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ABSTRACT
In this paper, a new theory of resolvent systems is developed
for prime difference ideals and difference ideals defined by co-
herent and proper irreducible ascending chains. Algorithms
to compute such resolvent systems are also given. As a con-
sequence, we prove that any irreducible difference variety is
birationally equivalent to an irreducible difference variety of
codimension one. As a preparation to the resolvent theory,
we also prove that the saturation ideal of a coherent and
proper ascending chain is unmixed in the sense that all its
prime components have the same dimension and order.

Categories and Subject Descriptors
I.1.2 [SYMBOLIC AND ALGEBRAIC MANIPULA-
TION]: Algorithms—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Resolvent, difference ascending chain, difference polynomial,
difference variety, unmixed decomposition.

1. INTRODUCTION
A classic result in algebraic geometry states that any ir-

reducible variety is birationally equivalent to an irreducible
hypersurface. Or equivalently, any finitely generated alge-
braic extension field can be generated with a single element,
called the primitive element of the extension field. Algo-
rithms to construct such hypersurfaces or primitive elements
were proposed based on the methods of resultant computa-
tion by Trager [17] and Loos [11], the Gröbner basis method
by Gianni and Mora [9], Kobayashi et al [9], and Yokoyama
et al [21], and the characteristic set method by Gao-Chou
[5, 7] and Wang-Lin [18]. The idea is to introduce a linear
transformation of variables and show that the new equation
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system can be transformed into the following special form
using various elimination theories

R(x0), I1(x0)x1 + U1(x0), . . . , In(x0)xn + Un(x0)

where R, Ii, Ui are univariate polynomials in x0.
In [15], Ritt proved similar results for ordinary differential

polynomial equation systems by introducing the concept of
resolvents for a prime ideal. Kolchin further gave generaliza-
tions of the resolvent to the partial differential case [13]. In
[1], Cluzeau and Hubert extended the concept of resolvent
to regular differential ideals and proposed an algorithm to
compute it. In [10], Grigoriev used the resolvent to give a
differential elimination algorithm of elementary complexity.

Following the work of Ritt[16], Cohn established the Dif-
ference Algebra [2]. Recently, elimination theories for dif-
ference polynomial systems were studied by Mansfield and
Szanto [14], van der Hoeven [19], and Gao-Luo [8]. The
concept of resolvent for an irreducible difference variety was
also introduced by Cohn [2, 3]. In difference case, the re-
solvent is not a single difference polynomial anymore. In
general, it is an irreducible difference variety of codimension
one, which may be called the resolvent variety. But, the
difference resolvent theory is not as complete as in the al-
gebraic and differential cases. First, when establishing the
birational equivalence between an irreducible variety V and
its resolvent variety W , the operations of inversion need to
be used. More precisely, the rational map is from W to
E−tV where E is difference operator and t an integer. Sec-
ond, no algorithms were given to compute the resolvent.

In this paper, a more complete difference resolvent theory
is proposed. We prove that for an irreducible difference va-
riety V , there exists a resolvent variety which is birational
equivalent to V . The improved result is possible, because
we prove that an irreducible difference variety can be repre-
sented by a coherent and strong irreducible ascending chain
[8]. Based on this fact, we develop a resolvent theory with
better properties. We also give algorithms to compute the
resolvents. Furthermore, for a coherent and proper irre-
ducible ascending chain (definition in Section 3), we gave
an algorithm to construct a series of resolvent systems. In
[8], we give an algorithm to decompose the zero sets of a
set of difference polynomials into the zero sets of difference
varieties represented by coherent and proper irreducible as-
cending chains. Combining this result and the result in this
paper, it is always possible to represent the zero set of a dif-
ference polynomial system by a series of resolvent varieties.

In order to establish the resolvent theory, we also prove
that the saturation ideal defined by a coherent and proper
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irreducible ascending chain is unmixed in the sense that all
its prime components have the same dimension and order.

Comparing to the differential case, the theory and algo-
rithm for difference resolvents are generally much more dif-
ficult. Based on the ascending chain representation of the
reflexive prime ideals introduced by us, we can obtain the
order of the first resolvent polynomial explicitly and hence
give an effective algorithm to compute it. In the case of
proper ascending chains, we introduce a method of combi-
nation to prove the existence of resolvents.

Based on the implementation of a characteristic set method
for difference polynomial systems introduced in [8], we im-
plement the algorithms proposed in this paper. Examples
are given to illustrate the algorithms. The most time con-
suming part of the computation process is the computation
of the characteristic set.

2. DIFFERENCE POLYNOMIALS
A difference field F is a field with a third unitary operation

E satisfying: for any a, b ∈ F , E(a + b) = Ea +Eb, E(ab) =
Ea · Eb, and Ea = 0 if and only if a = 0. Here, E is called
the transforming operator or simply a transform of F . If
a ∈ F , Ea is called the transform of a. Ena = E(En−1a)
is known as the n’th transform. If E−1a is defined for all
a ∈ F , we say that F is inversive. Every difference field has
an inversive closure [2].

As an example, let K be the set of rational functions in
variable x defined on the complex plane. Let E be the map:
Ef(x) = f(x + 1), f ∈ K. Then K is a difference field with
transforming operator E. This is an inversive field. In this
paper, K is assumed to be this difference field.

Let X = {x1, . . . , xn} be indeterminants. Then K{X} =
K{x1, . . . , xn} is called an n-fold difference polynomial (abbr.
r-pol) ring over K. Any r-pol P in K{X} is an ordinary
polynomial in variables Ekxj(k = 0, 1, 2, . . . , j = 1, . . . , n).
For convenience, we also denote Ekxj by xj,k.

Let P ∈ K{X}. The class of P , denoted by cls(P ), is
the least p such that P ∈ K{x1, . . . , xp}. If P ∈ K, we set
cls(P ) = 0. The order of P w.r.t xi, denoted by ord(P, xi),
is the largest j such that xi,j occurs in P . When xi,j does
not occur in P, we set ord(P, xi) = −1. If cls(P ) = p and
ord(P, xp) = q, we called xp the leading variable and xp,q

the lead of P, denoted as lvar(P ) and lead(P ), respectively.
The leading coefficient of P as a univariate polynomial in
lead(P ) is called the initial of P , and is denoted as init(P ).

An n-tuple over K is of the form a = (a1, . . . , an), where
the ai are in some difference extension field of K. Let P ∈
K{X}. To substitute an n-tuple a into P means to replace
xi,j occurring in P with Ejai. Let P be a set of r-pols in
K{X}. An n-tuple over K is called a solution of the equation
set P=0 if the result of substituting the n-tuple into each r-
pol in P is zero. We use Zero(P) to denote the set of solutions
of P = 0. For an r-pol P , we use Zero(P/P ) to denote the
set of solutions of P = 0 which are not solutions of P = 0.
For instance, let P = Ex1 ·x1 +Ex1−x1. Then x1 = 1

x+c(x)

is a solution of P = 0, where c(x) is any function satisfying
c(x + 1) = c(x).

A field K is called aperiodic if there does not exist an
integer n such that for all a ∈ K, Ena = a.

Lemma 2.1 ((p201 [2])). Let K be an aperiodic field
and P ∈ K{X} a nonzero r-pol. Then we can find an n-
tuple (α1, . . . , αn) ∈ Kn such that P (α1, . . . , αn) 6= 0.

A difference ideal is a subset I of K{X}, which is an al-
gebraic ideal in K{X} and is closed under the transform. A
difference ideal I is called reflexive if for an r-pol P , EP ∈ I
implies P ∈ I. Let P ⊂ K{X}. The difference ideal gener-
ated by P is denoted by [P]. The (algebraic) ideal generated
by P is denoted as (P). A difference ideal I is called perfect
if the presence in I of a product of powers of transforms
of an r-pol P implies P ∈ I. The perfect difference ideal
generated by P is denoted as {P}. A perfect ideal is always
reflexive. A difference ideal I is called a prime ideal if for
r-pols P and Q, PQ ∈ I implies P ∈ I or Q ∈ I.

Let I ⊂ K{X} be a reflexive prime ideal. Then I has
a generic zero α which has the following property: an r-
pol P ∈ I if and only if P (α) = 0 [2]. For a reflexive
prime difference ideal I ⊂ K{X}, we define the dimension
of I as the difference transcendental degree of a generic zero
α = (α1, . . . , αn) of I over K[2].

Let I be a difference ideal. Rename X = {x1, . . . , xn} as
two subsets: U = {u1, . . . , uq} and Y = {y1, . . . , yp} (p+q =
n). U is called a parametric set of I if I ∩ K{U} = {0} and
∀yi ∈ Y, I ∩ K{U, yi} 6= {0}. The dimension of a reflexive
prime ideal is the number of its parameters.

Let U be a parametric set of a reflexive prime ideal I. The
order of I w.r.t U, denoted as ordUI, is max

I∩K{U}[Ys]={0}
|Ys|

where Ys is a finite set of yi,j . Let (β1, . . . , βq, γ1, . . . , γp)
be a generic zero of I corresponding to U and Y. Then, the
order of I w.r.t U is the algebraic transcendental degree of
(γ1, . . . , γp) over the extension field K〈β1, . . . , βq〉 of K[2].

The effective order of I w.r.t U is the maximum number
of yij which is algebraic independent over K{U}∗, where
K{U}∗ is the inversive closure of K{U} [2], and we denote it
as EordUI. It is clear that EordUI ≤ ordUI.

Let U be a parametric set of a reflexive prime ideal I, and
(β1, . . . , βq, γ1, . . . , γp) a generic zero of I where β1, . . . , βq

are corresponding to U. Then the limit degree of I w.r.t
U is defined as ldU(I) = lim inf

k
[K0(φk) : K0(φk−1)], where

K0 = K〈β1, . . . , βq〉 and φs = {γij , 1 ≤ i ≤ p, 0 ≤ j ≤ s}.
Let D be a difference field. A difference kernel R over D

is an extension field, D(a, a1, . . . , ar), r ≥ 1, of D, each ai

denoting a vector (a
(1)
i , . . . , a

(n)
i ), and an extension τ of E

to an isomorphism of D(a, a1, . . . , ar−1) onto D(a1, . . . , ar),
such that τai = ai+1, i = 0, 1, . . . , r − 1. (a0 = a.) r
is called the length of the kernel. Let φr ⊂ ar be an
algebraic transcendental basis of the elements in ar over
D(a, . . . , ar−1). Then the limit degree of R w.r.t φ is defined
as D(a, . . . , ar) : D(a, . . . , ar−1, φr).

3. DIMENSION, ORDER, AND DEGREE OF
A PROPER IRREDUCIBLE CHAIN

Let P1,P2 be two r-pols and lead(P1) = yp,q. P2 is said to
be reduced w.r.t P1 if deg(P2, yp,q+i) < deg(P1, yp,q) for any
nonnegative integer i.

An r-pol P1 has higher rank than an r-pol P2, denoted as
P1 >rank P2, if 1). cls(P1) > cls(P2), 2). c = cls(P1) =
cls(P2) and ord(P1, xc) > ord(P2, xc), or 3). c = cls(P1) =
cls(P2), o = ord(P1, xc) = ord(P2, xc) and deg(P1, xc,o) >
deg(P2, xc,o). If P1 >rank P2 and P2 >rank P1 are not
valid, P1 and P2 are said to have the same rank, denoted as
P1 =rank P2.

A finite sequence of nonzero r-pols A = A1, . . . , Ap is
called an ascending chain or simply a chain, if p = 1 and
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A1 6= 0 or cls(A1) > 0, Ai <rank Aj and Aj is reduced w.r.t
Ai for 1 ≤ i < j ≤ p.

A chain A is called trivial if cls(A1) = 0. For a chain
(algebraic or difference), we denote by IA the product of
the initials of A, by IA the set of products of initials of A
and their transforms.

Example 3.1. Let us consider P1 = Ey2 − y2 + 1, P2 =
E2y + Ey ∈ K{y}. Since P1 <rank P2, deg(P2,Ey)) <
deg(P1,Ey)) and deg(P2,E

2y) < deg(P1,Ey), P2 is reduced
w.r.t P1. Hence, P1, P2 is a chain.

The saturation ideal of a chain A is defined as follows

sat(A) = [A] : IA= {P ∈ K{X}| ∃J ∈ IA, s.t. JP ∈ [A]} .

If B is an algebraic chain, we define

a-sat(B) = {P | ∃k, s.t. Ik
BP ∈ (B)}.

A chain A = A1, . . . , Ap is said to be of higher rank than
another chain B = B1, . . . , Bs, denoted as A >rank B, if one
of the following conditions holds: (1) ∃ 0 < j ≤ min{p, s},
such that ∀ i < j, Ai =rank Bi and Aj >rank Bj , or (2)
s > p and Ai =rank Bi for i ≤ p.

We use A1 ≤rank A2 to denote the relation of either
A1 <rank A2 or A1 =rank A2. It is known that this is
a Notherian total order, that is, any strictly decreasing se-
quence of chains must be finite.

A characteristic set of any r-pol set P is a chain contained
in P and has the lowest rank. An r-pol is said to be reduced
w.r.t a chain if it is reduced to every r-pol in the chain. It
is known that [16].

Lemma 3.2. A ⊂ P is a characteristic set of P if and only
if there is no nonzero r-pol in P which is reduced w.r.t A.

We can define the pseudo-remainder of an r-pol P w.r.t a
chain A: rprem(P,A) and prove [8]:

Lemma 3.3. Let P be an r-pol, A a chain, and R =
rprem(P,A). Then there is a J ∈ IA with lead(J) <rank

lead(P ) s.t. JP ≡ R mod [A] and R is reduced w.r.t A.
For any chain A, after a proper renaming of the variables,

we could write it as the following form.

A =

8
<
:

A1,1(U, y1), . . . , A1,k1(U, y1)
. . .
Ap,1(U, y1, . . . , yp), . . . , Ap,kp(U, y1, . . . , yp)

(1)

where lvar(Ai,j) = yi and U = {u1, . . . , uq} such that p +
q = n. The orders of Ai,j in yi are increasing and the
degrees of Ai,j in lead(Ai,j) are decreasing. Let o(i,j) =
ord(Ai,j , yi). U is called the parametric set of A. We de-
fine the dimension of A as dim(A) = |U|, the degree of
A as deg(A) =

Qp
i=1 deg(Ai,ki , yi,o(i,ki)

), the order of A
as ord(A) =

Pp
i=1 o(i,1), and the effective order of A as

Eord(A) =
Pp

i=1(o(i,1) −mi) where mi is the minimal inte-
ger such that yi,mi occurs in Ai,1.

Let h1, . . . , hm (m ≤ p) be nonnegative integers. We use
A(h1,...,hm) to denote the following sequence of r-pols

A1,1,EA1,1, . . . ,Eo(1,2)−o(1,1)−1A1,1, A1,2, . . . , A1,k1 ,

EA1,k1 , . . . ,E
ĥ1−o(1,k1)A1,k1 ,

. . . ,

Am,1,EAm,1, . . . ,Eo(m,2)−o(m,1)−1Am,1, Am,2, . . . , Am,km ,

EAm,km , . . . ,Eĥm−o(m,km)Am,km

(2)

where ĥi is defined as follows: ĥm = max{hm, o(m,km)}
+1, and for i = m − 1, . . . , 1, oi =max{order of yi(x) ap-

pears in Ai+1,1,EAi+1,1, . . ., Eĥm−o(m,km)Am,km}, ĥi =
max{hi, oi, o(i,ki)} +1. It is obvious that A(h1,...,hm) is an
algebraic triangular set with parameters:

P(A) = {yi,j |1 ≤ i ≤ p, 0 ≤ j ≤ ord(Ai,1, yi)− 1}. (3)

For a chain A and an r-pol P , let

A∗ = A(0,...,0) (4)

AP = A
(ord(P,y1),...,ord(P,yp))

Let A = A1, . . . , Ap be an algebraic nontrivial triangular
set in K[x1, . . . , xn] over a field K. Let yi be the leading
variable of Ai, Y = {y1, . . . , yp} and U the parametric set of
A. A polynomial f is said to be invertible w.r.t A if either
f ∈ K[U ] or (f, A1, . . . , As) ∩ K[U ] 6= {0} where ys is the
leading variable of f . An r-pol P is said to be invertible w.r.t
A if it is invertible w.r.t AP when P and AP are treated as
algebraic polynomials.

An r-pol P is called effective in variable yi if yi,0 = yi(x)
occurs in P . P is called effective if P is effective in lvar(P ).

Let A = A1, . . . , Am be a difference chain in K{X} and
ki = ord(Ai, lvar(Ai)), i = 1, . . . , m. For any 1 ≤ i < j ≤ m,
if cls(Ai) = cls(Aj) = t, let ∆ij = prem(Ekj−kiAi, Aj , yt,kj )

be the algebraic pseudo-remainder of Ekj−kiAi w.r.t Aj in
variable yt,kj ; otherwise, let ∆ij = 0. If rprem(∆ij ,A) =
prem(∆ij ,A∗) = 0, we call A a coherent difference chain.

Definition 3.4. A chain A of the form (1) is said to be
proper irreducible if

• A∗ is an algebraic irreducible triangular set; and

• For c = 1, . . . , p, Ac,1 is effective and Âc,1 is irre-
ducible in K(ηc−1)[yc(x), . . . , yc(x + fc)], where fc =
ord(Ac,1, yc), Bc = A∗ ∩ K{U, y1, . . . , yc} (B0 = ∅),
ηc is a generic point for the algebraic irreducible chain
Bc, and Âc,1 is obtained by substituting ηc−1 into Ac,1.

Proper irreducible chains have the following properties[8].

Lemma 3.5. Let A be a coherent and proper irreducible
chain of the form (1). If P is invertible w.r.t A, then EP is
invertible w.r.t A.

Lemma 3.6. Let A be a coherent and proper irreducible
chain. Then A is a characteristic set of sat(A).

Lemma 3.7. Let A be a coherent and proper irreducible
chain of the form (1), and f ∈ K{U, Y }, g ∈ K{U}[P(A)]\{0}.
If gf ∈ sat(A), then f ∈ sat(A).

Definition 3.8. A proper irreducible chain A of the form
(1) is said to be strong irreducible if for any nonnegative
integers hi, A(h1,...,hp) is an irreducible triangular set in al-
gebraic case.

Lemma 3.9. [8] If A is a coherent and strong irreducible
chain, then sat(A) is a reflexive prime ideal.

Theorem 3.10. Let A be a coherent and proper irreducible
chain of the form (1).We have:

(1) U is a parametric set of ideal sat(A). That is, sat(A)∩
K{U} = {0} and ∀i, sat(A) ∩ K{U, yi} 6= {0}.
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(2) If {sat(A)} =
rT

i=1

Pi is an irredundant intersection of a

set of prime difference ideals, then ∀i, U is a paramet-
ric set for Pi and thus dim(Pi) = dim(A).

(3) EordUPi = ordUPi = ord(A) and Pi is reflexive. Let
Pi = sat(Ai) and Ai a chain under the same variable
order as A. Then Ai is strong irreducible.

(4) deg(A) =
Pr

i=1 ldU(Pi).

Proof: By Lemma 3.6, A is a characteristic set of sat(A).
As a consequence, we have sat(A) ∩ K{U} = ∅, since every
non-zero r-pol in sat(A) ∩ K{U} is reduced w.r.t to A and
hence must be zero. If there exists an i, such that sat(A)∩
K{U, yi} = {0}, let h = |P(A)| and C = A(0,...,0,h,0,...,0),

where h is at the i-th place. Let Y
′

and U ′ be the set of all
yi,j and uk,l occurring in C. By Lemma 3.5, all the initials
of C are invertible w.r.t C. Then Zero(a-sat(C)) is an un-
mixed algebraic ideal of dimension dim(A) = h in K(U ′)[Y ′]
[6]. On the other hand, a-sat(C) ∩ K(U ′)[yi,0, . . . , yi,h] ⊂
sat(A) ∩ K(U ′)[yi,0, . . . , yi,h] = {0}. From this, we have
dim(a-sat(C)) ≥ h + 1, a contradiction. This proves (1).

Let {sat(A)} =
rT

i=1

Pi be an irredundant intersection of

prime difference ideals. Since ∀i, {sat(A)} ⊆ Pi, for each i
we have Pi ∩ K{U, yi} 6= {0}. Then we need only to prove
Pi ∩K{U} 6= {0} for all i. Suppose P1 ∩K{U} 6= {0}. Then

∃g ∈ K{U} ∩ Pi and g 6= 0. Since {sat(A)} =
rT

i=1

Pi is

an irredundant representation, there exists an f ∈ K{U, Y },
such that f ∈

rT
i=2

Pi, f 6∈ {sat(A)}. We have gf ∈ {sat(A)}.
So there exist non negative integers s0, s1, . . . , sr, such that

Πr
i=0(E

i(gf))si = Πr
i=0(E

i(g))si ∗Πr
i=0(E

i(f))si ∈ sat(A).

By Lemma 3.7, we have Πr
i=0(E

i(f))si ∈ sat(A). Therefore,
f ∈ {sat(A)}, which contradicts to the choice of f . So U
is a transform independent set of Pi. Hence dim(Pi) = |U|.
This proves (2).

Let oi = ord(Ai,1, yi). It is clear that |P(A)| =
Pp

i=1 oi.
Since A is proper irreducible, for any yij , j ≥ oi, there is a
nonzero P ∈ sat(A) such that P ∈ K{U}[P(A), yi,j ]. Since
sat(A) ⊆ Pi, ordUPi ≤

Pp
i=1 oi. If there exists an i, say i =

1, such that Pi∩K{U}[P(A)] 6= {0}, then there exists a g 6=
0, g ∈ P1 ∩K{U}[P(A)]. Also, there exists an f ∈ K{U, Y },
such that f ∈

rT
i=2

Pi, f 6∈ {sat(A)} and gf ∈ {sat(A)}.
There exist non negative integers s0, . . . , sl such that

Πl
i=0(E

i(gf))si ∈ sat(A).

Since g is invertible w.r.t A, by Lemma 3.5, Eig is also

invertible w.r.t A. So, there exists g
′ ∈ K{U, Y }, such

that g
′ ∗ Πl

i=0(E
ig)si = M 6= 0, M ∈ K{U}[P(A)]. Then

M ∗ Πl
i=0(E

if)si ∈ sat(A). By Lemma 3.7, Πl
i=0(E

if)si ∈
sat(A), so f ∈ {sat(A)}, a contradiction. Therefore, U ∪
P(A) is algebraic independent in Pi and hence ordUPi ≥
|P(A)|. Then ordUPi = ord(A). Let P(A)(T )= {ETiyij |yij ∈
P(A)}, where T = (T1, . . . , Tp) is a set of non negative inte-

gers. Notice that {sat(A)} =
rT

i=1

Pi is an irredundant repre-

sentation and A is effective. In each Pi, using the properties
of the transcendental degree, we have Pi

TK{U}[P(A)(T )] =

{0}. So EordUPi ≥ |P(A)|. Since EordUPi ≤ ordUPi =
|P(A)|, we have EordUPi = ordUPi. Then Pi is reflexive.

In order to prove Ai is strong irreducible, we need only to
prove that Ai is effective. Let Ai,j be the first r-pol in Ai

with lvar(Ai,j) = yj . We need only to prove that Ai,j is ef-
fective in yj . We already proved that ord(Ai,j , yj) = oj . Let
Pj−1={yi,k|1 ≤ i ≤ j−1, 0 ≤ k ≤ oi−1}. If Ai,j is not effec-
tive, we may obtain an r-pol Q ∈ K{U}[Pj−1, yj,1, . . . , yj,oj ]∩
Pi. This is impossible, because from Pi∩K{U}[Pj−1, yj,0, . . . ,
yj,oj−1] = {0} and EordUPi = ordUPi, we have Pi∩K[U,Pj−1,
yj,1, . . . , yj,oj ] = {0}. We proved (3).

We denote a generic zero of A∗ as η = (αij , βij), where
αij , βij correspond to uij , yij respectively. By the proof
of Theorem 4.2 in [8], we know that there exists a differ-
ence kernel R of length one: E : K(a0) → K(a1), and
α = {αij |1 ≤ i ≤ q, j ≥ 0} ∩ a1 is a parametric set of
R, degUR = K(a1) : K(a0, α) = deg(A). By Lemma 5 in
chapter 6 of [2], we know that R has a finite number of prin-
cipal realizations, denoted as Vi, 1 ≤ i ≤ m, and the generic
zero of Vi is denoted as ηi. We define Spec(Vi) = {f ∈
K{U,Y}|f(ηi) = 0}, so sat(A) ⊂ Spec(Vi) and Spec(Vi) is a
prime difference ideal. Since sat(A) =

Tr
i=1 Pi ⊂ Spec(Vi),

there exists a j such that Spec(Vi) ⊂ Pj . Since Pj and
Spec(Vi) have the same dimension and order, Spec(Vi) = Pj .
So for each i, there is an li such that Spec(Vi) = Pli , and
the generic zero for each Pj is a principal realization of R,
so it must be some ηi. Hence, there is a one to one corre-
sponding between Vi and Pj . By Lemma 5 in chapter 6 of
[2], we have deg(A) = degUR =

Pm
i=1 ldUVi =

Pr
i=1 ldU(Pi).

This proves (4).
If two ideals I1 and I2 have the same parametric set U and

ordUI1 = ordUI2 and EordUI1 = EordUI2, then we say that
I1 and I2 are of the same type. As a consequence of Theorem
3.10, we have the following corollaries (proofs omitted).

Corollary 3.11. If A is coherent and proper irreducible,
all the irredundant prime divisors of sat(A) are of the the
same type with sat(A). In other words, sat(A) is unmixed
in the sense that all its essential prime ideals have the same
parametric set, the same dimension, and the same order.

As a consequence, we can define dim(sat(A)) = dim(A) and
ordU(sat(A)) = ord(A).

It is proved in [8] that if A is coherent and strong irre-
ducible, then sat(A) is a reflexive prime ideal with U as a
set of parameters. Furthermore, we have

Corollary 3.12. If A is a coherent and strong irreducible
chain, then sat(A) is a reflexive prime ideal satisfying
dim(sat(A)) = dim(A), ordU(sat(A)) = EordU(sat(A)) =
ord(A), and ldU(sat(A)) = deg(A).

Corollary 3.13. Let A be a coherent and proper irre-
ducible chain, and

{sat(A)} =

r\
i=1

sat(Ai)

a decomposition of {sat(A)} as irredundant prime difference
ideals, where Ai are strong irreducible chains under the same
variable order as that of A. Then the first r-pol of Ai is the
same as the first r-pol of A.

Corollary 3.14. Let A be a coherent and proper irre-
ducible chain of the form (1). If {sat(A)} has only one
prime component, then A is strong irreducible and sat(A)
is a prime ideal.
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4. RESOLVENT SYSTEM FOR A
REFLEXIVE PRIME IDEAL

It is proved in [8] that for a reflexive prime difference ideal
I, we can choose a proper order of variables such that under
this variable order I = sat(A) and A is coherent and strong
irreducible. So, we will start our discussion from a coherent
and strong irreducible chain.

4.1 Resolvent systems

Theorem 4.1. Let A be a coherent and strong irreducible
chain of the form (1), K an aperiodic difference field or |U| 6=
0, and λ1, . . . , λp variables. There exists Q ∈ K{λ1, . . . , λp,U}
such that if σ1, . . . , σp satisfy Q(σ1, . . . , σp,U) 6= 0, then the
characteristic set of sat(A, w −Pp

i=1 σiyi) under the vari-
able order U < w < yi is of the following form

R, R1, . . . , Rs, I1y1,0 − V1, . . . , Ipyp,0 − Vp (5)

where R, Ri, Ii, Vi ∈ K{U, w}. Furthermore, R is effec-
tive in w, ord(R, w) = ord(A), ord(Ii, w) < ord(A), and
ord(Vp, w) ≤ ord(A).

Proof: Denote B = A, w−Pp
i=1 λiyi. Then B is also coher-

ent and strong irreducible and sat(B) is a reflexive prime
ideal. Since U is a parametric set of sat(B), we could treat
K0 = K〈U, λ〉 as the ground field where λ = {λ1, . . . , λp}.
We denote by ordX(Z) the number of an algebraic tran-
scendental basis of Z and their transformations over K0〈X〉.
Let (α1, . . . , αp, ω) be a generic zero of sat(B), and α =
{α1, . . . , αp}. Then

Eord(sat(A)) = Eord(sat(B)) = Eord(ω) + Eordω(α)

≤ ord(ω) + ordω(α) = ord(ω, α) (6)

= ord(sat(A)) = Eord(sat(A)).

The last equation is due to Corollary 3.12. As a consequence,
Eord(ω) = ord(ω). Let T (w) ∈ sat(B) be an r-pol in U and
w with the lowest rank. Since sat(B) is a prime ideal, T (w)
can be chosen as an irreducible r-pol. Also, T (w) must be
the first element of the characteristic set of sat(B) under the
variable order U < λi < w < yi. Since Eord(ω) = ord(ω),
by Corollary 3.12, we have Eord(T, w) = ord(T, w) ≤ oA.
In other words, T is effective in w. Differentiating T w.r.t
λi0 and substituting αi for yi, we have

∂T

∂λi0
+ yi,0

∂T

∂w0
|(y1,...,yp,w)=(α1,...,αp,

Pp
i=1 λiαi)

= 0

Since (α, ω) is a generic zero of sat(B) and Si(α, ω) = 0,
Si = ∂T

∂λi0
+ yi0

∂T
∂w0

∈ sat(B), 1 ≤ i ≤ p. Let H be the

resultant of ∂T
∂w0

and T w.r.t wo. We have ord(H, w) < o.

Then there exist r-pols A, B such that AT + B ∂T
∂w0

= H.

Let Qi = BSi + ATyi,0 = Hyi,0 + B ∂T
∂λi0

∈ sat(B). Let

Pi = rprem(Qi, T, wo) = Ii0yi0 +Vi0. Then Ii0 6= 0 and Pi ∈
sat(B), where I0, Vi0 ∈ K{U, λ, w}, ord(Ii0, w) < ord(A),
and ord(Vi0, w) ≤ ord(A). Since T is irreducible and has the
lowest order in w, we have Ii0 /∈ sat(B). From Pi ∈ sat(B),
we have Eordw(yi) = ordw(yi) = 0. By (6), we have

Eord(T, w) = ord(T, w) = ord(A).

Since T, Pi ∈ sat(B), the characteristic set of sat(B) under
the variable order U < λi < w < yi must be of the form:

T, T1, . . . , Ts, P1, . . . , Pp

where Ti ∈ K{U, λ, w}. Let Q ∈ K{U, λ} be the product of
all the coefficients of rprem(Ii0,B) as a polynomial in yi,j .
Since K〈U〉 is aperiodic, there exist σ1, . . . , σp ∈ K{U} such
that Q(σ1, . . . , σp) 6= 0. Let B be the chain A, w−Pp

i=1 σiyi.

We have I0yi0 + V i0 ∈ sat(B), where I0, V i0 are obtained
by replacing each λi with σi in Q, Vi0 respectively. Since
Q(σ1, . . . , σp) 6= 0, we have I0 6∈ sat(B). We denote Ii =
I0, Vi = V i0. Then P i = Iiyi,0 + Vi ∈ sat(B). From
ord(I0, w) < ord(A) and ord(Vi0, w) ≤ ord(A), we have
ord(Ii, w) < ord(A) and ord(Vi, w) ≤ ord(A). As a con-
sequence, a characteristic set of sat(B) must be of the form
(5). Repeat the process for proving equation (6), we can
show that Eord(R, w) = ord(R, w) = ord(A). Hence R is
effective in w. This proves the theorem.

Now, we may extend the following well-known result in
algebraic geometry to difference case.

Corollary 4.2. Any irreducible difference variety V is
birationally equivalent to an irreducible difference variety of
codimension one if the ground field K is aperiodic or V is of
positive dimension.

Proof: Let I be the set of r-pols which vanish on V . Then I
is a reflexive prime ideal. Construct a resolvent (5) for I as
done in Theorem 4.1. Let W = Zero(sat(R, R1, . . . , Rs)).
The rational maps are defined as follows:

M1 : V ⇒ W ; (U, y1, . . . , yp) ⇒ (U,

pX
i=1

σiyi)

M2 : W ⇒ V ; (U, w) ⇒ (U,
V1(U, w)

I1(U, w)
, . . . ,

Vp(U, w)

Ip(U, w)
).

M2 can be defined on W − Zero(
Q

i Ii). From the construc-
tion of σi, it is easy to show that M1 and M2 are inverse to
each other. Hence V and W are birationally equivalent.

We hence call sat(R, R1, . . . , Rs) the resolvent ideal and
R, R1, . . . , Rs the resolvent system of V or I = sat(A).

Note that from the results about resolvents in [2], we can-
not obtain Corollary 4.2. The reason is that in [2], it is only
proved that Iiyi,mi − Vi ∈ I for some non-negative integer
mi. So the construction of M2 is not valid. In our case, due
to the introduction of characteristic set, we can show that
Iiyi−Vi ∈ I, which leads to the result proved in this section.

4.2 Algorithm to compute resolvent system
We first give an algorithm to compute the first element of

the resolvent system for sat(A).

Algorithm 4.3. Input: a coherent and strong irreducible
chain A of the form (1) and a variable set Λ = {λ1, . . . , λp}.
Output: a T ∈ K{U, Λ, w} which is an r-pol in sat(A, w −Pp

i=1 λiyi) with the lowest rank w.r.t the variable order U <
λi < w < yi.

Step 1 Let o = ord(A), Ao = A(o,...,o), and U∗,Y∗ the sets
of uij and yij occurring in Ao respectively. Then Ao is
an irreducible algebraic triangular set in K[U∗,Y∗][8].

Step 2 Let A′o = Ao, w0 −
Pp

i=1 λi,0yi,0, . . . , wo −
Pp

i=1

λi,oyi,o and Λo = {λi,j , i = 1, . . . , p; j = 0, . . . , o}.
Then it is clear that A′o is an irreducible algebraic tri-
angular set in K[Λo,U∗,Y∗].

Step 3 Compute a characteristic set C of a-sat(A′o) in the
polynomial ring K[Λo,U∗,Y∗] under the variable order
U < λi,j < w0 < w1 < . . . < wo < yi,j with methods
proposed in [4, 20] and output the first element in C.
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Proof of the correctness of Algorithm 4.3. Let B be a char-
acteristic set of a-sat(A′o) under the given variable order.
It is clear that U∗ and Λo are in the parametric set of
a-sat(A′o). By the definition of the order for a chain, A′o
has o = ord(A) parameters of the form yi,j . In other words,
a-sat(A′o) is of dimension o over the base field K(U∗, Λo).
Since wi, i = 0, . . . , o are o + 1 linear combinations of yi,j ,
they must satisfy an algebraic relation. Let T be such a
relation and with the lowest rank. Then T ∈ a-sat(A′o) ⊂
sat(A, w−Pp

i=1 λiyi). From Theorem 4.1, we know that the
r-pol in sat(A, w−Pp

i=1 λiyi) with the lowest rank under the
variable order U < Λ < w < yi is of order o in w. Hence T
must involve wo and is an r-pol in sat(A, w−Pp

i=1 λiyi) with
the lowest rank w.r.t the variable order U < λi < w < yi.

Algorithm 4.4. Input: a coherent and strong irreducible
chain A of form (1). Output: σi ∈ K{U} and a character-
istic set of sat(A, w −Pp

i=1 σiyi) which is of form (5).

Step 1 Let λi, i = 1, . . . , p be p variables. With Algorithm
4.3, we may compute a T ∈ K{U, λ1, . . . , λp, w} which
is an r-pol in sat(A, w −Pp

i=1 λiyi) with the lowest
rank w.r.t the variable order U < λi < w < yi.

Step 2 Let S be the resultant of ∂T
∂w0

and T w.r.t wo. Find

r-pols A, B such that AT + B ∂T
∂w0

= S.

Step 3 For i = 1, . . . , p, let Qi = B( ∂T
∂λi,0

+ yi,0
∂T
∂w0

) +

ATyi,0 = Syi,0+B ∂T
∂λi0

∈ sat(A, w−Pp
i=1 λiyi), Ri =

rprem(Qi, T ).

Step 4 Let B = A, w − Pp
i=1 λiyi and Q ∈ K{U, λ} be

the product of the coefficients of rprem(init(Ri),B) as
a polynomial in yi,j . By Lemma 2.1, we may select
σi ∈ K{U} s.t. Q(σ1, . . . , σp) 6= 0.

Step 5 Let Pi = (Ri)|(λ1,...,λp)=(σ1,...,σp). From the proof
of Theorem 4.1, we know that Pi = Iiyi0 − Vi ∈
sat(A, w − Pp

i=1 σiyi), Ii 6∈ sat(A, w − Pp
i=1 σiyi),

and ord(Ii, w) < ord(A).

Step 6 Using the zero decomposition theorem proposed in
[8], we may find the following decomposition under the
variable order U < w < y1 < . . . < yp

Zero(sat(A, w −
pX

i=1

σiyi, P1, . . . , Pp)/IA)

= Zero(A ∪ {w −
pX

i=1

σiyi, P1, . . . , Pp}/IA)

= ∪iZero(sat(Bi)/IA)

where Bi are coherent and proper irreducible after a
proper renaming of the variables.

Step 7 By Theorem 4.1, a characteristic set of sat(A, w −Pp
i=1 σiyi, P1, . . . , Pp) is of the form (5). By Corollary

3.11, one of Bi, say B1, must have U as its paramet-
ric set and ord(B1) = ord(A). Then sat(A ∪ {w −Pp

i=1 σiyi}) must be the only prime component of
{sat(B1)}. By Corollary 3.14, B1 is strong irreducible
and sat(A∪{w−Pp

i=1 σiyi}) = sat(B1). Output B1.

In the above algorithm, we need to introduce p new pa-
rameters, which will increase the computational costs. In
the following, we will give a probabilistic algorithm.

Theorem 4.5. Let A be a coherent and strong irreducible
chain of the form (1) and σi, i = 1, . . . , p elements in K{U}.
Using the zero decomposition theorem proposed in [8], we

may find the following decomposition under the variable or-
der U < w < y1 < . . . < yp

Zero(sat(A, w −
pX

i=1

σiyi)/IA) (7)

= Zero(A ∪ {w −
pX

i=1

σiyi}/IA) = ∪iZero(sat(Bi)/IA)

where Bi are coherent and proper irreducible chains after a
proper renaming of the variables. If one of Bi, say B1, is of
the form (5), then B1 is strong irreducible and is a resolvent
system for sat(A).

The proof of Theorem 4.5 is omitted. Based on this theo-
rem, we may just select p elements σi from K{U} randomly
and compute the zero decomposition (7). The probability
of success is nearly one since by Theorem 4.1, the “bad” σi

are solutions of an r-pol equation Q = 0.

Example 4.6. Consider the coherent and strong irreducible
chain A = {y2

1 +x, y2
2,1 + y2

2 +1, y2,2− y2}. Let w = y1 + y2.
Using the zero decomposition theorem proposed in [8], we
find the following decomposition under the variable order
w < y1 < y2:

Zero(sat(A, w − y1 − y2))

= Zero(A ∪ {w − y1 − y2}) = Zero(sat(B1))

where B1 is:

R = w8
1 + (8 + 4w2)w6

1 + (16w2 + 6w4 + 8x2 + 16)w4
1 + (4w6 +

8w4 + 32x2 − 48w2x2 − 64w2x)w2
1 +w8 + 8w4x2 + 16x4,

R1 = (2w2
1w + 2w3− 4wx)w2

2 + (−2w2
1w2 + w4

1 − 3w4 + 4w2
1 +

4x2)w2 +4w3 + w5 − 8wx− ww4
1 + 4xw3 − 4wx2,

P1 = (−4w3 − 4w2
1w + 8wx)y1 + 4w2

1 + 2w2
1w2 + w4 + w4

1 −
8w2x + 4x2,

P2 = (−8wx+4w2
1w+4w3)y2−3w4−2w2

1w2+4w2
1+w4

1+4x2.

By Theorem 4.5, {R, R1} is a resolvent system for sat(A).

5. RESOLVENT SYSTEM OF A PROPER
IRREDUCIBLE CHAIN

Generally, we do not know how to decide wether a chain is
strong irreducible or not. On the other hand, we can decide
whether a chain is proper irreducible. In this section, we
will give an algorithm for the resolvent system of a proper
irreducible chain.

Theorem 5.1. Let A be a coherent and proper irreducible
chain of the form (1) and λ1, . . . , λp difference variables.
We assume that K is an aperiodic difference field or |U| 6=
0. Then there exists Q ∈ K{λ1, . . . , λp,U} such that if
σ1, . . . , σp satisfy Q(σ1, . . . , σp,U) 6= 0, the characteristic
set of the perfect ideal {sat(A, w −Pp

i=1 σiyi)} under the
variable order U < w < yi is of the following form

R, R1, . . . , Rs, I1y1,0 − V1, . . . , Ipyp,0 − Vp (8)

where R, Ri, Ii, Vi ∈ K{U, w}. Furthermore, R is effective
in w and ord(R, w) = ord(A).

Proof: Let o = ord(A), Yh = (y1,0, y1,1, . . . , y1,h, . . . , yp,0, . . . ,
yp,h), Wh = (w0, . . . , wh), and Λ = {λ1, . . . , λp}. For any r-

pol set P, we denote P
′
= {P, w−Pp

i=1 λiyi}. Let {sat(A)} =
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rT
s=1

Ps be an irredundant decomposition of {sat(A)} as the

intersection of prime difference ideals. Then {sat(A), w −
Pp

i=1 λiyi} =
rT

i=1

P
′
i , where P ′s = {Ps, w−

P
λiyi}. By The-

orem 4.1, for each s, the characteristic set for P ′s under the
variable order U < λi < w < yi is of the following form:

Ts, Ts,1, . . . , Ts,ls , Is,1ys,0 − Vs,1, . . . , Is,pys,0 − Vs,p

where Ti, Ti,j , Ii,j , Vi,j ∈ K{U, w} and ord(Ts, w) = o,
ord(Ii,j) < o, and ord(Vi,j) ≤ o.

Let P ∗s = P ′s
TK{U, Λ}[Wo, Y0]. Then P∗ = {sat(A), w−Pp

i=1 λiyi}
TK{U, λ}[Wo, Y0] =

Tr
s=1 P ∗s . Also, Ts, Is,jys,0−

Vs,j ∈ P ∗s . It is easy to see that P ∗s = a-sat(Ts, Is,1ys,0 −
Vs,1, . . . , Is,pys,0 − Vs,p) is an algebraic prime ideal. From
the proof of Theorem 4.1, we know that Is,iys,i − Vs,i are
constructed from Ts. Thus if Ts = Tt, P ∗s = P ∗t . Let
P ∗i0 = P ∗i1 = . . . = P ∗it

(i0 = 1) be the distinct P ∗i . We

have Tik 6= Tij for k 6= j. So P∗ =
Tt

j=0 P ∗ij
is an irre-

dundant representation and Sk =
Qk

l=0 Til ∈
Tk

j=0 P ∗ij
. We

will show that there exist Ii, Vi ∈ K{U, Λ, w}, such that
Iiyi0 − Vi ∈ P∗ and ord(Ii, w) < o. We will construct
such r-pols by doing induction on k. Suppose that there
exists Ji,kyi,0 + Wi,k ∈ ∩k

j=0P
∗
ij

and ord(Ji,k, w) < o. Since

Sk ∈ ∩k
j=0P

∗
ij

and Qk = Tik+1 ∈ P ∗ik+1
are distinct r-pols of

the same order w.r.t w and Qk is irreducible, the resultant
H of Sk and Qk w.r.t wo is not zero. From the property of
the resultant, there exist A(w), B(w) ∈ K{U}[Wo] such that
H = ASk + BQk. Let

Ji,k+1 = BQkJi,k + ASkIi,k+1,
Wi,k+1 = BQkWi,k + ASkVi,k+1.

Then, we have

Ji,k+1yi,0 −Wi,k+1 = ASkIi,k+1yi,0 −ASkVi,k+1

= H(Ii,k+1yi,0 − Vi,k+1) = 0mod P ∗ik+1
Ji,k+1yi,0 −Wi,k+1 = BQkJi,kyi,0 −BQkWi,k

= H(Ji,kyi,0 −Wi,k) = 0mod ∩k
j=0 P ∗ij

Therefore, Ji,k+1yi,0 − Wi,k+1 ∈ ∩k+1
j=0P ∗ij

. Since Ji,k+1 =

HIi,k+1 6= 0mod P ∗ik+1
and Ji,k+1 = HJi,k 6= 0mod ∩k

j=0

P ∗ij
, the resultant H ′ of Ji,k+1 and Sk+1 w.r.t wo is not zero.

We have r-pols A′, B′ such that H ′ = A′Ji,k+1 + B′Sk+1.
Let Pi = A′(Ji,k+1yi,0 − Wi,k+1) + B′Sk+1yi,0 = H ′yi,0 −
A′Wi,k+1 ∈ ∩k+1

j=0P ∗ij
. Then there exists Pi = Iiyi,0 − Vi ∈

P∗ ⊂ {sat(A), w−Pλiyi}. Similar to the proof of Theorem
4.5, we may select an r-pol Q and σi ∈ K{U}, such that
when replacing λi by σi we have Ii 6= 0 and Iiyi0 + V i ∈
{sat(A), w−Pσiyi} ⊂ {Pi, w−

P
σiyi}. From the Theorem

4.1, the characteristic set of {Pi, w−
P

σiyi} under variable
order U < w < yi is of the following form

Si, Si,1, . . . , Si,li , Ii,1yi,0 − Vi,1, . . . , Is,pys,0 − Vs,p

where Si, Si,j , Ii,j , Vi,j ∈ K{U, w} and ord(Ts, w) = o. Let
R be the product of the distinct Si. Then R ∈ ∩i{Pi, w −P

σiyi} = {sat(A), w−Pσiyi} and must be such an r-pol
with lowest rank. This proves the theorem.

For a proper irreducible chain, we can find a resolvent
system for sat(A).

Theorem 5.2. Let A be a coherent and proper irreducible
chain of the form (1), K an aperiodic difference field or |U| 6=

0. Then we can find σ1, . . . , σp ∈ K{U} such that

Zero(sat(A, w −
X

σiyi)) = ∪t
i=1Zero(sat(Ri)) or

{sat(A, w −
X

σiyi)} = ∩t
i=1{sat(Ri)}

where Ri is coherent and proper irreducible under the vari-
able order U < w < yi and of the following form:

Ri, Ri,1, . . . , Ri,si , Ii,1y1,0 − Vi,1, . . . , Ii,pyp,0 − Vi,p (9)

Ri, Ri,j , Ii,j , Vi,j ∈ K{U, w}. Furthermore, Ri is effective in
w and ord(Ri, w) = ord(A).

We call {Ri, Ri,1, . . . , Ri,si}, i = 1, . . . , t, resolvent sys-
tems for sat(A). We will prove the theorem by giving an
algorithm to compute the resolvent systems.

Algorithm 5.3. Input: a coherent and proper irreducible
chain A of the form (1). Output: the resolvent systems for
sat(A).

Step 1 Let B = A, w−Pp
i=1 λiyi. Then B is also a coherent

and proper irreducible chain. By Lemma 3.3, we have
Zero(sat(B)/IB) = Zero(B/IB).

Step 2 Using the difference zero decomposition theorem
proposed in [8], under the variable order U < λi <
w < y1 < . . . < yp, we may find a decomposition

Zero(B/IB) = ∪s
i=1Zero(sat(Ai)/IB) (10)

where Ai are coherent and proper irreducible after a
proper renaming of the variables.

Step 3 Let Ti, and Pi,j be the r-pols with lowest rank in
Ai such that lvar(Ti) = w, lvar(Pi,j) = yj . By Theo-
rem 4.1, the characteristic sets for all the prime com-
ponents of sat(B) are of the form (5). By Corol-
lary 3.11, {sat(Ai)} is an unmixed ideal, and hence
only for those Ai with U as the parametric set and
satisfying ord(Ti, w) = ord(A) and ord(Pi,j , yj) = 0,
Zero(sat(Ai)/J) is not redundant. We may simply
assume that all the Ai in (10) satisfy this condition.

Step 4 For each Ai, let Si,j = ∂Ti
∂λj0

+ yj
∂Ti
∂w0

. By Corollary

3.13, the first r-pol in the characteristic set for each
prime component of {sat(Ai)} is also Ti. Si,j is in
each prime component of {sat(Ai)} and hence Si,j ∈
{sat(Ai)}. Let Ri be the resultant of ∂Ti

∂w0
and Ti w.r.t

wo and A, B r-pols such that Ri = A ∂Ti
∂w0

+ BTi. Let

Qi,j = ASi,j + BTiyj,0 = Riyi,0 + A ∂Ti
∂λj0

and Pi,j =

rprem(Qi,j , Ti). We have Pi,j ∈ {sat(Ai)}.
Step 5 Let Pi,j = Ii,jyj,0−Vi,j where Ii,j , Vi,j ∈ K{U, λ, w}.

Since ord(Ii,j , w) < ord(A) and ord(Ti, w) = ord(A),
Ii,j is not in each of sat(Ai). Hence Ii,j is invertible
w.r.t B. Let Q0 be obtained by taking the successive
resultant of Ii,j and the r-pols in BIi,j . Then Q0 is not
zero and in K{U}[P(A)], where P(A) is defined in (3).
Let Q ∈ K{U, λ} be the product of the coefficients of
Q0 as a polynomial in yi,j . Select σi ∈ K{U} such that
Q(σ1, . . . , σp) 6= 0.

Step 6 For an r-pol P and a chain C, let P and C be
obtained by replacing λi with σi. It is clear that
P i,j ∈ {sat(Ai)}. Since Q(σ1, . . . , σp) 6= 0, Q0 6= 0.
Then Ii,j is invertible w.r.t B and hence not in sat(B).
Due to (10), Ii,j /∈ {sat(Ai)}.
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Step 7 Using the difference zero decomposition theorem
proposed in [8], we may find the following decomposi-
tion under the variable order U < w < y1 < . . . < yp

Zero(sat(Ai) ∪ {P i,1, . . . , P i,p)/IAi
)

= Zero(Ai ∪ {P i,1, . . . , P i,p}/IAi
)

= ∪jZero(sat(Bi,j)/IAi
)

where Bi,j are coherent and proper irreducible chains.

Step 8 Using the similar argument in Step 3, we only select
those Bi,j which are of the form (8). This is possible
since P i,j are linear in yi,0. Output Bi,j . We have
proved the Theorem 5.2.

In the following, we will give a probabilistic algorithm.

Theorem 5.4. Let A be a coherent and proper irreducible
chain of the form (1) and σi, i = 1, . . . , p, elements in K{U}.
Suppose that we find the following decomposition under the
variable order U < w < y1 < . . . < yp

Zero(sat(A, w −
X

σiyi)) = ∪t
i=1Zero(sat(Ri))

where Ri is proper irreducible and of the following form

Ri, Ri,1, . . . , Ri,si , Ii,1y1,0 − Vi,1, . . . , Ii,pyp,0 − Vi,p (11)

Ri, Ri,j , Ii,j , Vi,j ∈ K{U, w} and ord(Ri, w) = ord(A). Then
{Ri, Ri,1, . . . , Ri,si} are the resolvent systems for sat(A).

The Proof is omitted.

Example 5.5. Consider the chain A = {y2
1 + x, y2

2,1 +
y2
2 + 1}. Let w = y1 + y2. Using the zero decomposition

theorem proposed in [8], we find the following decomposition
under the variable order w < y1 < y2:

Zero(sat(A, w − y1 − y2)) = Zero(A ∪ {w − y1 − y2})
= Zero(sat(B1)) ∪ Zero(sat(B2))

where B2 = {R, R′1, P1, P2}, B1, R, P1, P2 are given in Ex-
ample 4.6 and R′1 = (−2w2

1w− 2w3 +4wx)w2
2 +(−2w2

1w2 +
w4

1 − 3w4 + 4w2
1 + 4x2)w2. By Theorem 5.4, {R, R1} and

{R, R′1} are the resolvent systems for sat(A).

6. CONCLUSION
Intuitively speaking, resolvents can be used to establish

a birational correspondence between the solutions of a set
of equations and the solutions of equations in one variable.
For difference equations, the theory of resolvent is not com-
plete in several aspects. In this paper, we give a more com-
plete theory of resolvents. For an irreducible difference va-
riety V , we can construct a coherent and strong irreducible
chain R in one variable such that V and Zero(sat(R)) are
birationally equivalent. For a coherent and proper irre-
ducible chain A, we can construct coherent and proper ir-
reducible chains Ri in one variable such that Zero(sat(A))
and ∪iZero(sat(Ri)) are birationally equivalent.

An interesting problem is to see whether ∪iZero(sat(Ri))
in the proper irreducible case can be combined into one
chain. That is, can we find a chain B such that Zero(sat(B))
= ∪iZero(sat(Ri))? To develop more efficient algorithms
for difference resolvent systems is a very interesting and chal-
lenging problem.
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