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B2: Effective Real Algebraic Geometry

& 42 i 4~: In the mini-course, I'll introduce the computation of
parameterizations of systems with a finite number of solutions:

- in two variables (introduce sub-resultants in complement to resultants).

- in more than 2 variables with a new but very simple result that perfectly
generalizes the bivariate case (uses simple notions of lexicographic Grobner

bases).



Discriminant varieties for systems depending on parameters will also
be introduced. For some applications in robotics, it will be a mix of many
things including path planning with Newton interval arithmetic and above

algorithms.

£ A4~ Fabrice Rouillier is a senior researcher (Research Director) at
INRIA. He is the head of the OURAGAN Inria project-team
(http://team.inria.fr/ouragan) which is a joint team with Sorbonne
Université, Université Paris Cité and CNRS located at Institut de
Mathématiques de Jussieu and the chairman of the association Animath

(http://animath.fr) for the promotion of mathematics.
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T3: Algebraic Geometry and Data Science

%42 A~ This mini-course will consist of two sessions of 80 minutes
each. The aim of the mini-course is to give an introduction to a few
problems in data science and machine learning, whose mathematical
analysis and algorithm design can benefit from techniques of algebraic
geometry. In particular, we will discuss low-rank matrix completion,
subspace clustering, phase retrieval and linear regression without
correspondences. We will focus on the algebraic geometric formulation of
these problems, in which dimension theory, Groebner bases, Hilbert
Functions and even local cohomology will make an appearence. Basic

knowledge of polynomial ring theory will be assumed.

£ # AR A Manolis C. Tsakiris holds a PhD degree in Mathematics from
the University of Genova advised by Aldo Conca, and a PhD in Electrical
Engineering from Johns Hopkins University advised by Rene Vidal. His



research interests concern Applied Algebraic Geometry and Commutative
Algebra. He is currently Associate Professor at the Academy of

Mathematics and Systems Science of the Chinese Academy of Sciences.

T4: Machine Learning and Symbolic Computation

R4 4 /~: The course will be split into four parts: an introduction, two
case studies, and a consideration of where future potential lies.

1. Introduction: We will briefly revise the fields of Machine Learning and
Symbolic Computation separately and consider different ways in which
they may interact, and the potentials and challenges of this interaction.
2. ML to Optimise CAD/QE: We will introduce the symbolic computation
algorithm Cylindrical Algebraic Decomposition (CAD) and its application
Quantifier Elimination (QE), before outlining work applying ML to
optimise CAD.

3. ML to Optimise Symbolic Integration: We will revise symbolic
integration and recent work to replace or optimise this with machine
learning.

4. Explainable Al and Symbolic Computation: We will finish by outlining
the field of Explainable Al and the speaker's hypothesis that this may give
the most fruitful interactions between Machine Learning and Symbolic

Computation, following some preliminary results.

£ #H AR A~ Dr Matthew England is an Associate Professor in Computer
Science at Coventry University in the UK. He currently serves as the co-
Director of the university's Research Centre of Computational Science and
Mathematical Modelling. He is the elected Treasurer for the ACM SIGSAM
and on the editorial board for Springer Mathematics in Computer Science

and Maple Transactions. His research has focussed on algorithms for



symbolic computation, particularly for real polynomial systems:
derivation of new algorithms, their analysis, their implementation in
computer algebra systems, and their application in fields as diverse as
biology and economics. His recent work has focused on the integration of
computer algebra with other areas of computer science: SAT/SMT solvers
and machine learning (EPSRC Projects EP/TO15748/1 and EP/R019622/1).
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F1:. The Geometry of Monomials and Null Binomials in Conformal

Geometric Algebra

EX T
tA#AFRAFH L4 FAAR

# % . Conformal Geometric Algebra is a geometric algebraic language for
describing and manipulating objects and transformations in conformal
geometry, and has found important applications in Geometric reasoning,
computer graphics and robotics. The term "Geometric Algebra" indicates
that basic algebraic entities such as monomials and their multiplications in
this algebra have clear geometric interpretation in conformal geometry.
This talk addresses the geometric meaning of monomials and null
binomials in conformal geometric algebra. A talk on similar topics was first
given in the conference AGACSE 2024, with slides and video available at
https://staff.science.uva.nl/l.dorst/ AGACSE2024/SLIDES/Li slides.pdf
https://staff.science.uva.nl/l.dorst/ AGACSE2024/VIDEO/Li.mp4
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F4: Linear Differential Equations under Specialization

&

Bda §
PEMFREAFZHL4HFRAK

Let k be an algebraically closed field of characteristic zero and let B be a
finitely generated k-algebra that is an integral domain. We consider the follow-
ing linear differential equation

L(y) = Qn (x)y(”) Ex an—l(x)y(nﬁl) o s o a()(x)y = 07 a; € B[l]

as a family of linear differential equations parametrized by the variety X (k) =
Homy (B, k). Precisely, applying ¢ € X (k) to the coefficients of each a;(z), one
obtains a specialized differential equation

Le(y) = a5, (2)y"™ + a5, (2)y" D + -+ + a(a)y = 0.

It is natural to ask how the algebraic properties of solutions of L¢(y) = 0 vary as
c ranges over X (k). For instance, one may ask for which ¢ € X (k) L¢(y) = 0 has
a basis of Liouvillian solutions, assuming that L(y) = 0 does not have such basis.
We call the set of such ¢ the exceptional set of X (k). In this talk, generalizing
a result of Hrushovski, we show that the exceptional set is indeed “small” in
an appropriate sense. As an application, we prove Matzat’s conjecture in full
generality: The absolute differential Galois group of a one-variable function field
over k, equipped with a non-trivial k-derivation, is the free proalgebraic group
on a set of cardinality |k|.
This is joint work with Michael Wibmer from University of Leeds, UK.




F5: Completing Parametric Unimodular Rows to Unimodular Matrices

EER
PAMRFREFH LM FAALR

#%: In1955, Serre proposed the following famous conjecture: “Every
projective module over polynomial ring is free”. In 1976, Quillen and
Suslin proved independently that Serre’s Conjecture is true. This means
that polynomial vector (fy,..., f;n) can be completed to a unimodular
matrix if fi,..., f;, generate the unit ideal. We will extend the Quillen-

Suslin Theorem to the parametric case.

F6: Reductions in symbolic integration

% 48 T

PAMRFREFH LM FAALR

# % Symbolic integration is a classic and core topic in symbolic
computation. In 1969, Risch presented a complete algorithm for
determining whether an elementary function is elementary integrable or
not. When an elementary function is not integrable, the reduction
algorithm can refine the output of the Risch algorithm, that is, it can
decompose the integrand into an integrable part and a minimal remainder
part. In the previous decade, the combination of the reduction algorithms
and Zeilberger's method of Creative Telescoping has significantly
improved the efficiency of symbolic integration and summation. In this
talk, we will overview the reduction algorithms and their applications,
including the cases of rational functions, hyperexponential functions,
algebraic functions, D-finite functions, and elementary functions in certain

logarithmic and hyperexponential extensions.
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F8: Motion Polynomials Admitting a Factorization with Linear Factors

% F 4t
PEAMSFBREFHL4HFALR

# % : Motion polynomials (polynomials over the dual quaternions with
nonzero real norm) describe rational motions. In this talk, we will present
a necessary and sufficient condition for reduced bounded motion
polynomials to admit factorizations into monic linear factors, and we give
an algorithm to compute them. We can use those linear factors to
construct mechanisms because the factorization corresponds to the
decomposition of the rational motion into simple rotations or translations.
Bounded motion polynomials always admit a factorization into linear

factors after multiplying with a suitable real or quaternion polynomial.



Our criterion for factorizability allows us to improve on earlier algorithms

to compute a suitable real or quaternion polynomial co-factor.

F9: Computing the great common divisor of several parametric

univariate polynomials via generalized subresultants

1 #
I & Rk RF

# % In this talk, we tackle the following problem: compute the gcd for
several univariate polynomials with parametric coefficients. It amounts to
partitioning the parameter space into “cells” so that the gcd has a uniform
expression over each cell and constructing a uniform expression of gcd in
each cell. We tackle the problem as follows. We begin by making a natural
and obvious extension of subresultants of two polynomials to several
polynomials. Then we develop the following structural theories about
them.

1. We generalize Sylvester’s theory to several polynomials, in order to
obtain an elegant relationship between generalized subresultants and the
gcd of several polynomials, yielding an elegant algorithm.

2. We generalize Habicht’s theory to several polynomials, in order to
obtain a systematic relationship between generalized subresultants and
pseudo-remainders, yielding an efficient algorithm.

Using the generalized theories, we present a simple (structurally
elegant) algorithm which is significantly more efficient (both in the output

size and computing time) than algorithms based on previous approaches.




F10: Recent Advance on Rational Surface Implicitization using Moving

Surfaces

L EEFETT:

# % : Rational surface implicitization is a fundamental problem in
Computer Aided Geometric Design, and it has wide applications in
surface/surface intersection, surface singularity computation, point
inversion, etc. In this talk, | will present the latest development of the
method of moving surfaces in implicitizing rational surfaces. Future

research problems are also discussed.
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F13: Hermite Ring Conjecture on polynomial rings over Valuation Rings

LSS -
AR K F

# % Serre's conjecture, proposed by J.P. Serre in 1955, asserts that
finitely generated projective modules over polynomial rings with finitely
many variables over a field, are free. Quillen and Suslin independently
gave an affirmative answer to this famous conjecture via completely
different approaches in January of 1976. Hermite ring Conjecture is an
extension of Serre's conjecture. In this talk, we mainly investigate Hermite
Ring Conjecture on polynomial rings over Valuation Rings. We obtain an
analogy of a theorem of Lequain-Simis. Based on this theorem, we can
prove that a unimodular row v in the polynomial ring over Valuation
Rings can be transformed into v(O, ..., 0) by elementary transformations.
Then we state that the Hermite ring conjecture holds on polynomial rings

over Valuation Rings.




