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ABSTRACT
A new algorithm for computing the parametric greatest common
right divisor (GCRD) of a set of parametric Ore polynomials is
presented in this paper. The algorithm is based on Gröbner bases for
modules. Inspired by the resultant theory in Ore polynomial rings,
the Sylvester matrix is de�ned for a set of Ore polynomials. In the
case of non-parametric polynomials, the GCRD of Ore polynomials
can be obtained by computing the row echelon form of the Sylvester
matrix. For the parametric case, the parametric Sylvester matrix
is also de�ned in the paper. Based on this, under the assumption
that the specializations commute with the conjugate operator and
derivation in the Ore polynomial ring, the parametric GCRD of
parametric Ore polynomials can be obtained by computing the
Gröbner basis for the module generated by rows of the parametric
Sylvestermatrix. As a consequence, the algorithm for computing the
parametric GCRD is presented in detail and has been implemented
in the computer algebra system Singular.
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• Computing methodologies ! Symbolic and algebraic algo-
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1 INTRODUCTION
Ore polynomials, introduced by Ore in [23], establish a general
mathematical setting to describe linear operational polynomials,
including linear di�erential, di�erence, and @-di�erence polynomi-
als [7, 24]. Algorithms related to Ore polynomial rings have been
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implemented in many computer algebra systems such as Maple
[2], Sage [16] and Singular. Recently, Ore polynomials over a �nite
�eld have been found to have a lot of applications in coding theory
[5, 6], cryptography [4, 30], and so on. Furthermore, the develop-
ment of basic Ore polynomial algorithms is an active research area
in computer algebra[8–11, 25].

The greatest common right divisor (GCRD) of Ore polynomials
is a basic object in the theory of Ore polynomial rings. A modular
algorithm for computing the GCRD of Ore polynomials was pro-
posed by Li and Nemes [18]. In some cases, the coe�cients of Ore
polynomials may depend on certain parameters. To deal with this,
Glotov presented an algorithm in 1998 that can compute the GCRD
of two parametric Ore polynomials [12]. This algorithm is based
on the subresultant theory proposed by Li in [17].

In a usual (commutative) polynomial ring, the GCD for poly-
nomials whose coe�cients depend on some parameters is called
parametric GCD. This topic has been thoroughly researched and sev-
eral works have been published on it, including [1, 3, 13, 14, 22, 27].
Among them, the algorithms in [14, 22, 27] are based on comprehen-
sive Gröbner systems and many e�ective algorithms for computing
comprehensive Gröbner systems in the commutative polynomial
ring can be found in [15, 20, 21, 26, 28]. However, in Ore poly-
nomial rings, the coe�cients, parameters, and the variable may
not be commutative. Therefore, when utilizing the method men-
tioned in [14, 22, 27], it becomes necessary to take into account
non-commutative Gröbner bases. Yet in fact the computation of
non-commutative Gröbner bases is less e�cient compared with
the commutative Gröbner bases because there are many improved
methods to accelerate in the commutative case. Hence, we attempt
to use the commutative Gröbner bases to compute the parametric
GCRD of Ore polynomials instead of non-commutative Gröbner
bases.

In this paper, we introduce a new algorithm called the paramet-
ric GCRD algorithm. Under the assumption that any considered
specialization commutes with the conjugate operator and deriva-
tion in the Ore polynomial ring, this algorithm directly calculates
the Gröbner basis of a speci�c module and obtains the parametric
GCRD of a set of Ore polynomials.

This paper is organized as follows. In Section 2, we provide
background about the Ore polynomial rings, GCRD, and parametric
GCRD for Ore polynomials. In Section 3, we present the de�nition
of Sylvester matrix for several Ore polynomials and utilize it to
compute the GCRD of several non-parametric Ore polynomials. In
Section 4, we de�ne the Sylvester matrix for the parametric case
and present the main theorem in the paper, which states that the
parametric GCRD can be obtained by computing the Gröbner basis
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of the module generated by the rows of the parametric Sylvester
matrix. In Section 5, the algorithm is presented speci�cally, and an
illustrative example and the implementation of the algorithm on
some polynomials is given. Finally, we conclude this paper.

2 PRELIMINARIES
This section consists of two parts: Section 2.1 provides an overview
of Ore polynomial rings and introduces the associated notation,
while Section 2.2 introduces the de�nitions of specialization and
parametric GCRD. For more details about Ore polynomial rings can
refer to [7, 23, 24].

2.1 (Univariate) Ore polynomials
Let ' be a commutative domain and let f be an injective endomor-
phism of ', which is called a conjugate operator by Ore. A derivation
with respect to f is any mapping X : ' ! ' satisfying the following
conditions for any 0,1 2 ':

X (0 + 1) = X (0) + X (1), X (01) = f (0)X (1) + X (0)1 . (1)

De�nition 2.1 ([23]). An Ore polynomial ring ' [G ;f, X] over '
given by f and X is the polynomial ring in G over ' with the usual
addition of polynomials and multiplication given by the rule

G0 = f (0)G + X (0) for any 0 2 '.

The elements in the ring ' [G ;f, X] are called Ore polynomials or
skew polynomials.

Example 2.2. Several examples about Ore polynomial rings are
provided below:

(1) (Polynomial ring over a �eld) Let ' = : be a �eld and let
f = id and X = 0.

(2) (Field with positive characteristic) Let ' = F@ be a �nite
�eld with characteristic ? . The endomorphism f is de�ned
as the map 0 7! 0?

A
, and X = 0.

(3) (Di�erential operators) Let ' = C(C) and let f = id and
X = 3

3C be the standard derivation.
For further examples, please refer to [2].

In De�nition 2.1, we de�ne an Ore polynomial ring over a com-
mutative domain. In particular, when ' = : is a �eld, the right
Euclidean algorithm can be applied to two polynomials in : [G ;f, X].
Consider 0,1 2 : [G ;f, X]\{0}. By applying the right division algo-
rithm, we can express 0 as

0 = @1 + A , @, A 2 : [G ;f, X], deg A < deg1;

where A and @ are the right remainder and the right quotient of 0
divided by 1, respectively.

For 0,3 2 : [G ;f, X], we say that 3 is a right factor of 0 if there
exists 1 2 : [G ;f, X] such that 0 = 13 . A common right factor of
51, . . . , 5✓ , with the highest degree, is called aGreatest Common Right
Divisor (GCRD) of 51, . . . , 5✓ , denoted by gcrd(51, . . . , 5✓ ).

2.2 Parametric GCRD for Ore polynomials
LetR = : [G ;f, X] be an Ore polynomial ring, where : is a �eld. Con-
sider two polynomials 51 (D1, . . . ,DB , G) and 52 (D1, . . . ,DB , G) with pa-
rameters D1, . . ., DB and the variable G . For any point (01, . . . ,0B ) 2

:B , we can de�ne two polynomials in : [G] by evaluation as follows:

5Æ0 (G) = 5 (01, . . . ,0B , G), 6Æ0 (G) = 6(01, . . . ,0B , G) .

It is clear that for a given point (01, . . . ,0B ) 2 :B , determining
the greatest common right divisor of 5Æ0 (G) and 6Æ0 (G) is straight-
forward. Now the problem is how to precompute an expression
3 (D1, . . . ,DB , G) without precise knowledge of (01, . . . ,0B ) and then
conveniently compute the greatest common right divisor of 5Æ0 (G)
and6Æ0 (G) by evaluating3 (D1, . . . ,DB , G) withD8 replaced by08 when
the exact values of (01, . . . ,0B ) are known.

To more rigorously describe the problem under consideration,
we need to �rst introduce some de�nitions.

De�nition 2.3 (Specialization). Let ' = : [D1, . . . ,DB ]. A special-
ization of ' is a homomorphism q Æ0 : ' ! : induced by the element
Æ0 = (01, . . . ,0B ) 2 :B . That is, for any ⌘ 2 ', q Æ0 (⌘) is de�ned by

q Æ0 : ⌘(D1, . . . ,DB ) 7! ⌘(01, . . . ,0B ) .

Every specialization q Æ0 : ' ! : is extended canonically to a spe-
cialization q Æ0 : ' [G] ! : [G] by applying q Æ0 coe�cient-wise, i.e.,

q Æ0 :
;’

8=0
⌘8 (D1, . . . ,DB )G8 7!

;’
8=0

⌘8 (01, . . . ,0B )G8 .

For a matrix" = (58 9 ) 2 ' [G]✓⇥= , we de�ne q Æ0 (") by (q Æ0 (58 9 )).

We denote : [D1, . . . ,DB ] by : [* ]. For an ideal � ⇢ : [* ], denote
byV! (� ) the set {(01, . . . ,0B ) 2 !B : ⌘(01, . . . ,0B ) = 0,⌘ 2 � }, where
! is a subset of : . Then we de�ne the parametric greatest common
right divisors as follows:

De�nition 2.4 (Parametric GCRD). Let R = : [G ;f, X] be an Ore
polynomial ring, and let ! be a subset of : . The parametric greatest
common right divisors (PGCRD) of � = {51, . . . , 5✓ } ⇢ : [* , G] with
respect to ! is a set {(⇢1,#1,31), . . . , (⇢C ,#C ,3C )}, satisfying

(a) ⇢8 ,#8 ⇢ : [* ], and 38 2 : [* , G], with 8 = 1, . . . , C .
(b)

–C
8=1 V! (⇢8 ) \ V! (#8 ) = !B .

(c) q Æ0 (38 ) is a GCRD of q Æ0 (51), . . . ,q Æ0 (5✓ ) 2 R for Æ0 2 V! (⇢8 ) \
V! (#8 ) (up to a non-zero constant in !). Moreover, for each
38 < 0, q Æ0 (lcG (38 )) < 0 for Æ0 2 V! (⇢8 ) \ V! (#8 ).

where lcG (38 ) is the leading coe�cient of 38 with respect to G .

To compute the parametric GCRD, we need to construct a new
Ore polynomial ring, which is called parametric Ore polynomial
ring.

De�nition 2.5. Let R = : [G ;f, X] be an Ore polynomial ring, and
let ! be a subset of : . An Ore polynomial ring R0 = : [* ] [G ;f0, X 0]
is called the parametric Ore polynomial ring associated with R and
! if for any Æ0 2 !B , the specialization

q Æ0 : : [* ] ! :, ⌘(D1, . . . ,DB ) 7! ⌘(01, . . . ,0B )

satis�es f (q Æ0 (⌘)) = q Æ0 (f0 (⌘)) and X (q Æ0 (⌘)) = q Æ0 (X 0 (⌘)).

In this paper, we will prove that for any Ore polynomial ring
R and any subset ! of : , if the parametric Ore polynomial ring
associatedwithR and ! exists, thenwe can construct the parametric
GCRD by computing the Gröbner basis of a speci�c module.
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R����� 2.6. In [12], Glotov only considered the case of one pa-
rameter, that is* = {D1}. Moreover, : and ! were chosen to be  (C)
and  , respectively, where  is a �eld. In this paper, we consider a
more general case.

In the following we present two examples of parametric GCRD:

Example 2.7. Let F2 be a �nite �eld with cardinality 2 and F2 the
algebraic closure of F2. Consider the Ore polynomial ring

R = F2 [G ;f, 0], where f : F2 ! F2, 0 7! 02 .

Let 51 = G2 + D1G + 1, 52 = D2G2 + G , 53 = G2 + D3G + 1 2 F2 [* , G].
Then the parametric GCRD of 51, 52, 53 with respect to F2 is

{({D1 + D3,D22D23 + D32 + 1}, {1}, G + D2D33 + D22D3 + D23 + D2),
({0}, {D1 + D3,D22D23 + D32 + 1}, 1)}.

That is, assume Æ0 = (01,02,03) 2 F2
3 and q Æ0 : F2 [* ] ! F2 is a

specialization induced by Æ0, then
(1) If 01 + 03 = 0 and 0220

2
3 + 032 + 1 = 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = G + 02033 + 02203 + 023 + 02 .

(2) If 01 + 03 < 0 or 0220
2
3 + 032 + 1 < 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = 1.

R����� 2.8. In Example 2.7, we has computed the parametric
GCRD of 51, 52, 53 with : = ! = F2. To extend the analysis to the case
where : = ! = F@ with @ = 2B for some integer B , it su�ces to include
the additional equations 0@8 = 1 for 8 = 1, 2, 3 among the equality
constraints in the �nal outcome.

Example 2.9. Let R = C(C) [G ; id, 3
3C ], and let 51 = D1G2 + CG + 1,

52 = G2+D2CG + (D1C2+1), 53 = G2+ (C +D1)G + (C +D1) 2 C(C) [* , G].
Then the parametric GCRD of 51, 52, 53 associated with C is

{({D1 � 1,D2 � 2}, {1}, G + C), ({0}, {D1 � 1,D2 � 2}, 1)}.

That is, assume Æ0 = (01,02) 2 C2 and q Æ0 : C(C) [* ] ! C(C) is a
specialization induced by Æ0, then

(1) If 01 � 1 = 0 and 02 � 2 = 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = G + C .
(2) If 01 � 1 < 0 or 02 � 2 < 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = 1.

R����� 2.10. In Example 2.7, the parametric Ore polynomial ring
associated with R and F2 is R0 = F2 [* ] [G ;f0, 0], where

f0 : F2 [* ] ! F2 [* ], ⌘(D1,D2,D3) 7! ⌘(D1,D2,D3)2 .
It is easy to check that for any (01,02,03) 2 F2, we have

f (q Æ0 (⌘)) = f (⌘(01,02,03)) = ⌘(01,02,03)2

and
q Æ0 (f0 (⌘)) = q Æ0 (⌘(D1,D2,D3)2) = ⌘(01,02,03)2 .

Hence, f (q Æ0 (⌘)) = q Æ0 (f0 (⌘)). It is clear that X (q Æ0 (⌘)) = q Æ0 (X 0 (⌘)).
Therefore, R0 is the parametric Ore polynomial ring associated with
R and F2. In Example 2.9, it is easy to check R0 = C(C) [* ] [G ; id, m

mC ]
is the parametric Ore polynomial ring associated with R and C.

R����� 2.11. In Example 2.9, if we consider ! = C(C), then
R0 = C(C) [* ] [G ; id, m

mC ] is not the parametric Ore polynomial ring
associated with R and !. For example, if (01,02) = (C, 0) 2 !2, and
⌘ = D1 2 C(C) [* ], then

f (q Æ0 (⌘)) = f (C) = 1,

but q Æ0 (f0 (⌘)) = q Æ0 (0) = 0. Hence, f (q Æ0 (⌘)) < q Æ0 (f0 (⌘)).

3 COMPUTING THE GCRD FOR
NON-PARAMETRIC ORE POLYNOMIALS

In this section, we will present the de�nition of the Sylvester matrix
for several Ore polynomials and utilize it to compute the GCRD of
non-parametric Ore polynomials.

Consider the Ore polynomial ring R = : [G ;f, X] over a �eld : .
Let = 2 N be a �xed integer and R<= the subset of R with degrees
less than =. A :-isomorphism is given by

E= : R<= ! :=,
=�1’
8=0

08G
8 7! (0=�1, . . . ,00) .

For 51, . . . , 5✓ 2 R<= , de�ne

mat= (51, . . . , 5✓ ) =
©≠≠
´

E= (51)
...

E= (5✓ )

™ÆÆ
¨
.

De�nition 3.1 ([17]). Let 51, 52 2 R be two Ore polynomials. The
Sylvester matrix of 51 and 52 is de�ned as

Syl(51, 52) = mat= (G<2�1 51, . . . , G 51, 51, G<1�1 52, . . . , G 52, 52),
where<1 = deg 51,<2 = deg 52, and = =<1 +<2.

Li and Nemes presented the following proposition in [18].

P���������� 3.2. Let 51, 52 2 R. Then the Sylvester matrix of 5
and 6 can be transformed into ⌧ through elementary row transfor-
mations, where ⌧ satis�es the following conditions:

(1) ⌧ =
✓
�A ⇠
$ $

◆
and ⇠ 2 :A⇥ (=�A ) , where �A is the A ⇥ A

identity matrix.
(2) Suppose the last non-zero row of ⌧ is

ÆFA = (0, . . . , 0, 1, 2A ,A+1, . . . , 2A ,=),
then gcrd(51, 52) = G=�A + 2A ,A+1G=�A�1 + · · · + 2A ,= .

In the following, we extend Proposition 3.2 from two polynomials
to a set of polynomials. Denote by [<] the set {0, 1, . . . ,< � 1}.

De�nition 3.3. Let � = {51, . . . , 5✓ } ⇢ R be a set of Ore polyno-
mials, and let ? 2 � . The Sylvester matrix of � with respect to ? is
de�ned as

Syl(� ;?) = mat= (G8?, G 9 5 : 5 2 � \ {?}, 8 2 [<], 9 2 [deg(?)]),
where< = max{deg(5 ) : 5 2 � \ {?}} and = =< + deg(?).

T������ 3.4. Let � = {51, . . . , 5✓ } ⇢ R, and let ? 2 � . Then the
Sylvester matrix Syl(� ;?) can be transformed into⌧ through elemen-
tary row transformations, where ⌧ satis�es the following conditions:

(1) ⌧ =
✓
�A ⇠
$ $

◆
and ⇠ 2 :A⇥ (=�A ) , where �A is the A ⇥ A

identity matrix.
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(2) Suppose the last non-zero row of ⌧ is

ÆFA = (0, . . . , 0, 1, 2A ,A+1, . . . , 2A ,=),
then gcrd(51, . . . , 5✓ ) = G=�A + 2A ,A+1G=�A�1 + · · · + 2A ,= .

P����. We prove it by induction on ✓ . The theorem is true for
✓ = 2 according to Proposition 3.2. We assume that the theorem is
true for ✓ � 1. For ✓ , without loss of generality, we suppose ? = 51
and deg(52) � deg(53) � · · · � deg(5✓ ). Then
Syl(� ;?) = mat= (G8?, G 9 5 : 8 2 [<], 5 2 � \ {?}, 9 2 [deg(?)]) .

Let � 0 = {51, . . . , 5✓�1}. Then Syl(� ;?) consists of the rows of
Syl(� 0;?) and E= (G 9 5✓ ) with 9 2 [deg(?)]. Denote the GCRD of
51, . . . , 5✓�1 by 60. By the induction hypothesis, the reduced row
echelon form of Syl(� 0;?) is as follows:

⌧ 0 =
✓
�A 0 ⇠0

$ $

◆
, ⇠0 2 :A 0⇥ (=�A 0 ) , (2)

where A 0 = = � deg(60). Moreover, the last non-zero row of ⌧
corresponds to 60. Suppose that ÆF1, . . . , ÆFA 0 are the �rst A 0 rows
of ⌧ 0 and "0 is the module generated by the rows of Syl(� 0;?)
over : . For any E= (G860) with 8 2 [deg(5✓ )], we can verify that
E= (G860) 2 "0: Since = � deg(5✓ ) + deg(60), then E= (G860) can be
de�ned. Reduce E= (G860) by ÆF1, . . . , ÆF✓ and obtain a new vector
ÆF 2 " that corresponds to a polynomialF with degree less than
60. However, F belongs to the left ideal generated by 51, . . . , 5✓�1,
which is equal to the left ideal generated by 60. Hence,F = 0, which
implies that E= (G860) 2 "0.

Suppose that 6 = gcrd(60, 5✓ ), which is also equal to the GCRD of
51, . . . , 5✓ . Let" be the module generated by the rows of Syl(� ; ?)
over : , then E= (G860) 2 "0 ⇢ " for any 8 2 [deg(5✓ )]. Moreover,
each E= (G 9 5✓ ), 9 2 [deg(60)], also belongs to " . Therefore, by
Proposition 3.2 we have E= (6) 2 " and there exists

ÆF 0
: = (0, · · · , 0,

deg60+deg 5✓z                          }|                          {
0, . . . , 0|  {z  }
:�1

, 1, 20:,:+1, . . . , 2
0
:,=) 2 ", (3)

where : = 1, . . . , deg60 + deg 5✓ � deg6. By (2) and (3), there exists

ÆF8 = (
8�1z   }|   {

0, · · · , 0, 1, 28,8+1, . . . , 21,=) 2 ", 8 = 1, . . . ,= � deg6.

where ÆF1, . . . , ÆFA 0 are the �rst A 0 rows of ⌧ 0, and ÆFA 0+C = ÆF 0
C+deg 5✓

for C = 1, . . . , deg(60)�deg(6). Thus, rank(Syl(� ;?)) � =�deg6. If
rank(Syl(� ;?)) > = � deg6, we get a non-zero vector ÆF 2 " , with
deg(E�1= ( ÆF)) < deg(6). However, it is impossible since E�1= ( ÆF)
belongs to the left ideal generated by 51, . . . , 5✓ , which is equal to
the left ideal generated by 6. Therefore,

rank(Syl(� ;?)) = = � deg(6).
In addition, since ÆF8 2 " , 8 = 1, . . . ,= � deg6, then the reduced
row echelon form of Syl(� ;?) is as follows:

⌧ =
✓
�A ⇠
$ $

◆
, ⇠ 2 :A⇥ (=�A ) , A = = � deg(6) .

Suppose the last non-zero row of ⌧ is

ÆFA = (0, . . . , 0, 1, 2A ,A+1, . . . , 2A ,=),

and let 6̃ = G=�A + 2A ,A+1G=�A�1 + · · · + 2A ,= . By the de�nition of
Syl(� ;?), 6̃ belongs to the left ideal generated by 51, . . . , 5✓ , which
is equal to the left ideal generated by 6. Furthermore, 6̃ is with the
same degree as 6. So

6 = 6̃ = G=�A + 2A ,A+1G=�A�1 + · · · + 2A ,=,
completing the induction. ⇤

R����� 3.5. For the polynomial ring, a similar result is proved in
[29], and Theorem 3.4 is a generalization of Theorem 2.4.4. in [29].

Here a simple example is presented to illustrate Theorem 3.4.

Example 3.6. Let R = C(C) [G ; id, 3
3C ], where GC = CG + 1. Let

51 = G2 + (C + 1)G + (C + 1), 52 = G3 + 2CG2 + (C2 + 2)G + C , 53 =
G2 + 2CG + (C2 + 1) 2 R, � = {51, 52, 53}. Choosing ? = 51, then

Syl(� ;?) =
©≠≠≠
´

1 C+1 C+3 2 0
0 1 C+1 C+2 1
0 0 1 C+1 C+1
1 2C C2+4 3C 1
0 1 2C C2+2 C
0 1 2C C2+3 2C
0 0 1 2C C2+1

™ÆÆÆ
¨
.

By computing, the reduced row echelon form of Syl(� ;?) is

©≠≠≠
´

1 0 0 0 �C4+6C2�3
0 1 0 0 C3�3C
0 0 1 0 �C2+1
0 0 0 1 C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

™ÆÆÆ
¨
.

Then gcrd(51, 52, 53) = G + C .

4 PARAMETRIC GCRD FOR PARAMETRIC
ORE POLYNOMIALS

Let R = : [G ;f, X]. Suppose that ! ⇢ : and * = {D1, . . . ,DB }. Let
R0 = : [* ] [G ;f0, X 0] be the parametric Ore polynomial ring associ-
ated with R and !.

4.1 Parametric Sylvester matrix
In this subsection we will de�ne the parametric Sylvester matrix
that is compatible with the Sylvester matrix de�ned above.

Let R0
<= be the subset of R0 consisting of polynomials with

G-degree less than =. We de�ne a '0-isomorphism

E= : R0 ! : [* ]=,
=�1’
8=0

28 (* )G8 7! (2=�1 (* ), . . . , 20 (* )) .

For convenience, E= (5 ) is denoted by Æ5 if there is no confusion
about = in context.

For 51, . . . , 5✓ 2 R0
<= , de�ne

mat= (51, . . . , 5✓ ) =
©≠≠≠
´

Æ51
...
Æ5✓

™ÆÆÆ
¨
.

R����� 4.1. Let q Æ0 : : [* ] ! : be a specialization induced by the
element Æ0 in !B . It can be extended to a specialization q Æ0 : : [* ]= !
:= by applying q Æ0 entry-wise. It is easy to check that

(1) q Æ0 (2 · Æ5 ) = q Æ0 (2) · q Æ0 ( Æ5 ) for 2 2 : [* ], Æ5 2 : [* ]= ;
(2) q Æ0 ( Æ51 + Æ52) = q Æ0 ( Æ51) + q Æ0 ( Æ52) for Æ51, Æ52 2 : [* ]= ;
(3) E= (q Æ0 (5 )) = q Æ0 (E= (5 )) for 5 2 : [* ].
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L���� 4.2. Let R0 be the parametric Ore polynomial ring associ-
ated with R and !, and let q Æ0 : : [* ] ! : be a specialization induced
by Æ0 2 !B . Then

(1) q Æ0 (G 5 ) = Gq Æ0 (5 ) for any polynomial 5 2 R0.
(2) q Æ0 (⌘5 ) = q Æ0 (⌘)q Æ0 (5 ) for any polynomials ⌘, 5 2 R0.
(3) For any< < = � deg(5 ), we have

q Æ0
�
mat= (5 , G 5 , . . . , G< 5 )

�
= mat= (q Æ0 (5 ), Gq Æ0 (5 ), . . . , G<q Æ0 (5 )).

P����. (1) For any 5 =
Õ=�1
8=0 28G

8 2 R0, we have

q Æ0 (G · 5 ) = q Æ0

 
=�1’
8=0

G28G
8

!

= q Æ0

 
=�1’
8=0

(f0 (28 )G + X 0 (28 ))G8
!

=
=�1’
8=0

(q Æ0 (f0 (28 ))G + q Æ0 (X 0 (28 )))G8

=
=�1’
8=0

(f (q Æ0 (28 ))G + X (q Æ0 (28 )))G8 = Gq Æ0 (5 )

(2) For any ⌘ =
ÕB
8=0 28G

8 , we have

q Æ0 (⌘5 ) = q Æ0

 
B’
8=0

28 (G8 · 5 )
!

=
B’
8=0

q Æ0 (28 )q Æ0 (G8 · 5 )

=
B’
8=0

q Æ0 (28 )G8q Æ0 (5 ) = q Æ0 (⌘)q Æ0 (5 ).

(3) It is easy to check that

mat= (q Æ0 (5 ), , . . . , G<q Æ0 (5 )) =
©≠≠
´

E= (q Æ0 (5 ))
...

E= (G<q Æ0 (5 ))

™ÆÆ
¨
=

©≠≠
´

E= (q Æ0 (5 ))
...

E= (q Æ0 (G< 5 ))

™ÆÆ
¨

= q Æ0
�
mat= (5 , G 5 , . . . , G< 5 )

�
,

where the last equation can be veri�ed by Remark 4.1.(3). ⇤

In the following, we introduce the parametric Sylvester matrix
for polynomials in R0. For any 5 2 R0, the leading coe�cient of 5
with respect to G is denoted by lcG (5 ).

De�nition 4.3. Let � = {51, . . . , 5✓ } ⇢ R0 and ? 2 � . The para-
metric Sylvester matrix of � with respect to ? is de�ned as

PSyl(� ;?) = mat= (G8?, G 9 5 : 5 2 � \ {?}, 8 2 [<], 9 2 [degG (?)]),
where< = max{degG (5 ) : 5 2 � \ {?}} and = =< + degG (?).

Based on the de�nition of parametric Sylvester matrices, the
following two propositions can be obtained.

P���������� 4.4. Let � = {51, . . . , 5✓ } ⇢ R0and ? 2 � . Let q Æ0 be
the specialization induced by Æ0 2 !B . If q Æ0 (lcG (5 )) < 0 for all 5 2 � ,
then

q Æ0 (PSyl(� ;?)) = Syl(q Æ0 (� );q Æ0 (?)),
where q Æ0 (� ) = {q Æ0 (51), . . . ,q Æ0 (5✓ )}.

P����. It can be veri�ed by the de�nitions and Lemma 4.2 di-
rectly. ⇤

P���������� 4.5. Let � = {51, . . . , 5✓ } ⇢ R0 and ? 2 � . Let q Æ0 be
the specialization induced by Æ0 2 !B , with q Æ0 (lcG (?)) < 0. Then

q Æ0 (PSyl(� ;?)) =
✓
� ⌫
0 Syl(q Æ0 (� );q Æ0 (?))

◆
,

with (�,⌫) = mat= (G8? : 8 = <0, . . . ,< � 1) 2 ! (<�<0 )⇥= , where
< = max{degG (5 ) : 5 2 � \ {?}} and<0 = max{deg(q Æ0 (5 )) : 5 2
� \ {?}}.

P����. It can be veri�ed directly by the de�nition of parametric
Sylvester matrix and Lemma 4.2. ⇤

An illustrative example is presented as follows.

Example 4.6. Let R = F2 [G ;f, 0], where f (2) = 22 for 2 2 F2,
and let ! = F2. Then R0 = F2 [D1,D2] [G ;f0, 0] is the parametric
Ore polynomial ring associate with R and !, where f0 (2 (D1,D2)) =
2 (D1,D2)2. Let 51 = G2+D1G+1, 52 = D1G3+D2G+1, 53 = D1G2+D2 2 '0
and � = {51, 52, 53}. By De�nition 4.3,

PSyl(� ; 51) =

©≠≠≠≠≠≠
´

1 D4
1 1 0 0

0 1 D2
1 1 0

0 0 1 D1 1
D2
1 0 D2

2 1 0
0 D1 0 D2 1
0 D2

1 0 D2
2 0

0 0 D1 0 D2

™ÆÆÆÆÆÆ
¨
.

Let q Æ0 : F2 [D1,D2] ! F2 be a specialization induced by (0,02) 2
F2

2 with 02 < 0, then

q Æ0 (PSyl(� ; 51)) =
©≠≠≠≠≠
´

1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 022 1 0
0 0 0 02 1
0 0 0 022 0
0 0 0 0 02

™ÆÆÆÆÆ
¨
,

with Syl(q Æ0 (� );q Æ0 (51)) =
©≠≠
´

1 0 1
022 1 0
0 02 1
0 022 0
0 0 02

™ÆÆ
¨
.

4.2 Computing parametric GCRD by Gröbner
bases for modules

Now, we will present the main theorem that the parametric GCRD
can be obtained by computing the Gröbner basis of the module
generated by the rows of the parametric Sylvester matrix.

Let � be a subset of R0. In the following, " (� ; ?) denotes the
module generated by the rows of PSyl(� ;?) over : [* ] in : [* ]= .

Similar to Theorem 3.4 for the non-parametric case, we obtain
the following lemma for the parametric case.

L���� 4.7. Let � = {51, . . . , 5✓ } ⇢ R0, and ? 2 � . Suppose that
max{deg(5 ) : 5 2 � \ {?}} > 0. Let q Æ0 be a specialization from
: [* ] to : induced by Æ0 2 !B with q Æ0 (lcG (?)) < 0. Assume 6 =
gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )), then

(1) The reduced row echelon form of q Æ0 (PSyl(� ;?)) is as follows:

⌧ =
✓
�A ⇠
$ $

◆
, ⇠ 2 !A⇥ (=�A ) ,
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Furthermore, suppose ÆF1, . . . , ÆFA are the �rst A rows of⌧ , then
(a) E�1= ( ÆFA ) = 6;
(b) There exist Æ@8 2 " (� ; ?) such that q Æ0 (Æ@8 ) = ÆF8 , for 8 =

1, . . . , A .
(2) There exists Æ@ 2 " (� ;?) such thatq Æ0 (@) = 6 andq Æ0 (lcG (@)) <

0, where @ = E�1= (Æ@).

P����. (1) The reduced row echelon form of q Æ0 (PSyl(� ;?)) and
6 = E�1= ( ÆFA ) can be directly derived by Proposition 4.5 and Theorem
3.4. We prove (1.b) as follows. Since q Æ0 (PSyl(� ;?)) can be reduced
to ⌧ by Gaussian elimination, there exists + 2 :=⇥= , such that

+ · q Æ0 (PSyl(� ;?)) = ⌧ .
Therefore, there exist 28 9 2 : , 8 = 1, . . . , A , 9 = 1, . . . , C such that

ÆF8 =
C’
9=1

28 9q Æ0 (ÆE 9 ), 8 = 1, . . . , A ,

where ÆE1, . . . , ÆEC are rows of PSyl(� ; ?). Let Æ@8 =
ÕC

9=1 28 9 ÆE 9 , 8 =
1, . . . , A , then q Æ0 (Æ@8 ) = ÆF8 .

(2) By the above conclusion (1), there exist Æ@1, . . . , Æ@A 2 " , such
that q Æ0 (Æ@8 ) = ÆF8 . Suppose

©≠≠≠≠
´

ÆF1
ÆF2
...
ÆFA

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

1 0 · · · 0 21,A+1 · · · 21,=
0 1 · · · 0 22,A+1 · · · 22,=
...

...
. . .

...
...

. . .
...

0 0 · · · 1 2A ,A+1 · · · 2A ,=

™ÆÆÆÆ
¨
, (4)

then gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )) = G=�A +2A ,A+1G=�A�1+· · ·+2A ,= . Let

& =
©≠≠≠≠
´

Æ@1
Æ@2
...
Æ@A

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

@1,1 · · · @1,A�1 @1,A @1,A+1 · · · @1,=
@2,1 · · · @2,A�1 @2,A @2,A+1 · · · @2,=
...

. . .
...

...
...

. . .
...

@A ,1 · · · @A ,A�1 @A ,A @A ,A+1 · · · @A ,=

™ÆÆÆÆ
¨
. (5)

By Equation (4) and Equation (5), we have

q Æ0 (&) =
©≠≠≠≠
´

q Æ0 (Æ@1)
q Æ0 (Æ@2)

...
q Æ0 (Æ@A )

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

1 0 · · · 0 21,A+1 · · · 21,=
0 1 · · · 0 22,A+1 · · · 22,=
...

...
. . .

...
...

. . .
...

0 0 · · · 1 2A ,A+1 · · · 2A ,=

™ÆÆÆÆ
¨
.

Assume that @(G) is the determinant polynomial of& . By de�nition
of determinant polynomial (see [19], De�nition 7.5.1),

@(G) = 1=�AG=�A + 1=�A�1G=�A�1 + · · · + 11G + 10,
where

18 = det
©≠≠≠≠
´

@1,1 · · · @1,A�1 @1,=�8
@2,1 · · · @2,A�1 @2,=�8
...

. . .
...

...
@A ,1 · · · @A ,A�1 @A ,=�8

™ÆÆÆÆ
¨
, 8 = 0, 1, . . . ,= � A .

Therefore, q Æ0 (1=�A ) = 1, q Æ0 (18 ) = 2A ,=�8 , 8 = 0, . . . ,= � A � 1. Then
q Æ0 (@) = 6 and q Æ0 (lcG (@)) = 1 < 0. According to the property of
determinant polynomial (see [19], Section 7.5), Æ@ = E= (@) belongs
to the module generated by the rows of& . Since Æ@8 2 " (� ;?), then
Æ@ 2 " (� ;?). Thus, there exists Æ@ 2 " (� ;?) such that q Æ0 (@) = 6
and q Æ0 (lcG (@)) < 0. ⇤

T������ 4.8. Let � = {51, . . . , 5✓ } ⇢ R0, ? 2 � , and q Æ0 : : [* ] !
: be a specialization induced by Æ0 2 !B with q Æ0 (lcG (?)) < 0. Suppose
that max{deg(5 ) : 5 2 � \ {?}} > 0, ÆG is a Gröbner basis of the
module" (� ; ?) with respect to a POT order � with e1 � e2 � . . . �
e= , where = = max{degG (5 ) : 5 2 � \ {?}} + degG (?), G = {6 2
: [* ] [G] : E= (6) 2 ÆG} and G8 = {6 2 G : degG (6) = 8}. Then the
following conditions are equivalent:

(1) the degree of gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )) is greater than 3 ;
(2) for all 6 2 –3

8=0 G8 , q Æ0 (lcG (6)) = 0.
Further, if the elements in G are ordered from small to large according
to G-degree, then gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )) = q Æ0 (6) (up to a non-zero
constant), where 6 is the �rst element in G satisfying q Æ0 (lcG (6)) < 0.

P����. (2)) (1). Let 6 = gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )) in R. Assume
deg(6) = A  3 . By (2) in Lemma 4.7, there exists Æ@ 2 " (� ;?)
such that degG (@) = deg(6) and q Æ0 (lcG (@)) < 0. According to the
property of Gröbner bases for the module" (� ;?), Æ@ can be reduced
to the zero vector by {Æ6 : 6 2 G8 , 8 = 0, . . . ,3} in : [* ]= . Therefore,
there exist {26 : 6 2 GA } ⇢ : [* ] such that

lcG (@) =
’
62GA

26 lcG (6).

However, q Æ0 (lcG (6)) = 0 for all 6 2 GA , which implies that

q Æ0 (lcG (@)) = 0.

This is contradictory to the assumption.
(1) ) (2). Suppose there exists 6̃ 2 G with degG (6̃)  3 and

q Æ0 (lcG (6̃)) < 0. Let6 = gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )). Since 6̃ belongs to
the left ideal generated by 51, . . . , 5✓ inR0, there exist⌘1, . . . ,⌘✓ 2 R0

such that 6̃ =
Õ✓
8=1 ⌘8 58 . By (2) in Lemma 4.2, we have

q Æ0 (6̃) =
✓’

8=1
q Æ0 (⌘8 )q Æ0 (58 ).

Therefore, q Æ0 (6̃) belongs to the left ideal hq Æ0 (51), . . . ,q Æ0 (5✓ )i = h6i,
which implies that

deg(6)  deg(q Æ0 (6̃)) = degG (6̃)  3 .
It contradicts the assumption that the degree of 6 is greater than 3 .

By the above conclusion, when the elements in G are ordered
from small to large according to G-degree, we have

gcrd(q Æ0 (51), . . . ,q Æ0 (5✓ )) = q Æ0 (6)
where 6 is the �rst element in G satisfying q Æ0 (lcG (6)) < 0. ⇤

5 THE PROPOSED ALGORITHM AND
IMPLEMENTATION

Based on Theorem 4.8, we are ready to give an algorithm to compute
a parametric GCRD for Ore polynomials.

5.1 Algorithm
Let R = : [G ;f, X] be an Ore polynomial ring and ! a subset of : .
Suppose that R0 = : [* ] [G ;f0, X 0] is the parametric Ore polynomial
ring associated with R and !. Let � = {51, . . . , 5✓ } ⇢ : [* ] [G]. We
will present an algorithm to compute the parametric GCRD in
De�nition 2.4.

We �rst give some explanations for Algorithm 1.
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Algorithm 1: Parametric GCRD for Ore polynomials
Input :� = {51, . . . , 5✓ } ⇢ : [* ] [G ;f0, X 0].
Output :⇡ = {(⇢1,#1,31), . . . , (⇢C ,#C ,3C )} is the

parametric GCRD of 51, . . . , 5✓ .
1 ⇡ := ;; ⇢0 := {0};
2 while h⇢0i < : [* ] do
3 � := reduce(� , ⇢0);
4 if � = {0} then
5 ⇡ := ⇡ [ {(⇢0, {1}, "any polynomial")}
6 return ⇡ ;
7 end if
8 #0 := {5 2 � : degG (5 ) = 0};
9 if #0 < ; then

10 ⇡ := ⇡ [ {(⇢0,#0, 1)}
11 ⇢0 := ⇢0 [ #0;
12 go to line 3;
13 end if
14 ? := 5 , 5 2 � with minimal G-degree;
15 # := {lcG (?)};
16 " := PSyl(� ;?);
17 ÆG := the Gröbner basis of the module generated by the

rows of" ;
18 G0 := {6 : Æ6 2 ÆG, degG (6) = 0};
19 ⇡ := ⇡ [ {(⇢0,G0 ⇥ # , 1)};
20 8 := 1;
21 < := max{degG (5 ) : 5 2 � };
22 ⇢ := G0;
23 while h⇢i < : [* ] and 8  < do
24 G8 := {6 : Æ6 2 ÆG, degG (6) = 8};
25 for 6 2 G8 do
26 ⇡ := ⇡ [ {(⇢,# ⇥ {lcG (6)},6)};
27 ⇢ := ⇢ [ {lcG (6)};
28 end for
29 8 := 8 + 1;
30 end while
31 ⇢0 := ⇢0 [ # ;
32 end while
33 return ⇡ .

• In line 3, % := reduce(%, ⇢0) means to reduce % by the Gröb-
ner basis of h⇢0i;

• In line 19, G0 ⇥ # = {6 · 5 : 6 2 G0, 5 2 # }.
T������ 5.1. The algorithm is correct and terminates in �nitely

many steps.

P����. The correctness is based on Theorem 4.8.
Termination. In line 3, we reduce � by the Gröbner basis of

h⇢0i ⇢ : [* ] and get a new � . Therefore, the leading term of the
non-zero polynomials in the new � does not belong to h⇢0i. Then
in line 31, the ideal h⇢0i increases strictly. Finally, � will be zero or
h⇢0i = : [* ]. The algorithm terminates. ⇤

Here we use an example to illustrate the steps in Algorithm 1.

Example 5.2. Let R = F2 [G ;f, 0] with f (2) = 22 for 2 2 F2. Let
! = F2. The parametric Ore polynomial ring associated with R and
! is R0 = F2 [D1,D2] [G ;f0, 0], where

f0 : F2 [D1,D2] ! F2 [D1,D2], ⌘(D1,D2) 7! ⌘(D1,D2)2 .
Let 51 = D2G2 +G +D1, 52 = D2G3 +G2, 53 = D1G2 + 1 2 F2 [D1,D2] [G].

Initial: ⇡ := ;; ⇢0 := {0}, � := {51, 52, 53};
Now h⇢0i < : [* ]. We choose ? = 51. Then # := {lcG (?)} =

{D2},

" := PSyl(� ;?) =

©≠≠≠≠≠≠
´

D4
2 1 D4

1 0 0
0 D2

2 1 D2
1 0

0 0 D2 1 D1
D2
2 1 0 0 0
0 D2 1 0 0
0 D2

1 0 1 0
0 0 D1 0 1

™ÆÆÆÆÆÆ
¨
.

By computation, the Gröbner basis of the module generated by the
rows of " under the POT order with the degree reverse lexico-
graphic order where D1 � D2 is
ÆG :={(0, 0, 0, 0,D22 + D2 + 1), (0, 0, 0, 0,D21 + 1), (0, 0, 0, 1,D1D2 + D1),

(0, 0, 1, 0,D1), (0, 1, 0, 0,D1D2 + D1), (D22, 0, 0, 0,D1D2 + D1)}.
Then G0 := {D22 + D2 + 1,D21 + 1}. Thus,

⇡ := ⇡ [ {(⇢0, {D22 + D2 + 1,D21 + 1} ⇥ # , 1)}
= {({0}, {(D22 + D2 + 1)D2, (D21 + 1)D2}, 1)}.

Now, let ⇢ := {D22 + D2 + 1,D21 + 1}.
Since h⇢i < : [* ], we consider G1 := {G +D1D2 +D1}. Therefore,
⇡ := ⇡ [ {(⇢, {lcG (G + D1D2 + D1)} ⇥ # , G + D1D2 + D1)}

= ⇡ [ {{D22 + D2 + 1,D21 + 1}, {D2}, G + D1D2 + D1}.
Updating ⇢ := ⇢ [ {lcG (G + D1D2 + D1)} = {D22 + D2 + 1,D21 + 1, 1}.
Now h⇢i = : [* ].

Let ⇢0 := ⇢0 [ # = {D2}. Since h⇢0i < : [* ],
� := reduce(� , ⇢0) = {G + D1, G2,D1G2 + 1}.

Choosing ? = G + D1, # := {1}, then

" := PSyl(� ;?) =
©≠≠≠
´

1 D21 0
0 1 D1
1 0 0
D1 0 1

™ÆÆÆ
¨
.

By computing, the Gröbner basis of the module generated by the
rows of " is ÆG = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus ⇡ := ⇡ [
{(⇢0, {1} ⇥ # , 1)} = ⇡ [ {(D2, {1}, 1)}.

Updating ⇢0 := ⇢0 [ # = {D2, 1}. We have h⇢0i = : [* ]. Hence,
the algorithm terminates.

In summary, the parametric GCRD of {D2G2 + G + D1,D2G3 +
G2,D1G2 + 1} is ⇡ = {({0}, {(D22 + D2 + 1)D2, (D21 + 1)D2}, 1), ({D22 +
D2 + 1,D21 + 1}, {D2}, G + D1D2 + D1), ({D2}, {1}, 1)}.

It means that for (01,02) 2 F2
2, we have

(1) If (022 + 02 + 1)02 < 0 or (021 + 1)02 < 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = 1.

(2) If 022 + 02 + 1 = 0, 021 + 1 = 0 and 02 < 0, then

gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = G + 0102 + 01 .
(3) If 02 = 0, then gcrd(q Æ0 (51),q Æ0 (52),q Æ0 (53)) = 1.
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5.2 Implementation
The proposed algorithm has been implemented in the computer
algebra system Singular (4-3-0) with R = F2 [G,f, 0] and ! = F2.
The codes and examples are available on the web: http://www.
mmrc.iss.ac.cn/~dwang/software.html. We randomly generate ten
sets to show the performance of the proposed algorithm. The ten
examples and their implementation are as follows.
�1 = {G5 +D1G2 + 1,G4 +D2G3 + 1};
�2 = {G3 +D2

1G
2 +D2G +D1,D2G3 + (D1 + 1)G2 + (D1 +D2 )G };

�3 = {D2G2 + G +D1,D2G3 + G2,D1G
2 + 1};

�4 = {G4 +D1G3 +D2,G4 +D3G3 +D4,G4 +D5G3 +D6};
�5 = {G4 +D2G2 +D1G +D2,D2G4 +D1G3 +D1,G2 +D2G +D1};
�6 = {G5 +D2G2 +D1G +D2,D2G5 +D1G3 +D1G2 +D2,G5 +D2G3 +D1};
�7 = {G6 +D1G4 +D2,D2G5 +D1G3 +D3,D1G4 +D2G2 +D1};
�8 = {D3G6 +D1G4 +D3G2 +D1,D2G5 +D1G3 +D3G2,D1G

5 +D2G2 +D1};
�9 = {G2 +D1G +D2,G2 +D3G +D4,G2 +D5G +D6,G2 +D7G +D8};
�10 = {G4 +D1G2 +D2,G4 +D3G2 +D4,G2 +D5G2 +D6,G4 +D7G2 +D8} .

Table 1: Implementation

Ex. Timings Br. Deg. Size Ex. Timings Br. Deg. Size
�1 0.044 3 35 76 �6 0.024 4 11 24
�2 0.035 3 20 49 �7 4.623 5 42 592
�3 0.016 3 3 3 �8 2.164 8 26 99
�4 0.099 6 22 144 �9 0.016 5 5 16
�5 0.011 3 8 16 �10 0.093 5 18 56
• Timings (in seconds) were obtained on Intel(R) Core(TM) i5-8250U CPU @1.60GHz
1.80 GHz with 8GB Memory running Windows 10.
• "Br." is the number of branches that V! (⇢8 ) \ V! (#8 ) is non-empty.
• Deg. = max{total degree of 5 : 5 2 ⇢8 [ #8 , 8 = 1, . . . , Br.}.
• Size = max{number of terms of 5 : 5 2 ⇢8 [ #8 , 8 = 1, . . . , Br.}.

6 CONCLUDING REMARKS
In this paper, a new algorithm to compute the parametric GCRD
for a set of Ore polynomials based on Gröbner bases for modules
is presented. To compute the parametric GCRD, we de�ne the
parametric Ore polynomial ring. Furthermore, if the parametric
Ore polynomial ring can be constructed, then we can compute the
parametric GCRD by Gröbner basis of the module generated by the
rows of the parametric Sylvester matrix. In this way, we convert
the problem from the non-commutative ring into the commutative
module and solve the problem using commutative Gröbner bases
for modules. However, if the parametric Ore polynomial ring can
not be constructed, we do not know how to compute the parametric
GCRD yet. This problem will be considered in further work.
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