Introduction to *D*-module Theory. Algorithms for Computing Bernstein-Sato Polynomials

Jorge Martín-Morales

October 27-30, 2010, Beijing, China

Go directly to the second page if you want to skip the details.

1 Basic notations

Assume \mathbb{K} to be a field of characteristic 0. By R_n we denote the ring of polynomials $\mathbb{K}[x_1, \ldots, x_n]$ in n variables over \mathbb{K} and by D_n we denote the ring of \mathbb{K} -linear partial differential operators with coefficients in R_n , that is the n-th Weyl algebra. The ring D_n is the associative \mathbb{K} -algebra generated by the partial differential operators ∂_i and the multiplication operators x_i subject to relations

$$\{\partial_i x_j = x_j \partial_i + \delta_{ij}, x_j x_i = x_i x_j, \partial_j \partial_i = \partial_i \partial_j \mid 1 \le i, j \le n\}.$$

That is, the only non-commuting pairs of variables are (x_i, ∂_i) ; they satisfy the relation $\partial_i x_i = x_i \partial_i + 1$. Finally, denote $D_n[s] = D_n \otimes_{\mathbb{K}} \mathbb{K}[s]$.

2 Main object to study

Let us recall Bernstein's construction. Given $f \in R_n$ a non-zero polynomial, we consider $M = R_n[s, \frac{1}{f}] \cdot f^s$ which is by definition the free $R_n[s, \frac{1}{f}]$ -module of rank one generated by the formal symbol f^s . Then M has a natural structure of left $D_n[s]$ -module. Here the differential operators act in a natural way,

$$\partial_i \big(g(s, x) \cdot f^s \big) = \left(\frac{\partial g}{\partial x_i} + sg(s, x) \frac{\partial f}{\partial x_i} \frac{1}{f} \right) \cdot f^s \in M.$$

Theorem 2.1 (Bernstein). For every non-constant polynomial $f \in R_n$, there exists a non-zero polynomial $b(s) \in \mathbb{K}[s]$ and a differential operator $P(s) \in D_n[s]$ such that

$$P(s)f \cdot f^s = b(s) \cdot f^s \in R_n\left[s, \frac{1}{f}\right] \cdot f^s = M.$$
(1)

The monic polynomial b(s) of minimal degree satisfying (1) is called the **Bernstein-Sato polynomial** or the global *b*-function.

3 Abstract

Bernstein-Sato polynomial of a hypersurface is an important invariant in Singularity Theory with numerous applications. It is known, that it is complicated to obtain it computationally, as a number of open questions and challenges indicate. In this talk we overview the main properties of this polynomial as well as several well-known algorithms to compute it.

In the second part of the talk, we propose a family of algorithms called checkRoot for optimized check of whether a given rational number is a root of Bernstein-Sato polynomial and the computations of its multiplicity. These algorithms are applied in numerous situations.

- 1. Computation of the *b*-functions via upper bounds. We use several techniques to find such upper bounds.
 - Embedded resolutions.
 - Topologically equivalent singularities.
 - A'Campo's formula / Spectral numbers.
- 2. Integral roots of *b*-functions. They are important in very different settings. We consider these two problems.
 - Logarithmic comparison problem.
 - Intersection homology D-module.
- 3. Stratification associated with local *b*-functions. Notably, the algorithm we propose does not employ primary decomposition.
- 4. Bernstein-Sato polynomials for varieties.

These methods have been implemented in SINGULAR: PLURAL as libraries dmod.lib and bfun.lib. All the examples that we present have been computed with this implementation.

Preprint available at arXiv:1003.3478v1 [math.AG].