Arithmetic of
The Algebraic and Differential Generic Galois Group of
A \(q \)-difference Equation

(joint work with C. Hardouin)

L. Di Vizio
Université Paris 7, France

Let \(k \) be a perfect field and \(K \) be a finite extension of \(k(q) \). The Grothendieck conjecture on \(p \)-curvatures asserts that the solutions of a linear differential equation \(L \) with coefficients in \(K(x) \) with \(K \) a number field are algebraic if and only if the \(p \)-curvatures of the equation \(L \) equals zero for almost all prime \(p \) of \(K \). We prove a discrete analog of this conjecture. In the case of \(q \)-difference equations, \(i.e. \), we prove the equivalence among the following facts:
1. a \(q \)-difference module over \(K(x) \) is trivial or equivalently a \(q \)-difference equation \(Y(qx) = A(x)Y(x) \) where \(A \in G_{l}(K(x)) \);
2. its specialization at \(q = \xi \) has zero curvature for almost all primitive roots of unity \(\xi \);
3. its specialization at \(q = \xi \) is endowed with a (necessarily trivial) structure of iterated \(\xi \)-difference module, for almost all primitive roots of unity \(\xi \).

The equivalence between 1. and 3. is an analog of a Matzat-van der Put conjecture for differential equations over field of positive characteristic.

Then we consider two kinds of Galois groups (the second one only under the assumption that \(k \) has zero characteristic) attached to a \(q \)-difference module \(\mathcal{M} \) over \(K(x) \):
- the generic (also called intrinsic) Galois group in the sense of [Kat82] and [DV02], which is an algebraic group over \(K(x) \);
- the generic differential Galois group, which is a differential algebraic group in the sense of Kolchin, associated to the smallest differential tannakian category generated by \(\mathcal{M} \), equipped of the forgetful functor.

The result above leads to an arithmetic description of the generic algebraic (resp. differential) Galois group: it is the smallest algebraic (resp. differential) group containing the curvatures of the \(q \)-difference module for almost all primitive roots of unity \(\xi \). Although no general Galois correspondence holds in this setting, if the characteristic of \(k \) is positive and the generic Galois group is nonreduced, we can prove some devissage.

By specialization of the parameter \(q \) at 1 in the Galois group, we obtain an upper bound for the generic Galois group of the differential equation obtained by specialization. This upper bound has a curvature characterization in the spirit of the Grothendieck-Katz conjecture, but \emph{via} different curvatures than the ones appearing in the conjecture.

References

