2)

(u′
2, v ′

2), (17)

then there are two cases:

(I) If p′
2 = p2, then lm(ũ3) ≺m lm(ũ2) and lm(ṽ3) � lm(ṽ2) by Lemma 25. In addition, (ũ3, ̃v3) is not 

top-reducible by any pair (u, v) ∈ G with v �= 0.
(II) If p′

2 ∈ T1, then there is a pair (ũ∗, ̃v∗) ∈ T1 such that p′
2 = (ũ∗, ̃v∗). Let

T(ũ2,ṽ2) = {
(u, v) ∈ M

∣∣ lm(u) �m lm(ũ2) and lm(v)  lm(ṽ2)
}
,

then p′
2 ∈ T(ũ2,ṽ2) .1 By Lemma 26, we have lm(ũ3) ≺m lm(ũ2) and lm(ṽ3) = lm(ṽ2). Moreover, 

(ũ3, ̃v3) is not top-reducible by any pair (u, v) ∈ G with v �= 0.

The above shows that in either case, we can always conclude that lm(ũ3) ≺m lm(ũ2), lm(ṽ3) � lm(ṽ2), 
and (ũ3, ̃v3) is not top-reducible by any pair (u, v) ∈ G with v �= 0. Let L(T1) =〈
xécart(u)

n+1 lm(u)
∣∣ (u, v) ∈ T1

〉
, where xn+1 is a new variable. Then we construct a subset T2 of M based 

on one of the following two cases:

(a) If xécart(ũ2)
n+1 lm(ũ2) /∈ L(T1), then setting T2 = T1 ∪ {(ũ2, ̃v2)}.

(b) If xécart(ũ2)
n+1 lm(ũ2) ∈ L(T1), then setting T2 = T1. Furthermore, we can assert that deg(ũ3) ≤

deg(ũ2). The reason is as follows. There is a pair (ũ�, ̃v�) ∈ T1 such that xécart(ũ�)
n+1 lm(ũ�) |

xécart(ũ2)
n+1 lm(ũ2).2 Obviously, écart(ũ�) ≤ écart(ũ2). Moreover, lm(ũ�) | lm(ũ2) implies that

(ũ�, ̃v�) ∈ T ũ2
. Depending on the choice of p′

2 = (u′
2, v

′
2) in Equation (17), we have écart(u′

2) ≤
écart(ũ�) ≤ écart(ũ2). By Proposition 22, we get deg(ũ3) ≤ deg(ũ2).

We repeat the above calculation process to obtain the following two sequences

(ũ1, ṽ1), (ũ2, ṽ2), (ũ3, ṽ3), . . . and T1, T2, T3, . . . (18)

For the first sequence of (18), we have a strictly decreasing sequence

lm(ũ1) �m lm(ũ2) �m lm(ũ3) �m · · · (19)

and a non-decreasing sequence

lm(ṽ1)  lm(ṽ2)  lm(ṽ3)  · · · (20)

Moreover, each pair (ũi, ̃vi) ∈ M is not top-reducible by any pair (u, v) ∈ G with v �= 0. For the second 
sequence of (18), we have

T1 ⊆ T2 ⊆ T3 ⊆ · · · and L(T1) ⊆ L(T2) ⊆ L(T3) ⊆ · · ·
Since k[X, xn+1]m is Noetherian, there exists some positive integer N such that L(Ti) becomes stable 
for i ≥ N , i.e., L(Ti) = L(Ti+1) for i ≥ N . This implies that x

écart(ũi+1)

n+1 lm(ũi+1) ∈ L(Ti) for all i ≥ N . 
Using the same argument as in case (b) above, we can obtain a non-increasing sequence

1 Since T1 = {(ũ1, ̃v1)}, we have p′
2 = (ũ1, ̃v1). When we analyze properties of (ũi+1, ̃vi+1) with i ≥ 2, it can be inferred 

from multiple recursive formulas similar to Equation (17) that lm(ũ1) �m · · · �m lm(ũi) and lm(ṽ1)  · · ·  lm(ṽ i). Therefore, 
(ũ j , ̃v j) ∈ T(ũi ,ṽ i )

for all 1 ≤ j < i. Since Ti−1 is a nonempty subset of {(ũ1, ̃v1), . . . , (ũi−1, ̃vi−1)} and p′
i ∈ Ti−1, we obtain 

p′
i ∈ T(ũi ,ṽ i )

.
2 Since T1 = {(ũ1, ̃v1)}, we obtain (ũ�, ̃v�) = (ũ1, ̃v1).
13
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deg(ũN) ≥ deg(ũN+1) ≥ deg(ũN+2) ≥ · · · (21)

Combining the sequences (19) and (21), there is another positive integer N1 with N1 > N such that 
ũN1 = 0. However, lm(ṽ N1 ) �= 0 by the sequence (20). Thus, we get a pair (0, ̃v N1 ) ∈ M with ṽ N1 �= 0, 
which contradicts the definition of M .

Second case: ṽ1 = 0

Obviously, ũ1 �= 0 and (ũ1, 0) is not top-reducible by any pair (u, v) ∈ G with v = 0. Since every 
J-pair of G is covered by G , by Lemma 24 there is a pair (u1, v1) ∈ G such that lm(u1) | lm(ũ1) and 
lm(ũ1)
lm(u1)

(u1, v1) is not regular top-reducible by G . In addition, we have v1 �= 0. Otherwise, (ũ1, 0) is 
top-reducible by (u1, 0) ∈ G , which leads to a contradiction. Let

(ũ2, ṽ2) = (ũ1,0) − lt(ũ1)

lt(u1)
(u1, v1),

then lm(ũ2) ≺m lm(ũ1) and ṽ2 = − lt(ũ1)
lt(u1)

v1 �= 0. We assert that (ũ2, ̃v2) is not top-reducible by any 
pair (u, v) ∈ G with v �= 0.

If otherwise, there is some pair (u0, v0) ∈ G with v0 �= 0 such that lm(ṽ2) = t0lm(v0) for some 
monomial t0 and t0lm(u0) m lm(ũ2). It follows from ṽ2 = − lt(ũ1)

lt(u1)
v1 that t0lm(v0) = tlm(v1), where 

t = lm(ũ1)
lm(u1)

. Since t0lm(u0) m lm(ũ2) ≺m lm(ũ1) = tlm(u1), we get that t(u1, v1) is regular top-
reducible by (u0, v0) ∈ G , which leads to a contradiction.

Therefore, we can use the same argument as in the First case to address (ũ2, ̃v2).

Conclusion

According to the analysis of the above two cases, we have W = ∅. It follows that every pair in M
is top-reducible by G . Therefore, G is a strong standard basis of M . The proof is completed. �

Theorem 27 tells us that any J-pair of G that is covered by G can be discarded without performing 
any reductions. As special cases of the condition 3 in Theorem 27, we have the following two criteria.

Syzygy Criterion Any J-pair of G can be discarded if it is top-reducible by a syzygy.
Signature Criterion All J-pairs with the same signature, one just needs to store one of them (the one 

with the v-part minimal).

4. Signature-based standard basis algorithm

Based on Theorem 27, we now propose a signature-based standard basis algorithm. Although the 
proof of 3 ⇒ 1 in Theorem 27 is essentially different from that of Theorem 2.4 in Gao et al. (2016)
and Theorem 3.1 in Lu et al. (2018), the framework of the signature-based algorithm remains the 
same as that proposed by Gao et al. (2016).

Before proceeding further, let us remark on Algorithm 2, and some observations in the following 
come from Lu et al. (2018).

1. From the perspective of practical calculation, we only store the signature and v-component for 
any pair during the computation.

2. In Step 3, the trivial principle syzygies f ie j − f jei are used to delete redundant J-pairs.
3. In Steps 4 and 14, we only store the J-pairs whose signatures are not divided by some element 

in H (syzygy criterion) and one J-pair for each distinct signature with the v-part as minimal 
(signature criterion).

4. In Step 8, (w, r) is not regular top-reducible by G .
5. In Step 13, a principle syzygy is stored only if lm(v jw − ru j) = max{lm(v jw), lm(ru j)}.

Theorem 28. Algorithm 2 outputs as specified within a finite number of steps.
14
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Algorithm 2: Signature-based standard basis algorithm.
Input : { f1, . . . , fm} ⊂ k[X], a semigroup order � and a module order �m .
Output : V , a standard basis for 〈 f1, . . . , fm〉 ⊂ R; H , a set consisting of the leading monomials of a standard basis for 

the syzygies of { f1, . . . , fm}.
1 begin
2 G := {(e1, f1), . . . , (em, fm)};
3 H := {

lm( f i e j − f j ei)
∣∣ 1 ≤ i < j ≤ m

}
;

4 J P := {J-pairs of G};
5 while J P �= ∅ do
6 choose (ũ, ̃v) from J P and J P := J P \ {(ũ, ̃v)};
7 if (ũ, ̃v) is not covered by G then
8 (w, r) := result of reducing (ũ, ṽ) with Algorithm 1;
9 if r = 0 then

10 H := H ∪ {lm(w)};
11 J P := J P \ {

(u′, v ′) ∈ J P
∣∣ lm(w) | lm(u′)

}
;

12 else
13 H := H ∪ {

lm(ru − vw)
∣∣ (u, v) ∈ G

}
;

14 J P := J P ∪ {
J-pair of (w, r) and (u, v)

∣∣ (u, v) ∈ G
}

;
15 G := G ∪ {(w, r)};

16 return V := {
v

∣∣ (u, v) ∈ G
}

and H .

Proof. The correctness follows directly from Theorem 27. The termination depends on Algorithm 1
and the Noetherian property of any polynomial ring over a field. Although the proof is essentially 
the same as that of Theorem 3.1 in Gao et al. (2016), we provide a proof of this fact to keep our 
presentation self-contained.

For any two pairs p1 = (u1, v1), p2 = (u2, v2) ∈ M , we say that p1 divides p2 if lm(u1) | lm(u2)

and lm(v1) | lm(v2). We list the pairs in G in exactly the same order as they were obtained:

(e1, f1), . . . , (em, fm), (u1, v1), (u2, v2), . . . , (ui, vi), . . . (22)

Then we claim that p j = (u j, v j) does not divide pi = (ui, vi) for all j < i. If otherwise, there is some 
positive integer j with j < i such that p j | pi . Then, there are some monomials t1, t2 ∈ k[X] such 
that lm(ui) = t1lm(u j) and lm(vi) = t2lm(v j). If t1 � t2, then t2lm(u j) ≺m t1lm(u j) = lm(ui). This 
implies that pi is regular top-reducible by p j , contradicting to Step 8 of Algorithm 2 which makes 
sure that all pairs added to G are not regular top-reducible by G . Clearly, it is crucial that Algorithm 1
outputs the related results within a finite number of steps. Therefore, we must have t1  t2. Then, 
t1lm(v j)  t2lm(v j) = lm(vi). Let p = (ũ, ̃v) be the J-pair in Step 8 that was reduced to pi , then 
lm(ũ) = lm(ui) and lm(vi) ≺ lm(ṽ) (as a J-pair is always regular top-reducible). Hence, the J-pair p is 
covered by p j , and should have been discarded before Step 7. Therefore, we have a sequence

(lm(u1), lm(v1)), (lm(u2), lm(v2)), . . . , (lm(ui), lm(vi)), . . . (23)

where none of them is divisible by any previous one.
We introduce new variables Yi = (yi1, yi2, . . . , yin), where i = 1, . . . , m. Each pair (Xαei, Xβ) cor-

responds to a monomial Y α
i Xβ , which in the variables yij ’s and x j ’s, where j = 1, . . . , n. Then, the 

pairs in the sequence (23) give us a list of monomials in the variables yij and x j with the property 
that none is divisible by any previous one. Since every polynomial ring over a field is Noetherian, the 
ascending chain condition tells us that this list of monomials must be finite. It follows that G is finite. 
Therefore, Algorithm 2 terminates within a finite number of steps. �

5. Illustrative example

The following example is basically the same as Example 4.1 in Lu et al. (2018), except that the 
orders are different.
15
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Example 29. Let I be an ideal in R =C[x1, x2, x3]� generated by f1, f2, f3, where f1 = x2
1 − 5x2x3 −

2x2
2x3, f2 = 2x1x2 +2x3

2 −x3
3, f3 = −x1x2 +x2x2

3 and C is the complex field. � is a mixed order defined 
as follows: xα1

1 xα2
2 xα3

3 � xβ1
1 xβ2

2 xβ3
3 if either xα1

1 �1 xβ1
1 , or xα1

1 = xβ1
1 and xα2

2 xα3
3 �2 xβ2

2 xβ3
3 , where �1 is 

the lexicographic order with x1 and �2 is the antigraded lexicographic order with x2 > x3. Let �3

be the POT order in R3 with e1 > e2 > e3, then we compute a standard basis for I and the leading 
monomials of a standard basis for the syzygy module of { f1, f2, f3}.

Initial:
G0 := {p1, p2, p3} = {(e1, f1), (e2, f2), (e3, f3)};

H0 := {x1x2e1, x1x2e2} is the set of the leading monomials of principle syzygies {e1 f2 − e2 f1, e1 f3 −
e3 f1, e2 f3 − e3 f2};

J P0 := {(T1, v1), (T2, v2)} = {(e2, f2), (x2e1, x2 f1)} is the J-pairs set of G0.

First loop:
We select the J-pair (T1, v1) from J P0 and J P1 := {(T2, v2)}. By checking, (T1, v1) is not covered 

by G0, but it can be regular top-reducible by G0 to p4 := (T1, ̃v1) = (e2, 2x3
2 + 2x2x2

3 − x3
3). Since 

ṽ1 �= 0, we compute the principle syzygies of p4 with G0, and add the leading monomial of these 
syzygies to H0 (delete any redundant ones), and obtain H1 := H0 ∪ {x3

2e1}. We compute the J-pairs of 
p4 with elements in G0 and get J P1 := {(T3, v3), (T2, v2)}, where (T3, v3) = (x1e2, x1 ṽ1). Moreover, 
G1 := G0 ∪ {p4}.

Second loop:
We select (T3, v3) from J P1 and J P2 := {(T2, v2)}. (T3, v3) can be regular top-reducible by G1

to p5 := (T3, ̃v3) = (x1e2, 2x3
2x2

3 + 2x2x4
3 − x1x3

3). According to syzygy criterion and signature criterion, 
we obtain H2 := H1 ∪ {x1x3

3e1}, J P2 := {(T4, v4), (T2, v2)} and G2 := G1 ∪ {p5}, where (T4, v4) =
(x3

3e1, x3
3 f1).

Third loop:
We select (T4, v4) from J P2 and J P3 := {(T2, v2)}. (T4, v4) can be regular top-reducible by G2

to p6 := (T4, ̃v4) = (x3
3e1, 2x3

2x4
3 + 2x2x6

3 − 2x2
2x4

3 − 5x2x4
3). According to syzygy criterion and signa-

ture criterion, we obtain H3 := H2, J P3 := {(T5, v5), (T2, v2)} and G3 := G2 ∪ {p6}, where (T5, v5) =
(x2

2x3
3e1, x2

2 ṽ4).

Fourth loop:
We select (T5, v5) from J P3 and J P4 := {(T2, v2)}. (T5, v5) can be regular top-reducible by G3 to 

p7 := (T5, ̃v5) = (x2
2x2

3e1, 2x5
2x4

3 + 4x3
2x6

3 − 2x4
2x4

3 − 5
2 x7

3 + 2x2x8
3 − 2x2

2x6
3). According to syzygy criterion 

and signature criterion, we obtain H4 := H3, J P4 := {(T2, v2)} and G4 := G3 ∪ {p7}.

Fifth loop:
We select (T2, v2) from J P4 and J P5 := ∅. (T2, v2) can be regular top-reducible by G4 to p8 :=

(T2, ̃v2) = (x2e1, x2x4
3 −2x3

2x3 −5x2
2x3). According to syzygy criterion and signature criterion, we obtain 

H5 := H4, J P5 := {(T6, v6)} and G5 := G4 ∪ {p8}, where (T6, v6) = (x2
2e1, x2 ṽ2).

Sixth loop:
We select (T6, v6) from J P5 and J P6 := ∅. (T6, v6) can be regular top-reducible by G5 to p9 :=

(T6, ̃v6) = (x2
2e1, x2

2x4
3 − 2x4

2x3 + 5x3
3x2 − 5

2 x4
3). According to syzygy criterion and signature criterion, 

we obtain H6 := H5, J P6 := {(T7, v7)} and G6 := G5 ∪ {p9}, where (T7, v7) = (x2
2x3e1, x3 ṽ6).

Seventh loop:
We select (T7, v7) from J P6 and J P7 := ∅. (T7, v7) can be regular top-reducible by G6 to p10 :=

(T7, ̃v7) = (x2
2x3e1, x2

2x5
3 − 2x4

2x2
3 − 5

2 x5
3 + 2x3

2x4
3 + 2x2x6

3 − 2x2
2x4

3). According to syzygy criterion and 
signature criterion, we obtain H7 := H6, J P7 := ∅ and G7 := G6 ∪ {p10}.
16
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Output:
Since J P7 is empty, the algorithm terminates. Therefore, the standard basis of I in R is { f1, f2, f3, 

ṽ1, ̃v2, ̃v3, ̃v4, ̃v6, ̃v7}, and the leading monomials of the standard basis for the syzygy module is 
{x1x2e2, x1x2e1, x3

2e1, x1x3
3e1}.

It is apparent from the above example that we discard 36 J-pairs by using three criteria, and only 
perform 7 regular top-reductions.

6. Concluding remarks

In previous work, we always need to pick a pair with a minimal signature from some subset to 
prove the cover theorem. In order to pick a minimal signature successfully, a local order � and mod-
ule order �m in Lu et al. (2018) are restricted to be the antigraded order and TOP order, respectively. 
In this paper, we relax the restrictions on a local order and module order to allow for any semigroup 
order and a compatible module order. The key is that using the idea of the Mora normal form algo-
rithm, we can avoid the selection of minimal signatures, and provide a more essential proof for the 
cover theorem.
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